aa8f828a0ae7f271a04bace4bc921269cc1cfbd7
[releases.git] / rrunner.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4  *
5  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6  *
7  * Thanks to Essential Communication for providing us with hardware
8  * and very comprehensive documentation without which I would not have
9  * been able to write this driver. A special thank you to John Gibbon
10  * for sorting out the legal issues, with the NDA, allowing the code to
11  * be released under the GPL.
12  *
13  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14  * stupid bugs in my code.
15  *
16  * Softnet support and various other patches from Val Henson of
17  * ODS/Essential.
18  *
19  * PCI DMA mapping code partly based on work by Francois Romieu.
20  */
21
22
23 #define DEBUG 1
24 #define RX_DMA_SKBUFF 1
25 #define PKT_COPY_THRESHOLD 512
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/pci.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/hippidevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <linux/slab.h>
39 #include <net/sock.h>
40
41 #include <asm/cache.h>
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/irq.h>
45 #include <linux/uaccess.h>
46
47 #define rr_if_busy(dev)     netif_queue_stopped(dev)
48 #define rr_if_running(dev)  netif_running(dev)
49
50 #include "rrunner.h"
51
52 #define RUN_AT(x) (jiffies + (x))
53
54
55 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
56 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57 MODULE_LICENSE("GPL");
58
59 static const char version[] =
60 "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
61
62
63 static const struct net_device_ops rr_netdev_ops = {
64         .ndo_open               = rr_open,
65         .ndo_stop               = rr_close,
66         .ndo_siocdevprivate     = rr_siocdevprivate,
67         .ndo_start_xmit         = rr_start_xmit,
68         .ndo_set_mac_address    = hippi_mac_addr,
69 };
70
71 /*
72  * Implementation notes:
73  *
74  * The DMA engine only allows for DMA within physical 64KB chunks of
75  * memory. The current approach of the driver (and stack) is to use
76  * linear blocks of memory for the skbuffs. However, as the data block
77  * is always the first part of the skb and skbs are 2^n aligned so we
78  * are guarantted to get the whole block within one 64KB align 64KB
79  * chunk.
80  *
81  * On the long term, relying on being able to allocate 64KB linear
82  * chunks of memory is not feasible and the skb handling code and the
83  * stack will need to know about I/O vectors or something similar.
84  */
85
86 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
87 {
88         struct net_device *dev;
89         static int version_disp;
90         u8 pci_latency;
91         struct rr_private *rrpriv;
92         void *tmpptr;
93         dma_addr_t ring_dma;
94         int ret = -ENOMEM;
95
96         dev = alloc_hippi_dev(sizeof(struct rr_private));
97         if (!dev)
98                 goto out3;
99
100         ret = pci_enable_device(pdev);
101         if (ret) {
102                 ret = -ENODEV;
103                 goto out2;
104         }
105
106         rrpriv = netdev_priv(dev);
107
108         SET_NETDEV_DEV(dev, &pdev->dev);
109
110         ret = pci_request_regions(pdev, "rrunner");
111         if (ret < 0)
112                 goto out;
113
114         pci_set_drvdata(pdev, dev);
115
116         rrpriv->pci_dev = pdev;
117
118         spin_lock_init(&rrpriv->lock);
119
120         dev->netdev_ops = &rr_netdev_ops;
121
122         /* display version info if adapter is found */
123         if (!version_disp) {
124                 /* set display flag to TRUE so that */
125                 /* we only display this string ONCE */
126                 version_disp = 1;
127                 printk(version);
128         }
129
130         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
131         if (pci_latency <= 0x58){
132                 pci_latency = 0x58;
133                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
134         }
135
136         pci_set_master(pdev);
137
138         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139                "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140                (unsigned long long)pci_resource_start(pdev, 0),
141                pdev->irq, pci_latency);
142
143         /*
144          * Remap the MMIO regs into kernel space.
145          */
146         rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
147         if (!rrpriv->regs) {
148                 printk(KERN_ERR "%s:  Unable to map I/O register, "
149                         "RoadRunner will be disabled.\n", dev->name);
150                 ret = -EIO;
151                 goto out;
152         }
153
154         tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
155                                     GFP_KERNEL);
156         rrpriv->tx_ring = tmpptr;
157         rrpriv->tx_ring_dma = ring_dma;
158
159         if (!tmpptr) {
160                 ret = -ENOMEM;
161                 goto out;
162         }
163
164         tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
165                                     GFP_KERNEL);
166         rrpriv->rx_ring = tmpptr;
167         rrpriv->rx_ring_dma = ring_dma;
168
169         if (!tmpptr) {
170                 ret = -ENOMEM;
171                 goto out;
172         }
173
174         tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
175                                     GFP_KERNEL);
176         rrpriv->evt_ring = tmpptr;
177         rrpriv->evt_ring_dma = ring_dma;
178
179         if (!tmpptr) {
180                 ret = -ENOMEM;
181                 goto out;
182         }
183
184         /*
185          * Don't access any register before this point!
186          */
187 #ifdef __BIG_ENDIAN
188         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189                 &rrpriv->regs->HostCtrl);
190 #endif
191         /*
192          * Need to add a case for little-endian 64-bit hosts here.
193          */
194
195         rr_init(dev);
196
197         ret = register_netdev(dev);
198         if (ret)
199                 goto out;
200         return 0;
201
202  out:
203         if (rrpriv->evt_ring)
204                 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
205                                   rrpriv->evt_ring_dma);
206         if (rrpriv->rx_ring)
207                 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208                                   rrpriv->rx_ring_dma);
209         if (rrpriv->tx_ring)
210                 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211                                   rrpriv->tx_ring_dma);
212         if (rrpriv->regs)
213                 pci_iounmap(pdev, rrpriv->regs);
214         if (pdev)
215                 pci_release_regions(pdev);
216         pci_disable_device(pdev);
217  out2:
218         free_netdev(dev);
219  out3:
220         return ret;
221 }
222
223 static void rr_remove_one(struct pci_dev *pdev)
224 {
225         struct net_device *dev = pci_get_drvdata(pdev);
226         struct rr_private *rr = netdev_priv(dev);
227
228         if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
229                 printk(KERN_ERR "%s: trying to unload running NIC\n",
230                        dev->name);
231                 writel(HALT_NIC, &rr->regs->HostCtrl);
232         }
233
234         unregister_netdev(dev);
235         dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
236                           rr->evt_ring_dma);
237         dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
238                           rr->rx_ring_dma);
239         dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
240                           rr->tx_ring_dma);
241         pci_iounmap(pdev, rr->regs);
242         pci_release_regions(pdev);
243         pci_disable_device(pdev);
244         free_netdev(dev);
245 }
246
247
248 /*
249  * Commands are considered to be slow, thus there is no reason to
250  * inline this.
