Mention branches and keyring.
[releases.git] / powerpc / mm / book3s64 / radix_pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Page table handling routines for radix page table.
4  *
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of.h>
15 #include <linux/of_fdt.h>
16 #include <linux/mm.h>
17 #include <linux/hugetlb.h>
18 #include <linux/string_helpers.h>
19 #include <linux/memory.h>
20
21 #include <asm/pgalloc.h>
22 #include <asm/mmu_context.h>
23 #include <asm/dma.h>
24 #include <asm/machdep.h>
25 #include <asm/mmu.h>
26 #include <asm/firmware.h>
27 #include <asm/powernv.h>
28 #include <asm/sections.h>
29 #include <asm/smp.h>
30 #include <asm/trace.h>
31 #include <asm/uaccess.h>
32 #include <asm/ultravisor.h>
33 #include <asm/set_memory.h>
34
35 #include <trace/events/thp.h>
36
37 #include <mm/mmu_decl.h>
38
39 unsigned int mmu_base_pid;
40 unsigned long radix_mem_block_size __ro_after_init;
41
42 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
43                         unsigned long region_start, unsigned long region_end)
44 {
45         phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
46         phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
47         void *ptr;
48
49         if (region_start)
50                 min_addr = region_start;
51         if (region_end)
52                 max_addr = region_end;
53
54         ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
55
56         if (!ptr)
57                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
58                       __func__, size, size, nid, &min_addr, &max_addr);
59
60         return ptr;
61 }
62
63 /*
64  * When allocating pud or pmd pointers, we allocate a complete page
65  * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
66  * is to ensure that the page obtained from the memblock allocator
67  * can be completely used as page table page and can be freed
68  * correctly when the page table entries are removed.
69  */
70 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
71                           pgprot_t flags,
72                           unsigned int map_page_size,
73                           int nid,
74                           unsigned long region_start, unsigned long region_end)
75 {
76         unsigned long pfn = pa >> PAGE_SHIFT;
77         pgd_t *pgdp;
78         p4d_t *p4dp;
79         pud_t *pudp;
80         pmd_t *pmdp;
81         pte_t *ptep;
82
83         pgdp = pgd_offset_k(ea);
84         p4dp = p4d_offset(pgdp, ea);
85         if (p4d_none(*p4dp)) {
86                 pudp = early_alloc_pgtable(PAGE_SIZE, nid,
87                                            region_start, region_end);
88                 p4d_populate(&init_mm, p4dp, pudp);
89         }
90         pudp = pud_offset(p4dp, ea);
91         if (map_page_size == PUD_SIZE) {
92                 ptep = (pte_t *)pudp;
93                 goto set_the_pte;
94         }
95         if (pud_none(*pudp)) {
96                 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
97                                            region_end);
98                 pud_populate(&init_mm, pudp, pmdp);
99         }
100         pmdp = pmd_offset(pudp, ea);
101         if (map_page_size == PMD_SIZE) {
102                 ptep = pmdp_ptep(pmdp);
103                 goto set_the_pte;
104         }
105         if (!pmd_present(*pmdp)) {
106                 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
107                                                 region_start, region_end);
108                 pmd_populate_kernel(&init_mm, pmdp, ptep);
109         }
110         ptep = pte_offset_kernel(pmdp, ea);
111
112 set_the_pte:
113         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
114         asm volatile("ptesync": : :"memory");
115         return 0;
116 }
117
118 /*
119  * nid, region_start, and region_end are hints to try to place the page
120  * table memory in the same node or region.
121  */
122 static int __map_kernel_page(unsigned long ea, unsigned long pa,
123                           pgprot_t flags,
124                           unsigned int map_page_size,
125                           int nid,
126                           unsigned long region_start, unsigned long region_end)
127 {
128         unsigned long pfn = pa >> PAGE_SHIFT;
129         pgd_t *pgdp;
130         p4d_t *p4dp;
131         pud_t *pudp;
132         pmd_t *pmdp;
133         pte_t *ptep;
134         /*
135          * Make sure task size is correct as per the max adddr
136          */
137         BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
138
139 #ifdef CONFIG_PPC_64K_PAGES
140         BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
141 #endif
142
143         if (unlikely(!slab_is_available()))
144                 return early_map_kernel_page(ea, pa, flags, map_page_size,
145                                                 nid, region_start, region_end);
146
147         /*
148          * Should make page table allocation functions be able to take a
149          * node, so we can place kernel page tables on the right nodes after
150          * boot.
