ecc3f822df244977ba93c5f11a0f82a784765c28
[releases.git] / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS          256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
36
37 #define NVME_RDMA_DATA_SGL_SIZE \
38         (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40         (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42 struct nvme_rdma_device {
43         struct ib_device        *dev;
44         struct ib_pd            *pd;
45         struct kref             ref;
46         struct list_head        entry;
47         unsigned int            num_inline_segments;
48 };
49
50 struct nvme_rdma_qe {
51         struct ib_cqe           cqe;
52         void                    *data;
53         u64                     dma;
54 };
55
56 struct nvme_rdma_sgl {
57         int                     nents;
58         struct sg_table         sg_table;
59 };
60
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63         struct nvme_request     req;
64         struct ib_mr            *mr;
65         struct nvme_rdma_qe     sqe;
66         union nvme_result       result;
67         __le16                  status;
68         refcount_t              ref;
69         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70         u32                     num_sge;
71         struct ib_reg_wr        reg_wr;
72         struct ib_cqe           reg_cqe;
73         struct nvme_rdma_queue  *queue;
74         struct nvme_rdma_sgl    data_sgl;
75         struct nvme_rdma_sgl    *metadata_sgl;
76         bool                    use_sig_mr;
77 };
78
79 enum nvme_rdma_queue_flags {
80         NVME_RDMA_Q_ALLOCATED           = 0,
81         NVME_RDMA_Q_LIVE                = 1,
82         NVME_RDMA_Q_TR_READY            = 2,
83 };
84
85 struct nvme_rdma_queue {
86         struct nvme_rdma_qe     *rsp_ring;
87         int                     queue_size;
88         size_t                  cmnd_capsule_len;
89         struct nvme_rdma_ctrl   *ctrl;
90         struct nvme_rdma_device *device;
91         struct ib_cq            *ib_cq;
92         struct ib_qp            *qp;
93
94         unsigned long           flags;
95         struct rdma_cm_id       *cm_id;
96         int                     cm_error;
97         struct completion       cm_done;
98         bool                    pi_support;
99         int                     cq_size;
100         struct mutex            queue_lock;
101 };
102
103 struct nvme_rdma_ctrl {
104         /* read only in the hot path */
105         struct nvme_rdma_queue  *queues;
106
107         /* other member variables */
108         struct blk_mq_tag_set   tag_set;
109         struct work_struct      err_work;
110
111         struct nvme_rdma_qe     async_event_sqe;
112
113         struct delayed_work     reconnect_work;
114
115         struct list_head        list;
116
117         struct blk_mq_tag_set   admin_tag_set;
118         struct nvme_rdma_device *device;
119
120         u32                     max_fr_pages;
121
122         struct sockaddr_storage addr;
123         struct sockaddr_storage src_addr;
124
125         struct nvme_ctrl        ctrl;
126         bool                    use_inline_data;
127         u32                     io_queues[HCTX_MAX_TYPES];
128 };
129
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149          "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152                 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161         return queue - queue->ctrl->queues;
162 }
163
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166         return nvme_rdma_queue_idx(queue) >
167                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168                 queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177                 size_t capsule_size, enum dma_data_direction dir)
178 {
179         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180         kfree(qe->data);
181 }
182
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184                 size_t capsule_size, enum dma_data_direction dir)
185 {
186         qe->data = kzalloc(capsule_size, GFP_KERNEL);
187         if (!qe->data)
188                 return -ENOMEM;
189
190         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191         if (ib_dma_mapping_error(ibdev, qe->dma)) {
192                 kfree(qe->data);
193                 qe->data = NULL;
194                 return -ENOMEM;
195         }
196
197         return 0;
198 }
199
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202                 size_t capsule_size, enum dma_data_direction dir)
203 {
204         int i;
205
206         for (i = 0; i < ib_queue_size; i++)
207                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208         kfree(ring);
209 }
210
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212                 size_t ib_queue_size, size_t capsule_size,
213                 enum dma_data_direction dir)
214 {
215         struct nvme_rdma_qe *ring;
216         int i;
217
218         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219         if (!ring)
220                 return NULL;
221
222         /*
223          * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224          * lifetime. It's safe, since any chage in the underlying RDMA device
225          * will issue error recovery and queue re-creation.
226          */
227         for (i = 0; i < ib_queue_size; i++) {
228                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229                         goto out_free_ring;
230         }
231
232         return ring;
233
234 out_free_ring:
235         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236         return NULL;
237 }
238
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241         pr_debug("QP event %s (%d)\n",
242                  ib_event_msg(event->event), event->event);
243
244 }
245
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248         int ret;
249
250         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252         if (ret < 0)
253                 return ret;
254         if (ret == 0)
255                 return -ETIMEDOUT;
256         WARN_ON_ONCE(queue->cm_error > 0);
257         return queue->cm_error;
258 }
259
260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262         struct nvme_rdma_device *dev = queue->device;
263         struct ib_qp_init_attr init_attr;
264         int ret;
265
266         memset(&init_attr, 0, sizeof(init_attr));
267         init_attr.event_handler = nvme_rdma_qp_event;
268         /* +1 for drain */
269         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270         /* +1 for drain */
271         init_attr.cap.max_recv_wr = queue->queue_size + 1;
272         init_attr.cap.max_recv_sge = 1;
273         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275         init_attr.qp_type = IB_QPT_RC;
276         init_attr.send_cq = queue->ib_cq;
277         init_attr.recv_cq = queue->ib_cq;
278         if (queue->pi_support)
279                 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280         init_attr.qp_context = queue;
281
282         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283
284         queue->qp = queue->cm_id->qp;
285         return ret;
286 }
287
288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289                 struct request *rq, unsigned int hctx_idx)
290 {
291         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292
293         kfree(req->sqe.data);
294 }
295
296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297                 struct request *rq, unsigned int hctx_idx,
298                 unsigned int numa_node)
299 {
300         struct nvme_rdma_ctrl *ctrl = set->driver_data;
301         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304
305         nvme_req(rq)->ctrl = &ctrl->ctrl;
306         req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307         if (!req->sqe.data)
308                 return -ENOMEM;
309
310         /* metadata nvme_rdma_sgl struct is located after command's data SGL */
311         if (queue->pi_support)
312                 req->metadata_sgl = (void *)nvme_req(rq) +
313                         sizeof(struct nvme_rdma_request) +
314                         NVME_RDMA_DATA_SGL_SIZE;
315
316         req->queue = queue;
317
318         return 0;
319 }
320
321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322                 unsigned int hctx_idx)
323 {
324         struct nvme_rdma_ctrl *ctrl = data;
325         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
326
327         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
328
329         hctx->driver_data = queue;
330         return 0;
331 }
332
333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
334                 unsigned int hctx_idx)
335 {
336         struct nvme_rdma_ctrl *ctrl = data;
337         struct nvme_rdma_queue *queue = &ctrl->queues[0];
338
339         BUG_ON(hctx_idx != 0);
340
341         hctx->driver_data = queue;
342         return 0;
343 }
344
345 static void nvme_rdma_free_dev(struct kref *ref)
346 {
347         struct nvme_rdma_device *ndev =
348                 container_of(ref, struct nvme_rdma_device, ref);
349
350         mutex_lock(&device_list_mutex);
351         list_del(&ndev->entry);
352         mutex_unlock(&device_list_mutex);
353
354         ib_dealloc_pd(ndev->pd);
355         kfree(ndev);
356 }
357
358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
359 {
360         kref_put(&dev->ref, nvme_rdma_free_dev);
361 }
362
363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
364 {
365         return kref_get_unless_zero(&dev->ref);
366 }
367
368 static struct nvme_rdma_device *
369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
370 {
371         struct nvme_rdma_device *ndev;
372
373         mutex_lock(&device_list_mutex);
374         list_for_each_entry(ndev, &device_list, entry) {
375                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
376                     nvme_rdma_dev_get(ndev))
377                         goto out_unlock;
378         }
379
380         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
381         if (!ndev)
382                 goto out_err;
383
384         ndev->dev = cm_id->device;
385         kref_init(&ndev->ref);
386
387         ndev->pd = ib_alloc_pd(ndev->dev,
388                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
389         if (IS_ERR(ndev->pd))
390                 goto out_free_dev;
391
392         if (!(ndev->dev->attrs.device_cap_flags &
393               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
394                 dev_err(&ndev->dev->dev,
395                         "Memory registrations not supported.\n");
396                 goto out_free_pd;
397         }
398
399         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
400                                         ndev->dev->attrs.max_send_sge - 1);
401         list_add(&ndev->entry, &device_list);
402 out_unlock:
403         mutex_unlock(&device_list_mutex);
404         return ndev;
405
406 out_free_pd:
407         ib_dealloc_pd(ndev->pd);
408 out_free_dev:
409         kfree(ndev);
410 out_err:
411         mutex_unlock(&device_list_mutex);
412         return NULL;
413 }
414
415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
416 {
417         if (nvme_rdma_poll_queue(queue))
418                 ib_free_cq(queue->ib_cq);
419         else
420                 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 }
422
423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
424 {
425         struct nvme_rdma_device *dev;
426         struct ib_device *ibdev;
427
428         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
429                 return;
430
431         dev = queue->device;
432         ibdev = dev->dev;
433
434         if (queue->pi_support)
435                 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
436         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437
438         /*
439          * The cm_id object might have been destroyed during RDMA connection
440          * establishment error flow to avoid getting other cma events, thus
441          * the destruction of the QP shouldn't use rdma_cm API.