251  */
252 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
253 {
254         struct rr_regs __iomem *regs;
255         u32 idx;
256
257         regs = rrpriv->regs;
258         /*
259          * This is temporary - it will go away in the final version.
260          * We probably also want to make this function inline.
261          */
262         if (readl(&regs->HostCtrl) & NIC_HALTED){
263                 printk("issuing command for halted NIC, code 0x%x, "
264                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
265                 if (readl(&regs->Mode) & FATAL_ERR)
266                         printk("error codes Fail1 %02x, Fail2 %02x\n",
267                                readl(&regs->Fail1), readl(&regs->Fail2));
268         }
269
270         idx = rrpriv->info->cmd_ctrl.pi;
271
272         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
273         wmb();
274
275         idx = (idx - 1) % CMD_RING_ENTRIES;
276         rrpriv->info->cmd_ctrl.pi = idx;
277         wmb();
278
279         if (readl(&regs->Mode) & FATAL_ERR)
280                 printk("error code %02x\n", readl(&regs->Fail1));
281 }
282
283
284 /*
285  * Reset the board in a sensible manner. The NIC is already halted
286  * when we get here and a spin-lock is held.
287  */
288 static int rr_reset(struct net_device *dev)
289 {
290         struct rr_private *rrpriv;
291         struct rr_regs __iomem *regs;
292         u32 start_pc;
293         int i;
294
295         rrpriv = netdev_priv(dev);
296         regs = rrpriv->regs;
297
298         rr_load_firmware(dev);
299
300         writel(0x01000000, &regs->TX_state);
301         writel(0xff800000, &regs->RX_state);
302         writel(0, &regs->AssistState);
303         writel(CLEAR_INTA, &regs->LocalCtrl);
304         writel(0x01, &regs->BrkPt);
305         writel(0, &regs->Timer);
306         writel(0, &regs->TimerRef);
307         writel(RESET_DMA, &regs->DmaReadState);
308         writel(RESET_DMA, &regs->DmaWriteState);
309         writel(0, &regs->DmaWriteHostHi);
310         writel(0, &regs->DmaWriteHostLo);
311         writel(0, &regs->DmaReadHostHi);
312         writel(0, &regs->DmaReadHostLo);
313         writel(0, &regs->DmaReadLen);
314         writel(0, &regs->DmaWriteLen);
315         writel(0, &regs->DmaWriteLcl);
316         writel(0, &regs->DmaWriteIPchecksum);
317         writel(0, &regs->DmaReadLcl);
318         writel(0, &regs->DmaReadIPchecksum);
319         writel(0, &regs->PciState);
320 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
321         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
322 #elif (BITS_PER_LONG == 64)
323         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
324 #else
325         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
326 #endif
327
328 #if 0
329         /*
330          * Don't worry, this is just black magic.
331          */
332         writel(0xdf000, &regs->RxBase);
333         writel(0xdf000, &regs->RxPrd);
334         writel(0xdf000, &regs->RxCon);
335         writel(0xce000, &regs->TxBase);
336         writel(0xce000, &regs->TxPrd);
337         writel(0xce000, &regs->TxCon);
338         writel(0, &regs->RxIndPro);
339         writel(0, &regs->RxIndCon);
340         writel(0, &regs->RxIndRef);
341         writel(0, &regs->TxIndPro);
342         writel(0, &regs->TxIndCon);
343         writel(0, &regs->TxIndRef);
344         writel(0xcc000, &regs->pad10[0]);
345         writel(0, &regs->DrCmndPro);
346         writel(0, &regs->DrCmndCon);
347         writel(0, &regs->DwCmndPro);
348         writel(0, &regs->DwCmndCon);
349         writel(0, &regs->DwCmndRef);
350         writel(0, &regs->DrDataPro);
351         writel(0, &regs->DrDataCon);
352         writel(0, &regs->DrDataRef);
353         writel(0, &regs->DwDataPro);
354         writel(0, &regs->DwDataCon);
355         writel(0, &regs->DwDataRef);
356 #endif
357
358         writel(0xffffffff, &regs->MbEvent);
359         writel(0, &regs->Event);
360
361         writel(0, &regs->TxPi);
362         writel(0, &regs->IpRxPi);
363
364         writel(0, &regs->EvtCon);
365         writel(0, &regs->EvtPrd);
366
367         rrpriv->info->evt_ctrl.pi = 0;
368
369         for (i = 0; i < CMD_RING_ENTRIES; i++)
370                 writel(0, &regs->CmdRing[i]);
371
372 /*
373  * Why 32 ? is this not cache line size dependent?
374  */
375         writel(RBURST_64|WBURST_64, &regs->PciState);
376         wmb();
377
378         start_pc = rr_read_eeprom_word(rrpriv,
379                         offsetof(struct eeprom, rncd_info.FwStart));
380
381 #if (DEBUG > 1)
382         printk("%s: Executing firmware at address 0x%06x\n",
383                dev->name, start_pc);
384 #endif
385
386         writel(start_pc + 0x800, &regs->Pc);
387         wmb();
388         udelay(5);
389
390         writel(start_pc, &regs->Pc);
391         wmb();
392
393         return 0;
394 }
395
396
397 /*
398  * Read a string from the EEPROM.
399  */
400 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
401                                 unsigned long offset,
402                                 unsigned char *buf,
403                                 unsigned long length)
404 {
405         struct rr_regs __iomem *regs = rrpriv->regs;
406         u32 misc, io, host, i;
407
408         io = readl(&regs->ExtIo);
409         writel(0, &regs->ExtIo);
410         misc = readl(&regs->LocalCtrl);
411         writel(0, &regs->LocalCtrl);
412         host = readl(&regs->HostCtrl);
413         writel(host | HALT_NIC, &regs->HostCtrl);
414         mb();
415
416         for (i = 0; i < length; i++){
417                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
418                 mb();
419                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
420                 mb();
421         }
422
423         writel(host, &regs->HostCtrl);
424         writel(misc, &regs->LocalCtrl);
425         writel(io, &regs->ExtIo);
426         mb();
427         return i;
428 }
429
430
431 /*
432  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
433  * it to our CPU byte-order.
434  */
435 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
436                             size_t offset)
437 {
438         __be32 word;
439
440         if ((rr_read_eeprom(rrpriv, offset,
441                             (unsigned char *)&word, 4) == 4))
442                 return be32_to_cpu(word);
443         return 0;
444 }
445
446
447 /*
448  * Write a string to the EEPROM.