151          */
152         pgdp = pgd_offset_k(ea);
153         p4dp = p4d_offset(pgdp, ea);
154         pudp = pud_alloc(&init_mm, p4dp, ea);
155         if (!pudp)
156                 return -ENOMEM;
157         if (map_page_size == PUD_SIZE) {
158                 ptep = (pte_t *)pudp;
159                 goto set_the_pte;
160         }
161         pmdp = pmd_alloc(&init_mm, pudp, ea);
162         if (!pmdp)
163                 return -ENOMEM;
164         if (map_page_size == PMD_SIZE) {
165                 ptep = pmdp_ptep(pmdp);
166                 goto set_the_pte;
167         }
168         ptep = pte_alloc_kernel(pmdp, ea);
169         if (!ptep)
170                 return -ENOMEM;
171
172 set_the_pte:
173         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
174         asm volatile("ptesync": : :"memory");
175         return 0;
176 }
177
178 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
179                           pgprot_t flags,
180                           unsigned int map_page_size)
181 {
182         return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
183 }
184
185 #ifdef CONFIG_STRICT_KERNEL_RWX
186 static void radix__change_memory_range(unsigned long start, unsigned long end,
187                                        unsigned long clear)
188 {
189         unsigned long idx;
190         pgd_t *pgdp;
191         p4d_t *p4dp;
192         pud_t *pudp;
193         pmd_t *pmdp;
194         pte_t *ptep;
195
196         start = ALIGN_DOWN(start, PAGE_SIZE);
197         end = PAGE_ALIGN(end); // aligns up
198
199         pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
200                  start, end, clear);
201
202         for (idx = start; idx < end; idx += PAGE_SIZE) {
203                 pgdp = pgd_offset_k(idx);
204                 p4dp = p4d_offset(pgdp, idx);
205                 pudp = pud_alloc(&init_mm, p4dp, idx);
206                 if (!pudp)
207                         continue;
208                 if (pud_is_leaf(*pudp)) {
209                         ptep = (pte_t *)pudp;
210                         goto update_the_pte;
211                 }
212                 pmdp = pmd_alloc(&init_mm, pudp, idx);
213                 if (!pmdp)
214                         continue;
215                 if (pmd_is_leaf(*pmdp)) {
216                         ptep = pmdp_ptep(pmdp);
217                         goto update_the_pte;
218                 }
219                 ptep = pte_alloc_kernel(pmdp, idx);
220                 if (!ptep)
221                         continue;
222 update_the_pte:
223                 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
224         }
225
226         radix__flush_tlb_kernel_range(start, end);
227 }
228
229 void radix__mark_rodata_ro(void)
230 {
231         unsigned long start, end;
232
233         start = (unsigned long)_stext;
234         end = (unsigned long)__end_rodata;
235
236         radix__change_memory_range(start, end, _PAGE_WRITE);
237
238         for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) {
239                 end = start + PAGE_SIZE;
240                 if (overlaps_interrupt_vector_text(start, end))
241                         radix__change_memory_range(start, end, _PAGE_WRITE);
242                 else
243                         break;
244         }
245 }
246
247 void radix__mark_initmem_nx(void)
248 {
249         unsigned long start = (unsigned long)__init_begin;
250         unsigned long end = (unsigned long)__init_end;
251
252         radix__change_memory_range(start, end, _PAGE_EXEC);
253 }
254 #endif /* CONFIG_STRICT_KERNEL_RWX */
255
256 static inline void __meminit
257 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
258 {
259         char buf[10];
260
261         if (end <= start)
262                 return;
263
264         string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
265
266         pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
267                 exec ? " (exec)" : "");
268 }
269
270 static unsigned long next_boundary(unsigned long addr, unsigned long end)
271 {
272 #ifdef CONFIG_STRICT_KERNEL_RWX
273         unsigned long stext_phys;
274
275         stext_phys = __pa_symbol(_stext);
276
277         // Relocatable kernel running at non-zero real address
278         if (stext_phys != 0) {
279                 // The end of interrupts code at zero is a rodata boundary
280                 unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys;
281                 if (addr < end_intr)
282                         return end_intr;
283
284                 // Start of relocated kernel text is a rodata boundary
285                 if (addr < stext_phys)
286                         return stext_phys;
287         }
288
289         if (addr < __pa_symbol(__srwx_boundary))
290                 return __pa_symbol(__srwx_boundary);
291 #endif
292         return end;
293 }
294
295 static int __meminit create_physical_mapping(unsigned long start,
296                                              unsigned long end,
