5242feda5471aa3a88c55882d84a16119fd6aada
[releases.git] / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE   (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ  4096
43 #define NVME_MAX_SEGS   127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60                 "Use SGLs when average request segment size is larger or equal to "
61                 "this size. Use 0 to disable SGLs.");
62
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65         .set = io_queue_depth_set,
66         .get = param_get_uint,
67 };
68
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72
73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75         unsigned int n;
76         int ret;
77
78         ret = kstrtouint(val, 10, &n);
79         if (ret != 0 || n > num_possible_cpus())
80                 return -EINVAL;
81         return param_set_uint(val, kp);
82 }
83
84 static const struct kernel_param_ops io_queue_count_ops = {
85         .set = io_queue_count_set,
86         .get = param_get_uint,
87 };
88
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92         "Number of queues to use for writes. If not set, reads and writes "
93         "will share a queue set.");
94
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102
103 struct nvme_dev;
104 struct nvme_queue;
105
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108
109 /*
110  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
111  */
112 struct nvme_dev {
113         struct nvme_queue *queues;
114         struct blk_mq_tag_set tagset;
115         struct blk_mq_tag_set admin_tagset;
116         u32 __iomem *dbs;
117         struct device *dev;
118         struct dma_pool *prp_page_pool;
119         struct dma_pool *prp_small_pool;
120         unsigned online_queues;
121         unsigned max_qid;
122         unsigned io_queues[HCTX_MAX_TYPES];
123         unsigned int num_vecs;
124         u32 q_depth;
125         int io_sqes;
126         u32 db_stride;
127         void __iomem *bar;
128         unsigned long bar_mapped_size;
129         struct work_struct remove_work;
130         struct mutex shutdown_lock;
131         bool subsystem;
132         u64 cmb_size;
133         bool cmb_use_sqes;
134         u32 cmbsz;
135         u32 cmbloc;
136         struct nvme_ctrl ctrl;
137         u32 last_ps;
138
139         mempool_t *iod_mempool;
140
141         /* shadow doorbell buffer support: */
142         __le32 *dbbuf_dbs;
143         dma_addr_t dbbuf_dbs_dma_addr;
144         __le32 *dbbuf_eis;
145         dma_addr_t dbbuf_eis_dma_addr;
146
147         /* host memory buffer support: */
148         u64 host_mem_size;
149         u32 nr_host_mem_descs;
150         dma_addr_t host_mem_descs_dma;
151         struct nvme_host_mem_buf_desc *host_mem_descs;
152         void **host_mem_desc_bufs;
153         unsigned int nr_allocated_queues;
154         unsigned int nr_write_queues;
155         unsigned int nr_poll_queues;
156 };
157
158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160         int ret;
161         u32 n;
162
163         ret = kstrtou32(val, 10, &n);
164         if (ret != 0 || n < 2)
165                 return -EINVAL;
166
167         return param_set_uint(val, kp);
168 }
169
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172         return qid * 2 * stride;
173 }
174
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177         return (qid * 2 + 1) * stride;
178 }
179
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182         return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190         struct nvme_dev *dev;
191         spinlock_t sq_lock;
192         void *sq_cmds;
193          /* only used for poll queues: */
194         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195         struct nvme_completion *cqes;
196         dma_addr_t sq_dma_addr;
197         dma_addr_t cq_dma_addr;
198         u32 __iomem *q_db;
199         u32 q_depth;
200         u16 cq_vector;
201         u16 sq_tail;
202         u16 last_sq_tail;
203         u16 cq_head;
204         u16 qid;
205         u8 cq_phase;
206         u8 sqes;
207         unsigned long flags;
208 #define NVMEQ_ENABLED           0
209 #define NVMEQ_SQ_CMB            1
210 #define NVMEQ_DELETE_ERROR      2
211 #define NVMEQ_POLLED            3
212         __le32 *dbbuf_sq_db;
213         __le32 *dbbuf_cq_db;
214         __le32 *dbbuf_sq_ei;
215         __le32 *dbbuf_cq_ei;
216         struct completion delete_done;
217 };
218
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226         struct nvme_request req;
227         struct nvme_command cmd;
228         struct nvme_queue *nvmeq;
229         bool use_sgl;
230         int aborted;
231         int npages;             /* In the PRP list. 0 means small pool in use */
232         int nents;              /* Used in scatterlist */
233         dma_addr_t first_dma;
234         unsigned int dma_len;   /* length of single DMA segment mapping */
235         dma_addr_t meta_dma;
236         struct scatterlist *sg;
237 };
238
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241         return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246         unsigned int mem_size = nvme_dbbuf_size(dev);
247
248         if (dev->dbbuf_dbs)
249                 return 0;
250
251         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252                                             &dev->dbbuf_dbs_dma_addr,
253                                             GFP_KERNEL);
254         if (!dev->dbbuf_dbs)
255                 return -ENOMEM;
256         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257                                             &dev->dbbuf_eis_dma_addr,
258                                             GFP_KERNEL);
259         if (!dev->dbbuf_eis) {
260                 dma_free_coherent(dev->dev, mem_size,
261                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262                 dev->dbbuf_dbs = NULL;
263                 return -ENOMEM;
264         }
265
266         return 0;
267 }
268
269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271         unsigned int mem_size = nvme_dbbuf_size(dev);
272
273         if (dev->dbbuf_dbs) {
274                 dma_free_coherent(dev->dev, mem_size,
275                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276                 dev->dbbuf_dbs = NULL;
277         }
278         if (dev->dbbuf_eis) {
279                 dma_free_coherent(dev->dev, mem_size,
280                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281                 dev->dbbuf_eis = NULL;
282         }
283 }
284
285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286                             struct nvme_queue *nvmeq, int qid)
287 {
288         if (!dev->dbbuf_dbs || !qid)
289                 return;
290
291         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296
297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299         if (!nvmeq->qid)
300                 return;
301
302         nvmeq->dbbuf_sq_db = NULL;
303         nvmeq->dbbuf_cq_db = NULL;
304         nvmeq->dbbuf_sq_ei = NULL;
305         nvmeq->dbbuf_cq_ei = NULL;
306 }
307
308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310         struct nvme_command c;
311         unsigned int i;
312
313         if (!dev->dbbuf_dbs)
314                 return;
315
316         memset(&c, 0, sizeof(c));
317         c.dbbuf.opcode = nvme_admin_dbbuf;
318         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
319         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320
321         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
322                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
323                 /* Free memory and continue on */
324                 nvme_dbbuf_dma_free(dev);
325
326                 for (i = 1; i <= dev->online_queues; i++)
327                         nvme_dbbuf_free(&dev->queues[i]);
328         }
329 }
330
331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 {
333         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
334 }
335
336 /* Update dbbuf and return true if an MMIO is required */
337 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
338                                               volatile __le32 *dbbuf_ei)
339 {
340         if (dbbuf_db) {
341                 u16 old_value, event_idx;
342
343                 /*
344                  * Ensure that the queue is written before updating
345                  * the doorbell in memory
346                  */
347                 wmb();
348
349                 old_value = le32_to_cpu(*dbbuf_db);
350                 *dbbuf_db = cpu_to_le32(value);
351
352                 /*
353                  * Ensure that the doorbell is updated before reading the event
354                  * index from memory.  The controller needs to provide similar
355                  * ordering to ensure the envent index is updated before reading
356                  * the doorbell.
357                  */
358                 mb();
359
360                 event_idx = le32_to_cpu(*dbbuf_ei);
361                 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
362                         return false;
363         }
364
365         return true;
366 }
367
368 /*
369  * Will slightly overestimate the number of pages needed.  This is OK
370  * as it only leads to a small amount of wasted memory for the lifetime of
371  * the I/O.
372  */
373 static int nvme_pci_npages_prp(void)
374 {
375         unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
376         unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
377         return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
378 }
379
380 /*
381  * Calculates the number of pages needed for the SGL segments. For example a 4k
382  * page can accommodate 256 SGL descriptors.
383  */
384 static int nvme_pci_npages_sgl(void)
385 {
386         return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
387                         NVME_CTRL_PAGE_SIZE);
388 }
389
390 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
391                                 unsigned int hctx_idx)
392 {
393         struct nvme_dev *dev = data;
394         struct nvme_queue *nvmeq = &dev->queues[0];
395
396         WARN_ON(hctx_idx != 0);
397         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
398
399         hctx->driver_data = nvmeq;
400         return 0;
401 }
402
403 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404                           unsigned int hctx_idx)
405 {
406         struct nvme_dev *dev = data;
407         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
408
409         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
410         hctx->driver_data = nvmeq;
411         return 0;
412 }
413
414 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
415                 unsigned int hctx_idx, unsigned int numa_node)
416 {
417         struct nvme_dev *dev = set->driver_data;
418         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
419         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
420         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
421
422         BUG_ON(!nvmeq);
423         iod->nvmeq = nvmeq;
424
425         nvme_req(req)->ctrl = &dev->ctrl;
426         return 0;
427 }
428
429 static int queue_irq_offset(struct nvme_dev *dev)
430 {
431         /* if we have more than 1 vec, admin queue offsets us by 1 */
432         if (dev->num_vecs > 1)
433                 return 1;
434
435         return 0;
436 }
437
438 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
439 {
440         struct nvme_dev *dev = set->driver_data;
441         int i, qoff, offset;
442
443         offset = queue_irq_offset(dev);
444         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
445                 struct blk_mq_queue_map *map = &set->map[i];
446
447                 map->nr_queues = dev->io_queues[i];
448                 if (!map->nr_queues) {
449                         BUG_ON(i == HCTX_TYPE_DEFAULT);
450                         continue;
451                 }
452
453                 /*
454                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
455                  * affinity), so use the regular blk-mq cpu mapping
456                  */
457                 map->queue_offset = qoff;
458                 if (i != HCTX_TYPE_POLL && offset)
459                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
460                 else
461                         blk_mq_map_queues(map);
462                 qoff += map->nr_queues;
463                 offset += map->nr_queues;
464         }
465
466         return 0;
467 }
468
469 /*
470  * Write sq tail if we are asked to, or if the next command would wrap.
