d467472f9d3c4353cd887cc3719bb3f831ff8ca1
[releases.git] / oxu210hp-hcd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5  *
6  * This code is *strongly* based on EHCI-HCD code by David Brownell since
7  * the chip is a quasi-EHCI compatible.
8  */
9
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/moduleparam.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/io.h>
27 #include <linux/iopoll.h>
28
29 #include <asm/irq.h>
30 #include <asm/unaligned.h>
31
32 #include <linux/irq.h>
33 #include <linux/platform_device.h>
34
35 #define DRIVER_VERSION "0.0.50"
36
37 #define OXU_DEVICEID                    0x00
38         #define OXU_REV_MASK            0xffff0000
39         #define OXU_REV_SHIFT           16
40         #define OXU_REV_2100            0x2100
41         #define OXU_BO_SHIFT            8
42         #define OXU_BO_MASK             (0x3 << OXU_BO_SHIFT)
43         #define OXU_MAJ_REV_SHIFT       4
44         #define OXU_MAJ_REV_MASK        (0xf << OXU_MAJ_REV_SHIFT)
45         #define OXU_MIN_REV_SHIFT       0
46         #define OXU_MIN_REV_MASK        (0xf << OXU_MIN_REV_SHIFT)
47 #define OXU_HOSTIFCONFIG                0x04
48 #define OXU_SOFTRESET                   0x08
49         #define OXU_SRESET              (1 << 0)
50
51 #define OXU_PIOBURSTREADCTRL            0x0C
52
53 #define OXU_CHIPIRQSTATUS               0x10
54 #define OXU_CHIPIRQEN_SET               0x14
55 #define OXU_CHIPIRQEN_CLR               0x18
56         #define OXU_USBSPHLPWUI         0x00000080
57         #define OXU_USBOTGLPWUI         0x00000040
58         #define OXU_USBSPHI             0x00000002
59         #define OXU_USBOTGI             0x00000001
60
61 #define OXU_CLKCTRL_SET                 0x1C
62         #define OXU_SYSCLKEN            0x00000008
63         #define OXU_USBSPHCLKEN         0x00000002
64         #define OXU_USBOTGCLKEN         0x00000001
65
66 #define OXU_ASO                         0x68
67         #define OXU_SPHPOEN             0x00000100
68         #define OXU_OVRCCURPUPDEN       0x00000800
69         #define OXU_ASO_OP              (1 << 10)
70         #define OXU_COMPARATOR          0x000004000
71
72 #define OXU_USBMODE                     0x1A8
73         #define OXU_VBPS                0x00000020
74         #define OXU_ES_LITTLE           0x00000000
75         #define OXU_CM_HOST_ONLY        0x00000003
76
77 /*
78  * Proper EHCI structs & defines
79  */
80
81 /* Magic numbers that can affect system performance */
82 #define EHCI_TUNE_CERR          3       /* 0-3 qtd retries; 0 == don't stop */
83 #define EHCI_TUNE_RL_HS         4       /* nak throttle; see 4.9 */
84 #define EHCI_TUNE_RL_TT         0
85 #define EHCI_TUNE_MULT_HS       1       /* 1-3 transactions/uframe; 4.10.3 */
86 #define EHCI_TUNE_MULT_TT       1
87 #define EHCI_TUNE_FLS           2       /* (small) 256 frame schedule */
88
89 struct oxu_hcd;
90
91 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
92
93 /* Section 2.2 Host Controller Capability Registers */
94 struct ehci_caps {
95         /* these fields are specified as 8 and 16 bit registers,
96          * but some hosts can't perform 8 or 16 bit PCI accesses.