442          */
443         ib_destroy_qp(queue->qp);
444         nvme_rdma_free_cq(queue);
445
446         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
447                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
448
449         nvme_rdma_dev_put(dev);
450 }
451
452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
453 {
454         u32 max_page_list_len;
455
456         if (pi_support)
457                 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
458         else
459                 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
460
461         return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 }
463
464 static int nvme_rdma_create_cq(struct ib_device *ibdev,
465                 struct nvme_rdma_queue *queue)
466 {
467         int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468         enum ib_poll_context poll_ctx;
469
470         /*
471          * Spread I/O queues completion vectors according their queue index.
472          * Admin queues can always go on completion vector 0.
473          */
474         comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475
476         /* Polling queues need direct cq polling context */
477         if (nvme_rdma_poll_queue(queue)) {
478                 poll_ctx = IB_POLL_DIRECT;
479                 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
480                                            comp_vector, poll_ctx);
481         } else {
482                 poll_ctx = IB_POLL_SOFTIRQ;
483                 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
484                                               comp_vector, poll_ctx);
485         }
486
487         if (IS_ERR(queue->ib_cq)) {
488                 ret = PTR_ERR(queue->ib_cq);
489                 return ret;
490         }
491
492         return 0;
493 }
494
495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
496 {
497         struct ib_device *ibdev;
498         const int send_wr_factor = 3;                   /* MR, SEND, INV */
499         const int cq_factor = send_wr_factor + 1;       /* + RECV */
500         int ret, pages_per_mr;
501
502         queue->device = nvme_rdma_find_get_device(queue->cm_id);
503         if (!queue->device) {
504                 dev_err(queue->cm_id->device->dev.parent,
505                         "no client data found!\n");
506                 return -ECONNREFUSED;
507         }
508         ibdev = queue->device->dev;
509
510         /* +1 for ib_stop_cq */
511         queue->cq_size = cq_factor * queue->queue_size + 1;
512
513         ret = nvme_rdma_create_cq(ibdev, queue);
514         if (ret)
515                 goto out_put_dev;
516
517         ret = nvme_rdma_create_qp(queue, send_wr_factor);
518         if (ret)
519                 goto out_destroy_ib_cq;
520
521         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523         if (!queue->rsp_ring) {
524                 ret = -ENOMEM;
525                 goto out_destroy_qp;
526         }
527
528         /*
529          * Currently we don't use SG_GAPS MR's so if the first entry is
530          * misaligned we'll end up using two entries for a single data page,
531          * so one additional entry is required.
532          */
533         pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
534         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
535                               queue->queue_size,
536                               IB_MR_TYPE_MEM_REG,
537                               pages_per_mr, 0);
538         if (ret) {
539                 dev_err(queue->ctrl->ctrl.device,
540                         "failed to initialize MR pool sized %d for QID %d\n",
541                         queue->queue_size, nvme_rdma_queue_idx(queue));
542                 goto out_destroy_ring;
543         }
544
545         if (queue->pi_support) {
546                 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
547                                       queue->queue_size, IB_MR_TYPE_INTEGRITY,
548                                       pages_per_mr, pages_per_mr);
549                 if (ret) {
550                         dev_err(queue->ctrl->ctrl.device,
551                                 "failed to initialize PI MR pool sized %d for QID %d\n",
552                                 queue->queue_size, nvme_rdma_queue_idx(queue));
553                         goto out_destroy_mr_pool;
554                 }
555         }
556
557         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
558
559         return 0;
560
561 out_destroy_mr_pool:
562         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
563 out_destroy_ring:
564         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
565                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
566 out_destroy_qp:
567         rdma_destroy_qp(queue->cm_id);
568 out_destroy_ib_cq:
569         nvme_rdma_free_cq(queue);
570 out_put_dev:
571         nvme_rdma_dev_put(queue->device);
572         return ret;
573 }
574
575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
576                 int idx, size_t queue_size)
577 {
578         struct nvme_rdma_queue *queue;
579         struct sockaddr *src_addr = NULL;
580         int ret;
581
582         queue = &ctrl->queues[idx];
583         mutex_init(&queue->queue_lock);
584         queue->ctrl = ctrl;
585         if (idx && ctrl->ctrl.max_integrity_segments)
586                 queue->pi_support = true;
587         else
588                 queue->pi_support = false;
589         init_completion(&queue->cm_done);
590
591         if (idx > 0)
592                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
593         else
594                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
595
596         queue->queue_size = queue_size;
597
598         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
599                         RDMA_PS_TCP, IB_QPT_RC);
600         if (IS_ERR(queue->cm_id)) {
601                 dev_info(ctrl->ctrl.device,
602                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
603                 ret = PTR_ERR(queue->cm_id);
604                 goto out_destroy_mutex;
605         }
606
607         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
608                 src_addr = (struct sockaddr *)&ctrl->src_addr;
609
610         queue->cm_error = -ETIMEDOUT;
611         ret = rdma_resolve_addr(queue->cm_id, src_addr,
612                         (struct sockaddr *)&ctrl->addr,
613                         NVME_RDMA_CONNECT_TIMEOUT_MS);
614         if (ret) {
615                 dev_info(ctrl->ctrl.device,
616                         "rdma_resolve_addr failed (%d).\n", ret);
617                 goto out_destroy_cm_id;
618         }
619
620         ret = nvme_rdma_wait_for_cm(queue);
621         if (ret) {
622                 dev_info(ctrl->ctrl.device,
623                         "rdma connection establishment failed (%d)\n", ret);
624                 goto out_destroy_cm_id;
625         }
626
627         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
628
629         return 0;
630
631 out_destroy_cm_id:
632         rdma_destroy_id(queue->cm_id);
633         nvme_rdma_destroy_queue_ib(queue);
634 out_destroy_mutex:
635         mutex_destroy(&queue->queue_lock);
636         return ret;
637 }
638
639 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641         rdma_disconnect(queue->cm_id);
642         ib_drain_qp(queue->qp);
643 }
644
645 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
646 {
647         if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
648                 return;
649
650         mutex_lock(&queue->queue_lock);
651         if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
652                 __nvme_rdma_stop_queue(queue);
653         mutex_unlock(&queue->queue_lock);
654 }
655
656 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
657 {
658         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
659                 return;
660
661         rdma_destroy_id(queue->cm_id);
662         nvme_rdma_destroy_queue_ib(queue);
663         mutex_destroy(&queue->queue_lock);
664 }
665
666 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
667 {
668         int i;
669
670         for (i = 1; i < ctrl->ctrl.queue_count; i++)
671                 nvme_rdma_free_queue(&ctrl->queues[i]);
672 }
673
674 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
675 {
676         int i;
677
678         for (i = 1; i < ctrl->ctrl.queue_count; i++)
679                 nvme_rdma_stop_queue(&ctrl->queues[i]);
680 }
681
682 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
683 {
684         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
685         bool poll = nvme_rdma_poll_queue(queue);
686         int ret;
687
688         if (idx)
689                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
690         else
691                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
692
693         if (!ret) {
694                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
695         } else {
696                 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
697                         __nvme_rdma_stop_queue(queue);
698                 dev_info(ctrl->ctrl.device,
699                         "failed to connect queue: %d ret=%d\n", idx, ret);
700         }
701         return ret;
702 }
703
704 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
705 {
706         int i, ret = 0;
707
708         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
709                 ret = nvme_rdma_start_queue(ctrl, i);
710                 if (ret)
711                         goto out_stop_queues;
712         }
713
714         return 0;
715
716 out_stop_queues:
717         for (i--; i >= 1; i--)
718                 nvme_rdma_stop_queue(&ctrl->queues[i]);
719         return ret;
720 }
721
722 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
723 {
724         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
725         struct ib_device *ibdev = ctrl->device->dev;
726         unsigned int nr_io_queues, nr_default_queues;
727         unsigned int nr_read_queues, nr_poll_queues;
728         int i, ret;
729
730         nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
731                                 min(opts->nr_io_queues, num_online_cpus()));
732         nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
733                                 min(opts->nr_write_queues, num_online_cpus()));
734         nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
735         nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
736
737         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
738         if (ret)
739                 return ret;
740
741         if (nr_io_queues == 0) {
742                 dev_err(ctrl->ctrl.device,
743                         "unable to set any I/O queues\n");
744                 return -ENOMEM;
745         }
746
747         ctrl->ctrl.queue_count = nr_io_queues + 1;
748         dev_info(ctrl->ctrl.device,
749                 "creating %d I/O queues.\n", nr_io_queues);
750
751         if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
752                 /*
753                  * separate read/write queues
754                  * hand out dedicated default queues only after we have
755                  * sufficient read queues.