471  */
472 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
473 {
474         if (!write_sq) {
475                 u16 next_tail = nvmeq->sq_tail + 1;
476
477                 if (next_tail == nvmeq->q_depth)
478                         next_tail = 0;
479                 if (next_tail != nvmeq->last_sq_tail)
480                         return;
481         }
482
483         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
484                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
485                 writel(nvmeq->sq_tail, nvmeq->q_db);
486         nvmeq->last_sq_tail = nvmeq->sq_tail;
487 }
488
489 /**
490  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
491  * @nvmeq: The queue to use
492  * @cmd: The command to send
493  * @write_sq: whether to write to the SQ doorbell
494  */
495 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
496                             bool write_sq)
497 {
498         spin_lock(&nvmeq->sq_lock);
499         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
500                cmd, sizeof(*cmd));
501         if (++nvmeq->sq_tail == nvmeq->q_depth)
502                 nvmeq->sq_tail = 0;
503         nvme_write_sq_db(nvmeq, write_sq);
504         spin_unlock(&nvmeq->sq_lock);
505 }
506
507 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
508 {
509         struct nvme_queue *nvmeq = hctx->driver_data;
510
511         spin_lock(&nvmeq->sq_lock);
512         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
513                 nvme_write_sq_db(nvmeq, true);
514         spin_unlock(&nvmeq->sq_lock);
515 }
516
517 static void **nvme_pci_iod_list(struct request *req)
518 {
519         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
520         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
521 }
522
523 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
524 {
525         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526         int nseg = blk_rq_nr_phys_segments(req);
527         unsigned int avg_seg_size;
528
529         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
530
531         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
532                 return false;
533         if (!iod->nvmeq->qid)
534                 return false;
535         if (!sgl_threshold || avg_seg_size < sgl_threshold)
536                 return false;
537         return true;
538 }
539
540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
541 {
542         const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
543         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544         dma_addr_t dma_addr = iod->first_dma;
545         int i;
546
547         for (i = 0; i < iod->npages; i++) {
548                 __le64 *prp_list = nvme_pci_iod_list(req)[i];
549                 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
550
551                 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
552                 dma_addr = next_dma_addr;
553         }
554
555 }
556
557 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
558 {
559         const int last_sg = SGES_PER_PAGE - 1;
560         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
561         dma_addr_t dma_addr = iod->first_dma;
562         int i;
563
564         for (i = 0; i < iod->npages; i++) {
565                 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
566                 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
567
568                 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
569                 dma_addr = next_dma_addr;
570         }
571
572 }
573
574 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
575 {
576         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
577
578         if (is_pci_p2pdma_page(sg_page(iod->sg)))
579                 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
580                                     rq_dma_dir(req));
581         else
582                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
583 }
584
585 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
586 {
587         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
588
589         if (iod->dma_len) {
590                 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
591                                rq_dma_dir(req));
592                 return;
593         }
594
595         WARN_ON_ONCE(!iod->nents);
596
597         nvme_unmap_sg(dev, req);
598         if (iod->npages == 0)
599                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
600                               iod->first_dma);
601         else if (iod->use_sgl)
602                 nvme_free_sgls(dev, req);
603         else
604                 nvme_free_prps(dev, req);
605         mempool_free(iod->sg, dev->iod_mempool);
606 }
607
608 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
609 {
610         int i;
611         struct scatterlist *sg;
612
613         for_each_sg(sgl, sg, nents, i) {
614                 dma_addr_t phys = sg_phys(sg);
615                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
616                         "dma_address:%pad dma_length:%d\n",
617                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
618                         sg_dma_len(sg));
619         }
620 }
621
622 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
623                 struct request *req, struct nvme_rw_command *cmnd)
624 {
625         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
626         struct dma_pool *pool;
627         int length = blk_rq_payload_bytes(req);
628         struct scatterlist *sg = iod->sg;
629         int dma_len = sg_dma_len(sg);
630         u64 dma_addr = sg_dma_address(sg);
631         int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
632         __le64 *prp_list;
633         void **list = nvme_pci_iod_list(req);
634         dma_addr_t prp_dma;
635         int nprps, i;
636
637         length -= (NVME_CTRL_PAGE_SIZE - offset);
638         if (length <= 0) {
639                 iod->first_dma = 0;
640                 goto done;
641         }
642
643         dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
644         if (dma_len) {
645                 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
646         } else {
647                 sg = sg_next(sg);
648                 dma_addr = sg_dma_address(sg);
649                 dma_len = sg_dma_len(sg);
650         }
651
652         if (length <= NVME_CTRL_PAGE_SIZE) {
653                 iod->first_dma = dma_addr;
654                 goto done;
655         }
656
657         nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
658         if (nprps <= (256 / 8)) {
659                 pool = dev->prp_small_pool;
660                 iod->npages = 0;
661         } else {
662                 pool = dev->prp_page_pool;
663                 iod->npages = 1;
664         }
665
666         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
667         if (!prp_list) {
668                 iod->first_dma = dma_addr;
669                 iod->npages = -1;
670                 return BLK_STS_RESOURCE;
671         }
672         list[0] = prp_list;
673         iod->first_dma = prp_dma;
674         i = 0;
675         for (;;) {
676                 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
677                         __le64 *old_prp_list = prp_list;
678                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
679                         if (!prp_list)
680                                 goto free_prps;
681                         list[iod->npages++] = prp_list;
682                         prp_list[0] = old_prp_list[i - 1];
683                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
684                         i = 1;
685                 }
686                 prp_list[i++] = cpu_to_le64(dma_addr);
687                 dma_len -= NVME_CTRL_PAGE_SIZE;
688                 dma_addr += NVME_CTRL_PAGE_SIZE;
689                 length -= NVME_CTRL_PAGE_SIZE;
690                 if (length <= 0)
691                         break;
692                 if (dma_len > 0)
693                         continue;
694                 if (unlikely(dma_len < 0))
695                         goto bad_sgl;
696                 sg = sg_next(sg);
697                 dma_addr = sg_dma_address(sg);
698                 dma_len = sg_dma_len(sg);
699         }
700 done:
701         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
702         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
703         return BLK_STS_OK;
704 free_prps:
705         nvme_free_prps(dev, req);
706         return BLK_STS_RESOURCE;
707 bad_sgl:
708         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
709                         "Invalid SGL for payload:%d nents:%d\n",
710                         blk_rq_payload_bytes(req), iod->nents);
711         return BLK_STS_IOERR;
712 }
713
714 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
715                 struct scatterlist *sg)
716 {
717         sge->addr = cpu_to_le64(sg_dma_address(sg));
718         sge->length = cpu_to_le32(sg_dma_len(sg));
719         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
720 }
721
722 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
723                 dma_addr_t dma_addr, int entries)
724 {
725         sge->addr = cpu_to_le64(dma_addr);
726         if (entries < SGES_PER_PAGE) {
727                 sge->length = cpu_to_le32(entries * sizeof(*sge));
728                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
729         } else {
730                 sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
731                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
732         }
733 }
734
735 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
736                 struct request *req, struct nvme_rw_command *cmd, int entries)
737 {
738         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
739         struct dma_pool *pool;
740         struct nvme_sgl_desc *sg_list;
741         struct scatterlist *sg = iod->sg;
742         dma_addr_t sgl_dma;
743         int i = 0;
744
745         /* setting the transfer type as SGL */
746         cmd->flags = NVME_CMD_SGL_METABUF;
747
748         if (entries == 1) {
749                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
750                 return BLK_STS_OK;
751         }
752
753         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
754                 pool = dev->prp_small_pool;
755                 iod->npages = 0;
756         } else {
757                 pool = dev->prp_page_pool;
758                 iod->npages = 1;
759         }
760
761         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
762         if (!sg_list) {
763                 iod->npages = -1;
764                 return BLK_STS_RESOURCE;
765         }
766
767         nvme_pci_iod_list(req)[0] = sg_list;
768         iod->first_dma = sgl_dma;
769
770         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
771
772         do {
773                 if (i == SGES_PER_PAGE) {
774                         struct nvme_sgl_desc *old_sg_desc = sg_list;
775                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
776
777                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
778                         if (!sg_list)
779                                 goto free_sgls;
780
781                         i = 0;
782                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
783                         sg_list[i++] = *link;
784                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
785                 }
786
787                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
788                 sg = sg_next(sg);
789         } while (--entries > 0);
790
791         return BLK_STS_OK;
792 free_sgls:
793         nvme_free_sgls(dev, req);
794         return BLK_STS_RESOURCE;
795 }
796
797 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
798                 struct request *req, struct nvme_rw_command *cmnd,
799                 struct bio_vec *bv)
800 {
801         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
802         unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
803         unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
804
805         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
806         if (dma_mapping_error(dev->dev, iod->first_dma))
807                 return BLK_STS_RESOURCE;
808         iod->dma_len = bv->bv_len;
809
810         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
811         if (bv->bv_len > first_prp_len)
812                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
813         else
814                 cmnd->dptr.prp2 = 0;
815         return BLK_STS_OK;
816 }
817
818 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
819                 struct request *req, struct nvme_rw_command *cmnd,
820                 struct bio_vec *bv)
821 {
822         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
823
824         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
825         if (dma_mapping_error(dev->dev, iod->first_dma))
826                 return BLK_STS_RESOURCE;
827         iod->dma_len = bv->bv_len;
828
829         cmnd->flags = NVME_CMD_SGL_METABUF;
830         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
831         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
832         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
833         return BLK_STS_OK;
834 }
835
836 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
837                 struct nvme_command *cmnd)
838 {
839         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840         blk_status_t ret = BLK_STS_RESOURCE;
841         int nr_mapped;
842
843         if (blk_rq_nr_phys_segments(req) == 1) {
844                 struct bio_vec bv = req_bvec(req);
845
846                 if (!is_pci_p2pdma_page(bv.bv_page)) {
847                         if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
848                                 return nvme_setup_prp_simple(dev, req,
849                                                              &cmnd->rw, &bv);
850
851                         if (iod->nvmeq->qid && sgl_threshold &&
852                             dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
853                                 return nvme_setup_sgl_simple(dev, req,
854                                                              &cmnd->rw, &bv);
855                 }
856         }
857
858         iod->dma_len = 0;
859         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
860         if (!iod->sg)
861                 return BLK_STS_RESOURCE;
862         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
863         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
864         if (!iod->nents)
865                 goto out_free_sg;
866
867         if (is_pci_p2pdma_page(sg_page(iod->sg)))
868                 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
869                                 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
870         else
871                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
872                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
873         if (!nr_mapped)
874                 goto out_free_sg;
875
876         iod->use_sgl = nvme_pci_use_sgls(dev, req);
877         if (iod->use_sgl)
878                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
879         else
880                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
881         if (ret != BLK_STS_OK)
882                 goto out_unmap_sg;
883         return BLK_STS_OK;
884
885 out_unmap_sg:
886         nvme_unmap_sg(dev, req);
887 out_free_sg:
888         mempool_free(iod->sg, dev->iod_mempool);
889         return ret;
890 }
891
892 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
893                 struct nvme_command *cmnd)
894 {
895         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
896
897         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
898                         rq_dma_dir(req), 0);
899         if (dma_mapping_error(dev->dev, iod->meta_dma))
900                 return BLK_STS_IOERR;
901         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
902         return BLK_STS_OK;
903 }
904
905 /*
906  * NOTE: ns is NULL when called on the admin queue.
907  */
908 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
909                          const struct blk_mq_queue_data *bd)
910 {
911         struct nvme_ns *ns = hctx->queue->queuedata;
912         struct nvme_queue *nvmeq = hctx->driver_data;
913         struct nvme_dev *dev = nvmeq->dev;
914         struct request *req = bd->rq;
915         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
916         struct nvme_command *cmnd = &iod->cmd;
917         blk_status_t ret;
918
919         iod->aborted = 0;
920         iod->npages = -1;
921         iod->nents = 0;
922
923         /*
924          * We should not need to do this, but we're still using this to
925          * ensure we can drain requests on a dying queue.