97          */
98         u32             hc_capbase;
99 #define HC_LENGTH(p)            (((p)>>00)&0x00ff)      /* bits 7:0 */
100 #define HC_VERSION(p)           (((p)>>16)&0xffff)      /* bits 31:16 */
101         u32             hcs_params;     /* HCSPARAMS - offset 0x4 */
102 #define HCS_DEBUG_PORT(p)       (((p)>>20)&0xf) /* bits 23:20, debug port? */
103 #define HCS_INDICATOR(p)        ((p)&(1 << 16)) /* true: has port indicators */
104 #define HCS_N_CC(p)             (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
105 #define HCS_N_PCC(p)            (((p)>>8)&0xf)  /* bits 11:8, ports per CC */
106 #define HCS_PORTROUTED(p)       ((p)&(1 << 7))  /* true: port routing */
107 #define HCS_PPC(p)              ((p)&(1 << 4))  /* true: port power control */
108 #define HCS_N_PORTS(p)          (((p)>>0)&0xf)  /* bits 3:0, ports on HC */
109
110         u32             hcc_params;      /* HCCPARAMS - offset 0x8 */
111 #define HCC_EXT_CAPS(p)         (((p)>>8)&0xff) /* for pci extended caps */
112 #define HCC_ISOC_CACHE(p)       ((p)&(1 << 7))  /* true: can cache isoc frame */
113 #define HCC_ISOC_THRES(p)       (((p)>>4)&0x7)  /* bits 6:4, uframes cached */
114 #define HCC_CANPARK(p)          ((p)&(1 << 2))  /* true: can park on async qh */
115 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1))  /* true: periodic_size changes*/
116 #define HCC_64BIT_ADDR(p)       ((p)&(1))       /* true: can use 64-bit addr */
117         u8              portroute[8];    /* nibbles for routing - offset 0xC */
118 } __packed;
119
120
121 /* Section 2.3 Host Controller Operational Registers */
122 struct ehci_regs {
123         /* USBCMD: offset 0x00 */
124         u32             command;
125 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
126 #define CMD_PARK        (1<<11)         /* enable "park" on async qh */
127 #define CMD_PARK_CNT(c) (((c)>>8)&3)    /* how many transfers to park for */
128 #define CMD_LRESET      (1<<7)          /* partial reset (no ports, etc) */
129 #define CMD_IAAD        (1<<6)          /* "doorbell" interrupt async advance */
130 #define CMD_ASE         (1<<5)          /* async schedule enable */
131 #define CMD_PSE         (1<<4)          /* periodic schedule enable */
132 /* 3:2 is periodic frame list size */
133 #define CMD_RESET       (1<<1)          /* reset HC not bus */
134 #define CMD_RUN         (1<<0)          /* start/stop HC */
135
136         /* USBSTS: offset 0x04 */
137         u32             status;
138 #define STS_ASS         (1<<15)         /* Async Schedule Status */
139 #define STS_PSS         (1<<14)         /* Periodic Schedule Status */
140 #define STS_RECL        (1<<13)         /* Reclamation */
141 #define STS_HALT        (1<<12)         /* Not running (any reason) */
142 /* some bits reserved */
143         /* these STS_* flags are also intr_enable bits (USBINTR) */
144 #define STS_IAA         (1<<5)          /* Interrupted on async advance */
145 #define STS_FATAL       (1<<4)          /* such as some PCI access errors */
146 #define STS_FLR         (1<<3)          /* frame list rolled over */
147 #define STS_PCD         (1<<2)          /* port change detect */
148 #define STS_ERR         (1<<1)          /* "error" completion (overflow, ...) */
149 #define STS_INT         (1<<0)          /* "normal" completion (short, ...) */
150
151 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
152
153         /* USBINTR: offset 0x08 */
154         u32             intr_enable;
155
156         /* FRINDEX: offset 0x0C */
157         u32             frame_index;    /* current microframe number */
158         /* CTRLDSSEGMENT: offset 0x10 */
159         u32             segment;        /* address bits 63:32 if needed */
160         /* PERIODICLISTBASE: offset 0x14 */
161         u32             frame_list;     /* points to periodic list */
162         /* ASYNCLISTADDR: offset 0x18 */
163         u32             async_next;     /* address of next async queue head */
164
165         u32             reserved[9];
166
167         /* CONFIGFLAG: offset 0x40 */
168         u32             configured_flag;
169 #define FLAG_CF         (1<<0)          /* true: we'll support "high speed" */
170
171         /* PORTSC: offset 0x44 */
172         u32             port_status[];  /* up to N_PORTS */
173 /* 31:23 reserved */
174 #define PORT_WKOC_E     (1<<22)         /* wake on overcurrent (enable) */
175 #define PORT_WKDISC_E   (1<<21)         /* wake on disconnect (enable) */
176 #define PORT_WKCONN_E   (1<<20)         /* wake on connect (enable) */
177 /* 19:16 for port testing */
178 #define PORT_LED_OFF    (0<<14)
179 #define PORT_LED_AMBER  (1<<14)
180 #define PORT_LED_GREEN  (2<<14)
181 #define PORT_LED_MASK   (3<<14)
182 #define PORT_OWNER      (1<<13)         /* true: companion hc owns this port */
183 #define PORT_POWER      (1<<12)         /* true: has power (see PPC) */
184 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10))        /* USB 1.1 device */
185 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
186 /* 9 reserved */
187 #define PORT_RESET      (1<<8)          /* reset port */
188 #define PORT_SUSPEND    (1<<7)          /* suspend port */
189 #define PORT_RESUME     (1<<6)          /* resume it */
190 #define PORT_OCC        (1<<5)          /* over current change */
191 #define PORT_OC         (1<<4)          /* over current active */
192 #define PORT_PEC        (1<<3)          /* port enable change */
193 #define PORT_PE         (1<<2)          /* port enable */
194 #define PORT_CSC        (1<<1)          /* connect status change */
195 #define PORT_CONNECT    (1<<0)          /* device connected */
196 #define PORT_RWC_BITS   (PORT_CSC | PORT_PEC | PORT_OCC)
197 } __packed;
198
199 /* Appendix C, Debug port ... intended for use with special "debug devices"
200  * that can help if there's no serial console.  (nonstandard enumeration.)