449  *
450  * This is only called when the firmware is not running.
451  */
452 static unsigned int write_eeprom(struct rr_private *rrpriv,
453                                  unsigned long offset,
454                                  unsigned char *buf,
455                                  unsigned long length)
456 {
457         struct rr_regs __iomem *regs = rrpriv->regs;
458         u32 misc, io, data, i, j, ready, error = 0;
459
460         io = readl(&regs->ExtIo);
461         writel(0, &regs->ExtIo);
462         misc = readl(&regs->LocalCtrl);
463         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
464         mb();
465
466         for (i = 0; i < length; i++){
467                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
468                 mb();
469                 data = buf[i] << 24;
470                 /*
471                  * Only try to write the data if it is not the same
472                  * value already.
473                  */
474                 if ((readl(&regs->WinData) & 0xff000000) != data){
475                         writel(data, &regs->WinData);
476                         ready = 0;
477                         j = 0;
478                         mb();
479                         while(!ready){
480                                 udelay(20);
481                                 if ((readl(&regs->WinData) & 0xff000000) ==
482                                     data)
483                                         ready = 1;
484                                 mb();
485                                 if (j++ > 5000){
486                                         printk("data mismatch: %08x, "
487                                                "WinData %08x\n", data,
488                                                readl(&regs->WinData));
489                                         ready = 1;
490                                         error = 1;
491                                 }
492                         }
493                 }
494         }
495
496         writel(misc, &regs->LocalCtrl);
497         writel(io, &regs->ExtIo);
498         mb();
499
500         return error;
501 }
502
503
504 static int rr_init(struct net_device *dev)
505 {
506         u8 addr[HIPPI_ALEN] __aligned(4);
507         struct rr_private *rrpriv;
508         struct rr_regs __iomem *regs;
509         u32 sram_size, rev;
510
511         rrpriv = netdev_priv(dev);
512         regs = rrpriv->regs;
513
514         rev = readl(&regs->FwRev);
515         rrpriv->fw_rev = rev;
516         if (rev > 0x00020024)
517                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
518                        ((rev >> 8) & 0xff), (rev & 0xff));
519         else if (rev >= 0x00020000) {
520                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
521                        "later is recommended)\n", (rev >> 16),
522                        ((rev >> 8) & 0xff), (rev & 0xff));
523         }else{
524                 printk("  Firmware revision too old: %i.%i.%i, please "
525                        "upgrade to 2.0.37 or later.\n",
526                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
527         }
528
529 #if (DEBUG > 2)
530         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
531 #endif
532
533         /*
534          * Read the hardware address from the eeprom.  The HW address
535          * is not really necessary for HIPPI but awfully convenient.
536          * The pointer arithmetic to put it in dev_addr is ugly, but
537          * Donald Becker does it this way for the GigE version of this
538          * card and it's shorter and more portable than any
539          * other method I've seen.  -VAL
540          */
541
542         *(__be16 *)(addr) =
543           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
544         *(__be32 *)(addr+2) =
545           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
546         dev_addr_set(dev, addr);
547
548         printk("  MAC: %pM\n", dev->dev_addr);
549
550         sram_size = rr_read_eeprom_word(rrpriv, 8);
551         printk("  SRAM size 0x%06x\n", sram_size);
552
553         return 0;
554 }
555
556
557 static int rr_init1(struct net_device *dev)
558 {
559         struct rr_private *rrpriv;
560         struct rr_regs __iomem *regs;
561         unsigned long myjif, flags;
562         struct cmd cmd;
563         u32 hostctrl;
564         int ecode = 0;
565         short i;
566
567         rrpriv = netdev_priv(dev);
568         regs = rrpriv->regs;
569
570         spin_lock_irqsave(&rrpriv->lock, flags);
571
572         hostctrl = readl(&regs->HostCtrl);
573         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
574         wmb();
575
576         if (hostctrl & PARITY_ERR){
577                 printk("%s: Parity error halting NIC - this is serious!\n",
578                        dev->name);
579                 spin_unlock_irqrestore(&rrpriv->lock, flags);
580                 ecode = -EFAULT;
581                 goto error;
582         }
583
584         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
585         set_infoaddr(regs, rrpriv->info_dma);
586
587         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
588         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
589         rrpriv->info->evt_ctrl.mode = 0;
590         rrpriv->info->evt_ctrl.pi = 0;
591         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
592
593         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
594         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
595         rrpriv->info->cmd_ctrl.mode = 0;
596         rrpriv->info->cmd_ctrl.pi = 15;
597
598         for (i = 0; i < CMD_RING_ENTRIES; i++) {
599                 writel(0, &regs->CmdRing[i]);
600         }
601
602         for (i = 0; i < TX_RING_ENTRIES; i++) {
603                 rrpriv->tx_ring[i].size = 0;
604                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
605                 rrpriv->tx_skbuff[i] = NULL;
606         }
607         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
608         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
609         rrpriv->info->tx_ctrl.mode = 0;
610         rrpriv->info->tx_ctrl.pi = 0;
611         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
612
613         /*
614          * Set dirty_tx before we start receiving interrupts, otherwise
615          * the interrupt handler might think it is supposed to process
616          * tx ints before we are up and running, which may cause a null
617          * pointer access in the int handler.
618          */
619         rrpriv->tx_full = 0;
620         rrpriv->cur_rx = 0;
621         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
622
623         rr_reset(dev);
624
625         /* Tuning values */
626         writel(0x5000, &regs->ConRetry);
627         writel(0x100, &regs->ConRetryTmr);
628         writel(0x500000, &regs->ConTmout);
629         writel(0x60, &regs->IntrTmr);
630         writel(0x500000, &regs->TxDataMvTimeout);
631         writel(0x200000, &regs->RxDataMvTimeout);
632         writel(0x80, &regs->WriteDmaThresh);
633         writel(0x80, &regs->ReadDmaThresh);
634
635         rrpriv->fw_running = 0;
636         wmb();
637
638         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
639         writel(hostctrl, &regs->HostCtrl);
640         wmb();
641
642         spin_unlock_irqrestore(&rrpriv->lock, flags);
643
644         for (i = 0; i < RX_RING_ENTRIES; i++) {
645                 struct sk_buff *skb;
646                 dma_addr_t addr;
647
648                 rrpriv->rx_ring[i].mode = 0;
649                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
650                 if (!skb) {
651                         printk(KERN_WARNING "%s: Unable to allocate memory "
652                                "for receive ring - halting NIC\n", dev->name);
653                         ecode = -ENOMEM;
654                         goto error;
655                 }
656                 rrpriv->rx_skbuff[i] = skb;
657                 addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
658                                       dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
659                 /*
660                  * Sanity test to see if we conflict with the DMA
661                  * limitations of the Roadrunner.