926          */
927         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
928                 return BLK_STS_IOERR;
929
930         ret = nvme_setup_cmd(ns, req, cmnd);
931         if (ret)
932                 return ret;
933
934         if (blk_rq_nr_phys_segments(req)) {
935                 ret = nvme_map_data(dev, req, cmnd);
936                 if (ret)
937                         goto out_free_cmd;
938         }
939
940         if (blk_integrity_rq(req)) {
941                 ret = nvme_map_metadata(dev, req, cmnd);
942                 if (ret)
943                         goto out_unmap_data;
944         }
945
946         blk_mq_start_request(req);
947         nvme_submit_cmd(nvmeq, cmnd, bd->last);
948         return BLK_STS_OK;
949 out_unmap_data:
950         nvme_unmap_data(dev, req);
951 out_free_cmd:
952         nvme_cleanup_cmd(req);
953         return ret;
954 }
955
956 static void nvme_pci_complete_rq(struct request *req)
957 {
958         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
959         struct nvme_dev *dev = iod->nvmeq->dev;
960
961         if (blk_integrity_rq(req))
962                 dma_unmap_page(dev->dev, iod->meta_dma,
963                                rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
964
965         if (blk_rq_nr_phys_segments(req))
966                 nvme_unmap_data(dev, req);
967         nvme_complete_rq(req);
968 }
969
970 /* We read the CQE phase first to check if the rest of the entry is valid */
971 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
972 {
973         struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
974
975         return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
976 }
977
978 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
979 {
980         u16 head = nvmeq->cq_head;
981
982         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
983                                               nvmeq->dbbuf_cq_ei))
984                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
985 }
986
987 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
988 {
989         if (!nvmeq->qid)
990                 return nvmeq->dev->admin_tagset.tags[0];
991         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
992 }
993
994 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
995 {
996         struct nvme_completion *cqe = &nvmeq->cqes[idx];
997         __u16 command_id = READ_ONCE(cqe->command_id);
998         struct request *req;
999
1000         /*
1001          * AEN requests are special as they don't time out and can
1002          * survive any kind of queue freeze and often don't respond to
1003          * aborts.  We don't even bother to allocate a struct request
1004          * for them but rather special case them here.
1005          */
1006         if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1007                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1008                                 cqe->status, &cqe->result);
1009                 return;
1010         }
1011
1012         req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1013         if (unlikely(!req)) {
1014                 dev_warn(nvmeq->dev->ctrl.device,
1015                         "invalid id %d completed on queue %d\n",
1016                         command_id, le16_to_cpu(cqe->sq_id));
1017                 return;
1018         }
1019
1020         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1021         if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1022                 nvme_pci_complete_rq(req);
1023 }
1024
1025 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1026 {
1027         u32 tmp = nvmeq->cq_head + 1;
1028
1029         if (tmp == nvmeq->q_depth) {
1030                 nvmeq->cq_head = 0;
1031                 nvmeq->cq_phase ^= 1;
1032         } else {
1033                 nvmeq->cq_head = tmp;
1034         }
1035 }
1036
1037 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1038 {
1039         int found = 0;
1040
1041         while (nvme_cqe_pending(nvmeq)) {
1042                 found++;
1043                 /*
1044                  * load-load control dependency between phase and the rest of
1045                  * the cqe requires a full read memory barrier
1046                  */
1047                 dma_rmb();
1048                 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1049                 nvme_update_cq_head(nvmeq);
1050         }
1051
1052         if (found)
1053                 nvme_ring_cq_doorbell(nvmeq);
1054         return found;
1055 }
1056
1057 static irqreturn_t nvme_irq(int irq, void *data)
1058 {
1059         struct nvme_queue *nvmeq = data;
1060         irqreturn_t ret = IRQ_NONE;
1061
1062         /*
1063          * The rmb/wmb pair ensures we see all updates from a previous run of
1064          * the irq handler, even if that was on another CPU.
1065          */
1066         rmb();
1067         if (nvme_process_cq(nvmeq))
1068                 ret = IRQ_HANDLED;
1069         wmb();
1070
1071         return ret;
1072 }
1073
1074 static irqreturn_t nvme_irq_check(int irq, void *data)
1075 {
1076         struct nvme_queue *nvmeq = data;
1077
1078         if (nvme_cqe_pending(nvmeq))
1079                 return IRQ_WAKE_THREAD;
1080         return IRQ_NONE;
1081 }
1082
1083 /*
1084  * Poll for completions for any interrupt driven queue
1085  * Can be called from any context.
1086  */
1087 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1088 {
1089         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1090
1091         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1092
1093         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1094         nvme_process_cq(nvmeq);
1095         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1096 }
1097
1098 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1099 {
1100         struct nvme_queue *nvmeq = hctx->driver_data;
1101         bool found;
1102
1103         if (!nvme_cqe_pending(nvmeq))
1104                 return 0;
1105
1106         spin_lock(&nvmeq->cq_poll_lock);
1107         found = nvme_process_cq(nvmeq);
1108         spin_unlock(&nvmeq->cq_poll_lock);
1109
1110         return found;
1111 }
1112
1113 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1114 {
1115         struct nvme_dev *dev = to_nvme_dev(ctrl);
1116         struct nvme_queue *nvmeq = &dev->queues[0];
1117         struct nvme_command c;
1118
1119         memset(&c, 0, sizeof(c));
1120         c.common.opcode = nvme_admin_async_event;
1121         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1122         nvme_submit_cmd(nvmeq, &c, true);
1123 }
1124
1125 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1126 {
1127         struct nvme_command c;
1128
1129         memset(&c, 0, sizeof(c));
1130         c.delete_queue.opcode = opcode;
1131         c.delete_queue.qid = cpu_to_le16(id);
1132
1133         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1134 }
1135
1136 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1137                 struct nvme_queue *nvmeq, s16 vector)
1138 {
1139         struct nvme_command c;
1140         int flags = NVME_QUEUE_PHYS_CONTIG;
1141
1142         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1143                 flags |= NVME_CQ_IRQ_ENABLED;
1144
1145         /*
1146          * Note: we (ab)use the fact that the prp fields survive if no data
1147          * is attached to the request.
1148          */
1149         memset(&c, 0, sizeof(c));
1150         c.create_cq.opcode = nvme_admin_create_cq;
1151         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1152         c.create_cq.cqid = cpu_to_le16(qid);
1153         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1154         c.create_cq.cq_flags = cpu_to_le16(flags);
1155         c.create_cq.irq_vector = cpu_to_le16(vector);
1156
1157         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1158 }
1159
1160 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1161                                                 struct nvme_queue *nvmeq)
1162 {
1163         struct nvme_ctrl *ctrl = &dev->ctrl;
1164         struct nvme_command c;
1165         int flags = NVME_QUEUE_PHYS_CONTIG;
1166
1167         /*
1168          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1169          * set. Since URGENT priority is zeroes, it makes all queues
1170          * URGENT.
1171          */
1172         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1173                 flags |= NVME_SQ_PRIO_MEDIUM;
1174
1175         /*
1176          * Note: we (ab)use the fact that the prp fields survive if no data
1177          * is attached to the request.
1178          */
1179         memset(&c, 0, sizeof(c));
1180         c.create_sq.opcode = nvme_admin_create_sq;
1181         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1182         c.create_sq.sqid = cpu_to_le16(qid);
1183         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1184         c.create_sq.sq_flags = cpu_to_le16(flags);
1185         c.create_sq.cqid = cpu_to_le16(qid);
1186
1187         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1188 }
1189
1190 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1191 {
1192         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1193 }
1194
1195 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1196 {
1197         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1198 }
1199
1200 static void abort_endio(struct request *req, blk_status_t error)
1201 {
1202         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1203         struct nvme_queue *nvmeq = iod->nvmeq;
1204
1205         dev_warn(nvmeq->dev->ctrl.device,
1206                  "Abort status: 0x%x", nvme_req(req)->status);
1207         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1208         blk_mq_free_request(req);
1209 }
1210
1211 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1212 {
1213         /* If true, indicates loss of adapter communication, possibly by a
1214          * NVMe Subsystem reset.
1215          */
1216         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1217
1218         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1219         switch (dev->ctrl.state) {
1220         case NVME_CTRL_RESETTING:
1221         case NVME_CTRL_CONNECTING:
1222                 return false;
1223         default:
1224                 break;
1225         }
1226
1227         /* We shouldn't reset unless the controller is on fatal error state
1228          * _or_ if we lost the communication with it.
1229          */
1230         if (!(csts & NVME_CSTS_CFS) && !nssro)
1231                 return false;
1232
1233         return true;
1234 }
1235
1236 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1237 {
1238         /* Read a config register to help see what died. */
1239         u16 pci_status;
1240         int result;
1241
1242         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1243                                       &pci_status);
1244         if (result == PCIBIOS_SUCCESSFUL)
1245                 dev_warn(dev->ctrl.device,
1246                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1247                          csts, pci_status);
1248         else
1249                 dev_warn(dev->ctrl.device,
1250                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1251                          csts, result);
1252 }
1253
1254 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1255 {
1256         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1257         struct nvme_queue *nvmeq = iod->nvmeq;
1258         struct nvme_dev *dev = nvmeq->dev;
1259         struct request *abort_req;
1260         struct nvme_command cmd;
1261         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1262
1263         /* If PCI error recovery process is happening, we cannot reset or
1264          * the recovery mechanism will surely fail.
1265          */
1266         mb();
1267         if (pci_channel_offline(to_pci_dev(dev->dev)))
1268                 return BLK_EH_RESET_TIMER;
1269
1270         /*
1271          * Reset immediately if the controller is failed
1272          */
1273         if (nvme_should_reset(dev, csts)) {
1274                 nvme_warn_reset(dev, csts);
1275                 nvme_dev_disable(dev, false);
1276                 nvme_reset_ctrl(&dev->ctrl);
1277                 return BLK_EH_DONE;
1278         }
1279
1280         /*
1281          * Did we miss an interrupt?
1282          */
1283         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1284                 nvme_poll(req->mq_hctx);
1285         else
1286                 nvme_poll_irqdisable(nvmeq);
1287
1288         if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1289                 dev_warn(dev->ctrl.device,
1290                          "I/O %d QID %d timeout, completion polled\n",
1291                          req->tag, nvmeq->qid);
1292                 return BLK_EH_DONE;
1293         }
1294
1295         /*
1296          * Shutdown immediately if controller times out while starting. The
1297          * reset work will see the pci device disabled when it gets the forced
1298          * cancellation error. All outstanding requests are completed on
1299          * shutdown, so we return BLK_EH_DONE.
1300          */
1301         switch (dev->ctrl.state) {
1302         case NVME_CTRL_CONNECTING:
1303                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1304                 fallthrough;
1305         case NVME_CTRL_DELETING:
1306                 dev_warn_ratelimited(dev->ctrl.device,
1307                          "I/O %d QID %d timeout, disable controller\n",
1308                          req->tag, nvmeq->qid);
1309                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1310                 nvme_dev_disable(dev, true);
1311                 return BLK_EH_DONE;
1312         case NVME_CTRL_RESETTING:
1313                 return BLK_EH_RESET_TIMER;
1314         default:
1315                 break;
1316         }
1317
1318         /*
1319          * Shutdown the controller immediately and schedule a reset if the
1320          * command was already aborted once before and still hasn't been
1321          * returned to the driver, or if this is the admin queue.