297                                              int nid, pgprot_t _prot)
298 {
299         unsigned long vaddr, addr, mapping_size = 0;
300         bool prev_exec, exec = false;
301         pgprot_t prot;
302         int psize;
303         unsigned long max_mapping_size = radix_mem_block_size;
304
305         if (debug_pagealloc_enabled_or_kfence())
306                 max_mapping_size = PAGE_SIZE;
307
308         start = ALIGN(start, PAGE_SIZE);
309         end   = ALIGN_DOWN(end, PAGE_SIZE);
310         for (addr = start; addr < end; addr += mapping_size) {
311                 unsigned long gap, previous_size;
312                 int rc;
313
314                 gap = next_boundary(addr, end) - addr;
315                 if (gap > max_mapping_size)
316                         gap = max_mapping_size;
317                 previous_size = mapping_size;
318                 prev_exec = exec;
319
320                 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
321                     mmu_psize_defs[MMU_PAGE_1G].shift) {
322                         mapping_size = PUD_SIZE;
323                         psize = MMU_PAGE_1G;
324                 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
325                            mmu_psize_defs[MMU_PAGE_2M].shift) {
326                         mapping_size = PMD_SIZE;
327                         psize = MMU_PAGE_2M;
328                 } else {
329                         mapping_size = PAGE_SIZE;
330                         psize = mmu_virtual_psize;
331                 }
332
333                 vaddr = (unsigned long)__va(addr);
334
335                 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
336                     overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
337                         prot = PAGE_KERNEL_X;
338                         exec = true;
339                 } else {
340                         prot = _prot;
341                         exec = false;
342                 }
343
344                 if (mapping_size != previous_size || exec != prev_exec) {
345                         print_mapping(start, addr, previous_size, prev_exec);
346                         start = addr;
347                 }
348
349                 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
350                 if (rc)
351                         return rc;
352
353                 update_page_count(psize, 1);
354         }
355
356         print_mapping(start, addr, mapping_size, exec);
357         return 0;
358 }
359
360 static void __init radix_init_pgtable(void)
361 {
362         unsigned long rts_field;
363         phys_addr_t start, end;
364         u64 i;
365
366         /* We don't support slb for radix */
367         slb_set_size(0);
368
369         /*
370          * Create the linear mapping
371          */
372         for_each_mem_range(i, &start, &end) {
373                 /*
374                  * The memblock allocator  is up at this point, so the
375                  * page tables will be allocated within the range. No
376                  * need or a node (which we don't have yet).
377                  */
378
379                 if (end >= RADIX_VMALLOC_START) {
380                         pr_warn("Outside the supported range\n");
381                         continue;
382                 }
383
384                 WARN_ON(create_physical_mapping(start, end,
385                                                 -1, PAGE_KERNEL));
386         }
387
388         if (!cpu_has_feature(CPU_FTR_HVMODE) &&
389                         cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
390                 /*
391                  * Older versions of KVM on these machines prefer if the
392                  * guest only uses the low 19 PID bits.
393                  */
394                 mmu_pid_bits = 19;
395         }
396         mmu_base_pid = 1;
397
398         /*
399          * Allocate Partition table and process table for the
400          * host.
401          */
402         BUG_ON(PRTB_SIZE_SHIFT > 36);
403         process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
404         /*
405          * Fill in the process table.
406          */
407         rts_field = radix__get_tree_size();
408         process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
409
410         /*
411          * The init_mm context is given the first available (non-zero) PID,
412          * which is the "guard PID" and contains no page table. PIDR should
413          * never be set to zero because that duplicates the kernel address
414          * space at the 0x0... offset (quadrant 0)!
415          *
416          * An arbitrary PID that may later be allocated by the PID allocator
417          * for userspace processes must not be used either, because that
418          * would cause stale user mappings for that PID on CPUs outside of
419          * the TLB invalidation scheme (because it won't be in mm_cpumask).
420          *
421          * So permanently carve out one PID for the purpose of a guard PID.