756                  */
757                 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
758                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
759                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
760                         min(nr_default_queues, nr_io_queues);
761                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
762         } else {
763                 /*
764                  * shared read/write queues
765                  * either no write queues were requested, or we don't have
766                  * sufficient queue count to have dedicated default queues.
767                  */
768                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
769                         min(nr_read_queues, nr_io_queues);
770                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
771         }
772
773         if (opts->nr_poll_queues && nr_io_queues) {
774                 /* map dedicated poll queues only if we have queues left */
775                 ctrl->io_queues[HCTX_TYPE_POLL] =
776                         min(nr_poll_queues, nr_io_queues);
777         }
778
779         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
780                 ret = nvme_rdma_alloc_queue(ctrl, i,
781                                 ctrl->ctrl.sqsize + 1);
782                 if (ret)
783                         goto out_free_queues;
784         }
785
786         return 0;
787
788 out_free_queues:
789         for (i--; i >= 1; i--)
790                 nvme_rdma_free_queue(&ctrl->queues[i]);
791
792         return ret;
793 }
794
795 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
796                 bool admin)
797 {
798         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
799         struct blk_mq_tag_set *set;
800         int ret;
801
802         if (admin) {
803                 set = &ctrl->admin_tag_set;
804                 memset(set, 0, sizeof(*set));
805                 set->ops = &nvme_rdma_admin_mq_ops;
806                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
807                 set->reserved_tags = 2; /* connect + keep-alive */
808                 set->numa_node = nctrl->numa_node;
809                 set->cmd_size = sizeof(struct nvme_rdma_request) +
810                                 NVME_RDMA_DATA_SGL_SIZE;
811                 set->driver_data = ctrl;
812                 set->nr_hw_queues = 1;
813                 set->timeout = ADMIN_TIMEOUT;
814                 set->flags = BLK_MQ_F_NO_SCHED;
815         } else {
816                 set = &ctrl->tag_set;
817                 memset(set, 0, sizeof(*set));
818                 set->ops = &nvme_rdma_mq_ops;
819                 set->queue_depth = nctrl->sqsize + 1;
820                 set->reserved_tags = 1; /* fabric connect */
821                 set->numa_node = nctrl->numa_node;
822                 set->flags = BLK_MQ_F_SHOULD_MERGE;
823                 set->cmd_size = sizeof(struct nvme_rdma_request) +
824                                 NVME_RDMA_DATA_SGL_SIZE;
825                 if (nctrl->max_integrity_segments)
826                         set->cmd_size += sizeof(struct nvme_rdma_sgl) +
827                                          NVME_RDMA_METADATA_SGL_SIZE;
828                 set->driver_data = ctrl;
829                 set->nr_hw_queues = nctrl->queue_count - 1;
830                 set->timeout = NVME_IO_TIMEOUT;
831                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
832         }
833
834         ret = blk_mq_alloc_tag_set(set);
835         if (ret)
836                 return ERR_PTR(ret);
837
838         return set;
839 }
840
841 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
842                 bool remove)
843 {
844         if (remove) {
845                 blk_cleanup_queue(ctrl->ctrl.admin_q);
846                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
847                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
848         }
849         if (ctrl->async_event_sqe.data) {
850                 cancel_work_sync(&ctrl->ctrl.async_event_work);
851                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
852                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
853                 ctrl->async_event_sqe.data = NULL;
854         }
855         nvme_rdma_free_queue(&ctrl->queues[0]);
856 }
857
858 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
859                 bool new)
860 {
861         bool pi_capable = false;
862         int error;
863
864         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
865         if (error)
866                 return error;
867
868         ctrl->device = ctrl->queues[0].device;
869         ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
870
871         /* T10-PI support */
872         if (ctrl->device->dev->attrs.device_cap_flags &
873             IB_DEVICE_INTEGRITY_HANDOVER)
874                 pi_capable = true;
875
876         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
877                                                         pi_capable);
878
879         /*
880          * Bind the async event SQE DMA mapping to the admin queue lifetime.
881          * It's safe, since any chage in the underlying RDMA device will issue
882          * error recovery and queue re-creation.
883          */
884         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
885                         sizeof(struct nvme_command), DMA_TO_DEVICE);
886         if (error)
887                 goto out_free_queue;
888
889         if (new) {
890                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
891                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
892                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
893                         goto out_free_async_qe;
894                 }
895
896                 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
897                 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
898                         error = PTR_ERR(ctrl->ctrl.fabrics_q);
899                         goto out_free_tagset;
900                 }
901
902                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
903                 if (IS_ERR(ctrl->ctrl.admin_q)) {
904                         error = PTR_ERR(ctrl->ctrl.admin_q);
905                         goto out_cleanup_fabrics_q;
906                 }
907         }
908
909         error = nvme_rdma_start_queue(ctrl, 0);
910         if (error)
911                 goto out_cleanup_queue;
912
913         error = nvme_enable_ctrl(&ctrl->ctrl);
914         if (error)
915                 goto out_stop_queue;
916
917         ctrl->ctrl.max_segments = ctrl->max_fr_pages;
918         ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
919         if (pi_capable)
920                 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
921         else
922                 ctrl->ctrl.max_integrity_segments = 0;
923
924         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
925
926         error = nvme_init_identify(&ctrl->ctrl);
927         if (error)
928                 goto out_quiesce_queue;
929
930         return 0;
931
932 out_quiesce_queue:
933         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
934         blk_sync_queue(ctrl->ctrl.admin_q);
935 out_stop_queue:
936         nvme_rdma_stop_queue(&ctrl->queues[0]);
937         nvme_cancel_admin_tagset(&ctrl->ctrl);
938 out_cleanup_queue:
939         if (new)
940                 blk_cleanup_queue(ctrl->ctrl.admin_q);
941 out_cleanup_fabrics_q:
942         if (new)
943                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
944 out_free_tagset:
945         if (new)
946                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
947 out_free_async_qe:
948         if (ctrl->async_event_sqe.data) {
949                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
950                         sizeof(struct nvme_command), DMA_TO_DEVICE);
951                 ctrl->async_event_sqe.data = NULL;
952         }
953 out_free_queue:
954         nvme_rdma_free_queue(&ctrl->queues[0]);
955         return error;
956 }
957
958 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
959                 bool remove)
960 {
961         if (remove) {
962                 blk_cleanup_queue(ctrl->ctrl.connect_q);
963                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
964         }
965         nvme_rdma_free_io_queues(ctrl);
966 }
967
968 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
969 {
970         int ret;
971
972         ret = nvme_rdma_alloc_io_queues(ctrl);
973         if (ret)
974                 return ret;
975
976         if (new) {
977                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
978                 if (IS_ERR(ctrl->ctrl.tagset)) {
979                         ret = PTR_ERR(ctrl->ctrl.tagset);
980                         goto out_free_io_queues;
981                 }
982
983                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
984                 if (IS_ERR(ctrl->ctrl.connect_q)) {
985                         ret = PTR_ERR(ctrl->ctrl.connect_q);
986                         goto out_free_tag_set;
987                 }
988         }
989
990         ret = nvme_rdma_start_io_queues(ctrl);
991         if (ret)
992                 goto out_cleanup_connect_q;
993
994         if (!new) {
995                 nvme_start_freeze(&ctrl->ctrl);
996                 nvme_start_queues(&ctrl->ctrl);
997                 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
998                         /*
999                          * If we timed out waiting for freeze we are likely to
1000                          * be stuck.  Fail the controller initialization just
1001                          * to be safe.