1322          */
1323         if (!nvmeq->qid || iod->aborted) {
1324                 dev_warn(dev->ctrl.device,
1325                          "I/O %d QID %d timeout, reset controller\n",
1326                          req->tag, nvmeq->qid);
1327                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1328                 nvme_dev_disable(dev, false);
1329                 nvme_reset_ctrl(&dev->ctrl);
1330
1331                 return BLK_EH_DONE;
1332         }
1333
1334         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1335                 atomic_inc(&dev->ctrl.abort_limit);
1336                 return BLK_EH_RESET_TIMER;
1337         }
1338         iod->aborted = 1;
1339
1340         memset(&cmd, 0, sizeof(cmd));
1341         cmd.abort.opcode = nvme_admin_abort_cmd;
1342         cmd.abort.cid = nvme_cid(req);
1343         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1344
1345         dev_warn(nvmeq->dev->ctrl.device,
1346                 "I/O %d QID %d timeout, aborting\n",
1347                  req->tag, nvmeq->qid);
1348
1349         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1350                         BLK_MQ_REQ_NOWAIT);
1351         if (IS_ERR(abort_req)) {
1352                 atomic_inc(&dev->ctrl.abort_limit);
1353                 return BLK_EH_RESET_TIMER;
1354         }
1355
1356         abort_req->end_io_data = NULL;
1357         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1358
1359         /*
1360          * The aborted req will be completed on receiving the abort req.
1361          * We enable the timer again. If hit twice, it'll cause a device reset,
1362          * as the device then is in a faulty state.
1363          */
1364         return BLK_EH_RESET_TIMER;
1365 }
1366
1367 static void nvme_free_queue(struct nvme_queue *nvmeq)
1368 {
1369         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1370                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1371         if (!nvmeq->sq_cmds)
1372                 return;
1373
1374         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1375                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1376                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1377         } else {
1378                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1379                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1380         }
1381 }
1382
1383 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1384 {
1385         int i;
1386
1387         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1388                 dev->ctrl.queue_count--;
1389                 nvme_free_queue(&dev->queues[i]);
1390         }
1391 }
1392
1393 /**
1394  * nvme_suspend_queue - put queue into suspended state
1395  * @nvmeq: queue to suspend
1396  */
1397 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1398 {
1399         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1400                 return 1;
1401
1402         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1403         mb();
1404
1405         nvmeq->dev->online_queues--;
1406         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1407                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1408         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1409                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1410         return 0;
1411 }
1412
1413 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1414 {
1415         int i;
1416
1417         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1418                 nvme_suspend_queue(&dev->queues[i]);
1419 }
1420
1421 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1422 {
1423         struct nvme_queue *nvmeq = &dev->queues[0];
1424
1425         if (shutdown)
1426                 nvme_shutdown_ctrl(&dev->ctrl);
1427         else
1428                 nvme_disable_ctrl(&dev->ctrl);
1429
1430         nvme_poll_irqdisable(nvmeq);
1431 }
1432
1433 /*
1434  * Called only on a device that has been disabled and after all other threads
1435  * that can check this device's completion queues have synced, except
1436  * nvme_poll(). This is the last chance for the driver to see a natural
1437  * completion before nvme_cancel_request() terminates all incomplete requests.
1438  */
1439 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1440 {
1441         int i;
1442
1443         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1444                 spin_lock(&dev->queues[i].cq_poll_lock);
1445                 nvme_process_cq(&dev->queues[i]);
1446                 spin_unlock(&dev->queues[i].cq_poll_lock);
1447         }
1448 }
1449
1450 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1451                                 int entry_size)
1452 {
1453         int q_depth = dev->q_depth;
1454         unsigned q_size_aligned = roundup(q_depth * entry_size,
1455                                           NVME_CTRL_PAGE_SIZE);
1456
1457         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1458                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1459
1460                 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1461                 q_depth = div_u64(mem_per_q, entry_size);
1462
1463                 /*
1464                  * Ensure the reduced q_depth is above some threshold where it
1465                  * would be better to map queues in system memory with the
1466                  * original depth
1467                  */
1468                 if (q_depth < 64)
1469                         return -ENOMEM;
1470         }
1471
1472         return q_depth;
1473 }
1474
1475 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1476                                 int qid)
1477 {
1478         struct pci_dev *pdev = to_pci_dev(dev->dev);
1479
1480         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1481                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1482                 if (nvmeq->sq_cmds) {
1483                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1484                                                         nvmeq->sq_cmds);
1485                         if (nvmeq->sq_dma_addr) {
1486                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1487                                 return 0;
1488                         }
1489
1490                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1491                 }
1492         }
1493
1494         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1495                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1496         if (!nvmeq->sq_cmds)
1497                 return -ENOMEM;
1498         return 0;
1499 }
1500
1501 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1502 {
1503         struct nvme_queue *nvmeq = &dev->queues[qid];
1504
1505         if (dev->ctrl.queue_count > qid)
1506                 return 0;
1507
1508         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1509         nvmeq->q_depth = depth;
1510         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1511                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1512         if (!nvmeq->cqes)
1513                 goto free_nvmeq;
1514
1515         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1516                 goto free_cqdma;
1517
1518         nvmeq->dev = dev;
1519         spin_lock_init(&nvmeq->sq_lock);
1520         spin_lock_init(&nvmeq->cq_poll_lock);
1521         nvmeq->cq_head = 0;
1522         nvmeq->cq_phase = 1;
1523         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1524         nvmeq->qid = qid;
1525         dev->ctrl.queue_count++;
1526
1527         return 0;
1528
1529  free_cqdma:
1530         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1531                           nvmeq->cq_dma_addr);
1532  free_nvmeq:
1533         return -ENOMEM;
1534 }
1535
1536 static int queue_request_irq(struct nvme_queue *nvmeq)
1537 {
1538         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1539         int nr = nvmeq->dev->ctrl.instance;
1540
1541         if (use_threaded_interrupts) {
1542                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1543                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1544         } else {
1545                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1546                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1547         }
1548 }
1549
1550 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1551 {
1552         struct nvme_dev *dev = nvmeq->dev;
1553
1554         nvmeq->sq_tail = 0;
1555         nvmeq->last_sq_tail = 0;
1556         nvmeq->cq_head = 0;
1557         nvmeq->cq_phase = 1;
1558         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1559         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1560         nvme_dbbuf_init(dev, nvmeq, qid);
1561         dev->online_queues++;
1562         wmb(); /* ensure the first interrupt sees the initialization */
1563 }
1564
1565 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1566 {
1567         struct nvme_dev *dev = nvmeq->dev;
1568         int result;
1569         u16 vector = 0;
1570
1571         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1572
1573         /*
1574          * A queue's vector matches the queue identifier unless the controller
1575          * has only one vector available.
1576          */
1577         if (!polled)
1578                 vector = dev->num_vecs == 1 ? 0 : qid;
1579         else
1580                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1581
1582         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1583         if (result)
1584                 return result;
1585
1586         result = adapter_alloc_sq(dev, qid, nvmeq);
1587         if (result < 0)
1588                 return result;
1589         if (result)
1590                 goto release_cq;
1591
1592         nvmeq->cq_vector = vector;
1593         nvme_init_queue(nvmeq, qid);
1594
1595         if (!polled) {
1596                 result = queue_request_irq(nvmeq);
1597                 if (result < 0)
1598                         goto release_sq;
1599         }
1600
1601         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1602         return result;
1603
1604 release_sq:
1605         dev->online_queues--;
1606         adapter_delete_sq(dev, qid);
1607 release_cq:
1608         adapter_delete_cq(dev, qid);
1609         return result;
1610 }
1611
1612 static const struct blk_mq_ops nvme_mq_admin_ops = {
1613         .queue_rq       = nvme_queue_rq,
1614         .complete       = nvme_pci_complete_rq,
1615         .init_hctx      = nvme_admin_init_hctx,
1616         .init_request   = nvme_init_request,
1617         .timeout        = nvme_timeout,
1618 };
1619
1620 static const struct blk_mq_ops nvme_mq_ops = {
1621         .queue_rq       = nvme_queue_rq,
1622         .complete       = nvme_pci_complete_rq,
1623         .commit_rqs     = nvme_commit_rqs,
1624         .init_hctx      = nvme_init_hctx,
1625         .init_request   = nvme_init_request,
1626         .map_queues     = nvme_pci_map_queues,
1627         .timeout        = nvme_timeout,
1628         .poll           = nvme_poll,
1629 };
1630
1631 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1632 {
1633         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1634                 /*
1635                  * If the controller was reset during removal, it's possible
1636                  * user requests may be waiting on a stopped queue. Start the
1637                  * queue to flush these to completion.
1638                  */
1639                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1640                 blk_cleanup_queue(dev->ctrl.admin_q);
1641                 blk_mq_free_tag_set(&dev->admin_tagset);
1642         }
1643 }
1644
1645 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1646 {
1647         if (!dev->ctrl.admin_q) {
1648                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1649                 dev->admin_tagset.nr_hw_queues = 1;
1650
1651                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1652                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1653                 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1654                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1655                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1656                 dev->admin_tagset.driver_data = dev;
1657
1658                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1659                         return -ENOMEM;
1660                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1661
1662                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1663                 if (IS_ERR(dev->ctrl.admin_q)) {
1664                         blk_mq_free_tag_set(&dev->admin_tagset);
1665                         dev->ctrl.admin_q = NULL;
1666                         return -ENOMEM;
1667                 }
1668                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1669                         nvme_dev_remove_admin(dev);
1670                         dev->ctrl.admin_q = NULL;
1671                         return -ENODEV;
1672                 }
1673         } else
1674                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1675
1676         return 0;
1677 }
1678
1679 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1680 {
1681         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1682 }
1683
1684 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1685 {
1686         struct pci_dev *pdev = to_pci_dev(dev->dev);
1687
1688         if (size <= dev->bar_mapped_size)
1689                 return 0;
1690         if (size > pci_resource_len(pdev, 0))
1691                 return -ENOMEM;
1692         if (dev->bar)
1693                 iounmap(dev->bar);
1694         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1695         if (!dev->bar) {
1696                 dev->bar_mapped_size = 0;
1697                 return -ENOMEM;
1698         }
1699         dev->bar_mapped_size = size;
1700         dev->dbs = dev->bar + NVME_REG_DBS;
1701
1702         return 0;
1703 }
1704
1705 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1706 {
1707         int result;
1708         u32 aqa;
1709         struct nvme_queue *nvmeq;
1710
1711         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1712         if (result < 0)
1713                 return result;
1714
1715         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1716                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1717
1718         if (dev->subsystem &&
1719             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1720                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1721
1722         result = nvme_disable_ctrl(&dev->ctrl);
1723         if (result < 0)
1724                 return result;
1725
1726         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1727         if (result)
1728                 return result;
1729
1730         dev->ctrl.numa_node = dev_to_node(dev->dev);
1731
1732         nvmeq = &dev->queues[0];
1733         aqa = nvmeq->q_depth - 1;
1734         aqa |= aqa << 16;
1735
1736         writel(aqa, dev->bar + NVME_REG_AQA);
1737         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1738         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1739
1740         result = nvme_enable_ctrl(&dev->ctrl);
1741         if (result)
1742                 return result;
1743
1744         nvmeq->cq_vector = 0;
1745         nvme_init_queue(nvmeq, 0);
1746         result = queue_request_irq(nvmeq);
1747         if (result) {
1748                 dev->online_queues--;
1749                 return result;
1750         }
1751
1752         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1753         return result;
1754 }
1755
1756 static int nvme_create_io_queues(struct nvme_dev *dev)
1757 {
1758         unsigned i, max, rw_queues;
1759         int ret = 0;
1760
1761         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1762                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1763                         ret = -ENOMEM;
1764                         break;
1765                 }
1766         }
1767
1768         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1769         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1770                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1771                                 dev->io_queues[HCTX_TYPE_READ];
1772         } else {
1773                 rw_queues = max;
1774         }
1775
1776         for (i = dev->online_queues; i <= max; i++) {
1777                 bool polled = i > rw_queues;
1778
1779                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1780                 if (ret)
1781                         break;
1782         }
1783
1784         /*
1785          * Ignore failing Create SQ/CQ commands, we can continue with less
1786          * than the desired amount of queues, and even a controller without
1787          * I/O queues can still be used to issue admin commands.  This might
1788          * be useful to upgrade a buggy firmware for example.