201  */
202 struct ehci_dbg_port {
203         u32     control;
204 #define DBGP_OWNER      (1<<30)
205 #define DBGP_ENABLED    (1<<28)
206 #define DBGP_DONE       (1<<16)
207 #define DBGP_INUSE      (1<<10)
208 #define DBGP_ERRCODE(x) (((x)>>7)&0x07)
209 #       define DBGP_ERR_BAD     1
210 #       define DBGP_ERR_SIGNAL  2
211 #define DBGP_ERROR      (1<<6)
212 #define DBGP_GO         (1<<5)
213 #define DBGP_OUT        (1<<4)
214 #define DBGP_LEN(x)     (((x)>>0)&0x0f)
215         u32     pids;
216 #define DBGP_PID_GET(x)         (((x)>>16)&0xff)
217 #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
218         u32     data03;
219         u32     data47;
220         u32     address;
221 #define DBGP_EPADDR(dev, ep)    (((dev)<<8)|(ep))
222 } __packed;
223
224 #define QTD_NEXT(dma)   cpu_to_le32((u32)dma)
225
226 /*
227  * EHCI Specification 0.95 Section 3.5
228  * QTD: describe data transfer components (buffer, direction, ...)
229  * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
230  *
231  * These are associated only with "QH" (Queue Head) structures,
232  * used with control, bulk, and interrupt transfers.
233  */
234 struct ehci_qtd {
235         /* first part defined by EHCI spec */
236         __le32                  hw_next;                /* see EHCI 3.5.1 */
237         __le32                  hw_alt_next;            /* see EHCI 3.5.2 */
238         __le32                  hw_token;               /* see EHCI 3.5.3 */
239 #define QTD_TOGGLE      (1 << 31)       /* data toggle */
240 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
241 #define QTD_IOC         (1 << 15)       /* interrupt on complete */
242 #define QTD_CERR(tok)   (((tok)>>10) & 0x3)
243 #define QTD_PID(tok)    (((tok)>>8) & 0x3)
244 #define QTD_STS_ACTIVE  (1 << 7)        /* HC may execute this */
245 #define QTD_STS_HALT    (1 << 6)        /* halted on error */
246 #define QTD_STS_DBE     (1 << 5)        /* data buffer error (in HC) */
247 #define QTD_STS_BABBLE  (1 << 4)        /* device was babbling (qtd halted) */
248 #define QTD_STS_XACT    (1 << 3)        /* device gave illegal response */
249 #define QTD_STS_MMF     (1 << 2)        /* incomplete split transaction */
250 #define QTD_STS_STS     (1 << 1)        /* split transaction state */
251 #define QTD_STS_PING    (1 << 0)        /* issue PING? */
252         __le32                  hw_buf[5];              /* see EHCI 3.5.4 */
253         __le32                  hw_buf_hi[5];           /* Appendix B */
254
255         /* the rest is HCD-private */
256         dma_addr_t              qtd_dma;                /* qtd address */
257         struct list_head        qtd_list;               /* sw qtd list */
258         struct urb              *urb;                   /* qtd's urb */
259         size_t                  length;                 /* length of buffer */
260
261         u32                     qtd_buffer_len;
262         void                    *buffer;
263         dma_addr_t              buffer_dma;
264         void                    *transfer_buffer;
265         void                    *transfer_dma;
266 } __aligned(32);
267
268 /* mask NakCnt+T in qh->hw_alt_next */
269 #define QTD_MASK cpu_to_le32 (~0x1f)
270
271 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
272
273 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
274 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
275
276 /* values for that type tag */
277 #define Q_TYPE_QH       cpu_to_le32 (1 << 1)
278
279 /* next async queue entry, or pointer to interrupt/periodic QH */
280 #define QH_NEXT(dma)    (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
281
282 /* for periodic/async schedules and qtd lists, mark end of list */
283 #define EHCI_LIST_END   cpu_to_le32(1) /* "null pointer" to hw */
284
285 /*
286  * Entries in periodic shadow table are pointers to one of four kinds
287  * of data structure.  That's dictated by the hardware; a type tag is
288  * encoded in the low bits of the hardware's periodic schedule.  Use
289  * Q_NEXT_TYPE to get the tag.