422          */
423         init_mm.context.id = mmu_base_pid;
424         mmu_base_pid++;
425 }
426
427 static void __init radix_init_partition_table(void)
428 {
429         unsigned long rts_field, dw0, dw1;
430
431         mmu_partition_table_init();
432         rts_field = radix__get_tree_size();
433         dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
434         dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
435         mmu_partition_table_set_entry(0, dw0, dw1, false);
436
437         pr_info("Initializing Radix MMU\n");
438 }
439
440 static int __init get_idx_from_shift(unsigned int shift)
441 {
442         int idx = -1;
443
444         switch (shift) {
445         case 0xc:
446                 idx = MMU_PAGE_4K;
447                 break;
448         case 0x10:
449                 idx = MMU_PAGE_64K;
450                 break;
451         case 0x15:
452                 idx = MMU_PAGE_2M;
453                 break;
454         case 0x1e:
455                 idx = MMU_PAGE_1G;
456                 break;
457         }
458         return idx;
459 }
460
461 static int __init radix_dt_scan_page_sizes(unsigned long node,
462                                            const char *uname, int depth,
463                                            void *data)
464 {
465         int size = 0;
466         int shift, idx;
467         unsigned int ap;
468         const __be32 *prop;
469         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
470
471         /* We are scanning "cpu" nodes only */
472         if (type == NULL || strcmp(type, "cpu") != 0)
473                 return 0;
474
475         /* Grab page size encodings */
476         prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
477         if (!prop)
478                 return 0;
479
480         pr_info("Page sizes from device-tree:\n");
481         for (; size >= 4; size -= 4, ++prop) {
482
483                 struct mmu_psize_def *def;
484
485                 /* top 3 bit is AP encoding */
486                 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
487                 ap = be32_to_cpu(prop[0]) >> 29;
488                 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
489
490                 idx = get_idx_from_shift(shift);
491                 if (idx < 0)
492                         continue;
493
494                 def = &mmu_psize_defs[idx];
495                 def->shift = shift;
496                 def->ap  = ap;
497                 def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
498         }
499
500         /* needed ? */
501         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
502         return 1;
503 }
504
505 #ifdef CONFIG_MEMORY_HOTPLUG
506 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
507                                           depth, void *data)
508 {
509         unsigned long *mem_block_size = (unsigned long *)data;
510         const __be32 *prop;
511         int len;
512
513         if (depth != 1)
514                 return 0;
515
516         if (strcmp(uname, "ibm,dynamic-reconfiguration-memory"))
517                 return 0;
518
519         prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &len);
520
521         if (!prop || len < dt_root_size_cells * sizeof(__be32))
522                 /*
523                  * Nothing in the device tree
524                  */
525                 *mem_block_size = MIN_MEMORY_BLOCK_SIZE;
526         else
527                 *mem_block_size = of_read_number(prop, dt_root_size_cells);
528         return 1;
529 }
530
531 static unsigned long __init radix_memory_block_size(void)
532 {
533         unsigned long mem_block_size = MIN_MEMORY_BLOCK_SIZE;
534
535         /*
536          * OPAL firmware feature is set by now. Hence we are ok
537          * to test OPAL feature.
538          */
539         if (firmware_has_feature(FW_FEATURE_OPAL))
540                 mem_block_size = 1UL * 1024 * 1024 * 1024;
541         else
542                 of_scan_flat_dt(probe_memory_block_size, &mem_block_size);
543
544         return mem_block_size;
545 }
546
547 #else   /* CONFIG_MEMORY_HOTPLUG */
548
549 static unsigned long __init radix_memory_block_size(void)
550 {
551         return 1UL * 1024 * 1024 * 1024;
552 }
553
554 #endif /* CONFIG_MEMORY_HOTPLUG */
555
556
557 void __init radix__early_init_devtree(void)
558 {
559         int rc;
560
561         /*
562          * Try to find the available page sizes in the device-tree
563          */
564         rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
565         if (!rc) {
566                 /*
567                  * No page size details found in device tree.
568                  * Let's assume we have page 4k and 64k support
569                  */
570                 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
571                 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
572                 mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
573                         psize_to_rpti_pgsize(MMU_PAGE_4K);
574
575                 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
576                 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
577                 mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
578                         psize_to_rpti_pgsize(MMU_PAGE_64K);
579         }
580
581         /*
582          * Max mapping size used when mapping pages. We don't use
583          * ppc_md.memory_block_size() here because this get called
584          * early and we don't have machine probe called yet. Also
585          * the pseries implementation only check for ibm,lmb-size.
586          * All hypervisor supporting radix do expose that device
587          * tree node.
