arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / page_pool / helpers.h
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool/helpers.h
4  *      Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *      Copyright (C) 2016 Red Hat, Inc.
6  */
7
8 /**
9  * DOC: page_pool allocator
10  *
11  * The page_pool allocator is optimized for recycling page or page fragment used
12  * by skb packet and xdp frame.
13  *
14  * Basic use involves replacing and alloc_pages() calls with page_pool_alloc(),
15  * which allocate memory with or without page splitting depending on the
16  * requested memory size.
17  *
18  * If the driver knows that it always requires full pages or its allocations are
19  * always smaller than half a page, it can use one of the more specific API
20  * calls:
21  *
22  * 1. page_pool_alloc_pages(): allocate memory without page splitting when
23  * driver knows that the memory it need is always bigger than half of the page
24  * allocated from page pool. There is no cache line dirtying for 'struct page'
25  * when a page is recycled back to the page pool.
26  *
27  * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver
28  * knows that the memory it need is always smaller than or equal to half of the
29  * page allocated from page pool. Page splitting enables memory saving and thus
30  * avoids TLB/cache miss for data access, but there also is some cost to
31  * implement page splitting, mainly some cache line dirtying/bouncing for
32  * 'struct page' and atomic operation for page->pp_frag_count.
33  *
34  * The API keeps track of in-flight pages, in order to let API users know when
35  * it is safe to free a page_pool object, the API users must call
36  * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or
37  * attach the page_pool object to a page_pool-aware object like skbs marked with
38  * skb_mark_for_recycle().
39  *
40  * page_pool_put_page() may be called multi times on the same page if a page is
41  * split into multi fragments. For the last fragment, it will either recycle the
42  * page, or in case of page->_refcount > 1, it will release the DMA mapping and
43  * in-flight state accounting.
44  *
45  * dma_sync_single_range_for_device() is only called for the last fragment when
46  * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the
47  * last freed fragment to do the sync_for_device operation for all fragments in
48  * the same page when a page is split, the API user must setup pool->p.max_len
49  * and pool->p.offset correctly and ensure that page_pool_put_page() is called
50  * with dma_sync_size being -1 for fragment API.
51  */
52 #ifndef _NET_PAGE_POOL_HELPERS_H
53 #define _NET_PAGE_POOL_HELPERS_H
54
55 #include <net/page_pool/types.h>
56
57 #ifdef CONFIG_PAGE_POOL_STATS
58 int page_pool_ethtool_stats_get_count(void);
59 u8 *page_pool_ethtool_stats_get_strings(u8 *data);
60 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats);
61
62 /*
63  * Drivers that wish to harvest page pool stats and report them to users
64  * (perhaps via ethtool, debugfs, or another mechanism) can allocate a
65  * struct page_pool_stats call page_pool_get_stats to get stats for the specified pool.
66  */
67 bool page_pool_get_stats(struct page_pool *pool,
68                          struct page_pool_stats *stats);
69 #else
70 static inline int page_pool_ethtool_stats_get_count(void)
71 {
72         return 0;
73 }
74
75 static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data)
76 {
77         return data;
78 }
79
80 static inline u64 *page_pool_ethtool_stats_get(u64 *data, void *stats)
81 {
82         return data;
83 }
84 #endif
85
86 /**
87  * page_pool_dev_alloc_pages() - allocate a page.
88  * @pool:       pool from which to allocate
89  *
90  * Get a page from the page allocator or page_pool caches.
91  */
92 static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool)
93 {
94         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
95
96         return page_pool_alloc_pages(pool, gfp);
97 }
98
99 /**
100  * page_pool_dev_alloc_frag() - allocate a page fragment.
101  * @pool: pool from which to allocate
102  * @offset: offset to the allocated page
103  * @size: requested size
104  *
105  * Get a page fragment from the page allocator or page_pool caches.
106  *
107  * Return:
108  * Return allocated page fragment, otherwise return NULL.
109  */
110 static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool,
111                                                     unsigned int *offset,
112                                                     unsigned int size)
113 {
114         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
115
116         return page_pool_alloc_frag(pool, offset, size, gfp);
117 }
118
119 static inline struct page *page_pool_alloc(struct page_pool *pool,
120                                            unsigned int *offset,
121                                            unsigned int *size, gfp_t gfp)
122 {
123         unsigned int max_size = PAGE_SIZE << pool->p.order;
124         struct page *page;
125
126         if ((*size << 1) > max_size) {
127                 *size = max_size;
128                 *offset = 0;
129                 return page_pool_alloc_pages(pool, gfp);
130         }
131
132         page = page_pool_alloc_frag(pool, offset, *size, gfp);
133         if (unlikely(!page))
134                 return NULL;
135
136         /* There is very likely not enough space for another fragment, so append
137          * the remaining size to the current fragment to avoid truesize
138          * underestimate problem.