290  *
291  * For entries in the async schedule, the type tag always says "qh".
292  */
293 union ehci_shadow {
294         struct ehci_qh          *qh;            /* Q_TYPE_QH */
295         __le32                  *hw_next;       /* (all types) */
296         void                    *ptr;
297 };
298
299 /*
300  * EHCI Specification 0.95 Section 3.6
301  * QH: describes control/bulk/interrupt endpoints
302  * See Fig 3-7 "Queue Head Structure Layout".
303  *
304  * These appear in both the async and (for interrupt) periodic schedules.
305  */
306
307 struct ehci_qh {
308         /* first part defined by EHCI spec */
309         __le32                  hw_next;         /* see EHCI 3.6.1 */
310         __le32                  hw_info1;       /* see EHCI 3.6.2 */
311 #define QH_HEAD         0x00008000
312         __le32                  hw_info2;       /* see EHCI 3.6.2 */
313 #define QH_SMASK        0x000000ff
314 #define QH_CMASK        0x0000ff00
315 #define QH_HUBADDR      0x007f0000
316 #define QH_HUBPORT      0x3f800000
317 #define QH_MULT         0xc0000000
318         __le32                  hw_current;      /* qtd list - see EHCI 3.6.4 */
319
320         /* qtd overlay (hardware parts of a struct ehci_qtd) */
321         __le32                  hw_qtd_next;
322         __le32                  hw_alt_next;
323         __le32                  hw_token;
324         __le32                  hw_buf[5];
325         __le32                  hw_buf_hi[5];
326
327         /* the rest is HCD-private */
328         dma_addr_t              qh_dma;         /* address of qh */
329         union ehci_shadow       qh_next;        /* ptr to qh; or periodic */
330         struct list_head        qtd_list;       /* sw qtd list */
331         struct ehci_qtd         *dummy;
332         struct ehci_qh          *reclaim;       /* next to reclaim */
333
334         struct oxu_hcd          *oxu;
335         struct kref             kref;
336         unsigned int            stamp;
337
338         u8                      qh_state;
339 #define QH_STATE_LINKED         1               /* HC sees this */
340 #define QH_STATE_UNLINK         2               /* HC may still see this */
341 #define QH_STATE_IDLE           3               /* HC doesn't see this */
342 #define QH_STATE_UNLINK_WAIT    4               /* LINKED and on reclaim q */
343 #define QH_STATE_COMPLETING     5               /* don't touch token.HALT */
344
345         /* periodic schedule info */
346         u8                      usecs;          /* intr bandwidth */
347         u8                      gap_uf;         /* uframes split/csplit gap */
348         u8                      c_usecs;        /* ... split completion bw */
349         u16                     tt_usecs;       /* tt downstream bandwidth */
350         unsigned short          period;         /* polling interval */
351         unsigned short          start;          /* where polling starts */
352 #define NO_FRAME ((unsigned short)~0)                   /* pick new start */
353         struct usb_device       *dev;           /* access to TT */
354 } __aligned(32);
355
356 /*
357  * Proper OXU210HP structs
358  */
359
360 #define OXU_OTG_CORE_OFFSET     0x00400
361 #define OXU_OTG_CAP_OFFSET      (OXU_OTG_CORE_OFFSET + 0x100)
362 #define OXU_SPH_CORE_OFFSET     0x00800
363 #define OXU_SPH_CAP_OFFSET      (OXU_SPH_CORE_OFFSET + 0x100)
364
365 #define OXU_OTG_MEM             0xE000
366 #define OXU_SPH_MEM             0x16000
367
368 /* Only how many elements & element structure are specifies here. */
369 /* 2 host controllers are enabled - total size <= 28 kbytes */
370 #define DEFAULT_I_TDPS          1024
371 #define QHEAD_NUM               16
372 #define QTD_NUM                 32
373 #define SITD_NUM                8
374 #define MURB_NUM                8
375
376 #define BUFFER_NUM              8
377 #define BUFFER_SIZE             512
378
379 struct oxu_info {
380         struct usb_hcd *hcd[2];
381 };
382
383 struct oxu_buf {
384         u8                      buffer[BUFFER_SIZE];
385 } __aligned(BUFFER_SIZE);
386
387 struct oxu_onchip_mem {
388         struct oxu_buf          db_pool[BUFFER_NUM];
389
390         u32                     frame_list[DEFAULT_I_TDPS];
391         struct ehci_qh          qh_pool[QHEAD_NUM];
392         struct ehci_qtd         qtd_pool[QTD_NUM];
393 } __aligned(4 << 10);
394
395 #define EHCI_MAX_ROOT_PORTS     15              /* see HCS_N_PORTS */
396
397 struct oxu_murb {
398         struct urb              urb;
399         struct urb              *main;
400         u8                      last;
401 };
402
403 struct oxu_hcd {                                /* one per controller */
404         unsigned int            is_otg:1;
405
406         u8                      qh_used[QHEAD_NUM];
407         u8                      qtd_used[QTD_NUM];
408         u8                      db_used[BUFFER_NUM];
409         u8                      murb_used[MURB_NUM];
410
411         struct oxu_onchip_mem   __iomem *mem;
412         spinlock_t              mem_lock;
413
414         struct timer_list       urb_timer;
415
416         struct ehci_caps __iomem *caps;