1789          */
1790         return ret >= 0 ? 0 : ret;
1791 }
1792
1793 static ssize_t nvme_cmb_show(struct device *dev,
1794                              struct device_attribute *attr,
1795                              char *buf)
1796 {
1797         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1798
1799         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1800                        ndev->cmbloc, ndev->cmbsz);
1801 }
1802 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1803
1804 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1805 {
1806         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1807
1808         return 1ULL << (12 + 4 * szu);
1809 }
1810
1811 static u32 nvme_cmb_size(struct nvme_dev *dev)
1812 {
1813         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1814 }
1815
1816 static void nvme_map_cmb(struct nvme_dev *dev)
1817 {
1818         u64 size, offset;
1819         resource_size_t bar_size;
1820         struct pci_dev *pdev = to_pci_dev(dev->dev);
1821         int bar;
1822
1823         if (dev->cmb_size)
1824                 return;
1825
1826         if (NVME_CAP_CMBS(dev->ctrl.cap))
1827                 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1828
1829         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1830         if (!dev->cmbsz)
1831                 return;
1832         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1833
1834         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1835         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1836         bar = NVME_CMB_BIR(dev->cmbloc);
1837         bar_size = pci_resource_len(pdev, bar);
1838
1839         if (offset > bar_size)
1840                 return;
1841
1842         /*
1843          * Tell the controller about the host side address mapping the CMB,
1844          * and enable CMB decoding for the NVMe 1.4+ scheme:
1845          */
1846         if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1847                 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1848                              (pci_bus_address(pdev, bar) + offset),
1849                              dev->bar + NVME_REG_CMBMSC);
1850         }
1851
1852         /*
1853          * Controllers may support a CMB size larger than their BAR,
1854          * for example, due to being behind a bridge. Reduce the CMB to
1855          * the reported size of the BAR
1856          */
1857         if (size > bar_size - offset)
1858                 size = bar_size - offset;
1859
1860         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1861                 dev_warn(dev->ctrl.device,
1862                          "failed to register the CMB\n");
1863                 return;
1864         }
1865
1866         dev->cmb_size = size;
1867         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1868
1869         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1870                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1871                 pci_p2pmem_publish(pdev, true);
1872
1873         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1874                                     &dev_attr_cmb.attr, NULL))
1875                 dev_warn(dev->ctrl.device,
1876                          "failed to add sysfs attribute for CMB\n");
1877 }
1878
1879 static inline void nvme_release_cmb(struct nvme_dev *dev)
1880 {
1881         if (dev->cmb_size) {
1882                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1883                                              &dev_attr_cmb.attr, NULL);
1884                 dev->cmb_size = 0;
1885         }
1886 }
1887
1888 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1889 {
1890         u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1891         u64 dma_addr = dev->host_mem_descs_dma;
1892         struct nvme_command c;
1893         int ret;
1894
1895         memset(&c, 0, sizeof(c));
1896         c.features.opcode       = nvme_admin_set_features;
1897         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1898         c.features.dword11      = cpu_to_le32(bits);
1899         c.features.dword12      = cpu_to_le32(host_mem_size);
1900         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1901         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1902         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1903
1904         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1905         if (ret) {
1906                 dev_warn(dev->ctrl.device,
1907                          "failed to set host mem (err %d, flags %#x).\n",
1908                          ret, bits);
1909         }
1910         return ret;
1911 }
1912
1913 static void nvme_free_host_mem(struct nvme_dev *dev)
1914 {
1915         int i;
1916
1917         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1918                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1919                 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1920
1921                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1922                                le64_to_cpu(desc->addr),
1923                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1924         }
1925
1926         kfree(dev->host_mem_desc_bufs);
1927         dev->host_mem_desc_bufs = NULL;
1928         dma_free_coherent(dev->dev,
1929                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1930                         dev->host_mem_descs, dev->host_mem_descs_dma);
1931         dev->host_mem_descs = NULL;
1932         dev->nr_host_mem_descs = 0;
1933 }
1934
1935 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1936                 u32 chunk_size)
1937 {
1938         struct nvme_host_mem_buf_desc *descs;
1939         u32 max_entries, len;
1940         dma_addr_t descs_dma;
1941         int i = 0;
1942         void **bufs;
1943         u64 size, tmp;
1944
1945         tmp = (preferred + chunk_size - 1);
1946         do_div(tmp, chunk_size);
1947         max_entries = tmp;
1948
1949         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1950                 max_entries = dev->ctrl.hmmaxd;
1951
1952         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1953                                    &descs_dma, GFP_KERNEL);
1954         if (!descs)
1955                 goto out;
1956
1957         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1958         if (!bufs)
1959                 goto out_free_descs;
1960
1961         for (size = 0; size < preferred && i < max_entries; size += len) {
1962                 dma_addr_t dma_addr;
1963
1964                 len = min_t(u64, chunk_size, preferred - size);
1965                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1966                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1967                 if (!bufs[i])
1968                         break;
1969
1970                 descs[i].addr = cpu_to_le64(dma_addr);
1971                 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1972                 i++;
1973         }
1974
1975         if (!size)
1976                 goto out_free_bufs;
1977
1978         dev->nr_host_mem_descs = i;
1979         dev->host_mem_size = size;
1980         dev->host_mem_descs = descs;
1981         dev->host_mem_descs_dma = descs_dma;
1982         dev->host_mem_desc_bufs = bufs;
1983         return 0;
1984
1985 out_free_bufs:
1986         while (--i >= 0) {
1987                 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1988
1989                 dma_free_attrs(dev->dev, size, bufs[i],
1990                                le64_to_cpu(descs[i].addr),
1991                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1992         }
1993
1994         kfree(bufs);
1995 out_free_descs:
1996         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1997                         descs_dma);
1998 out:
1999         dev->host_mem_descs = NULL;
2000         return -ENOMEM;
2001 }
2002
2003 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2004 {
2005         u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2006         u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2007         u64 chunk_size;
2008
2009         /* start big and work our way down */
2010         for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2011                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2012                         if (!min || dev->host_mem_size >= min)
2013                                 return 0;
2014                         nvme_free_host_mem(dev);
2015                 }
2016         }
2017
2018         return -ENOMEM;
2019 }
2020
2021 static int nvme_setup_host_mem(struct nvme_dev *dev)
2022 {
2023         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2024         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2025         u64 min = (u64)dev->ctrl.hmmin * 4096;
2026         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2027         int ret;
2028
2029         preferred = min(preferred, max);
2030         if (min > max) {
2031                 dev_warn(dev->ctrl.device,
2032                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2033                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2034                 nvme_free_host_mem(dev);
2035                 return 0;
2036         }
2037
2038         /*
2039          * If we already have a buffer allocated check if we can reuse it.
2040          */
2041         if (dev->host_mem_descs) {
2042                 if (dev->host_mem_size >= min)
2043                         enable_bits |= NVME_HOST_MEM_RETURN;
2044                 else
2045                         nvme_free_host_mem(dev);
2046         }
2047
2048         if (!dev->host_mem_descs) {
2049                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2050                         dev_warn(dev->ctrl.device,
2051                                 "failed to allocate host memory buffer.\n");
2052                         return 0; /* controller must work without HMB */
2053                 }
2054
2055                 dev_info(dev->ctrl.device,
2056                         "allocated %lld MiB host memory buffer.\n",
2057                         dev->host_mem_size >> ilog2(SZ_1M));
2058         }
2059
2060         ret = nvme_set_host_mem(dev, enable_bits);
2061         if (ret)
2062                 nvme_free_host_mem(dev);
2063         return ret;
2064 }
2065
2066 /*
2067  * nirqs is the number of interrupts available for write and read
2068  * queues. The core already reserved an interrupt for the admin queue.
2069  */
2070 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2071 {
2072         struct nvme_dev *dev = affd->priv;
2073         unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2074
2075         /*
2076          * If there is no interrupt available for queues, ensure that
2077          * the default queue is set to 1. The affinity set size is
2078          * also set to one, but the irq core ignores it for this case.
2079          *
2080          * If only one interrupt is available or 'write_queue' == 0, combine
2081          * write and read queues.
2082          *
2083          * If 'write_queues' > 0, ensure it leaves room for at least one read
2084          * queue.
2085          */
2086         if (!nrirqs) {
2087                 nrirqs = 1;
2088                 nr_read_queues = 0;
2089         } else if (nrirqs == 1 || !nr_write_queues) {
2090                 nr_read_queues = 0;
2091         } else if (nr_write_queues >= nrirqs) {
2092                 nr_read_queues = 1;
2093         } else {
2094                 nr_read_queues = nrirqs - nr_write_queues;
2095         }
2096
2097         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2098         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2099         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2100         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2101         affd->nr_sets = nr_read_queues ? 2 : 1;
2102 }
2103
2104 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2105 {
2106         struct pci_dev *pdev = to_pci_dev(dev->dev);
2107         struct irq_affinity affd = {
2108                 .pre_vectors    = 1,
2109                 .calc_sets      = nvme_calc_irq_sets,
2110                 .priv           = dev,
2111         };
2112         unsigned int irq_queues, poll_queues;
2113
2114         /*
2115          * Poll queues don't need interrupts, but we need at least one I/O queue
2116          * left over for non-polled I/O.
2117          */
2118         poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2119         dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2120
2121         /*
2122          * Initialize for the single interrupt case, will be updated in
2123          * nvme_calc_irq_sets().
2124          */
2125         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2126         dev->io_queues[HCTX_TYPE_READ] = 0;
2127
2128         /*
2129          * We need interrupts for the admin queue and each non-polled I/O queue,
2130          * but some Apple controllers require all queues to use the first
2131          * vector.
2132          */
2133         irq_queues = 1;
2134         if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2135                 irq_queues += (nr_io_queues - poll_queues);
2136         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2137                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2138 }
2139
2140 static void nvme_disable_io_queues(struct nvme_dev *dev)
2141 {
2142         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2143                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2144 }
2145
2146 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2147 {
2148         return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2149 }
2150
2151 static int nvme_setup_io_queues(struct nvme_dev *dev)
2152 {
2153         struct nvme_queue *adminq = &dev->queues[0];
2154         struct pci_dev *pdev = to_pci_dev(dev->dev);
2155         unsigned int nr_io_queues;
2156         unsigned long size;
2157         int result;
2158
2159         /*
2160          * Sample the module parameters once at reset time so that we have
2161          * stable values to work with.
2162          */
2163         dev->nr_write_queues = write_queues;
2164         dev->nr_poll_queues = poll_queues;
2165
2166         /*
2167          * If tags are shared with admin queue (Apple bug), then
2168          * make sure we only use one IO queue.