139          */
140         if (pool->frag_offset + *size > max_size) {
141                 *size = max_size - *offset;
142                 pool->frag_offset = max_size;
143         }
144
145         return page;
146 }
147
148 /**
149  * page_pool_dev_alloc() - allocate a page or a page fragment.
150  * @pool: pool from which to allocate
151  * @offset: offset to the allocated page
152  * @size: in as the requested size, out as the allocated size
153  *
154  * Get a page or a page fragment from the page allocator or page_pool caches
155  * depending on the requested size in order to allocate memory with least memory
156  * utilization and performance penalty.
157  *
158  * Return:
159  * Return allocated page or page fragment, otherwise return NULL.
160  */
161 static inline struct page *page_pool_dev_alloc(struct page_pool *pool,
162                                                unsigned int *offset,
163                                                unsigned int *size)
164 {
165         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
166
167         return page_pool_alloc(pool, offset, size, gfp);
168 }
169
170 static inline void *page_pool_alloc_va(struct page_pool *pool,
171                                        unsigned int *size, gfp_t gfp)
172 {
173         unsigned int offset;
174         struct page *page;
175
176         /* Mask off __GFP_HIGHMEM to ensure we can use page_address() */
177         page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM);
178         if (unlikely(!page))
179                 return NULL;
180
181         return page_address(page) + offset;
182 }
183
184 /**
185  * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its
186  *                            va.
187  * @pool: pool from which to allocate
188  * @size: in as the requested size, out as the allocated size
189  *
190  * This is just a thin wrapper around the page_pool_alloc() API, and
191  * it returns va of the allocated page or page fragment.
192  *
193  * Return:
194  * Return the va for the allocated page or page fragment, otherwise return NULL.
195  */
196 static inline void *page_pool_dev_alloc_va(struct page_pool *pool,
197                                            unsigned int *size)
198 {
199         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
200
201         return page_pool_alloc_va(pool, size, gfp);
202 }
203
204 /**
205  * page_pool_get_dma_dir() - Retrieve the stored DMA direction.
206  * @pool:       pool from which page was allocated
207  *
208  * Get the stored dma direction. A driver might decide to store this locally
209  * and avoid the extra cache line from page_pool to determine the direction.
210  */
211 static
212 inline enum dma_data_direction page_pool_get_dma_dir(struct page_pool *pool)
213 {
214         return pool->p.dma_dir;
215 }
216
217 /* pp_frag_count represents the number of writers who can update the page
218  * either by updating skb->data or via DMA mappings for the device.
219  * We can't rely on the page refcnt for that as we don't know who might be
220  * holding page references and we can't reliably destroy or sync DMA mappings
221  * of the fragments.
222  *
223  * When pp_frag_count reaches 0 we can either recycle the page if the page
224  * refcnt is 1 or return it back to the memory allocator and destroy any
225  * mappings we have.
226  */
227 static inline void page_pool_fragment_page(struct page *page, long nr)
228 {
229         atomic_long_set(&page->pp_frag_count, nr);
230 }
231
232 static inline long page_pool_defrag_page(struct page *page, long nr)
233 {
234         long ret;
235
236         /* If nr == pp_frag_count then we have cleared all remaining
237          * references to the page:
238          * 1. 'n == 1': no need to actually overwrite it.
239          * 2. 'n != 1': overwrite it with one, which is the rare case
240          *              for pp_frag_count draining.
241          *
242          * The main advantage to doing this is that not only we avoid a atomic
243          * update, as an atomic_read is generally a much cheaper operation than
244          * an atomic update, especially when dealing with a page that may be
245          * partitioned into only 2 or 3 pieces; but also unify the pp_frag_count
246          * handling by ensuring all pages have partitioned into only 1 piece
247          * initially, and only overwrite it when the page is partitioned into
248          * more than one piece.
249          */
250         if (atomic_long_read(&page->pp_frag_count) == nr) {
251                 /* As we have ensured nr is always one for constant case using
252                  * the BUILD_BUG_ON(), only need to handle the non-constant case
253                  * here for pp_frag_count draining, which is a rare case.
254                  */
255                 BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1);
256                 if (!__builtin_constant_p(nr))
257                         atomic_long_set(&page->pp_frag_count, 1);
258
259                 return 0;
260         }
261
262         ret = atomic_long_sub_return(nr, &page->pp_frag_count);
263         WARN_ON(ret < 0);
264
265         /* We are the last user here too, reset pp_frag_count back to 1 to
266          * ensure all pages have been partitioned into 1 piece initially,
267          * this should be the rare case when the last two fragment users call
268          * page_pool_defrag_page() currently.