417         struct ehci_regs __iomem *regs;
418
419         u32                     hcs_params;     /* cached register copy */
420         spinlock_t              lock;
421
422         /* async schedule support */
423         struct ehci_qh          *async;
424         struct ehci_qh          *reclaim;
425         unsigned int            reclaim_ready:1;
426         unsigned int            scanning:1;
427
428         /* periodic schedule support */
429         unsigned int            periodic_size;
430         __le32                  *periodic;      /* hw periodic table */
431         dma_addr_t              periodic_dma;
432         unsigned int            i_thresh;       /* uframes HC might cache */
433
434         union ehci_shadow       *pshadow;       /* mirror hw periodic table */
435         int                     next_uframe;    /* scan periodic, start here */
436         unsigned int            periodic_sched; /* periodic activity count */
437
438         /* per root hub port */
439         unsigned long           reset_done[EHCI_MAX_ROOT_PORTS];
440         /* bit vectors (one bit per port) */
441         unsigned long           bus_suspended;  /* which ports were
442                                                  * already suspended at the
443                                                  * start of a bus suspend
444                                                  */
445         unsigned long           companion_ports;/* which ports are dedicated
446                                                  * to the companion controller
447                                                  */
448
449         struct timer_list       watchdog;
450         unsigned long           actions;
451         unsigned int            stamp;
452         unsigned long           next_statechange;
453         u32                     command;
454
455         /* SILICON QUIRKS */
456         struct list_head        urb_list;       /* this is the head to urb
457                                                  * queue that didn't get enough
458                                                  * resources
459                                                  */
460         struct oxu_murb         *murb_pool;     /* murb per split big urb */
461         unsigned int            urb_len;
462
463         u8                      sbrn;           /* packed release number */
464 };
465
466 #define EHCI_IAA_JIFFIES        (HZ/100)        /* arbitrary; ~10 msec */
467 #define EHCI_IO_JIFFIES         (HZ/10)         /* io watchdog > irq_thresh */
468 #define EHCI_ASYNC_JIFFIES      (HZ/20)         /* async idle timeout */
469 #define EHCI_SHRINK_JIFFIES     (HZ/200)        /* async qh unlink delay */
470
471 enum ehci_timer_action {
472         TIMER_IO_WATCHDOG,
473         TIMER_IAA_WATCHDOG,
474         TIMER_ASYNC_SHRINK,
475         TIMER_ASYNC_OFF,
476 };
477
478 /*
479  * Main defines
480  */
481
482 #define oxu_dbg(oxu, fmt, args...) \
483                 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
484 #define oxu_err(oxu, fmt, args...) \
485                 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
486 #define oxu_info(oxu, fmt, args...) \
487                 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
488
489 #ifdef CONFIG_DYNAMIC_DEBUG
490 #define DEBUG
491 #endif
492
493 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
494 {
495         return container_of((void *) oxu, struct usb_hcd, hcd_priv);
496 }
497
498 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
499 {
500         return (struct oxu_hcd *) (hcd->hcd_priv);
501 }
502
503 /*
504  * Debug stuff
505  */
506
507 #undef OXU_URB_TRACE
508 #undef OXU_VERBOSE_DEBUG
509
510 #ifdef OXU_VERBOSE_DEBUG
511 #define oxu_vdbg                        oxu_dbg
512 #else
513 #define oxu_vdbg(oxu, fmt, args...)     /* Nop */
514 #endif
515
516 #ifdef DEBUG
517
518 static int __attribute__((__unused__))
519 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
520 {
521         return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
522                 label, label[0] ? " " : "", status,
523                 (status & STS_ASS) ? " Async" : "",
524                 (status & STS_PSS) ? " Periodic" : "",
525                 (status & STS_RECL) ? " Recl" : "",
526                 (status & STS_HALT) ? " Halt" : "",
527                 (status & STS_IAA) ? " IAA" : "",
528                 (status & STS_FATAL) ? " FATAL" : "",
529                 (status & STS_FLR) ? " FLR" : "",
530                 (status & STS_PCD) ? " PCD" : "",
531                 (status & STS_ERR) ? " ERR" : "",
532                 (status & STS_INT) ? " INT" : ""
533                 );
534 }
535
536 static int __attribute__((__unused__))
537 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
538 {
539         return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
540                 label, label[0] ? " " : "", enable,
541                 (enable & STS_IAA) ? " IAA" : "",
542                 (enable & STS_FATAL) ? " FATAL" : "",
543                 (enable & STS_FLR) ? " FLR" : "",
544                 (enable & STS_PCD) ? " PCD" : "",