1002                          */
1003                         ret = -ENODEV;
1004                         nvme_unfreeze(&ctrl->ctrl);
1005                         goto out_wait_freeze_timed_out;
1006                 }
1007                 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1008                         ctrl->ctrl.queue_count - 1);
1009                 nvme_unfreeze(&ctrl->ctrl);
1010         }
1011
1012         return 0;
1013
1014 out_wait_freeze_timed_out:
1015         nvme_stop_queues(&ctrl->ctrl);
1016         nvme_sync_io_queues(&ctrl->ctrl);
1017         nvme_rdma_stop_io_queues(ctrl);
1018 out_cleanup_connect_q:
1019         nvme_cancel_tagset(&ctrl->ctrl);
1020         if (new)
1021                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1022 out_free_tag_set:
1023         if (new)
1024                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
1025 out_free_io_queues:
1026         nvme_rdma_free_io_queues(ctrl);
1027         return ret;
1028 }
1029
1030 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1031                 bool remove)
1032 {
1033         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1034         blk_sync_queue(ctrl->ctrl.admin_q);
1035         nvme_rdma_stop_queue(&ctrl->queues[0]);
1036         if (ctrl->ctrl.admin_tagset) {
1037                 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1038                         nvme_cancel_request, &ctrl->ctrl);
1039                 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1040         }
1041         if (remove)
1042                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1043         nvme_rdma_destroy_admin_queue(ctrl, remove);
1044 }
1045
1046 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1047                 bool remove)
1048 {
1049         if (ctrl->ctrl.queue_count > 1) {
1050                 nvme_stop_queues(&ctrl->ctrl);
1051                 nvme_sync_io_queues(&ctrl->ctrl);
1052                 nvme_rdma_stop_io_queues(ctrl);
1053                 if (ctrl->ctrl.tagset) {
1054                         blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1055                                 nvme_cancel_request, &ctrl->ctrl);
1056                         blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1057                 }
1058                 if (remove)
1059                         nvme_start_queues(&ctrl->ctrl);
1060                 nvme_rdma_destroy_io_queues(ctrl, remove);
1061         }
1062 }
1063
1064 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
1065 {
1066         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1067
1068         cancel_work_sync(&ctrl->err_work);
1069         cancel_delayed_work_sync(&ctrl->reconnect_work);
1070 }
1071
1072 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1073 {
1074         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1075
1076         if (list_empty(&ctrl->list))
1077                 goto free_ctrl;
1078
1079         mutex_lock(&nvme_rdma_ctrl_mutex);
1080         list_del(&ctrl->list);
1081         mutex_unlock(&nvme_rdma_ctrl_mutex);
1082
1083         nvmf_free_options(nctrl->opts);
1084 free_ctrl:
1085         kfree(ctrl->queues);
1086         kfree(ctrl);
1087 }
1088
1089 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1090 {
1091         /* If we are resetting/deleting then do nothing */
1092         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1093                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1094                         ctrl->ctrl.state == NVME_CTRL_LIVE);
1095                 return;
1096         }
1097
1098         if (nvmf_should_reconnect(&ctrl->ctrl)) {
1099                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1100                         ctrl->ctrl.opts->reconnect_delay);
1101                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1102                                 ctrl->ctrl.opts->reconnect_delay * HZ);
1103         } else {
1104                 nvme_delete_ctrl(&ctrl->ctrl);
1105         }
1106 }
1107
1108 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1109 {
1110         int ret = -EINVAL;
1111         bool changed;
1112
1113         ret = nvme_rdma_configure_admin_queue(ctrl, new);
1114         if (ret)
1115                 return ret;
1116
1117         if (ctrl->ctrl.icdoff) {
1118                 ret = -EOPNOTSUPP;
1119                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1120                 goto destroy_admin;
1121         }
1122
1123         if (!(ctrl->ctrl.sgls & (1 << 2))) {
1124                 ret = -EOPNOTSUPP;
1125                 dev_err(ctrl->ctrl.device,
1126                         "Mandatory keyed sgls are not supported!\n");
1127                 goto destroy_admin;
1128         }
1129
1130         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1131                 dev_warn(ctrl->ctrl.device,
1132                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1133                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1134         }
1135
1136         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1137                 dev_warn(ctrl->ctrl.device,
1138                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1139                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1140                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1141         }
1142
1143         if (ctrl->ctrl.sgls & (1 << 20))
1144                 ctrl->use_inline_data = true;
1145
1146         if (ctrl->ctrl.queue_count > 1) {
1147                 ret = nvme_rdma_configure_io_queues(ctrl, new);
1148                 if (ret)
1149                         goto destroy_admin;
1150         }
1151
1152         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1153         if (!changed) {
1154                 /*
1155                  * state change failure is ok if we started ctrl delete,
1156                  * unless we're during creation of a new controller to
1157                  * avoid races with teardown flow.
1158                  */
1159                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1160                              ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1161                 WARN_ON_ONCE(new);
1162                 ret = -EINVAL;
1163                 goto destroy_io;
1164         }
1165
1166         nvme_start_ctrl(&ctrl->ctrl);
1167         return 0;
1168
1169 destroy_io:
1170         if (ctrl->ctrl.queue_count > 1) {
1171                 nvme_stop_queues(&ctrl->ctrl);
1172                 nvme_sync_io_queues(&ctrl->ctrl);
1173                 nvme_rdma_stop_io_queues(ctrl);
1174                 nvme_cancel_tagset(&ctrl->ctrl);
1175                 nvme_rdma_destroy_io_queues(ctrl, new);
1176         }
1177 destroy_admin:
1178         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1179         blk_sync_queue(ctrl->ctrl.admin_q);
1180         nvme_rdma_stop_queue(&ctrl->queues[0]);
1181         nvme_cancel_admin_tagset(&ctrl->ctrl);
1182         nvme_rdma_destroy_admin_queue(ctrl, new);
1183         return ret;
1184 }
1185
1186 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1187 {
1188         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1189                         struct nvme_rdma_ctrl, reconnect_work);
1190
1191         ++ctrl->ctrl.nr_reconnects;
1192
1193         if (nvme_rdma_setup_ctrl(ctrl, false))
1194                 goto requeue;
1195
1196         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1197                         ctrl->ctrl.nr_reconnects);
1198
1199         ctrl->ctrl.nr_reconnects = 0;
1200
1201         return;
1202
1203 requeue:
1204         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1205                         ctrl->ctrl.nr_reconnects);
1206         nvme_rdma_reconnect_or_remove(ctrl);
1207 }
1208
1209 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1210 {
1211         struct nvme_rdma_ctrl *ctrl = container_of(work,
1212                         struct nvme_rdma_ctrl, err_work);
1213
1214         nvme_stop_keep_alive(&ctrl->ctrl);
1215         flush_work(&ctrl->ctrl.async_event_work);
1216         nvme_rdma_teardown_io_queues(ctrl, false);
1217         nvme_start_queues(&ctrl->ctrl);
1218         nvme_rdma_teardown_admin_queue(ctrl, false);
1219         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1220
1221         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1222                 /* state change failure is ok if we started ctrl delete */
1223                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1224                              ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1225                 return;
1226         }
1227
1228         nvme_rdma_reconnect_or_remove(ctrl);
1229 }
1230
1231 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1232 {
1233         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1234                 return;
1235
1236         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1237         queue_work(nvme_reset_wq, &ctrl->err_work);
1238 }
1239
1240 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1241 {
1242         struct request *rq = blk_mq_rq_from_pdu(req);
1243
1244         if (!refcount_dec_and_test(&req->ref))
1245                 return;
1246         if (!nvme_try_complete_req(rq, req->status, req->result))
1247                 nvme_rdma_complete_rq(rq);
1248 }
1249
1250 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1251                 const char *op)
1252 {
1253         struct nvme_rdma_queue *queue = wc->qp->qp_context;
1254         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1255
1256         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1257                 dev_info(ctrl->ctrl.device,
1258                              "%s for CQE 0x%p failed with status %s (%d)\n",
1259                              op, wc->wr_cqe,
1260                              ib_wc_status_msg(wc->status), wc->status);
1261         nvme_rdma_error_recovery(ctrl);
1262 }
1263
1264 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1265 {
1266         if (unlikely(wc->status != IB_WC_SUCCESS))
1267                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1268 }
1269
1270 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1271 {
1272         struct nvme_rdma_request *req =
1273                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1274
1275         if (unlikely(wc->status != IB_WC_SUCCESS))
1276                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1277         else
1278                 nvme_rdma_end_request(req);
1279 }
1280
1281 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1282                 struct nvme_rdma_request *req)
1283 {
1284         struct ib_send_wr wr = {
1285                 .opcode             = IB_WR_LOCAL_INV,
1286                 .next               = NULL,
1287                 .num_sge            = 0,
1288                 .send_flags         = IB_SEND_SIGNALED,
1289                 .ex.invalidate_rkey = req->mr->rkey,
1290         };
1291
1292         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1293         wr.wr_cqe = &req->reg_cqe;
1294
1295         return ib_post_send(queue->qp, &wr, NULL);
1296 }
1297
1298 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1299                 struct request *rq)
1300 {
1301         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1302         struct nvme_rdma_device *dev = queue->device;
1303         struct ib_device *ibdev = dev->dev;
1304         struct list_head *pool = &queue->qp->rdma_mrs;
1305
1306         if (!blk_rq_nr_phys_segments(rq))
1307                 return;
1308
1309         if (blk_integrity_rq(rq)) {
1310                 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1311                                 req->metadata_sgl->nents, rq_dma_dir(rq));
1312                 sg_free_table_chained(&req->metadata_sgl->sg_table,
1313                                       NVME_INLINE_METADATA_SG_CNT);
1314         }
1315
1316         if (req->use_sig_mr)
1317                 pool = &queue->qp->sig_mrs;
1318
1319         if (req->mr) {
1320                 ib_mr_pool_put(queue->qp, pool, req->mr);
1321                 req->mr = NULL;
1322         }
1323
1324         ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1325                         rq_dma_dir(rq));
1326         sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1327 }
1328
1329 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1330 {
1331         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1332
1333         sg->addr = 0;
1334         put_unaligned_le24(0, sg->length);
1335         put_unaligned_le32(0, sg->key);
1336         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1337         return 0;
1338 }
1339
1340 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1341                 struct nvme_rdma_request *req, struct nvme_command *c,
1342                 int count)
1343 {
1344         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1345         struct ib_sge *sge = &req->sge[1];
1346         struct scatterlist *sgl;
1347         u32 len = 0;
1348         int i;
1349
1350         for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1351                 sge->addr = sg_dma_address(sgl);
1352                 sge->length = sg_dma_len(sgl);
1353                 sge->lkey = queue->device->pd->local_dma_lkey;
1354                 len += sge->length;
1355                 sge++;
1356         }
1357
1358         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1359         sg->length = cpu_to_le32(len);
1360         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1361
1362         req->num_sge += count;
1363         return 0;
1364 }
1365
1366 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1367                 struct nvme_rdma_request *req, struct nvme_command *c)
1368 {
1369         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1370
1371         sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1372         put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1373         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1374         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1375         return 0;
1376 }
1377
1378 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1379                 struct nvme_rdma_request *req, struct nvme_command *c,
1380                 int count)
1381 {
1382         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1383         int nr;
1384
1385         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1386         if (WARN_ON_ONCE(!req->mr))
1387                 return -EAGAIN;
1388
1389         /*
1390          * Align the MR to a 4K page size to match the ctrl page size and
1391          * the block virtual boundary.