269          */
270         if (unlikely(!ret))
271                 atomic_long_set(&page->pp_frag_count, 1);
272
273         return ret;
274 }
275
276 static inline bool page_pool_is_last_frag(struct page *page)
277 {
278         /* If page_pool_defrag_page() returns 0, we were the last user */
279         return page_pool_defrag_page(page, 1) == 0;
280 }
281
282 /**
283  * page_pool_put_page() - release a reference to a page pool page
284  * @pool:       pool from which page was allocated
285  * @page:       page to release a reference on
286  * @dma_sync_size: how much of the page may have been touched by the device
287  * @allow_direct: released by the consumer, allow lockless caching
288  *
289  * The outcome of this depends on the page refcnt. If the driver bumps
290  * the refcnt > 1 this will unmap the page. If the page refcnt is 1
291  * the allocator owns the page and will try to recycle it in one of the pool
292  * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device
293  * using dma_sync_single_range_for_device().
294  */
295 static inline void page_pool_put_page(struct page_pool *pool,
296                                       struct page *page,
297                                       unsigned int dma_sync_size,
298                                       bool allow_direct)
299 {
300         /* When page_pool isn't compiled-in, net/core/xdp.c doesn't
301          * allow registering MEM_TYPE_PAGE_POOL, but shield linker.
302          */
303 #ifdef CONFIG_PAGE_POOL
304         if (!page_pool_is_last_frag(page))
305                 return;
306
307         page_pool_put_defragged_page(pool, page, dma_sync_size, allow_direct);
308 #endif
309 }
310
311 /**
312  * page_pool_put_full_page() - release a reference on a page pool page
313  * @pool:       pool from which page was allocated
314  * @page:       page to release a reference on
315  * @allow_direct: released by the consumer, allow lockless caching
316  *
317  * Similar to page_pool_put_page(), but will DMA sync the entire memory area
318  * as configured in &page_pool_params.max_len.
319  */
320 static inline void page_pool_put_full_page(struct page_pool *pool,
321                                            struct page *page, bool allow_direct)
322 {
323         page_pool_put_page(pool, page, -1, allow_direct);
324 }
325
326 /**
327  * page_pool_recycle_direct() - release a reference on a page pool page
328  * @pool:       pool from which page was allocated
329  * @page:       page to release a reference on
330  *
331  * Similar to page_pool_put_full_page() but caller must guarantee safe context
332  * (e.g NAPI), since it will recycle the page directly into the pool fast cache.
333  */
334 static inline void page_pool_recycle_direct(struct page_pool *pool,
335                                             struct page *page)
336 {
337         page_pool_put_full_page(pool, page, true);
338 }
339
340 #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA     \
341                 (sizeof(dma_addr_t) > sizeof(unsigned long))
342
343 /**
344  * page_pool_free_va() - free a va into the page_pool
345  * @pool: pool from which va was allocated
346  * @va: va to be freed
347  * @allow_direct: freed by the consumer, allow lockless caching
348  *
349  * Free a va allocated from page_pool_allo_va().
350  */
351 static inline void page_pool_free_va(struct page_pool *pool, void *va,
352                                      bool allow_direct)
353 {
354         page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct);
355 }
356
357 /**
358  * page_pool_get_dma_addr() - Retrieve the stored DMA address.
359  * @page:       page allocated from a page pool
360  *
361  * Fetch the DMA address of the page. The page pool to which the page belongs
362  * must had been created with PP_FLAG_DMA_MAP.
363  */
364 static inline dma_addr_t page_pool_get_dma_addr(struct page *page)
365 {
366         dma_addr_t ret = page->dma_addr;
367
368         if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA)
369                 ret <<= PAGE_SHIFT;
370
371         return ret;
372 }
373
374 static inline bool page_pool_set_dma_addr(struct page *page, dma_addr_t addr)
375 {
376         if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA) {
377                 page->dma_addr = addr >> PAGE_SHIFT;
378
379                 /* We assume page alignment to shave off bottom bits,
380                  * if this "compression" doesn't work we need to drop.
381                  */
382                 return addr != (dma_addr_t)page->dma_addr << PAGE_SHIFT;
383         }
384
385         page->dma_addr = addr;
386         return false;
387 }
388
389 static inline bool page_pool_put(struct page_pool *pool)
390 {
391         return refcount_dec_and_test(&pool->user_cnt);
392 }
393
394 static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid)
395 {
396         if (unlikely(pool->p.nid != new_nid))
397                 page_pool_update_nid(pool, new_nid);
398 }
399
400 #endif /* _NET_PAGE_POOL_HELPERS_H */