662                  */
663                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
664                         printk("skb alloc error\n");
665
666                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
667                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
668         }
669
670         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
671         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
672         rrpriv->rx_ctrl[4].mode = 8;
673         rrpriv->rx_ctrl[4].pi = 0;
674         wmb();
675         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
676
677         udelay(1000);
678
679         /*
680          * Now start the FirmWare.
681          */
682         cmd.code = C_START_FW;
683         cmd.ring = 0;
684         cmd.index = 0;
685
686         rr_issue_cmd(rrpriv, &cmd);
687
688         /*
689          * Give the FirmWare time to chew on the `get running' command.
690          */
691         myjif = jiffies + 5 * HZ;
692         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
693                 cpu_relax();
694
695         netif_start_queue(dev);
696
697         return ecode;
698
699  error:
700         /*
701          * We might have gotten here because we are out of memory,
702          * make sure we release everything we allocated before failing
703          */
704         for (i = 0; i < RX_RING_ENTRIES; i++) {
705                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
706
707                 if (skb) {
708                         dma_unmap_single(&rrpriv->pci_dev->dev,
709                                          rrpriv->rx_ring[i].addr.addrlo,
710                                          dev->mtu + HIPPI_HLEN,
711                                          DMA_FROM_DEVICE);
712                         rrpriv->rx_ring[i].size = 0;
713                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
714                         dev_kfree_skb(skb);
715                         rrpriv->rx_skbuff[i] = NULL;
716                 }
717         }
718         return ecode;
719 }
720
721
722 /*
723  * All events are considered to be slow (RX/TX ints do not generate
724  * events) and are handled here, outside the main interrupt handler,
725  * to reduce the size of the handler.
726  */
727 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
728 {
729         struct rr_private *rrpriv;
730         struct rr_regs __iomem *regs;
731         u32 tmp;
732
733         rrpriv = netdev_priv(dev);
734         regs = rrpriv->regs;
735
736         while (prodidx != eidx){
737                 switch (rrpriv->evt_ring[eidx].code){
738                 case E_NIC_UP:
739                         tmp = readl(&regs->FwRev);
740                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
741                                "up and running\n", dev->name,
742                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
743                         rrpriv->fw_running = 1;
744                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
745                         wmb();
746                         break;
747                 case E_LINK_ON:
748                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
749                         break;
750                 case E_LINK_OFF:
751                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
752                         break;
753                 case E_RX_IDLE:
754                         printk(KERN_WARNING "%s: RX data not moving\n",
755                                dev->name);
756                         goto drop;
757                 case E_WATCHDOG:
758                         printk(KERN_INFO "%s: The watchdog is here to see "
759                                "us\n", dev->name);
760                         break;
761                 case E_INTERN_ERR:
762                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
763                                dev->name);
764                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
765                                &regs->HostCtrl);
766                         wmb();
767                         break;
768                 case E_HOST_ERR:
769                         printk(KERN_ERR "%s: Host software error\n",
770                                dev->name);
771                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
772                                &regs->HostCtrl);
773                         wmb();
774                         break;
775                 /*
776                  * TX events.
777                  */
778                 case E_CON_REJ:
779                         printk(KERN_WARNING "%s: Connection rejected\n",
780                                dev->name);
781                         dev->stats.tx_aborted_errors++;
782                         break;
783                 case E_CON_TMOUT:
784                         printk(KERN_WARNING "%s: Connection timeout\n",
785                                dev->name);
786                         break;
787                 case E_DISC_ERR:
788                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
789                                dev->name);
790                         dev->stats.tx_aborted_errors++;
791                         break;
792                 case E_INT_PRTY:
793                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
794                                dev->name);
795                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
796                                &regs->HostCtrl);
797                         wmb();
798                         break;
799                 case E_TX_IDLE:
800                         printk(KERN_WARNING "%s: Transmitter idle\n",
801                                dev->name);
802                         break;
803                 case E_TX_LINK_DROP:
804                         printk(KERN_WARNING "%s: Link lost during transmit\n",
805                                dev->name);
806                         dev->stats.tx_aborted_errors++;
807                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
808                                &regs->HostCtrl);
809                         wmb();
810                         break;
811                 case E_TX_INV_RNG:
812                         printk(KERN_ERR "%s: Invalid send ring block\n",
813                                dev->name);
814                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
815                                &regs->HostCtrl);
816                         wmb();
817                         break;
818                 case E_TX_INV_BUF:
819                         printk(KERN_ERR "%s: Invalid send buffer address\n",
820                                dev->name);
821                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
822                                &regs->HostCtrl);
823                         wmb();
824                         break;
825                 case E_TX_INV_DSC:
826                         printk(KERN_ERR "%s: Invalid descriptor address\n",
827                                dev->name);
828                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
829                                &regs->HostCtrl);
830                         wmb();
831                         break;
832                 /*
833                  * RX events.
834                  */
835                 case E_RX_RNG_OUT:
836                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
837                         break;
838
839                 case E_RX_PAR_ERR:
840                         printk(KERN_WARNING "%s: Receive parity error\n",
841                                dev->name);
842                         goto drop;
843                 case E_RX_LLRC_ERR:
844                         printk(KERN_WARNING "%s: Receive LLRC error\n",
845                                dev->name);
846                         goto drop;
847                 case E_PKT_LN_ERR:
848                         printk(KERN_WARNING "%s: Receive packet length "
849                                "error\n", dev->name);
850                         goto drop;
851                 case E_DTA_CKSM_ERR:
852                         printk(KERN_WARNING "%s: Data checksum error\n",
853                                dev->name);
854                         goto drop;
855                 case E_SHT_BST:
856                         printk(KERN_WARNING "%s: Unexpected short burst "
857                                "error\n", dev->name);
858                         goto drop;
859                 case E_STATE_ERR:
860                         printk(KERN_WARNING "%s: Recv. state transition"
861                                " error\n", dev->name);
862                         goto drop;
863                 case E_UNEXP_DATA:
864                         printk(KERN_WARNING "%s: Unexpected data error\n",
865                                dev->name);
866                         goto drop;
867                 case E_LST_LNK_ERR:
868                         printk(KERN_WARNING "%s: Link lost error\n",
869                                dev->name);
870                         goto drop;
871                 case E_FRM_ERR:
872                         printk(KERN_WARNING "%s: Framing Error\n",
873                                dev->name);
874                         goto drop;
875                 case E_FLG_SYN_ERR:
876                         printk(KERN_WARNING "%s: Flag sync. lost during "
877                                "packet\n", dev->name);
878                         goto drop;
879                 case E_RX_INV_BUF:
880                         printk(KERN_ERR "%s: Invalid receive buffer "
881                                "address\n", dev->name);
882                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
883                                &regs->HostCtrl);
884                         wmb();
885                         break;
886                 case E_RX_INV_DSC:
887                         printk(KERN_ERR "%s: Invalid receive descriptor "
888                                "address\n", dev->name);
889                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
890                                &regs->HostCtrl);
891                         wmb();
892                         break;
893                 case E_RNG_BLK:
894                         printk(KERN_ERR "%s: Invalid ring block\n",
895                                dev->name);
896                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
897                                &regs->HostCtrl);
898                         wmb();
899                         break;
900                 drop:
901                         /* Label packet to be dropped.