1392          */
1393         nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1394                           SZ_4K);
1395         if (unlikely(nr < count)) {
1396                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1397                 req->mr = NULL;
1398                 if (nr < 0)
1399                         return nr;
1400                 return -EINVAL;
1401         }
1402
1403         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1404
1405         req->reg_cqe.done = nvme_rdma_memreg_done;
1406         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1407         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1408         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1409         req->reg_wr.wr.num_sge = 0;
1410         req->reg_wr.mr = req->mr;
1411         req->reg_wr.key = req->mr->rkey;
1412         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1413                              IB_ACCESS_REMOTE_READ |
1414                              IB_ACCESS_REMOTE_WRITE;
1415
1416         sg->addr = cpu_to_le64(req->mr->iova);
1417         put_unaligned_le24(req->mr->length, sg->length);
1418         put_unaligned_le32(req->mr->rkey, sg->key);
1419         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1420                         NVME_SGL_FMT_INVALIDATE;
1421
1422         return 0;
1423 }
1424
1425 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1426                 struct nvme_command *cmd, struct ib_sig_domain *domain,
1427                 u16 control, u8 pi_type)
1428 {
1429         domain->sig_type = IB_SIG_TYPE_T10_DIF;
1430         domain->sig.dif.bg_type = IB_T10DIF_CRC;
1431         domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1432         domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1433         if (control & NVME_RW_PRINFO_PRCHK_REF)
1434                 domain->sig.dif.ref_remap = true;
1435
1436         domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1437         domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1438         domain->sig.dif.app_escape = true;
1439         if (pi_type == NVME_NS_DPS_PI_TYPE3)
1440                 domain->sig.dif.ref_escape = true;
1441 }
1442
1443 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1444                 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1445                 u8 pi_type)
1446 {
1447         u16 control = le16_to_cpu(cmd->rw.control);
1448
1449         memset(sig_attrs, 0, sizeof(*sig_attrs));
1450         if (control & NVME_RW_PRINFO_PRACT) {
1451                 /* for WRITE_INSERT/READ_STRIP no memory domain */
1452                 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1453                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1454                                          pi_type);
1455                 /* Clear the PRACT bit since HCA will generate/verify the PI */
1456                 control &= ~NVME_RW_PRINFO_PRACT;
1457                 cmd->rw.control = cpu_to_le16(control);
1458         } else {
1459                 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1460                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1461                                          pi_type);
1462                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1463                                          pi_type);
1464         }
1465 }
1466
1467 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1468 {
1469         *mask = 0;
1470         if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1471                 *mask |= IB_SIG_CHECK_REFTAG;
1472         if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1473                 *mask |= IB_SIG_CHECK_GUARD;
1474 }
1475
1476 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1477 {
1478         if (unlikely(wc->status != IB_WC_SUCCESS))
1479                 nvme_rdma_wr_error(cq, wc, "SIG");
1480 }
1481
1482 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1483                 struct nvme_rdma_request *req, struct nvme_command *c,
1484                 int count, int pi_count)
1485 {
1486         struct nvme_rdma_sgl *sgl = &req->data_sgl;
1487         struct ib_reg_wr *wr = &req->reg_wr;
1488         struct request *rq = blk_mq_rq_from_pdu(req);
1489         struct nvme_ns *ns = rq->q->queuedata;
1490         struct bio *bio = rq->bio;
1491         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1492         int nr;
1493
1494         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1495         if (WARN_ON_ONCE(!req->mr))
1496                 return -EAGAIN;
1497
1498         nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1499                              req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1500                              SZ_4K);
1501         if (unlikely(nr))
1502                 goto mr_put;
1503
1504         nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1505                                 req->mr->sig_attrs, ns->pi_type);
1506         nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1507
1508         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1509
1510         req->reg_cqe.done = nvme_rdma_sig_done;
1511         memset(wr, 0, sizeof(*wr));
1512         wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1513         wr->wr.wr_cqe = &req->reg_cqe;
1514         wr->wr.num_sge = 0;
1515         wr->wr.send_flags = 0;
1516         wr->mr = req->mr;
1517         wr->key = req->mr->rkey;
1518         wr->access = IB_ACCESS_LOCAL_WRITE |
1519                      IB_ACCESS_REMOTE_READ |
1520                      IB_ACCESS_REMOTE_WRITE;
1521
1522         sg->addr = cpu_to_le64(req->mr->iova);
1523         put_unaligned_le24(req->mr->length, sg->length);
1524         put_unaligned_le32(req->mr->rkey, sg->key);
1525         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1526
1527         return 0;
1528
1529 mr_put:
1530         ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1531         req->mr = NULL;
1532         if (nr < 0)
1533                 return nr;
1534         return -EINVAL;
1535 }
1536
1537 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1538                 struct request *rq, struct nvme_command *c)
1539 {
1540         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1541         struct nvme_rdma_device *dev = queue->device;
1542         struct ib_device *ibdev = dev->dev;
1543         int pi_count = 0;
1544         int count, ret;
1545
1546         req->num_sge = 1;
1547         refcount_set(&req->ref, 2); /* send and recv completions */
1548
1549         c->common.flags |= NVME_CMD_SGL_METABUF;
1550
1551         if (!blk_rq_nr_phys_segments(rq))
1552                 return nvme_rdma_set_sg_null(c);
1553
1554         req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1555         ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1556                         blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1557                         NVME_INLINE_SG_CNT);
1558         if (ret)
1559                 return -ENOMEM;
1560
1561         req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1562                                             req->data_sgl.sg_table.sgl);
1563
1564         count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1565                               req->data_sgl.nents, rq_dma_dir(rq));
1566         if (unlikely(count <= 0)) {
1567                 ret = -EIO;
1568                 goto out_free_table;
1569         }
1570
1571         if (blk_integrity_rq(rq)) {
1572                 req->metadata_sgl->sg_table.sgl =
1573                         (struct scatterlist *)(req->metadata_sgl + 1);
1574                 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1575                                 blk_rq_count_integrity_sg(rq->q, rq->bio),
1576                                 req->metadata_sgl->sg_table.sgl,
1577                                 NVME_INLINE_METADATA_SG_CNT);
1578                 if (unlikely(ret)) {
1579                         ret = -ENOMEM;
1580                         goto out_unmap_sg;
1581                 }
1582
1583                 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1584                                 rq->bio, req->metadata_sgl->sg_table.sgl);
1585                 pi_count = ib_dma_map_sg(ibdev,
1586                                          req->metadata_sgl->sg_table.sgl,
1587                                          req->metadata_sgl->nents,
1588                                          rq_dma_dir(rq));
1589                 if (unlikely(pi_count <= 0)) {
1590                         ret = -EIO;
1591                         goto out_free_pi_table;
1592                 }
1593         }
1594
1595         if (req->use_sig_mr) {
1596                 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1597                 goto out;
1598         }
1599
1600         if (count <= dev->num_inline_segments) {
1601                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1602                     queue->ctrl->use_inline_data &&
1603                     blk_rq_payload_bytes(rq) <=
1604                                 nvme_rdma_inline_data_size(queue)) {
1605                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1606                         goto out;
1607                 }
1608
1609                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1610                         ret = nvme_rdma_map_sg_single(queue, req, c);
1611                         goto out;
1612                 }
1613         }
1614
1615         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1616 out:
1617         if (unlikely(ret))
1618                 goto out_unmap_pi_sg;
1619
1620         return 0;
1621
1622 out_unmap_pi_sg:
1623         if (blk_integrity_rq(rq))
1624                 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1625                                 req->metadata_sgl->nents, rq_dma_dir(rq));
1626 out_free_pi_table:
1627         if (blk_integrity_rq(rq))
1628                 sg_free_table_chained(&req->metadata_sgl->sg_table,
1629                                       NVME_INLINE_METADATA_SG_CNT);
1630 out_unmap_sg:
1631         ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1632                         rq_dma_dir(rq));
1633 out_free_table:
1634         sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1635         return ret;
1636 }
1637
1638 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1639 {
1640         struct nvme_rdma_qe *qe =
1641                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1642         struct nvme_rdma_request *req =
1643                 container_of(qe, struct nvme_rdma_request, sqe);