545                 (enable & STS_ERR) ? " ERR" : "",
546                 (enable & STS_INT) ? " INT" : ""
547                 );
548 }
549
550 static const char *const fls_strings[] =
551     { "1024", "512", "256", "??" };
552
553 static int dbg_command_buf(char *buf, unsigned len,
554                                 const char *label, u32 command)
555 {
556         return scnprintf(buf, len,
557                 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
558                 label, label[0] ? " " : "", command,
559                 (command & CMD_PARK) ? "park" : "(park)",
560                 CMD_PARK_CNT(command),
561                 (command >> 16) & 0x3f,
562                 (command & CMD_LRESET) ? " LReset" : "",
563                 (command & CMD_IAAD) ? " IAAD" : "",
564                 (command & CMD_ASE) ? " Async" : "",
565                 (command & CMD_PSE) ? " Periodic" : "",
566                 fls_strings[(command >> 2) & 0x3],
567                 (command & CMD_RESET) ? " Reset" : "",
568                 (command & CMD_RUN) ? "RUN" : "HALT"
569                 );
570 }
571
572 static int dbg_port_buf(char *buf, unsigned len, const char *label,
573                                 int port, u32 status)
574 {
575         char    *sig;
576
577         /* signaling state */
578         switch (status & (3 << 10)) {
579         case 0 << 10:
580                 sig = "se0";
581                 break;
582         case 1 << 10:
583                 sig = "k";      /* low speed */
584                 break;
585         case 2 << 10:
586                 sig = "j";
587                 break;
588         default:
589                 sig = "?";
590                 break;
591         }
592
593         return scnprintf(buf, len,
594                 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
595                 label, label[0] ? " " : "", port, status,
596                 (status & PORT_POWER) ? " POWER" : "",
597                 (status & PORT_OWNER) ? " OWNER" : "",
598                 sig,
599                 (status & PORT_RESET) ? " RESET" : "",
600                 (status & PORT_SUSPEND) ? " SUSPEND" : "",
601                 (status & PORT_RESUME) ? " RESUME" : "",
602                 (status & PORT_OCC) ? " OCC" : "",
603                 (status & PORT_OC) ? " OC" : "",
604                 (status & PORT_PEC) ? " PEC" : "",
605                 (status & PORT_PE) ? " PE" : "",
606                 (status & PORT_CSC) ? " CSC" : "",
607                 (status & PORT_CONNECT) ? " CONNECT" : ""
608             );
609 }
610
611 #else
612
613 static inline int __attribute__((__unused__))
614 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
615 { return 0; }
616
617 static inline int __attribute__((__unused__))
618 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
619 { return 0; }
620
621 static inline int __attribute__((__unused__))
622 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
623 { return 0; }
624
625 static inline int __attribute__((__unused__))
626 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
627 { return 0; }
628
629 #endif /* DEBUG */
630
631 /* functions have the "wrong" filename when they're output... */
632 #define dbg_status(oxu, label, status) { \
633         char _buf[80]; \
634         dbg_status_buf(_buf, sizeof _buf, label, status); \
635         oxu_dbg(oxu, "%s\n", _buf); \
636 }
637
638 #define dbg_cmd(oxu, label, command) { \
639         char _buf[80]; \
640         dbg_command_buf(_buf, sizeof _buf, label, command); \
641         oxu_dbg(oxu, "%s\n", _buf); \
642 }
643
644 #define dbg_port(oxu, label, port, status) { \
645         char _buf[80]; \
646         dbg_port_buf(_buf, sizeof _buf, label, port, status); \
647         oxu_dbg(oxu, "%s\n", _buf); \
648 }
649
650 /*
651  * Module parameters
652  */
653
654 /* Initial IRQ latency: faster than hw default */
655 static int log2_irq_thresh;                     /* 0 to 6 */
656 module_param(log2_irq_thresh, int, S_IRUGO);
657 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
658
659 /* Initial park setting: slower than hw default */
660 static unsigned park;
661 module_param(park, uint, S_IRUGO);
662 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
663
664 /* For flakey hardware, ignore overcurrent indicators */
665 static bool ignore_oc;
666 module_param(ignore_oc, bool, S_IRUGO);
667 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
668
669
670 static void ehci_work(struct oxu_hcd *oxu);
671 static int oxu_hub_control(struct usb_hcd *hcd,
672                                 u16 typeReq, u16 wValue, u16 wIndex,
673                                 char *buf, u16 wLength);
674
675 /*
676  * Local functions
677  */
678
679 /* Low level read/write registers functions */
680 static inline u32 oxu_readl(void __iomem *base, u32 reg)
681 {
682         return readl(base + reg);
683 }
684
685 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
686 {
687         writel(val, base + reg);
688 }
689
690 static inline void timer_action_done(struct oxu_hcd *oxu,
691                                         enum ehci_timer_action action)
692 {