902                          * Actual dropping occurs in rx
903                          * handling.
904                          *
905                          * The index of packet we get to drop is
906                          * the index of the packet following
907                          * the bad packet. -kbf
908                          */
909                         {
910                                 u16 index = rrpriv->evt_ring[eidx].index;
911                                 index = (index + (RX_RING_ENTRIES - 1)) %
912                                         RX_RING_ENTRIES;
913                                 rrpriv->rx_ring[index].mode |=
914                                         (PACKET_BAD | PACKET_END);
915                         }
916                         break;
917                 default:
918                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
919                                dev->name, rrpriv->evt_ring[eidx].code);
920                 }
921                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
922         }
923
924         rrpriv->info->evt_ctrl.pi = eidx;
925         wmb();
926         return eidx;
927 }
928
929
930 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
931 {
932         struct rr_private *rrpriv = netdev_priv(dev);
933         struct rr_regs __iomem *regs = rrpriv->regs;
934
935         do {
936                 struct rx_desc *desc;
937                 u32 pkt_len;
938
939                 desc = &(rrpriv->rx_ring[index]);
940                 pkt_len = desc->size;
941 #if (DEBUG > 2)
942                 printk("index %i, rxlimit %i\n", index, rxlimit);
943                 printk("len %x, mode %x\n", pkt_len, desc->mode);
944 #endif
945                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
946                         dev->stats.rx_dropped++;
947                         goto defer;
948                 }
949
950                 if (pkt_len > 0){
951                         struct sk_buff *skb, *rx_skb;
952
953                         rx_skb = rrpriv->rx_skbuff[index];
954
955                         if (pkt_len < PKT_COPY_THRESHOLD) {
956                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
957                                 if (skb == NULL){
958                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
959                                         dev->stats.rx_dropped++;
960                                         goto defer;
961                                 } else {
962                                         dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
963                                                                 desc->addr.addrlo,
964                                                                 pkt_len,
965                                                                 DMA_FROM_DEVICE);
966
967                                         skb_put_data(skb, rx_skb->data,
968                                                      pkt_len);
969
970                                         dma_sync_single_for_device(&rrpriv->pci_dev->dev,
971                                                                    desc->addr.addrlo,
972                                                                    pkt_len,
973                                                                    DMA_FROM_DEVICE);
974                                 }
975                         }else{
976                                 struct sk_buff *newskb;
977
978                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
979                                         GFP_ATOMIC);
980                                 if (newskb){
981                                         dma_addr_t addr;
982
983                                         dma_unmap_single(&rrpriv->pci_dev->dev,
984                                                          desc->addr.addrlo,
985                                                          dev->mtu + HIPPI_HLEN,
986                                                          DMA_FROM_DEVICE);
987                                         skb = rx_skb;
988                                         skb_put(skb, pkt_len);
989                                         rrpriv->rx_skbuff[index] = newskb;
990                                         addr = dma_map_single(&rrpriv->pci_dev->dev,
991                                                               newskb->data,
992                                                               dev->mtu + HIPPI_HLEN,
993                                                               DMA_FROM_DEVICE);
994                                         set_rraddr(&desc->addr, addr);
995                                 } else {
996                                         printk("%s: Out of memory, deferring "
997                                                "packet\n", dev->name);
998                                         dev->stats.rx_dropped++;
999                                         goto defer;
1000                                 }
1001                         }
1002                         skb->protocol = hippi_type_trans(skb, dev);
1003
1004                         netif_rx(skb);          /* send it up */
1005
1006                         dev->stats.rx_packets++;
1007                         dev->stats.rx_bytes += pkt_len;
1008                 }
1009         defer:
1010                 desc->mode = 0;
1011                 desc->size = dev->mtu + HIPPI_HLEN;
1012
1013                 if ((index & 7) == 7)
1014                         writel(index, &regs->IpRxPi);
1015
1016                 index = (index + 1) % RX_RING_ENTRIES;
1017         } while(index != rxlimit);
1018
1019         rrpriv->cur_rx = index;
1020         wmb();
1021 }
1022
1023
1024 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1025 {
1026         struct rr_private *rrpriv;
1027         struct rr_regs __iomem *regs;
1028         struct net_device *dev = (struct net_device *)dev_id;
1029         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1030
1031         rrpriv = netdev_priv(dev);
1032         regs = rrpriv->regs;
1033
1034         if (!(readl(&regs->HostCtrl) & RR_INT))
1035                 return IRQ_NONE;
1036
1037         spin_lock(&rrpriv->lock);
1038
1039         prodidx = readl(&regs->EvtPrd);
1040         txcsmr = (prodidx >> 8) & 0xff;
1041         rxlimit = (prodidx >> 16) & 0xff;
1042         prodidx &= 0xff;
1043
1044 #if (DEBUG > 2)
1045         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1046                prodidx, rrpriv->info->evt_ctrl.pi);
1047 #endif
1048         /*
1049          * Order here is important.  We must handle events
1050          * before doing anything else in order to catch
1051          * such things as LLRC errors, etc -kbf
1052          */
1053
1054         eidx = rrpriv->info->evt_ctrl.pi;
1055         if (prodidx != eidx)
1056                 eidx = rr_handle_event(dev, prodidx, eidx);
1057
1058         rxindex = rrpriv->cur_rx;
1059         if (rxindex != rxlimit)
1060                 rx_int(dev, rxlimit, rxindex);
1061
1062         txcon = rrpriv->dirty_tx;
1063         if (txcsmr != txcon) {
1064                 do {
1065                         /* Due to occational firmware TX producer/consumer out
1066                          * of sync. error need to check entry in ring -kbf
1067                          */
1068                         if(rrpriv->tx_skbuff[txcon]){
1069                                 struct tx_desc *desc;
1070                                 struct sk_buff *skb;