1644
1645         if (unlikely(wc->status != IB_WC_SUCCESS))
1646                 nvme_rdma_wr_error(cq, wc, "SEND");
1647         else
1648                 nvme_rdma_end_request(req);
1649 }
1650
1651 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1652                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1653                 struct ib_send_wr *first)
1654 {
1655         struct ib_send_wr wr;
1656         int ret;
1657
1658         sge->addr   = qe->dma;
1659         sge->length = sizeof(struct nvme_command);
1660         sge->lkey   = queue->device->pd->local_dma_lkey;
1661
1662         wr.next       = NULL;
1663         wr.wr_cqe     = &qe->cqe;
1664         wr.sg_list    = sge;
1665         wr.num_sge    = num_sge;
1666         wr.opcode     = IB_WR_SEND;
1667         wr.send_flags = IB_SEND_SIGNALED;
1668
1669         if (first)
1670                 first->next = &wr;
1671         else
1672                 first = &wr;
1673
1674         ret = ib_post_send(queue->qp, first, NULL);
1675         if (unlikely(ret)) {
1676                 dev_err(queue->ctrl->ctrl.device,
1677                              "%s failed with error code %d\n", __func__, ret);
1678         }
1679         return ret;
1680 }
1681
1682 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1683                 struct nvme_rdma_qe *qe)
1684 {
1685         struct ib_recv_wr wr;
1686         struct ib_sge list;
1687         int ret;
1688
1689         list.addr   = qe->dma;
1690         list.length = sizeof(struct nvme_completion);
1691         list.lkey   = queue->device->pd->local_dma_lkey;
1692
1693         qe->cqe.done = nvme_rdma_recv_done;
1694
1695         wr.next     = NULL;
1696         wr.wr_cqe   = &qe->cqe;
1697         wr.sg_list  = &list;
1698         wr.num_sge  = 1;
1699
1700         ret = ib_post_recv(queue->qp, &wr, NULL);
1701         if (unlikely(ret)) {
1702                 dev_err(queue->ctrl->ctrl.device,
1703                         "%s failed with error code %d\n", __func__, ret);
1704         }
1705         return ret;
1706 }
1707
1708 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1709 {
1710         u32 queue_idx = nvme_rdma_queue_idx(queue);
1711
1712         if (queue_idx == 0)
1713                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1714         return queue->ctrl->tag_set.tags[queue_idx - 1];
1715 }
1716
1717 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1718 {
1719         if (unlikely(wc->status != IB_WC_SUCCESS))
1720                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1721 }
1722
1723 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1724 {
1725         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1726         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1727         struct ib_device *dev = queue->device->dev;
1728         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1729         struct nvme_command *cmd = sqe->data;
1730         struct ib_sge sge;
1731         int ret;
1732
1733         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1734
1735         memset(cmd, 0, sizeof(*cmd));
1736         cmd->common.opcode = nvme_admin_async_event;
1737         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1738         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1739         nvme_rdma_set_sg_null(cmd);
1740
1741         sqe->cqe.done = nvme_rdma_async_done;
1742
1743         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1744                         DMA_TO_DEVICE);
1745
1746         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1747         WARN_ON_ONCE(ret);
1748 }
1749
1750 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1751                 struct nvme_completion *cqe, struct ib_wc *wc)
1752 {
1753         struct request *rq;
1754         struct nvme_rdma_request *req;
1755
1756         rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1757         if (!rq) {
1758                 dev_err(queue->ctrl->ctrl.device,
1759                         "got bad command_id %#x on QP %#x\n",
1760                         cqe->command_id, queue->qp->qp_num);
1761                 nvme_rdma_error_recovery(queue->ctrl);
1762                 return;
1763         }
1764         req = blk_mq_rq_to_pdu(rq);
1765
1766         req->status = cqe->status;
1767         req->result = cqe->result;
1768
1769         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1770                 if (unlikely(!req->mr ||
1771                              wc->ex.invalidate_rkey != req->mr->rkey)) {
1772                         dev_err(queue->ctrl->ctrl.device,
1773                                 "Bogus remote invalidation for rkey %#x\n",
1774                                 req->mr ? req->mr->rkey : 0);
1775                         nvme_rdma_error_recovery(queue->ctrl);
1776                 }
1777         } else if (req->mr) {
1778                 int ret;
1779
1780                 ret = nvme_rdma_inv_rkey(queue, req);
1781                 if (unlikely(ret < 0)) {
1782                         dev_err(queue->ctrl->ctrl.device,
1783                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1784                                 req->mr->rkey, ret);
1785                         nvme_rdma_error_recovery(queue->ctrl);
1786                 }
1787                 /* the local invalidation completion will end the request */
1788                 return;
1789         }
1790
1791         nvme_rdma_end_request(req);
1792 }
1793
1794 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1795 {
1796         struct nvme_rdma_qe *qe =
1797                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1798         struct nvme_rdma_queue *queue = wc->qp->qp_context;
1799         struct ib_device *ibdev = queue->device->dev;
1800         struct nvme_completion *cqe = qe->data;
1801         const size_t len = sizeof(struct nvme_completion);
1802
1803         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1804                 nvme_rdma_wr_error(cq, wc, "RECV");
1805                 return;
1806         }
1807
1808         /* sanity checking for received data length */
1809         if (unlikely(wc->byte_len < len)) {
1810                 dev_err(queue->ctrl->ctrl.device,
1811                         "Unexpected nvme completion length(%d)\n", wc->byte_len);
1812                 nvme_rdma_error_recovery(queue->ctrl);
1813                 return;
1814         }
1815
1816         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1817         /*
1818          * AEN requests are special as they don't time out and can
1819          * survive any kind of queue freeze and often don't respond to
1820          * aborts.  We don't even bother to allocate a struct request
1821          * for them but rather special case them here.
1822          */
1823         if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1824                                      cqe->command_id)))
1825                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1826                                 &cqe->result);
1827         else
1828                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1829         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1830
1831         nvme_rdma_post_recv(queue, qe);
1832 }
1833
1834 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1835 {
1836         int ret, i;
1837
1838         for (i = 0; i < queue->queue_size; i++) {
1839                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1840                 if (ret)
1841                         return ret;
1842         }
1843
1844         return 0;
1845 }
1846
1847 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1848                 struct rdma_cm_event *ev)
1849 {
1850         struct rdma_cm_id *cm_id = queue->cm_id;
1851         int status = ev->status;
1852         const char *rej_msg;
1853         const struct nvme_rdma_cm_rej *rej_data;
1854         u8 rej_data_len;
1855
1856         rej_msg = rdma_reject_msg(cm_id, status);
1857         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1858
1859         if (rej_data && rej_data_len >= sizeof(u16)) {
1860                 u16 sts = le16_to_cpu(rej_data->sts);
1861
1862                 dev_err(queue->ctrl->ctrl.device,
1863                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1864                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1865         } else {
1866                 dev_err(queue->ctrl->ctrl.device,
1867                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1868         }
1869
1870         return -ECONNRESET;
1871 }
1872
1873 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1874 {
1875         struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1876         int ret;
1877
1878         ret = nvme_rdma_create_queue_ib(queue);
1879         if (ret)
1880                 return ret;
1881
1882         if (ctrl->opts->tos >= 0)
1883                 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1884         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1885         if (ret) {
1886                 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1887                         queue->cm_error);
1888                 goto out_destroy_queue;
1889         }
1890
1891         return 0;
1892
1893 out_destroy_queue:
1894         nvme_rdma_destroy_queue_ib(queue);
1895         return ret;
1896 }
1897
1898 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1899 {
1900         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1901         struct rdma_conn_param param = { };
1902         struct nvme_rdma_cm_req priv = { };
1903         int ret;
1904
1905         param.qp_num = queue->qp->qp_num;
1906         param.flow_control = 1;
1907
1908         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1909         /* maximum retry count */
1910         param.retry_count = 7;
1911         param.rnr_retry_count = 7;
1912         param.private_data = &priv;
1913         param.private_data_len = sizeof(priv);
1914
1915         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1916         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1917         /*
1918          * set the admin queue depth to the minimum size
1919          * specified by the Fabrics standard.
1920          */
1921         if (priv.qid == 0) {
1922                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1923                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1924         } else {
1925                 /*
1926                  * current interpretation of the fabrics spec
1927                  * is at minimum you make hrqsize sqsize+1, or a
1928                  * 1's based representation of sqsize.