588          */
589         radix_mem_block_size = radix_memory_block_size();
590         return;
591 }
592
593 void __init radix__early_init_mmu(void)
594 {
595         unsigned long lpcr;
596
597 #ifdef CONFIG_PPC_64S_HASH_MMU
598 #ifdef CONFIG_PPC_64K_PAGES
599         /* PAGE_SIZE mappings */
600         mmu_virtual_psize = MMU_PAGE_64K;
601 #else
602         mmu_virtual_psize = MMU_PAGE_4K;
603 #endif
604
605 #ifdef CONFIG_SPARSEMEM_VMEMMAP
606         /* vmemmap mapping */
607         if (mmu_psize_defs[MMU_PAGE_2M].shift) {
608                 /*
609                  * map vmemmap using 2M if available
610                  */
611                 mmu_vmemmap_psize = MMU_PAGE_2M;
612         } else
613                 mmu_vmemmap_psize = mmu_virtual_psize;
614 #endif
615 #endif
616         /*
617          * initialize page table size
618          */
619         __pte_index_size = RADIX_PTE_INDEX_SIZE;
620         __pmd_index_size = RADIX_PMD_INDEX_SIZE;
621         __pud_index_size = RADIX_PUD_INDEX_SIZE;
622         __pgd_index_size = RADIX_PGD_INDEX_SIZE;
623         __pud_cache_index = RADIX_PUD_INDEX_SIZE;
624         __pte_table_size = RADIX_PTE_TABLE_SIZE;
625         __pmd_table_size = RADIX_PMD_TABLE_SIZE;
626         __pud_table_size = RADIX_PUD_TABLE_SIZE;
627         __pgd_table_size = RADIX_PGD_TABLE_SIZE;
628
629         __pmd_val_bits = RADIX_PMD_VAL_BITS;
630         __pud_val_bits = RADIX_PUD_VAL_BITS;
631         __pgd_val_bits = RADIX_PGD_VAL_BITS;
632
633         __kernel_virt_start = RADIX_KERN_VIRT_START;
634         __vmalloc_start = RADIX_VMALLOC_START;
635         __vmalloc_end = RADIX_VMALLOC_END;
636         __kernel_io_start = RADIX_KERN_IO_START;
637         __kernel_io_end = RADIX_KERN_IO_END;
638         vmemmap = (struct page *)RADIX_VMEMMAP_START;
639         ioremap_bot = IOREMAP_BASE;
640
641 #ifdef CONFIG_PCI
642         pci_io_base = ISA_IO_BASE;
643 #endif
644         __pte_frag_nr = RADIX_PTE_FRAG_NR;
645         __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
646         __pmd_frag_nr = RADIX_PMD_FRAG_NR;
647         __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
648
649         radix_init_pgtable();
650
651         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
652                 lpcr = mfspr(SPRN_LPCR);
653                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
654                 radix_init_partition_table();
655         } else {
656                 radix_init_pseries();
657         }
658
659         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
660
661         /* Switch to the guard PID before turning on MMU */
662         radix__switch_mmu_context(NULL, &init_mm);
663         tlbiel_all();
664 }
665
666 void radix__early_init_mmu_secondary(void)
667 {
668         unsigned long lpcr;
669         /*
670          * update partition table control register and UPRT
671          */
672         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
673                 lpcr = mfspr(SPRN_LPCR);
674                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
675
676                 set_ptcr_when_no_uv(__pa(partition_tb) |
677                                     (PATB_SIZE_SHIFT - 12));
678         }
679
680         radix__switch_mmu_context(NULL, &init_mm);
681         tlbiel_all();
682
683         /* Make sure userspace can't change the AMR */
684         mtspr(SPRN_UAMOR, 0);
685 }
686
687 /* Called during kexec sequence with MMU off */
688 notrace void radix__mmu_cleanup_all(void)
689 {
690         unsigned long lpcr;
691
692         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
693                 lpcr = mfspr(SPRN_LPCR);
694                 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
695                 set_ptcr_when_no_uv(0);
696                 powernv_set_nmmu_ptcr(0);
697                 radix__flush_tlb_all();
698         }
699 }
700
701 #ifdef CONFIG_MEMORY_HOTPLUG
702 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
703 {
704         pte_t *pte;
705         int i;
706
707         for (i = 0; i < PTRS_PER_PTE; i++) {
708                 pte = pte_start + i;
709                 if (!pte_none(*pte))
710                         return;
711         }
712
713         pte_free_kernel(&init_mm, pte_start);
714         pmd_clear(pmd);
715 }
716
717 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
718 {
719         pmd_t *pmd;
720         int i;
721
722         for (i = 0; i < PTRS_PER_PMD; i++) {
723                 pmd = pmd_start + i;
724                 if (!pmd_none(*pmd))
725                         return;
726         }
727
728         pmd_free(&init_mm, pmd_start);
729         pud_clear(pud);
730 }
731
732 static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
733 {
734         pud_t *pud;
735         int i;
736
737         for (i = 0; i < PTRS_PER_PUD; i++) {
738                 pud = pud_start + i;
739                 if (!pud_none(*pud))
740                         return;
741         }
742
743         pud_free(&init_mm, pud_start);
744         p4d_clear(p4d);
745 }
746
747 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
748                              unsigned long end, bool direct)
749 {
750         unsigned long next, pages = 0;
751         pte_t *pte;
752
753         pte = pte_start + pte_index(addr);
754         for (; addr < end; addr = next, pte++) {
755                 next = (addr + PAGE_SIZE) & PAGE_MASK;
756                 if (next > end)
757                         next = end;
758
759                 if (!pte_present(*pte))
760                         continue;
761
762                 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
763                         /*
764                          * The vmemmap_free() and remove_section_mapping()
765                          * codepaths call us with aligned addresses.