1071
1072                                 desc = &(rrpriv->tx_ring[txcon]);
1073                                 skb = rrpriv->tx_skbuff[txcon];
1074
1075                                 dev->stats.tx_packets++;
1076                                 dev->stats.tx_bytes += skb->len;
1077
1078                                 dma_unmap_single(&rrpriv->pci_dev->dev,
1079                                                  desc->addr.addrlo, skb->len,
1080                                                  DMA_TO_DEVICE);
1081                                 dev_kfree_skb_irq(skb);
1082
1083                                 rrpriv->tx_skbuff[txcon] = NULL;
1084                                 desc->size = 0;
1085                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1086                                 desc->mode = 0;
1087                         }
1088                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1089                 } while (txcsmr != txcon);
1090                 wmb();
1091
1092                 rrpriv->dirty_tx = txcon;
1093                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1094                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1095                      != rrpriv->dirty_tx)){
1096                         rrpriv->tx_full = 0;
1097                         netif_wake_queue(dev);
1098                 }
1099         }
1100
1101         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1102         writel(eidx, &regs->EvtCon);
1103         wmb();
1104
1105         spin_unlock(&rrpriv->lock);
1106         return IRQ_HANDLED;
1107 }
1108
1109 static inline void rr_raz_tx(struct rr_private *rrpriv,
1110                              struct net_device *dev)
1111 {
1112         int i;
1113
1114         for (i = 0; i < TX_RING_ENTRIES; i++) {
1115                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1116
1117                 if (skb) {
1118                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1119
1120                         dma_unmap_single(&rrpriv->pci_dev->dev,
1121                                          desc->addr.addrlo, skb->len,
1122                                          DMA_TO_DEVICE);
1123                         desc->size = 0;
1124                         set_rraddr(&desc->addr, 0);
1125                         dev_kfree_skb(skb);
1126                         rrpriv->tx_skbuff[i] = NULL;
1127                 }
1128         }
1129 }
1130
1131
1132 static inline void rr_raz_rx(struct rr_private *rrpriv,
1133                              struct net_device *dev)
1134 {
1135         int i;
1136
1137         for (i = 0; i < RX_RING_ENTRIES; i++) {
1138                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1139
1140                 if (skb) {
1141                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1142
1143                         dma_unmap_single(&rrpriv->pci_dev->dev,
1144                                          desc->addr.addrlo,
1145                                          dev->mtu + HIPPI_HLEN,
1146                                          DMA_FROM_DEVICE);
1147                         desc->size = 0;
1148                         set_rraddr(&desc->addr, 0);
1149                         dev_kfree_skb(skb);
1150                         rrpriv->rx_skbuff[i] = NULL;
1151                 }
1152         }
1153 }
1154
1155 static void rr_timer(struct timer_list *t)
1156 {
1157         struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1158         struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1159         struct rr_regs __iomem *regs = rrpriv->regs;
1160         unsigned long flags;
1161
1162         if (readl(&regs->HostCtrl) & NIC_HALTED){
1163                 printk("%s: Restarting nic\n", dev->name);
1164                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1165                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1166                 wmb();
1167
1168                 rr_raz_tx(rrpriv, dev);
1169                 rr_raz_rx(rrpriv, dev);
1170
1171                 if (rr_init1(dev)) {
1172                         spin_lock_irqsave(&rrpriv->lock, flags);
1173                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1174                                &regs->HostCtrl);
1175                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1176                 }
1177         }
1178         rrpriv->timer.expires = RUN_AT(5*HZ);
1179         add_timer(&rrpriv->timer);
1180 }
1181
1182
1183 static int rr_open(struct net_device *dev)
1184 {
1185         struct rr_private *rrpriv = netdev_priv(dev);
1186         struct pci_dev *pdev = rrpriv->pci_dev;
1187         struct rr_regs __iomem *regs;
1188         int ecode = 0;
1189         unsigned long flags;
1190         dma_addr_t dma_addr;
1191
1192         regs = rrpriv->regs;
1193
1194         if (rrpriv->fw_rev < 0x00020000) {
1195                 printk(KERN_WARNING "%s: trying to configure device with "
1196                        "obsolete firmware\n", dev->name);
1197                 ecode = -EBUSY;
1198                 goto error;
1199         }
1200
1201         rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1202                                              256 * sizeof(struct ring_ctrl),
1203                                              &dma_addr, GFP_KERNEL);
1204         if (!rrpriv->rx_ctrl) {
1205                 ecode = -ENOMEM;
1206                 goto error;
1207         }
1208         rrpriv->rx_ctrl_dma = dma_addr;
1209
1210         rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1211                                           &dma_addr, GFP_KERNEL);
1212         if (!rrpriv->info) {
1213                 ecode = -ENOMEM;
1214                 goto error;
1215         }
1216         rrpriv->info_dma = dma_addr;
1217         wmb();
1218
1219         spin_lock_irqsave(&rrpriv->lock, flags);
1220         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1221         readl(&regs->HostCtrl);
1222         spin_unlock_irqrestore(&rrpriv->lock, flags);
1223
1224         if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1225                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1226                        dev->name, pdev->irq);
1227                 ecode = -EAGAIN;
1228                 goto error;
1229         }
1230
1231         if ((ecode = rr_init1(dev)))
1232                 goto error;
1233
1234         /* Set the timer to switch to check for link beat and perhaps switch
1235            to an alternate media type. */
1236         timer_setup(&rrpriv->timer, rr_timer, 0);
1237         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1238         add_timer(&rrpriv->timer);
1239
1240         netif_start_queue(dev);
1241
1242         return ecode;
1243
1244  error:
1245         spin_lock_irqsave(&rrpriv->lock, flags);
1246         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1247         spin_unlock_irqrestore(&rrpriv->lock, flags);
1248
1249         if (rrpriv->info) {
1250                 dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1251                                   rrpriv->info, rrpriv->info_dma);
1252                 rrpriv->info = NULL;
1253         }
1254         if (rrpriv->rx_ctrl) {
1255                 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1256                                   rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1257                 rrpriv->rx_ctrl = NULL;
1258         }
1259
1260         netif_stop_queue(dev);
1261
1262         return ecode;