1929                  */
1930                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1931                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1932         }
1933
1934         ret = rdma_connect_locked(queue->cm_id, &param);
1935         if (ret) {
1936                 dev_err(ctrl->ctrl.device,
1937                         "rdma_connect_locked failed (%d).\n", ret);
1938                 return ret;
1939         }
1940
1941         return 0;
1942 }
1943
1944 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1945                 struct rdma_cm_event *ev)
1946 {
1947         struct nvme_rdma_queue *queue = cm_id->context;
1948         int cm_error = 0;
1949
1950         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1951                 rdma_event_msg(ev->event), ev->event,
1952                 ev->status, cm_id);
1953
1954         switch (ev->event) {
1955         case RDMA_CM_EVENT_ADDR_RESOLVED:
1956                 cm_error = nvme_rdma_addr_resolved(queue);
1957                 break;
1958         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1959                 cm_error = nvme_rdma_route_resolved(queue);
1960                 break;
1961         case RDMA_CM_EVENT_ESTABLISHED:
1962                 queue->cm_error = nvme_rdma_conn_established(queue);
1963                 /* complete cm_done regardless of success/failure */
1964                 complete(&queue->cm_done);
1965                 return 0;
1966         case RDMA_CM_EVENT_REJECTED:
1967                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1968                 break;
1969         case RDMA_CM_EVENT_ROUTE_ERROR:
1970         case RDMA_CM_EVENT_CONNECT_ERROR:
1971         case RDMA_CM_EVENT_UNREACHABLE:
1972         case RDMA_CM_EVENT_ADDR_ERROR:
1973                 dev_dbg(queue->ctrl->ctrl.device,
1974                         "CM error event %d\n", ev->event);
1975                 cm_error = -ECONNRESET;
1976                 break;
1977         case RDMA_CM_EVENT_DISCONNECTED:
1978         case RDMA_CM_EVENT_ADDR_CHANGE:
1979         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1980                 dev_dbg(queue->ctrl->ctrl.device,
1981                         "disconnect received - connection closed\n");
1982                 nvme_rdma_error_recovery(queue->ctrl);
1983                 break;
1984         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1985                 /* device removal is handled via the ib_client API */
1986                 break;
1987         default:
1988                 dev_err(queue->ctrl->ctrl.device,
1989                         "Unexpected RDMA CM event (%d)\n", ev->event);
1990                 nvme_rdma_error_recovery(queue->ctrl);
1991                 break;
1992         }
1993
1994         if (cm_error) {
1995                 queue->cm_error = cm_error;
1996                 complete(&queue->cm_done);
1997         }
1998
1999         return 0;
2000 }
2001
2002 static void nvme_rdma_complete_timed_out(struct request *rq)
2003 {
2004         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2005         struct nvme_rdma_queue *queue = req->queue;
2006
2007         nvme_rdma_stop_queue(queue);
2008         if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2009                 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2010                 blk_mq_complete_request(rq);
2011         }
2012 }
2013
2014 static enum blk_eh_timer_return
2015 nvme_rdma_timeout(struct request *rq, bool reserved)
2016 {
2017         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2018         struct nvme_rdma_queue *queue = req->queue;
2019         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2020
2021         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2022                  rq->tag, nvme_rdma_queue_idx(queue));
2023
2024         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2025                 /*
2026                  * If we are resetting, connecting or deleting we should
2027                  * complete immediately because we may block controller
2028                  * teardown or setup sequence
2029                  * - ctrl disable/shutdown fabrics requests
2030                  * - connect requests
2031                  * - initialization admin requests
2032                  * - I/O requests that entered after unquiescing and
2033                  *   the controller stopped responding
2034                  *
2035                  * All other requests should be cancelled by the error
2036                  * recovery work, so it's fine that we fail it here.
2037                  */
2038                 nvme_rdma_complete_timed_out(rq);
2039                 return BLK_EH_DONE;
2040         }
2041
2042         /*
2043          * LIVE state should trigger the normal error recovery which will
2044          * handle completing this request.
2045          */
2046         nvme_rdma_error_recovery(ctrl);
2047         return BLK_EH_RESET_TIMER;
2048 }
2049
2050 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2051                 const struct blk_mq_queue_data *bd)
2052 {
2053         struct nvme_ns *ns = hctx->queue->queuedata;
2054         struct nvme_rdma_queue *queue = hctx->driver_data;
2055         struct request *rq = bd->rq;
2056         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2057         struct nvme_rdma_qe *sqe = &req->sqe;
2058         struct nvme_command *c = sqe->data;
2059         struct ib_device *dev;
2060         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2061         blk_status_t ret;
2062         int err;
2063
2064         WARN_ON_ONCE(rq->tag < 0);
2065
2066         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2067                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2068
2069         dev = queue->device->dev;
2070
2071         req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2072                                          sizeof(struct nvme_command),
2073                                          DMA_TO_DEVICE);
2074         err = ib_dma_mapping_error(dev, req->sqe.dma);
2075         if (unlikely(err))
2076                 return BLK_STS_RESOURCE;
2077
2078         ib_dma_sync_single_for_cpu(dev, sqe->dma,
2079                         sizeof(struct nvme_command), DMA_TO_DEVICE);
2080
2081         ret = nvme_setup_cmd(ns, rq, c);
2082         if (ret)
2083                 goto unmap_qe;
2084
2085         blk_mq_start_request(rq);
2086
2087         if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2088             queue->pi_support &&
2089             (c->common.opcode == nvme_cmd_write ||
2090              c->common.opcode == nvme_cmd_read) &&
2091             nvme_ns_has_pi(ns))
2092                 req->use_sig_mr = true;
2093         else
2094                 req->use_sig_mr = false;
2095
2096         err = nvme_rdma_map_data(queue, rq, c);
2097         if (unlikely(err < 0)) {
2098                 dev_err(queue->ctrl->ctrl.device,
2099                              "Failed to map data (%d)\n", err);
2100                 goto err;
2101         }
2102
2103         sqe->cqe.done = nvme_rdma_send_done;
2104
2105         ib_dma_sync_single_for_device(dev, sqe->dma,
2106                         sizeof(struct nvme_command), DMA_TO_DEVICE);
2107
2108         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2109                         req->mr ? &req->reg_wr.wr : NULL);
2110         if (unlikely(err))
2111                 goto err_unmap;
2112
2113         return BLK_STS_OK;
2114
2115 err_unmap:
2116         nvme_rdma_unmap_data(queue, rq);
2117 err:
2118         if (err == -ENOMEM || err == -EAGAIN)
2119                 ret = BLK_STS_RESOURCE;
2120         else
2121                 ret = BLK_STS_IOERR;
2122         nvme_cleanup_cmd(rq);
2123 unmap_qe:
2124         ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2125                             DMA_TO_DEVICE);
2126         return ret;
2127 }
2128
2129 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2130 {
2131         struct nvme_rdma_queue *queue = hctx->driver_data;
2132
2133         return ib_process_cq_direct(queue->ib_cq, -1);
2134 }
2135
2136 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2137 {
2138         struct request *rq = blk_mq_rq_from_pdu(req);
2139         struct ib_mr_status mr_status;
2140         int ret;
2141
2142         ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2143         if (ret) {
2144                 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2145                 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2146                 return;
2147         }
2148
2149         if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2150                 switch (mr_status.sig_err.err_type) {
2151                 case IB_SIG_BAD_GUARD:
2152                         nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2153                         break;
2154                 case IB_SIG_BAD_REFTAG:
2155                         nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2156                         break;
2157                 case IB_SIG_BAD_APPTAG:
2158                         nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2159                         break;
2160                 }
2161                 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2162                        mr_status.sig_err.err_type, mr_status.sig_err.expected,
2163                        mr_status.sig_err.actual);
2164         }
2165 }
2166
2167 static void nvme_rdma_complete_rq(struct request *rq)
2168 {
2169         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2170         struct nvme_rdma_queue *queue = req->queue;
2171         struct ib_device *ibdev = queue->device->dev;
2172
2173         if (req->use_sig_mr)
2174                 nvme_rdma_check_pi_status(req);
2175
2176         nvme_rdma_unmap_data(queue, rq);
2177         ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2178                             DMA_TO_DEVICE);
2179         nvme_complete_rq(rq);
2180 }
2181
2182 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2183 {
2184         struct nvme_rdma_ctrl *ctrl = set->driver_data;
2185         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2186
2187         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2188                 /* separate read/write queues */
2189                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2190                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2191                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2192                 set->map[HCTX_TYPE_READ].nr_queues =
2193                         ctrl->io_queues[HCTX_TYPE_READ];
2194                 set->map[HCTX_TYPE_READ].queue_offset =
2195                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2196         } else {
2197                 /* shared read/write queues */
2198                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2199                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2200                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2201                 set->map[HCTX_TYPE_READ].nr_queues =
2202                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2203                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2204         }
2205         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2206                         ctrl->device->dev, 0);