766                          */
767                         WARN_ONCE(1, "%s: unaligned range\n", __func__);
768                         continue;
769                 }
770
771                 pte_clear(&init_mm, addr, pte);
772                 pages++;
773         }
774         if (direct)
775                 update_page_count(mmu_virtual_psize, -pages);
776 }
777
778 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
779                                        unsigned long end, bool direct)
780 {
781         unsigned long next, pages = 0;
782         pte_t *pte_base;
783         pmd_t *pmd;
784
785         pmd = pmd_start + pmd_index(addr);
786         for (; addr < end; addr = next, pmd++) {
787                 next = pmd_addr_end(addr, end);
788
789                 if (!pmd_present(*pmd))
790                         continue;
791
792                 if (pmd_is_leaf(*pmd)) {
793                         if (!IS_ALIGNED(addr, PMD_SIZE) ||
794                             !IS_ALIGNED(next, PMD_SIZE)) {
795                                 WARN_ONCE(1, "%s: unaligned range\n", __func__);
796                                 continue;
797                         }
798                         pte_clear(&init_mm, addr, (pte_t *)pmd);
799                         pages++;
800                         continue;
801                 }
802
803                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
804                 remove_pte_table(pte_base, addr, next, direct);
805                 free_pte_table(pte_base, pmd);
806         }
807         if (direct)
808                 update_page_count(MMU_PAGE_2M, -pages);
809 }
810
811 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
812                                        unsigned long end, bool direct)
813 {
814         unsigned long next, pages = 0;
815         pmd_t *pmd_base;
816         pud_t *pud;
817
818         pud = pud_start + pud_index(addr);
819         for (; addr < end; addr = next, pud++) {
820                 next = pud_addr_end(addr, end);
821
822                 if (!pud_present(*pud))
823                         continue;
824
825                 if (pud_is_leaf(*pud)) {
826                         if (!IS_ALIGNED(addr, PUD_SIZE) ||
827                             !IS_ALIGNED(next, PUD_SIZE)) {
828                                 WARN_ONCE(1, "%s: unaligned range\n", __func__);
829                                 continue;
830                         }
831                         pte_clear(&init_mm, addr, (pte_t *)pud);
832                         pages++;
833                         continue;
834                 }
835
836                 pmd_base = pud_pgtable(*pud);
837                 remove_pmd_table(pmd_base, addr, next, direct);
838                 free_pmd_table(pmd_base, pud);
839         }
840         if (direct)
841                 update_page_count(MMU_PAGE_1G, -pages);
842 }
843
844 static void __meminit remove_pagetable(unsigned long start, unsigned long end,
845                                        bool direct)
846 {
847         unsigned long addr, next;
848         pud_t *pud_base;
849         pgd_t *pgd;
850         p4d_t *p4d;
851
852         spin_lock(&init_mm.page_table_lock);
853
854         for (addr = start; addr < end; addr = next) {
855                 next = pgd_addr_end(addr, end);
856
857                 pgd = pgd_offset_k(addr);
858                 p4d = p4d_offset(pgd, addr);
859                 if (!p4d_present(*p4d))
860                         continue;
861
862                 if (p4d_is_leaf(*p4d)) {
863                         if (!IS_ALIGNED(addr, P4D_SIZE) ||
864                             !IS_ALIGNED(next, P4D_SIZE)) {
865                                 WARN_ONCE(1, "%s: unaligned range\n", __func__);
866                                 continue;
867                         }
868
869                         pte_clear(&init_mm, addr, (pte_t *)pgd);
870                         continue;
871                 }
872
873                 pud_base = p4d_pgtable(*p4d);
874                 remove_pud_table(pud_base, addr, next, direct);
875                 free_pud_table(pud_base, p4d);
876         }
877
878         spin_unlock(&init_mm.page_table_lock);
879         radix__flush_tlb_kernel_range(start, end);
880 }
881
882 int __meminit radix__create_section_mapping(unsigned long start,
883                                             unsigned long end, int nid,
884                                             pgprot_t prot)
885 {
886         if (end >= RADIX_VMALLOC_START) {
887                 pr_warn("Outside the supported range\n");
888                 return -1;
889         }
890
891         return create_physical_mapping(__pa(start), __pa(end),
892                                        nid, prot);
893 }
894
895 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
896 {
897         remove_pagetable(start, end, true);
898         return 0;
899 }
900 #endif /* CONFIG_MEMORY_HOTPLUG */
901
902 #ifdef CONFIG_SPARSEMEM_VMEMMAP
903 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
904                                  pgprot_t flags, unsigned int map_page_size,