2169          */
2170         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2171                 nr_io_queues = 1;
2172         else
2173                 nr_io_queues = min(nvme_max_io_queues(dev),
2174                                    dev->nr_allocated_queues - 1);
2175
2176         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2177         if (result < 0)
2178                 return result;
2179
2180         if (nr_io_queues == 0)
2181                 return 0;
2182         
2183         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2184
2185         if (dev->cmb_use_sqes) {
2186                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2187                                 sizeof(struct nvme_command));
2188                 if (result > 0)
2189                         dev->q_depth = result;
2190                 else
2191                         dev->cmb_use_sqes = false;
2192         }
2193
2194         do {
2195                 size = db_bar_size(dev, nr_io_queues);
2196                 result = nvme_remap_bar(dev, size);
2197                 if (!result)
2198                         break;
2199                 if (!--nr_io_queues)
2200                         return -ENOMEM;
2201         } while (1);
2202         adminq->q_db = dev->dbs;
2203
2204  retry:
2205         /* Deregister the admin queue's interrupt */
2206         pci_free_irq(pdev, 0, adminq);
2207
2208         /*
2209          * If we enable msix early due to not intx, disable it again before
2210          * setting up the full range we need.
2211          */
2212         pci_free_irq_vectors(pdev);
2213
2214         result = nvme_setup_irqs(dev, nr_io_queues);
2215         if (result <= 0)
2216                 return -EIO;
2217
2218         dev->num_vecs = result;
2219         result = max(result - 1, 1);
2220         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2221
2222         /*
2223          * Should investigate if there's a performance win from allocating
2224          * more queues than interrupt vectors; it might allow the submission
2225          * path to scale better, even if the receive path is limited by the
2226          * number of interrupts.
2227          */
2228         result = queue_request_irq(adminq);
2229         if (result)
2230                 return result;
2231         set_bit(NVMEQ_ENABLED, &adminq->flags);
2232
2233         result = nvme_create_io_queues(dev);
2234         if (result || dev->online_queues < 2)
2235                 return result;
2236
2237         if (dev->online_queues - 1 < dev->max_qid) {
2238                 nr_io_queues = dev->online_queues - 1;
2239                 nvme_disable_io_queues(dev);
2240                 nvme_suspend_io_queues(dev);
2241                 goto retry;
2242         }
2243         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2244                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2245                                         dev->io_queues[HCTX_TYPE_READ],
2246                                         dev->io_queues[HCTX_TYPE_POLL]);
2247         return 0;
2248 }
2249
2250 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2251 {
2252         struct nvme_queue *nvmeq = req->end_io_data;
2253
2254         blk_mq_free_request(req);
2255         complete(&nvmeq->delete_done);
2256 }
2257
2258 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2259 {
2260         struct nvme_queue *nvmeq = req->end_io_data;
2261
2262         if (error)
2263                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2264
2265         nvme_del_queue_end(req, error);
2266 }
2267
2268 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2269 {
2270         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2271         struct request *req;
2272         struct nvme_command cmd;
2273
2274         memset(&cmd, 0, sizeof(cmd));
2275         cmd.delete_queue.opcode = opcode;
2276         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2277
2278         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2279         if (IS_ERR(req))
2280                 return PTR_ERR(req);
2281
2282         req->end_io_data = nvmeq;
2283
2284         init_completion(&nvmeq->delete_done);
2285         blk_execute_rq_nowait(q, NULL, req, false,
2286                         opcode == nvme_admin_delete_cq ?
2287                                 nvme_del_cq_end : nvme_del_queue_end);
2288         return 0;
2289 }
2290
2291 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2292 {
2293         int nr_queues = dev->online_queues - 1, sent = 0;
2294         unsigned long timeout;
2295
2296  retry:
2297         timeout = ADMIN_TIMEOUT;
2298         while (nr_queues > 0) {
2299                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2300                         break;
2301                 nr_queues--;
2302                 sent++;
2303         }
2304         while (sent) {
2305                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2306
2307                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2308                                 timeout);
2309                 if (timeout == 0)
2310                         return false;
2311
2312                 sent--;
2313                 if (nr_queues)
2314                         goto retry;
2315         }
2316         return true;
2317 }
2318
2319 static void nvme_dev_add(struct nvme_dev *dev)
2320 {
2321         int ret;
2322
2323         if (!dev->ctrl.tagset) {
2324                 dev->tagset.ops = &nvme_mq_ops;
2325                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2326                 dev->tagset.nr_maps = 2; /* default + read */
2327                 if (dev->io_queues[HCTX_TYPE_POLL])
2328                         dev->tagset.nr_maps++;
2329                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2330                 dev->tagset.numa_node = dev->ctrl.numa_node;
2331                 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2332                                                 BLK_MQ_MAX_DEPTH) - 1;
2333                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2334                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2335                 dev->tagset.driver_data = dev;
2336
2337                 /*
2338                  * Some Apple controllers requires tags to be unique
2339                  * across admin and IO queue, so reserve the first 32
2340                  * tags of the IO queue.
2341                  */
2342                 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2343                         dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2344
2345                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2346                 if (ret) {
2347                         dev_warn(dev->ctrl.device,
2348                                 "IO queues tagset allocation failed %d\n", ret);
2349                         return;
2350                 }
2351                 dev->ctrl.tagset = &dev->tagset;
2352         } else {
2353                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2354
2355                 /* Free previously allocated queues that are no longer usable */
2356                 nvme_free_queues(dev, dev->online_queues);
2357         }
2358
2359         nvme_dbbuf_set(dev);
2360 }
2361
2362 static int nvme_pci_enable(struct nvme_dev *dev)
2363 {
2364         int result = -ENOMEM;
2365         struct pci_dev *pdev = to_pci_dev(dev->dev);
2366
2367         if (pci_enable_device_mem(pdev))
2368                 return result;
2369
2370         pci_set_master(pdev);
2371
2372         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2373                 goto disable;
2374
2375         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2376                 result = -ENODEV;
2377                 goto disable;
2378         }
2379
2380         /*
2381          * Some devices and/or platforms don't advertise or work with INTx
2382          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2383          * adjust this later.
2384          */
2385         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2386         if (result < 0)
2387                 return result;
2388
2389         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2390
2391         dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2392                                 io_queue_depth);
2393         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2394         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2395         dev->dbs = dev->bar + 4096;
2396
2397         /*
2398          * Some Apple controllers require a non-standard SQE size.
2399          * Interestingly they also seem to ignore the CC:IOSQES register
2400          * so we don't bother updating it here.
2401          */
2402         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2403                 dev->io_sqes = 7;
2404         else
2405                 dev->io_sqes = NVME_NVM_IOSQES;
2406
2407         /*
2408          * Temporary fix for the Apple controller found in the MacBook8,1 and
2409          * some MacBook7,1 to avoid controller resets and data loss.
2410          */
2411         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2412                 dev->q_depth = 2;
2413                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2414                         "set queue depth=%u to work around controller resets\n",
2415                         dev->q_depth);
2416         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2417                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2418                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2419                 dev->q_depth = 64;
2420                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2421                         "set queue depth=%u\n", dev->q_depth);
2422         }
2423
2424         /*
2425          * Controllers with the shared tags quirk need the IO queue to be
2426          * big enough so that we get 32 tags for the admin queue
2427          */
2428         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2429             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2430                 dev->q_depth = NVME_AQ_DEPTH + 2;
2431                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2432                          dev->q_depth);
2433         }
2434
2435
2436         nvme_map_cmb(dev);
2437
2438         pci_enable_pcie_error_reporting(pdev);
2439         pci_save_state(pdev);
2440         return 0;
2441
2442  disable:
2443         pci_disable_device(pdev);
2444         return result;
2445 }
2446
2447 static void nvme_dev_unmap(struct nvme_dev *dev)
2448 {
2449         if (dev->bar)
2450                 iounmap(dev->bar);
2451         pci_release_mem_regions(to_pci_dev(dev->dev));
2452 }
2453
2454 static void nvme_pci_disable(struct nvme_dev *dev)
2455 {
2456         struct pci_dev *pdev = to_pci_dev(dev->dev);
2457
2458         pci_free_irq_vectors(pdev);
2459
2460         if (pci_is_enabled(pdev)) {
2461                 pci_disable_pcie_error_reporting(pdev);
2462                 pci_disable_device(pdev);
2463         }
2464 }
2465
2466 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2467 {
2468         bool dead = true, freeze = false;
2469         struct pci_dev *pdev = to_pci_dev(dev->dev);
2470
2471         mutex_lock(&dev->shutdown_lock);
2472         if (pci_is_enabled(pdev)) {
2473                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2474
2475                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2476                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2477                         freeze = true;
2478                         nvme_start_freeze(&dev->ctrl);
2479                 }
2480                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2481                         pdev->error_state  != pci_channel_io_normal);
2482         }
2483
2484         /*
2485          * Give the controller a chance to complete all entered requests if
2486          * doing a safe shutdown.
2487          */
2488         if (!dead && shutdown && freeze)
2489                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2490
2491         nvme_stop_queues(&dev->ctrl);
2492
2493         if (!dead && dev->ctrl.queue_count > 0) {
2494                 nvme_disable_io_queues(dev);
2495                 nvme_disable_admin_queue(dev, shutdown);
2496         }
2497         nvme_suspend_io_queues(dev);
2498         nvme_suspend_queue(&dev->queues[0]);
2499         nvme_pci_disable(dev);
2500         nvme_reap_pending_cqes(dev);
2501
2502         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2503         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2504         blk_mq_tagset_wait_completed_request(&dev->tagset);
2505         blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2506
2507         /*
2508          * The driver will not be starting up queues again if shutting down so
2509          * must flush all entered requests to their failed completion to avoid
2510          * deadlocking blk-mq hot-cpu notifier.
2511          */
2512         if (shutdown) {
2513                 nvme_start_queues(&dev->ctrl);
2514                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2515                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2516         }
2517         mutex_unlock(&dev->shutdown_lock);
2518 }
2519
2520 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2521 {
2522         if (!nvme_wait_reset(&dev->ctrl))
2523                 return -EBUSY;
2524         nvme_dev_disable(dev, shutdown);
2525         return 0;
2526 }
2527
2528 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2529 {
2530         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2531                                                 NVME_CTRL_PAGE_SIZE,
2532                                                 NVME_CTRL_PAGE_SIZE, 0);
2533         if (!dev->prp_page_pool)
2534                 return -ENOMEM;
2535
2536         /* Optimisation for I/Os between 4k and 128k */
2537         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2538                                                 256, 256, 0);
2539         if (!dev->prp_small_pool) {
2540                 dma_pool_destroy(dev->prp_page_pool);
2541                 return -ENOMEM;
2542         }
2543         return 0;
2544 }
2545
2546 static void nvme_release_prp_pools(struct nvme_dev *dev)
2547 {
2548         dma_pool_destroy(dev->prp_page_pool);
2549         dma_pool_destroy(dev->prp_small_pool);
2550 }
2551
2552 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2553 {
2554         size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2555         size_t alloc_size = sizeof(__le64 *) * npages +
2556                             sizeof(struct scatterlist) * NVME_MAX_SEGS;
2557
2558         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2559         dev->iod_mempool = mempool_create_node(1,
2560                         mempool_kmalloc, mempool_kfree,
2561                         (void *)alloc_size, GFP_KERNEL,
2562                         dev_to_node(dev->dev));
2563         if (!dev->iod_mempool)
2564                 return -ENOMEM;
2565         return 0;
2566 }
2567
2568 static void nvme_free_tagset(struct nvme_dev *dev)
2569 {
2570         if (dev->tagset.tags)
2571                 blk_mq_free_tag_set(&dev->tagset);
2572         dev->ctrl.tagset = NULL;
2573 }
2574
2575 /* pairs with nvme_pci_alloc_dev */
2576 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2577 {
2578         struct nvme_dev *dev = to_nvme_dev(ctrl);
2579
2580         nvme_dbbuf_dma_free(dev);
2581         nvme_free_tagset(dev);
2582         if (dev->ctrl.admin_q)
2583                 blk_put_queue(dev->ctrl.admin_q);
2584         free_opal_dev(dev->ctrl.opal_dev);
2585         mempool_destroy(dev->iod_mempool);
2586         put_device(dev->dev);
2587         kfree(dev->queues);
2588         kfree(dev);
2589 }
2590
2591 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2592 {
2593         /*
2594          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2595          * may be holding this pci_dev's device lock.