1263 }
1264
1265
1266 static void rr_dump(struct net_device *dev)
1267 {
1268         struct rr_private *rrpriv;
1269         struct rr_regs __iomem *regs;
1270         u32 index, cons;
1271         short i;
1272         int len;
1273
1274         rrpriv = netdev_priv(dev);
1275         regs = rrpriv->regs;
1276
1277         printk("%s: dumping NIC TX rings\n", dev->name);
1278
1279         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1280                readl(&regs->RxPrd), readl(&regs->TxPrd),
1281                readl(&regs->EvtPrd), readl(&regs->TxPi),
1282                rrpriv->info->tx_ctrl.pi);
1283
1284         printk("Error code 0x%x\n", readl(&regs->Fail1));
1285
1286         index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1287         cons = rrpriv->dirty_tx;
1288         printk("TX ring index %i, TX consumer %i\n",
1289                index, cons);
1290
1291         if (rrpriv->tx_skbuff[index]){
1292                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1293                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1294                 for (i = 0; i < len; i++){
1295                         if (!(i & 7))
1296                                 printk("\n");
1297                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1298                 }
1299                 printk("\n");
1300         }
1301
1302         if (rrpriv->tx_skbuff[cons]){
1303                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1304                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1305                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1306                        rrpriv->tx_ring[cons].mode,
1307                        rrpriv->tx_ring[cons].size,
1308                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1309                        rrpriv->tx_skbuff[cons]->data,
1310                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1311                 for (i = 0; i < len; i++){
1312                         if (!(i & 7))
1313                                 printk("\n");
1314                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1315                 }
1316                 printk("\n");
1317         }
1318
1319         printk("dumping TX ring info:\n");
1320         for (i = 0; i < TX_RING_ENTRIES; i++)
1321                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1322                        rrpriv->tx_ring[i].mode,
1323                        rrpriv->tx_ring[i].size,
1324                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1325
1326 }
1327
1328
1329 static int rr_close(struct net_device *dev)
1330 {
1331         struct rr_private *rrpriv = netdev_priv(dev);
1332         struct rr_regs __iomem *regs = rrpriv->regs;
1333         struct pci_dev *pdev = rrpriv->pci_dev;
1334         unsigned long flags;
1335         u32 tmp;
1336         short i;
1337
1338         netif_stop_queue(dev);
1339
1340
1341         /*
1342          * Lock to make sure we are not cleaning up while another CPU
1343          * is handling interrupts.
1344          */
1345         spin_lock_irqsave(&rrpriv->lock, flags);
1346
1347         tmp = readl(&regs->HostCtrl);
1348         if (tmp & NIC_HALTED){
1349                 printk("%s: NIC already halted\n", dev->name);
1350                 rr_dump(dev);
1351         }else{
1352                 tmp |= HALT_NIC | RR_CLEAR_INT;
1353                 writel(tmp, &regs->HostCtrl);
1354                 readl(&regs->HostCtrl);
1355         }
1356
1357         rrpriv->fw_running = 0;
1358
1359         spin_unlock_irqrestore(&rrpriv->lock, flags);
1360         del_timer_sync(&rrpriv->timer);
1361         spin_lock_irqsave(&rrpriv->lock, flags);
1362
1363         writel(0, &regs->TxPi);
1364         writel(0, &regs->IpRxPi);
1365
1366         writel(0, &regs->EvtCon);
1367         writel(0, &regs->EvtPrd);
1368
1369         for (i = 0; i < CMD_RING_ENTRIES; i++)
1370                 writel(0, &regs->CmdRing[i]);
1371
1372         rrpriv->info->tx_ctrl.entries = 0;
1373         rrpriv->info->cmd_ctrl.pi = 0;
1374         rrpriv->info->evt_ctrl.pi = 0;
1375         rrpriv->rx_ctrl[4].entries = 0;
1376
1377         rr_raz_tx(rrpriv, dev);
1378         rr_raz_rx(rrpriv, dev);
1379
1380         dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1381                           rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1382         rrpriv->rx_ctrl = NULL;
1383
1384         dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1385                           rrpriv->info_dma);
1386         rrpriv->info = NULL;
1387
1388         spin_unlock_irqrestore(&rrpriv->lock, flags);
1389         free_irq(pdev->irq, dev);
1390
1391         return 0;
1392 }
1393
1394
1395 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1396                                  struct net_device *dev)
1397 {
1398         struct rr_private *rrpriv = netdev_priv(dev);
1399         struct rr_regs __iomem *regs = rrpriv->regs;
1400         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1401         struct ring_ctrl *txctrl;
1402         unsigned long flags;
1403         u32 index, len = skb->len;
1404         u32 *ifield;
1405         struct sk_buff *new_skb;
1406
1407         if (readl(&regs->Mode) & FATAL_ERR)
1408                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1409                        readl(&regs->Fail1), readl(&regs->Fail2));
1410
1411         /*
1412          * We probably need to deal with tbusy here to prevent overruns.
1413          */
1414
1415         if (skb_headroom(skb) < 8){
1416                 printk("incoming skb too small - reallocating\n");
1417                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1418                         dev_kfree_skb(skb);
1419                         netif_wake_queue(dev);
1420                         return NETDEV_TX_OK;
1421                 }
1422                 skb_reserve(new_skb, 8);
1423                 skb_put(new_skb, len);
1424                 skb_copy_from_linear_data(skb, new_skb->data, len);
1425                 dev_kfree_skb(skb);
1426                 skb = new_skb;
1427         }
1428
1429         ifield = skb_push(skb, 8);
1430
1431         ifield[0] = 0;
1432         ifield[1] = hcb->ifield;
1433
1434         /*
1435          * We don't need the lock before we are actually going to start
1436          * fiddling with the control blocks.
1437          */
1438         spin_lock_irqsave(&rrpriv->lock, flags);
1439
1440         txctrl = &rrpriv->info->tx_ctrl;
1441
1442         index = txctrl->pi;
1443
1444         rrpriv->tx_skbuff[index] = skb;
1445         set_rraddr(&rrpriv->tx_ring[index].addr,
1446                    dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1447         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1448         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1449         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1450         wmb();
1451         writel(txctrl->pi, &regs->TxPi);
1452
1453         if (txctrl->pi == rrpriv->dirty_tx){
1454                 rrpriv->tx_full = 1;
1455                 netif_stop_queue(dev);
1456         }
1457
1458         spin_unlock_irqrestore(&rrpriv->lock, flags);
1459
1460         return NETDEV_TX_OK;
1461 }
1462
1463
1464 /*
1465  * Read the firmware out of the EEPROM and put it into the SRAM
1466  * (or from user space - later)
1467  *
1468  * This operation requires the NIC to be halted and is performed with
1469  * interrupts disabled and with the spinlock hold.