693         clear_bit(action, &oxu->actions);
694 }
695
696 static inline void timer_action(struct oxu_hcd *oxu,
697                                         enum ehci_timer_action action)
698 {
699         if (!test_and_set_bit(action, &oxu->actions)) {
700                 unsigned long t;
701
702                 switch (action) {
703                 case TIMER_IAA_WATCHDOG:
704                         t = EHCI_IAA_JIFFIES;
705                         break;
706                 case TIMER_IO_WATCHDOG:
707                         t = EHCI_IO_JIFFIES;
708                         break;
709                 case TIMER_ASYNC_OFF:
710                         t = EHCI_ASYNC_JIFFIES;
711                         break;
712                 case TIMER_ASYNC_SHRINK:
713                 default:
714                         t = EHCI_SHRINK_JIFFIES;
715                         break;
716                 }
717                 t += jiffies;
718                 /* all timings except IAA watchdog can be overridden.
719                  * async queue SHRINK often precedes IAA.  while it's ready
720                  * to go OFF neither can matter, and afterwards the IO
721                  * watchdog stops unless there's still periodic traffic.
722                  */
723                 if (action != TIMER_IAA_WATCHDOG
724                                 && t > oxu->watchdog.expires
725                                 && timer_pending(&oxu->watchdog))
726                         return;
727                 mod_timer(&oxu->watchdog, t);
728         }
729 }
730
731 /*
732  * handshake - spin reading hc until handshake completes or fails
733  * @ptr: address of hc register to be read
734  * @mask: bits to look at in result of read
735  * @done: value of those bits when handshake succeeds
736  * @usec: timeout in microseconds
737  *
738  * Returns negative errno, or zero on success
739  *
740  * Success happens when the "mask" bits have the specified value (hardware
741  * handshake done).  There are two failure modes:  "usec" have passed (major
742  * hardware flakeout), or the register reads as all-ones (hardware removed).
743  *
744  * That last failure should_only happen in cases like physical cardbus eject
745  * before driver shutdown. But it also seems to be caused by bugs in cardbus
746  * bridge shutdown:  shutting down the bridge before the devices using it.
747  */
748 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
749                                         u32 mask, u32 done, int usec)
750 {
751         u32 result;
752         int ret;
753
754         ret = readl_poll_timeout_atomic(ptr, result,
755                                         ((result & mask) == done ||
756                                          result == U32_MAX),
757                                         1, usec);
758         if (result == U32_MAX)          /* card removed */
759                 return -ENODEV;
760
761         return ret;
762 }
763
764 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
765 static int ehci_halt(struct oxu_hcd *oxu)
766 {
767         u32     temp = readl(&oxu->regs->status);
768
769         /* disable any irqs left enabled by previous code */
770         writel(0, &oxu->regs->intr_enable);
771
772         if ((temp & STS_HALT) != 0)
773                 return 0;
774
775         temp = readl(&oxu->regs->command);
776         temp &= ~CMD_RUN;
777         writel(temp, &oxu->regs->command);
778         return handshake(oxu, &oxu->regs->status,
779                           STS_HALT, STS_HALT, 16 * 125);
780 }
781
782 /* Put TDI/ARC silicon into EHCI mode */
783 static void tdi_reset(struct oxu_hcd *oxu)
784 {
785         u32 __iomem *reg_ptr;
786         u32 tmp;
787
788         reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
789         tmp = readl(reg_ptr);
790         tmp |= 0x3;
791         writel(tmp, reg_ptr);
792 }
793
794 /* Reset a non-running (STS_HALT == 1) controller */
795 static int ehci_reset(struct oxu_hcd *oxu)
796 {
797         int     retval;
798         u32     command = readl(&oxu->regs->command);
799
800         command |= CMD_RESET;
801         dbg_cmd(oxu, "reset", command);
802         writel(command, &oxu->regs->command);
803         oxu_to_hcd(oxu)->state = HC_STATE_HALT;
804         oxu->next_statechange = jiffies;
805         retval = handshake(oxu, &oxu->regs->command,
806                             CMD_RESET, 0, 250 * 1000);
807
808         if (retval)
809                 return retval;
810
811         tdi_reset(oxu);
812
813         return retval;
814 }
815
816 /* Idle the controller (from running) */
817 static void ehci_quiesce(struct oxu_hcd *oxu)
818 {
819         u32     temp;
820
821 #ifdef DEBUG
822         BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
823 #endif
824
825         /* wait for any schedule enables/disables to take effect */
826         temp = readl(&oxu->regs->command) << 10;
827         temp &= STS_ASS | STS_PSS;
828         if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
829                                 temp, 16 * 125) != 0) {
830                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