905                                  int nid)
906 {
907         return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
908 }
909
910 int __meminit radix__vmemmap_create_mapping(unsigned long start,
911                                       unsigned long page_size,
912                                       unsigned long phys)
913 {
914         /* Create a PTE encoding */
915         unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
916         int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
917         int ret;
918
919         if ((start + page_size) >= RADIX_VMEMMAP_END) {
920                 pr_warn("Outside the supported range\n");
921                 return -1;
922         }
923
924         ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
925         BUG_ON(ret);
926
927         return 0;
928 }
929
930 #ifdef CONFIG_MEMORY_HOTPLUG
931 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
932 {
933         remove_pagetable(start, start + page_size, false);
934 }
935 #endif
936 #endif
937
938 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
939 void radix__kernel_map_pages(struct page *page, int numpages, int enable)
940 {
941         unsigned long addr;
942
943         addr = (unsigned long)page_address(page);
944
945         if (enable)
946                 set_memory_p(addr, numpages);
947         else
948                 set_memory_np(addr, numpages);
949 }
950 #endif
951
952 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
953
954 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
955                                   pmd_t *pmdp, unsigned long clr,
956                                   unsigned long set)
957 {
958         unsigned long old;
959
960 #ifdef CONFIG_DEBUG_VM
961         WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
962         assert_spin_locked(pmd_lockptr(mm, pmdp));
963 #endif
964
965         old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
966         trace_hugepage_update(addr, old, clr, set);
967
968         return old;
969 }
970
971 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
972                         pmd_t *pmdp)
973
974 {
975         pmd_t pmd;
976
977         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
978         VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
979         VM_BUG_ON(pmd_devmap(*pmdp));
980         /*
981          * khugepaged calls this for normal pmd
982          */
983         pmd = *pmdp;
984         pmd_clear(pmdp);
985
986         radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
987
988         return pmd;
989 }
990
991 /*
992  * For us pgtable_t is pte_t *. Inorder to save the deposisted
993  * page table, we consider the allocated page table as a list
994  * head. On withdraw we need to make sure we zero out the used
995  * list_head memory area.
996  */
997 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
998                                  pgtable_t pgtable)
999 {
1000         struct list_head *lh = (struct list_head *) pgtable;
1001
1002         assert_spin_locked(pmd_lockptr(mm, pmdp));
1003
1004         /* FIFO */
1005         if (!pmd_huge_pte(mm, pmdp))
1006                 INIT_LIST_HEAD(lh);
1007         else
1008                 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1009         pmd_huge_pte(mm, pmdp) = pgtable;
1010 }
1011
1012 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1013 {
1014         pte_t *ptep;
1015         pgtable_t pgtable;
1016         struct list_head *lh;
1017
1018         assert_spin_locked(pmd_lockptr(mm, pmdp));
1019
1020         /* FIFO */
1021         pgtable = pmd_huge_pte(mm, pmdp);
1022         lh = (struct list_head *) pgtable;
1023         if (list_empty(lh))
1024                 pmd_huge_pte(mm, pmdp) = NULL;
1025         else {
1026                 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1027                 list_del(lh);
1028         }
1029         ptep = (pte_t *) pgtable;
1030         *ptep = __pte(0);
1031         ptep++;
1032         *ptep = __pte(0);
1033         return pgtable;
1034 }
1035
1036 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1037                                      unsigned long addr, pmd_t *pmdp)
1038 {
1039         pmd_t old_pmd;
1040         unsigned long old;
1041
1042         old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1043         old_pmd = __pmd(old);
1044         return old_pmd;
1045 }
1046
1047 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1048
1049 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1050                                   pte_t entry, unsigned long address, int psize)
1051 {
1052         struct mm_struct *mm = vma->vm_mm;
1053         unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY |
1054                                               _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
1055
1056         unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1057         /*
1058          * On POWER9, the NMMU is not able to relax PTE access permissions
1059          * for a translation with a TLB. The PTE must be invalidated, TLB
1060          * flushed before the new PTE is installed.