2596          */
2597         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2598         nvme_get_ctrl(&dev->ctrl);
2599         nvme_dev_disable(dev, false);
2600         nvme_kill_queues(&dev->ctrl);
2601         if (!queue_work(nvme_wq, &dev->remove_work))
2602                 nvme_put_ctrl(&dev->ctrl);
2603 }
2604
2605 static void nvme_reset_work(struct work_struct *work)
2606 {
2607         struct nvme_dev *dev =
2608                 container_of(work, struct nvme_dev, ctrl.reset_work);
2609         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2610         int result;
2611
2612         if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2613                 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2614                          dev->ctrl.state);
2615                 result = -ENODEV;
2616                 goto out;
2617         }
2618
2619         /*
2620          * If we're called to reset a live controller first shut it down before
2621          * moving on.
2622          */
2623         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2624                 nvme_dev_disable(dev, false);
2625         nvme_sync_queues(&dev->ctrl);
2626
2627         mutex_lock(&dev->shutdown_lock);
2628         result = nvme_pci_enable(dev);
2629         if (result)
2630                 goto out_unlock;
2631
2632         result = nvme_pci_configure_admin_queue(dev);
2633         if (result)
2634                 goto out_unlock;
2635
2636         result = nvme_alloc_admin_tags(dev);
2637         if (result)
2638                 goto out_unlock;
2639
2640         dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2641
2642         /*
2643          * Limit the max command size to prevent iod->sg allocations going
2644          * over a single page.
2645          */
2646         dev->ctrl.max_hw_sectors = min_t(u32,
2647                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2648         dev->ctrl.max_segments = NVME_MAX_SEGS;
2649
2650         /*
2651          * Don't limit the IOMMU merged segment size.
2652          */
2653         dma_set_max_seg_size(dev->dev, 0xffffffff);
2654
2655         mutex_unlock(&dev->shutdown_lock);
2656
2657         /*
2658          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2659          * initializing procedure here.
2660          */
2661         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2662                 dev_warn(dev->ctrl.device,
2663                         "failed to mark controller CONNECTING\n");
2664                 result = -EBUSY;
2665                 goto out;
2666         }
2667
2668         /*
2669          * We do not support an SGL for metadata (yet), so we are limited to a
2670          * single integrity segment for the separate metadata pointer.
2671          */
2672         dev->ctrl.max_integrity_segments = 1;
2673
2674         result = nvme_init_identify(&dev->ctrl);
2675         if (result)
2676                 goto out;
2677
2678         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2679                 if (!dev->ctrl.opal_dev)
2680                         dev->ctrl.opal_dev =
2681                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2682                 else if (was_suspend)
2683                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2684         } else {
2685                 free_opal_dev(dev->ctrl.opal_dev);
2686                 dev->ctrl.opal_dev = NULL;
2687         }
2688
2689         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2690                 result = nvme_dbbuf_dma_alloc(dev);
2691                 if (result)
2692                         dev_warn(dev->dev,
2693                                  "unable to allocate dma for dbbuf\n");
2694         }
2695
2696         if (dev->ctrl.hmpre) {
2697                 result = nvme_setup_host_mem(dev);
2698                 if (result < 0)
2699                         goto out;
2700         }
2701
2702         result = nvme_setup_io_queues(dev);
2703         if (result)
2704                 goto out;
2705
2706         /*
2707          * Keep the controller around but remove all namespaces if we don't have
2708          * any working I/O queue.
2709          */
2710         if (dev->online_queues < 2) {
2711                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2712                 nvme_kill_queues(&dev->ctrl);
2713                 nvme_remove_namespaces(&dev->ctrl);
2714                 nvme_free_tagset(dev);
2715         } else {
2716                 nvme_start_queues(&dev->ctrl);
2717                 nvme_wait_freeze(&dev->ctrl);
2718                 nvme_dev_add(dev);
2719                 nvme_unfreeze(&dev->ctrl);
2720         }
2721
2722         /*
2723          * If only admin queue live, keep it to do further investigation or
2724          * recovery.
2725          */
2726         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2727                 dev_warn(dev->ctrl.device,
2728                         "failed to mark controller live state\n");
2729                 result = -ENODEV;
2730                 goto out;
2731         }
2732
2733         nvme_start_ctrl(&dev->ctrl);
2734         return;
2735
2736  out_unlock:
2737         mutex_unlock(&dev->shutdown_lock);
2738  out:
2739         if (result)
2740                 dev_warn(dev->ctrl.device,
2741                          "Removing after probe failure status: %d\n", result);
2742         nvme_remove_dead_ctrl(dev);
2743 }
2744
2745 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2746 {
2747         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2748         struct pci_dev *pdev = to_pci_dev(dev->dev);
2749
2750         if (pci_get_drvdata(pdev))
2751                 device_release_driver(&pdev->dev);
2752         nvme_put_ctrl(&dev->ctrl);
2753 }
2754
2755 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2756 {
2757         *val = readl(to_nvme_dev(ctrl)->bar + off);
2758         return 0;
2759 }
2760
2761 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2762 {
2763         writel(val, to_nvme_dev(ctrl)->bar + off);
2764         return 0;
2765 }
2766
2767 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2768 {
2769         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2770         return 0;
2771 }
2772
2773 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2774 {
2775         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2776
2777         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2778 }
2779
2780 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2781         .name                   = "pcie",
2782         .module                 = THIS_MODULE,
2783         .flags                  = NVME_F_METADATA_SUPPORTED |
2784                                   NVME_F_PCI_P2PDMA,
2785         .reg_read32             = nvme_pci_reg_read32,
2786         .reg_write32            = nvme_pci_reg_write32,
2787         .reg_read64             = nvme_pci_reg_read64,
2788         .free_ctrl              = nvme_pci_free_ctrl,
2789         .submit_async_event     = nvme_pci_submit_async_event,
2790         .get_address            = nvme_pci_get_address,
2791 };
2792
2793 static int nvme_dev_map(struct nvme_dev *dev)
2794 {
2795         struct pci_dev *pdev = to_pci_dev(dev->dev);
2796
2797         if (pci_request_mem_regions(pdev, "nvme"))
2798                 return -ENODEV;
2799
2800         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2801                 goto release;
2802
2803         return 0;
2804   release:
2805         pci_release_mem_regions(pdev);
2806         return -ENODEV;
2807 }
2808
2809 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2810 {
2811         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2812                 /*
2813                  * Several Samsung devices seem to drop off the PCIe bus
2814                  * randomly when APST is on and uses the deepest sleep state.
2815                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2816                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2817                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2818                  * laptops.
2819                  */
2820                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2821                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2822                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2823                         return NVME_QUIRK_NO_DEEPEST_PS;
2824         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2825                 /*
2826                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2827                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2828                  * within few minutes after bootup on a Coffee Lake board -
2829                  * ASUS PRIME Z370-A
2830                  */
2831                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2832                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2833                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2834                         return NVME_QUIRK_NO_APST;
2835         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2836                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2837                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2838                 /*
2839                  * Forcing to use host managed nvme power settings for
2840                  * lowest idle power with quick resume latency on
2841                  * Samsung and Toshiba SSDs based on suspend behavior
2842                  * on Coffee Lake board for LENOVO C640
2843                  */
2844                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2845                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2846                         return NVME_QUIRK_SIMPLE_SUSPEND;
2847         }
2848
2849         return 0;
2850 }
2851
2852 static void nvme_async_probe(void *data, async_cookie_t cookie)
2853 {
2854         struct nvme_dev *dev = data;
2855
2856         flush_work(&dev->ctrl.reset_work);
2857         flush_work(&dev->ctrl.scan_work);
2858         nvme_put_ctrl(&dev->ctrl);
2859 }
2860
2861 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2862                 const struct pci_device_id *id)
2863 {
2864         unsigned long quirks = id->driver_data;
2865         int node = dev_to_node(&pdev->dev);
2866         struct nvme_dev *dev;
2867         int ret = -ENOMEM;
2868
2869         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2870         if (!dev)
2871                 return ERR_PTR(-ENOMEM);
2872         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2873         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2874         mutex_init(&dev->shutdown_lock);
2875
2876         dev->nr_write_queues = write_queues;
2877         dev->nr_poll_queues = poll_queues;
2878         dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2879         dev->queues = kcalloc_node(dev->nr_allocated_queues,
2880                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2881         if (!dev->queues)
2882                 goto out_free_dev;
2883
2884         dev->dev = get_device(&pdev->dev);
2885
2886         quirks |= check_vendor_combination_bug(pdev);
2887         if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2888                 /*
2889                  * Some systems use a bios work around to ask for D3 on
2890                  * platforms that support kernel managed suspend.
2891                  */
2892                 dev_info(&pdev->dev,
2893                          "platform quirk: setting simple suspend\n");
2894                 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2895         }
2896         ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2897                              quirks);
2898         if (ret)
2899                 goto out_put_device;
2900         return dev;
2901
2902 out_put_device:
2903         put_device(dev->dev);
2904         kfree(dev->queues);
2905 out_free_dev:
2906         kfree(dev);
2907         return ERR_PTR(ret);
2908 }
2909
2910 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2911 {
2912         struct nvme_dev *dev;
2913         int result = -ENOMEM;
2914
2915         dev = nvme_pci_alloc_dev(pdev, id);
2916         if (IS_ERR(dev))
2917                 return PTR_ERR(dev);
2918
2919         result = nvme_dev_map(dev);
2920         if (result)
2921                 goto out_uninit_ctrl;
2922
2923         result = nvme_setup_prp_pools(dev);
2924         if (result)
2925                 goto out_dev_unmap;
2926
2927         result = nvme_pci_alloc_iod_mempool(dev);
2928         if (result)
2929                 goto out_release_prp_pools;
2930
2931         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2932         pci_set_drvdata(pdev, dev);
2933
2934         nvme_reset_ctrl(&dev->ctrl);
2935         async_schedule(nvme_async_probe, dev);
2936         return 0;
2937
2938 out_release_prp_pools:
2939         nvme_release_prp_pools(dev);
2940 out_dev_unmap:
2941         nvme_dev_unmap(dev);
2942 out_uninit_ctrl:
2943         nvme_uninit_ctrl(&dev->ctrl);
2944         return result;
2945 }
2946
2947 static void nvme_reset_prepare(struct pci_dev *pdev)
2948 {
2949         struct nvme_dev *dev = pci_get_drvdata(pdev);
2950
2951         /*
2952          * We don't need to check the return value from waiting for the reset
2953          * state as pci_dev device lock is held, making it impossible to race
2954          * with ->remove().