2207         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2208                         ctrl->device->dev, 0);
2209
2210         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2211                 /* map dedicated poll queues only if we have queues left */
2212                 set->map[HCTX_TYPE_POLL].nr_queues =
2213                                 ctrl->io_queues[HCTX_TYPE_POLL];
2214                 set->map[HCTX_TYPE_POLL].queue_offset =
2215                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2216                         ctrl->io_queues[HCTX_TYPE_READ];
2217                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2218         }
2219
2220         dev_info(ctrl->ctrl.device,
2221                 "mapped %d/%d/%d default/read/poll queues.\n",
2222                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2223                 ctrl->io_queues[HCTX_TYPE_READ],
2224                 ctrl->io_queues[HCTX_TYPE_POLL]);
2225
2226         return 0;
2227 }
2228
2229 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2230         .queue_rq       = nvme_rdma_queue_rq,
2231         .complete       = nvme_rdma_complete_rq,
2232         .init_request   = nvme_rdma_init_request,
2233         .exit_request   = nvme_rdma_exit_request,
2234         .init_hctx      = nvme_rdma_init_hctx,
2235         .timeout        = nvme_rdma_timeout,
2236         .map_queues     = nvme_rdma_map_queues,
2237         .poll           = nvme_rdma_poll,
2238 };
2239
2240 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2241         .queue_rq       = nvme_rdma_queue_rq,
2242         .complete       = nvme_rdma_complete_rq,
2243         .init_request   = nvme_rdma_init_request,
2244         .exit_request   = nvme_rdma_exit_request,
2245         .init_hctx      = nvme_rdma_init_admin_hctx,
2246         .timeout        = nvme_rdma_timeout,
2247 };
2248
2249 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2250 {
2251         nvme_rdma_teardown_io_queues(ctrl, shutdown);
2252         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2253         if (shutdown)
2254                 nvme_shutdown_ctrl(&ctrl->ctrl);
2255         else
2256                 nvme_disable_ctrl(&ctrl->ctrl);
2257         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2258 }
2259
2260 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2261 {
2262         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2263 }
2264
2265 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2266 {
2267         struct nvme_rdma_ctrl *ctrl =
2268                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2269
2270         nvme_stop_ctrl(&ctrl->ctrl);
2271         nvme_rdma_shutdown_ctrl(ctrl, false);
2272
2273         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2274                 /* state change failure should never happen */
2275                 WARN_ON_ONCE(1);
2276                 return;
2277         }
2278
2279         if (nvme_rdma_setup_ctrl(ctrl, false))
2280                 goto out_fail;
2281
2282         return;
2283
2284 out_fail:
2285         ++ctrl->ctrl.nr_reconnects;
2286         nvme_rdma_reconnect_or_remove(ctrl);
2287 }
2288
2289 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2290         .name                   = "rdma",
2291         .module                 = THIS_MODULE,
2292         .flags                  = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2293         .reg_read32             = nvmf_reg_read32,
2294         .reg_read64             = nvmf_reg_read64,
2295         .reg_write32            = nvmf_reg_write32,
2296         .free_ctrl              = nvme_rdma_free_ctrl,
2297         .submit_async_event     = nvme_rdma_submit_async_event,
2298         .delete_ctrl            = nvme_rdma_delete_ctrl,
2299         .get_address            = nvmf_get_address,
2300         .stop_ctrl              = nvme_rdma_stop_ctrl,
2301 };
2302
2303 /*
2304  * Fails a connection request if it matches an existing controller
2305  * (association) with the same tuple:
2306  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2307  *
2308  * if local address is not specified in the request, it will match an
2309  * existing controller with all the other parameters the same and no
2310  * local port address specified as well.
2311  *
2312  * The ports don't need to be compared as they are intrinsically
2313  * already matched by the port pointers supplied.
2314  */
2315 static bool
2316 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2317 {
2318         struct nvme_rdma_ctrl *ctrl;
2319         bool found = false;
2320
2321         mutex_lock(&nvme_rdma_ctrl_mutex);
2322         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2323                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2324                 if (found)
2325                         break;
2326         }
2327         mutex_unlock(&nvme_rdma_ctrl_mutex);
2328
2329         return found;
2330 }
2331
2332 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2333                 struct nvmf_ctrl_options *opts)
2334 {
2335         struct nvme_rdma_ctrl *ctrl;
2336         int ret;
2337         bool changed;
2338
2339         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2340         if (!ctrl)
2341                 return ERR_PTR(-ENOMEM);
2342         ctrl->ctrl.opts = opts;
2343         INIT_LIST_HEAD(&ctrl->list);
2344
2345         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2346                 opts->trsvcid =
2347                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2348                 if (!opts->trsvcid) {
2349                         ret = -ENOMEM;
2350                         goto out_free_ctrl;
2351                 }
2352                 opts->mask |= NVMF_OPT_TRSVCID;
2353         }
2354
2355         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2356                         opts->traddr, opts->trsvcid, &ctrl->addr);
2357         if (ret) {
2358                 pr_err("malformed address passed: %s:%s\n",
2359                         opts->traddr, opts->trsvcid);
2360                 goto out_free_ctrl;
2361         }
2362
2363         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2364                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2365                         opts->host_traddr, NULL, &ctrl->src_addr);
2366                 if (ret) {
2367                         pr_err("malformed src address passed: %s\n",
2368                                opts->host_traddr);
2369                         goto out_free_ctrl;
2370                 }
2371         }
2372
2373         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2374                 ret = -EALREADY;
2375                 goto out_free_ctrl;
2376         }
2377
2378         INIT_DELAYED_WORK(&ctrl->reconnect_work,
2379                         nvme_rdma_reconnect_ctrl_work);
2380         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2381         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2382
2383         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2384                                 opts->nr_poll_queues + 1;
2385         ctrl->ctrl.sqsize = opts->queue_size - 1;
2386         ctrl->ctrl.kato = opts->kato;
2387
2388         ret = -ENOMEM;
2389         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2390                                 GFP_KERNEL);
2391         if (!ctrl->queues)
2392                 goto out_free_ctrl;
2393
2394         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2395                                 0 /* no quirks, we're perfect! */);
2396         if (ret)
2397                 goto out_kfree_queues;
2398
2399         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2400         WARN_ON_ONCE(!changed);
2401
2402         ret = nvme_rdma_setup_ctrl(ctrl, true);
2403         if (ret)
2404                 goto out_uninit_ctrl;
2405
2406         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2407                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2408
2409         mutex_lock(&nvme_rdma_ctrl_mutex);
2410         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2411         mutex_unlock(&nvme_rdma_ctrl_mutex);
2412
2413         return &ctrl->ctrl;
2414
2415 out_uninit_ctrl:
2416         nvme_uninit_ctrl(&ctrl->ctrl);
2417         nvme_put_ctrl(&ctrl->ctrl);
2418         if (ret > 0)
2419                 ret = -EIO;
2420         return ERR_PTR(ret);
2421 out_kfree_queues:
2422         kfree(ctrl->queues);
2423 out_free_ctrl:
2424         kfree(ctrl);
2425         return ERR_PTR(ret);
2426 }
2427
2428 static struct nvmf_transport_ops nvme_rdma_transport = {
2429         .name           = "rdma",
2430         .module         = THIS_MODULE,
2431         .required_opts  = NVMF_OPT_TRADDR,
2432         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2433                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2434                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2435                           NVMF_OPT_TOS,
2436         .create_ctrl    = nvme_rdma_create_ctrl,
2437 };
2438
2439 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2440 {
2441         struct nvme_rdma_ctrl *ctrl;
2442         struct nvme_rdma_device *ndev;
2443         bool found = false;
2444
2445         mutex_lock(&device_list_mutex);
2446         list_for_each_entry(ndev, &device_list, entry) {
2447                 if (ndev->dev == ib_device) {
2448                         found = true;
2449                         break;
2450                 }
2451         }
2452         mutex_unlock(&device_list_mutex);
2453
2454         if (!found)
2455                 return;
2456
2457         /* Delete all controllers using this device */
2458         mutex_lock(&nvme_rdma_ctrl_mutex);
2459         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2460                 if (ctrl->device->dev != ib_device)
2461                         continue;
2462                 nvme_delete_ctrl(&ctrl->ctrl);
2463         }
2464         mutex_unlock(&nvme_rdma_ctrl_mutex);
2465
2466         flush_workqueue(nvme_delete_wq);
2467 }
2468
2469 static struct ib_client nvme_rdma_ib_client = {
2470         .name   = "nvme_rdma",
2471         .remove = nvme_rdma_remove_one
2472 };
2473
2474 static int __init nvme_rdma_init_module(void)
2475 {
2476         int ret;
2477
2478         ret = ib_register_client(&nvme_rdma_ib_client);
2479         if (ret)
2480                 return ret;
2481
2482         ret = nvmf_register_transport(&nvme_rdma_transport);
2483         if (ret)
2484                 goto err_unreg_client;
2485
2486         return 0;
2487
2488 err_unreg_client:
2489         ib_unregister_client(&nvme_rdma_ib_client);
2490         return ret;
2491 }
2492
2493 static void __exit nvme_rdma_cleanup_module(void)
2494 {
2495         struct nvme_rdma_ctrl *ctrl;
2496
2497         nvmf_unregister_transport(&nvme_rdma_transport);
2498         ib_unregister_client(&nvme_rdma_ib_client);
2499
2500         mutex_lock(&nvme_rdma_ctrl_mutex);
2501         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2502                 nvme_delete_ctrl(&ctrl->ctrl);
2503         mutex_unlock(&nvme_rdma_ctrl_mutex);
2504         flush_workqueue(nvme_delete_wq);
2505 }
2506
2507 module_init(nvme_rdma_init_module);
2508 module_exit(nvme_rdma_cleanup_module);
2509
2510 MODULE_LICENSE("GPL v2");