1061          *
1062          * This only needs to be done for radix, because hash translation does
1063          * flush when updating the linux pte (and we don't support NMMU
1064          * accelerators on HPT on POWER9 anyway XXX: do we?).
1065          *
1066          * POWER10 (and P9P) NMMU does behave as per ISA.
1067          */
1068         if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) &&
1069             atomic_read(&mm->context.copros) > 0) {
1070                 unsigned long old_pte, new_pte;
1071
1072                 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1073                 new_pte = old_pte | set;
1074                 radix__flush_tlb_page_psize(mm, address, psize);
1075                 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1076         } else {
1077                 __radix_pte_update(ptep, 0, set);
1078                 /*
1079                  * Book3S does not require a TLB flush when relaxing access
1080                  * restrictions when the address space (modulo the POWER9 nest
1081                  * MMU issue above) because the MMU will reload the PTE after
1082                  * taking an access fault, as defined by the architecture. See
1083                  * "Setting a Reference or Change Bit or Upgrading Access
1084                  *  Authority (PTE Subject to Atomic Hardware Updates)" in
1085                  *  Power ISA Version 3.1B.
1086                  */
1087         }
1088         /* See ptesync comment in radix__set_pte_at */
1089 }
1090
1091 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1092                                     unsigned long addr, pte_t *ptep,
1093                                     pte_t old_pte, pte_t pte)
1094 {
1095         struct mm_struct *mm = vma->vm_mm;
1096
1097         /*
1098          * POWER9 NMMU must flush the TLB after clearing the PTE before
1099          * installing a PTE with more relaxed access permissions, see
1100          * radix__ptep_set_access_flags.
1101          */
1102         if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
1103             is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1104             (atomic_read(&mm->context.copros) > 0))
1105                 radix__flush_tlb_page(vma, addr);
1106
1107         set_pte_at(mm, addr, ptep, pte);
1108 }
1109
1110 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1111 {
1112         pte_t *ptep = (pte_t *)pud;
1113         pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1114
1115         if (!radix_enabled())
1116                 return 0;
1117
1118         set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1119
1120         return 1;
1121 }
1122
1123 int pud_clear_huge(pud_t *pud)
1124 {
1125         if (pud_is_leaf(*pud)) {
1126                 pud_clear(pud);
1127                 return 1;
1128         }
1129
1130         return 0;
1131 }
1132
1133 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1134 {
1135         pmd_t *pmd;
1136         int i;
1137
1138         pmd = pud_pgtable(*pud);
1139         pud_clear(pud);
1140
1141         flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1142
1143         for (i = 0; i < PTRS_PER_PMD; i++) {
1144                 if (!pmd_none(pmd[i])) {
1145                         pte_t *pte;
1146                         pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1147
1148                         pte_free_kernel(&init_mm, pte);
1149                 }
1150         }
1151
1152         pmd_free(&init_mm, pmd);
1153
1154         return 1;
1155 }
1156
1157 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1158 {
1159         pte_t *ptep = (pte_t *)pmd;
1160         pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1161
1162         if (!radix_enabled())
1163                 return 0;
1164
1165         set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1166
1167         return 1;
1168 }
1169
1170 int pmd_clear_huge(pmd_t *pmd)
1171 {
1172         if (pmd_is_leaf(*pmd)) {
1173                 pmd_clear(pmd);
1174                 return 1;
1175         }
1176
1177         return 0;
1178 }
1179
1180 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1181 {
1182         pte_t *pte;
1183
1184         pte = (pte_t *)pmd_page_vaddr(*pmd);
1185         pmd_clear(pmd);
1186
1187         flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1188
1189         pte_free_kernel(&init_mm, pte);
1190
1191         return 1;
1192 }