2955          */
2956         nvme_disable_prepare_reset(dev, false);
2957         nvme_sync_queues(&dev->ctrl);
2958 }
2959
2960 static void nvme_reset_done(struct pci_dev *pdev)
2961 {
2962         struct nvme_dev *dev = pci_get_drvdata(pdev);
2963
2964         if (!nvme_try_sched_reset(&dev->ctrl))
2965                 flush_work(&dev->ctrl.reset_work);
2966 }
2967
2968 static void nvme_shutdown(struct pci_dev *pdev)
2969 {
2970         struct nvme_dev *dev = pci_get_drvdata(pdev);
2971
2972         nvme_disable_prepare_reset(dev, true);
2973 }
2974
2975 /*
2976  * The driver's remove may be called on a device in a partially initialized
2977  * state. This function must not have any dependencies on the device state in
2978  * order to proceed.
2979  */
2980 static void nvme_remove(struct pci_dev *pdev)
2981 {
2982         struct nvme_dev *dev = pci_get_drvdata(pdev);
2983
2984         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2985         pci_set_drvdata(pdev, NULL);
2986
2987         if (!pci_device_is_present(pdev)) {
2988                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2989                 nvme_dev_disable(dev, true);
2990         }
2991
2992         flush_work(&dev->ctrl.reset_work);
2993         nvme_stop_ctrl(&dev->ctrl);
2994         nvme_remove_namespaces(&dev->ctrl);
2995         nvme_dev_disable(dev, true);
2996         nvme_release_cmb(dev);
2997         nvme_free_host_mem(dev);
2998         nvme_dev_remove_admin(dev);
2999         nvme_free_queues(dev, 0);
3000         nvme_release_prp_pools(dev);
3001         nvme_dev_unmap(dev);
3002         nvme_uninit_ctrl(&dev->ctrl);
3003 }
3004
3005 #ifdef CONFIG_PM_SLEEP
3006 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3007 {
3008         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3009 }
3010
3011 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3012 {
3013         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3014 }
3015
3016 static int nvme_resume(struct device *dev)
3017 {
3018         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3019         struct nvme_ctrl *ctrl = &ndev->ctrl;
3020
3021         if (ndev->last_ps == U32_MAX ||
3022             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3023                 return nvme_try_sched_reset(&ndev->ctrl);
3024         return 0;
3025 }
3026
3027 static int nvme_suspend(struct device *dev)
3028 {
3029         struct pci_dev *pdev = to_pci_dev(dev);
3030         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3031         struct nvme_ctrl *ctrl = &ndev->ctrl;
3032         int ret = -EBUSY;
3033
3034         ndev->last_ps = U32_MAX;
3035
3036         /*
3037          * The platform does not remove power for a kernel managed suspend so
3038          * use host managed nvme power settings for lowest idle power if
3039          * possible. This should have quicker resume latency than a full device
3040          * shutdown.  But if the firmware is involved after the suspend or the
3041          * device does not support any non-default power states, shut down the
3042          * device fully.
3043          *
3044          * If ASPM is not enabled for the device, shut down the device and allow
3045          * the PCI bus layer to put it into D3 in order to take the PCIe link
3046          * down, so as to allow the platform to achieve its minimum low-power
3047          * state (which may not be possible if the link is up).
3048          *
3049          * If a host memory buffer is enabled, shut down the device as the NVMe
3050          * specification allows the device to access the host memory buffer in
3051          * host DRAM from all power states, but hosts will fail access to DRAM
3052          * during S3.
3053          */
3054         if (pm_suspend_via_firmware() || !ctrl->npss ||
3055             !pcie_aspm_enabled(pdev) ||
3056             ndev->nr_host_mem_descs ||
3057             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3058                 return nvme_disable_prepare_reset(ndev, true);
3059
3060         nvme_start_freeze(ctrl);
3061         nvme_wait_freeze(ctrl);
3062         nvme_sync_queues(ctrl);
3063
3064         if (ctrl->state != NVME_CTRL_LIVE)
3065                 goto unfreeze;
3066
3067         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3068         if (ret < 0)
3069                 goto unfreeze;
3070
3071         /*
3072          * A saved state prevents pci pm from generically controlling the
3073          * device's power. If we're using protocol specific settings, we don't
3074          * want pci interfering.
3075          */
3076         pci_save_state(pdev);
3077
3078         ret = nvme_set_power_state(ctrl, ctrl->npss);
3079         if (ret < 0)
3080                 goto unfreeze;
3081
3082         if (ret) {
3083                 /* discard the saved state */
3084                 pci_load_saved_state(pdev, NULL);
3085
3086                 /*
3087                  * Clearing npss forces a controller reset on resume. The
3088                  * correct value will be rediscovered then.
3089                  */
3090                 ret = nvme_disable_prepare_reset(ndev, true);
3091                 ctrl->npss = 0;
3092         }
3093 unfreeze:
3094         nvme_unfreeze(ctrl);
3095         return ret;
3096 }
3097
3098 static int nvme_simple_suspend(struct device *dev)
3099 {
3100         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3101
3102         return nvme_disable_prepare_reset(ndev, true);
3103 }
3104
3105 static int nvme_simple_resume(struct device *dev)
3106 {
3107         struct pci_dev *pdev = to_pci_dev(dev);
3108         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3109
3110         return nvme_try_sched_reset(&ndev->ctrl);
3111 }
3112
3113 static const struct dev_pm_ops nvme_dev_pm_ops = {
3114         .suspend        = nvme_suspend,
3115         .resume         = nvme_resume,
3116         .freeze         = nvme_simple_suspend,
3117         .thaw           = nvme_simple_resume,
3118         .poweroff       = nvme_simple_suspend,
3119         .restore        = nvme_simple_resume,
3120 };
3121 #endif /* CONFIG_PM_SLEEP */
3122
3123 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3124                                                 pci_channel_state_t state)
3125 {
3126         struct nvme_dev *dev = pci_get_drvdata(pdev);
3127
3128         /*
3129          * A frozen channel requires a reset. When detected, this method will
3130          * shutdown the controller to quiesce. The controller will be restarted
3131          * after the slot reset through driver's slot_reset callback.
3132          */
3133         switch (state) {
3134         case pci_channel_io_normal:
3135                 return PCI_ERS_RESULT_CAN_RECOVER;
3136         case pci_channel_io_frozen:
3137                 dev_warn(dev->ctrl.device,
3138                         "frozen state error detected, reset controller\n");
3139                 nvme_dev_disable(dev, false);
3140                 return PCI_ERS_RESULT_NEED_RESET;
3141         case pci_channel_io_perm_failure:
3142                 dev_warn(dev->ctrl.device,
3143                         "failure state error detected, request disconnect\n");
3144                 return PCI_ERS_RESULT_DISCONNECT;
3145         }
3146         return PCI_ERS_RESULT_NEED_RESET;
3147 }
3148
3149 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3150 {
3151         struct nvme_dev *dev = pci_get_drvdata(pdev);
3152
3153         dev_info(dev->ctrl.device, "restart after slot reset\n");
3154         pci_restore_state(pdev);
3155         nvme_reset_ctrl(&dev->ctrl);
3156         return PCI_ERS_RESULT_RECOVERED;
3157 }
3158
3159 static void nvme_error_resume(struct pci_dev *pdev)
3160 {
3161         struct nvme_dev *dev = pci_get_drvdata(pdev);
3162
3163         flush_work(&dev->ctrl.reset_work);
3164 }
3165
3166 static const struct pci_error_handlers nvme_err_handler = {
3167         .error_detected = nvme_error_detected,
3168         .slot_reset     = nvme_slot_reset,
3169         .resume         = nvme_error_resume,
3170         .reset_prepare  = nvme_reset_prepare,
3171         .reset_done     = nvme_reset_done,
3172 };
3173
3174 static const struct pci_device_id nvme_id_table[] = {
3175         { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3176                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3177                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3178         { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3179                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3180                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3181         { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3182                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3183                                 NVME_QUIRK_DEALLOCATE_ZEROES |
3184                                 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3185                                 NVME_QUIRK_BOGUS_NID, },
3186         { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3187                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3188                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3189         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3190                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3191                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3192                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3193                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3194         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3195                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3196         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3197                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3198                                 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3199                                 NVME_QUIRK_BOGUS_NID, },
3200         { PCI_VDEVICE(REDHAT, 0x0010),  /* Qemu emulated controller */
3201                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3202         { PCI_DEVICE(0x126f, 0x2262),   /* Silicon Motion generic */
3203                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3204                                 NVME_QUIRK_BOGUS_NID, },
3205         { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3206                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3207         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3208                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3209                                 NVME_QUIRK_NO_NS_DESC_LIST, },
3210         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3211                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3212         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3213                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3214         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3215                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3216         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3217                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3218         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3219                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3220                                 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3221                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3222         { PCI_DEVICE(0x1987, 0x5016),   /* Phison E16 */
3223                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3224                                 NVME_QUIRK_BOGUS_NID, },
3225         { PCI_DEVICE(0x1b4b, 0x1092),   /* Lexar 256 GB SSD */
3226                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3227                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3228         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3229                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3230         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3231                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3232         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3233                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3234         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3235                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3236                                 NVME_QUIRK_BOGUS_NID, },
3237         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3238                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3239                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3240          { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3241                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3242          { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3243                  .driver_data = NVME_QUIRK_BOGUS_NID, },
3244         { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3245                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3246         { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3247                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3248         { PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3249                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3250         { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3251                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3252         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3253                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3254         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3255         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3256                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3257                                 NVME_QUIRK_128_BYTES_SQES |
3258                                 NVME_QUIRK_SHARED_TAGS |
3259                                 NVME_QUIRK_SKIP_CID_GEN },
3260         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3261         { 0, }
3262 };
3263 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3264
3265 static struct pci_driver nvme_driver = {
3266         .name           = "nvme",
3267         .id_table       = nvme_id_table,
3268         .probe          = nvme_probe,
3269         .remove         = nvme_remove,
3270         .shutdown       = nvme_shutdown,
3271 #ifdef CONFIG_PM_SLEEP
3272         .driver         = {
3273                 .pm     = &nvme_dev_pm_ops,
3274         },
3275 #endif
3276         .sriov_configure = pci_sriov_configure_simple,
3277         .err_handler    = &nvme_err_handler,
3278 };
3279
3280 static int __init nvme_init(void)
3281 {
3282         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3283         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3284         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3285         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3286
3287         return pci_register_driver(&nvme_driver);
3288 }
3289
3290 static void __exit nvme_exit(void)
3291 {
3292         pci_unregister_driver(&nvme_driver);
3293         flush_workqueue(nvme_wq);
3294 }
3295
3296 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3297 MODULE_LICENSE("GPL");
3298 MODULE_VERSION("1.0");
3299 module_init(nvme_init);
3300 module_exit(nvme_exit);