1470  */
1471 static int rr_load_firmware(struct net_device *dev)
1472 {
1473         struct rr_private *rrpriv;
1474         struct rr_regs __iomem *regs;
1475         size_t eptr, segptr;
1476         int i, j;
1477         u32 localctrl, sptr, len, tmp;
1478         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1479
1480         rrpriv = netdev_priv(dev);
1481         regs = rrpriv->regs;
1482
1483         if (dev->flags & IFF_UP)
1484                 return -EBUSY;
1485
1486         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1487                 printk("%s: Trying to load firmware to a running NIC.\n",
1488                        dev->name);
1489                 return -EBUSY;
1490         }
1491
1492         localctrl = readl(&regs->LocalCtrl);
1493         writel(0, &regs->LocalCtrl);
1494
1495         writel(0, &regs->EvtPrd);
1496         writel(0, &regs->RxPrd);
1497         writel(0, &regs->TxPrd);
1498
1499         /*
1500          * First wipe the entire SRAM, otherwise we might run into all
1501          * kinds of trouble ... sigh, this took almost all afternoon
1502          * to track down ;-(
1503          */
1504         io = readl(&regs->ExtIo);
1505         writel(0, &regs->ExtIo);
1506         sram_size = rr_read_eeprom_word(rrpriv, 8);
1507
1508         for (i = 200; i < sram_size / 4; i++){
1509                 writel(i * 4, &regs->WinBase);
1510                 mb();
1511                 writel(0, &regs->WinData);
1512                 mb();
1513         }
1514         writel(io, &regs->ExtIo);
1515         mb();
1516
1517         eptr = rr_read_eeprom_word(rrpriv,
1518                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1519         eptr = ((eptr & 0x1fffff) >> 3);
1520
1521         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1522         p2len = (p2len << 2);
1523         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1524         p2size = ((p2size & 0x1fffff) >> 3);
1525
1526         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1527                 printk("%s: eptr is invalid\n", dev->name);
1528                 goto out;
1529         }
1530
1531         revision = rr_read_eeprom_word(rrpriv,
1532                         offsetof(struct eeprom, manf.HeaderFmt));
1533
1534         if (revision != 1){
1535                 printk("%s: invalid firmware format (%i)\n",
1536                        dev->name, revision);
1537                 goto out;
1538         }
1539
1540         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1541         eptr +=4;
1542 #if (DEBUG > 1)
1543         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1544 #endif
1545
1546         for (i = 0; i < nr_seg; i++){
1547                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1548                 eptr += 4;
1549                 len = rr_read_eeprom_word(rrpriv, eptr);
1550                 eptr += 4;
1551                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1552                 segptr = ((segptr & 0x1fffff) >> 3);
1553                 eptr += 4;
1554 #if (DEBUG > 1)
1555                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1556                        dev->name, i, sptr, len, segptr);
1557 #endif
1558                 for (j = 0; j < len; j++){
1559                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1560                         writel(sptr, &regs->WinBase);
1561                         mb();
1562                         writel(tmp, &regs->WinData);
1563                         mb();
1564                         segptr += 4;
1565                         sptr += 4;
1566                 }
1567         }
1568
1569 out:
1570         writel(localctrl, &regs->LocalCtrl);
1571         mb();
1572         return 0;
1573 }
1574
1575
1576 static int rr_siocdevprivate(struct net_device *dev, struct ifreq *rq,
1577                              void __user *data, int cmd)
1578 {
1579         struct rr_private *rrpriv;
1580         unsigned char *image, *oldimage;
1581         unsigned long flags;
1582         unsigned int i;
1583         int error = -EOPNOTSUPP;
1584
1585         rrpriv = netdev_priv(dev);
1586
1587         switch(cmd){
1588         case SIOCRRGFW:
1589                 if (!capable(CAP_SYS_RAWIO)){
1590                         return -EPERM;
1591                 }
1592
1593                 image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1594                 if (!image)
1595                         return -ENOMEM;
1596
1597                 if (rrpriv->fw_running){
1598                         printk("%s: Firmware already running\n", dev->name);
1599                         error = -EPERM;
1600                         goto gf_out;
1601                 }
1602
1603                 spin_lock_irqsave(&rrpriv->lock, flags);
1604                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1605                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1606                 if (i != EEPROM_BYTES){
1607                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1608                                dev->name);
1609                         error = -EFAULT;
1610                         goto gf_out;
1611                 }
1612                 error = copy_to_user(data, image, EEPROM_BYTES);
1613                 if (error)
1614                         error = -EFAULT;
1615         gf_out:
1616                 kfree(image);
1617                 return error;
1618
1619         case SIOCRRPFW:
1620                 if (!capable(CAP_SYS_RAWIO)){
1621                         return -EPERM;
1622                 }
1623
1624                 image = memdup_user(data, EEPROM_BYTES);
1625                 if (IS_ERR(image))
1626                         return PTR_ERR(image);
1627
1628                 oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1629                 if (!oldimage) {
1630                         kfree(image);
1631                         return -ENOMEM;
1632                 }
1633
1634                 if (rrpriv->fw_running){
1635                         printk("%s: Firmware already running\n", dev->name);
1636                         error = -EPERM;
1637                         goto wf_out;
1638                 }
1639
1640                 printk("%s: Updating EEPROM firmware\n", dev->name);
1641
1642                 spin_lock_irqsave(&rrpriv->lock, flags);
1643                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1644                 if (error)
1645                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1646                                dev->name);
1647
1648                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1649                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1650
1651                 if (i != EEPROM_BYTES)
1652                         printk(KERN_ERR "%s: Error reading back EEPROM "
1653                                "image\n", dev->name);
1654
1655                 error = memcmp(image, oldimage, EEPROM_BYTES);
1656                 if (error){
1657                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1658                                dev->name);
1659                         error = -EFAULT;
1660                 }
1661         wf_out:
1662                 kfree(oldimage);
1663                 kfree(image);
1664                 return error;
1665
1666         case SIOCRRID:
1667                 return put_user(0x52523032, (int __user *)data);
1668         default:
1669                 return error;
1670         }
1671 }
1672
1673 static const struct pci_device_id rr_pci_tbl[] = {
1674         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1675                 PCI_ANY_ID, PCI_ANY_ID, },
1676         { 0,}
1677 };
1678 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1679
1680 static struct pci_driver rr_driver = {
1681         .name           = "rrunner",
1682         .id_table       = rr_pci_tbl,
1683         .probe          = rr_init_one,
1684         .remove         = rr_remove_one,
1685 };
1686
1687 module_pci_driver(rr_driver);