831                 return;
832         }
833
834         /* then disable anything that's still active */
835         temp = readl(&oxu->regs->command);
836         temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
837         writel(temp, &oxu->regs->command);
838
839         /* hardware can take 16 microframes to turn off ... */
840         if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
841                                 0, 16 * 125) != 0) {
842                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
843                 return;
844         }
845 }
846
847 static int check_reset_complete(struct oxu_hcd *oxu, int index,
848                                 u32 __iomem *status_reg, int port_status)
849 {
850         if (!(port_status & PORT_CONNECT)) {
851                 oxu->reset_done[index] = 0;
852                 return port_status;
853         }
854
855         /* if reset finished and it's still not enabled -- handoff */
856         if (!(port_status & PORT_PE)) {
857                 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
858                                 index+1);
859                 return port_status;
860         } else
861                 oxu_dbg(oxu, "port %d high speed\n", index + 1);
862
863         return port_status;
864 }
865
866 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
867                                 struct usb_hub_descriptor *desc)
868 {
869         int ports = HCS_N_PORTS(oxu->hcs_params);
870         u16 temp;
871
872         desc->bDescriptorType = USB_DT_HUB;
873         desc->bPwrOn2PwrGood = 10;      /* oxu 1.0, 2.3.9 says 20ms max */
874         desc->bHubContrCurrent = 0;
875
876         desc->bNbrPorts = ports;
877         temp = 1 + (ports / 8);
878         desc->bDescLength = 7 + 2 * temp;
879
880         /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
881         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
882         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
883
884         temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
885         if (HCS_PPC(oxu->hcs_params))
886                 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
887         else
888                 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
889         desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
890 }
891
892
893 /* Allocate an OXU210HP on-chip memory data buffer
894  *
895  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
896  * Each transfer descriptor has one or more on-chip memory data buffers.
897  *
898  * Data buffers are allocated from a fix sized pool of data blocks.
899  * To minimise fragmentation and give reasonable memory utlisation,
900  * data buffers are allocated with sizes the power of 2 multiples of
901  * the block size, starting on an address a multiple of the allocated size.
902  *
903  * FIXME: callers of this function require a buffer to be allocated for
904  * len=0. This is a waste of on-chip memory and should be fix. Then this
905  * function should be changed to not allocate a buffer for len=0.
906  */
907 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
908 {
909         int n_blocks;   /* minium blocks needed to hold len */
910         int a_blocks;   /* blocks allocated */
911         int i, j;
912
913         /* Don't allocte bigger than supported */
914         if (len > BUFFER_SIZE * BUFFER_NUM) {
915                 oxu_err(oxu, "buffer too big (%d)\n", len);
916                 return -ENOMEM;
917         }
918
919         spin_lock(&oxu->mem_lock);
920
921         /* Number of blocks needed to hold len */
922         n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
923
924         /* Round the number of blocks up to the power of 2 */
925         for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
926                 ;
927
928         /* Find a suitable available data buffer */
929         for (i = 0; i < BUFFER_NUM;
930                         i += max(a_blocks, (int)oxu->db_used[i])) {
931
932                 /* Check all the required blocks are available */
933                 for (j = 0; j < a_blocks; j++)
934                         if (oxu->db_used[i + j])
935                                 break;
936
937                 if (j != a_blocks)
938                         continue;
939
940                 /* Allocate blocks found! */
941                 qtd->buffer = (void *) &oxu->mem->db_pool[i];
942                 qtd->buffer_dma = virt_to_phys(qtd->buffer);
943
944                 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
945                 oxu->db_used[i] = a_blocks;
946
947                 spin_unlock(&oxu->mem_lock);
948
949                 return 0;
950         }
951
952         /* Failed */
953
954         spin_unlock(&oxu->mem_lock);
955
956         return -ENOMEM;
957 }
958
959 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
960 {
961         int index;
962
963         spin_lock(&oxu->mem_lock);
964
965         index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
966                                                          / BUFFER_SIZE;
967         oxu->db_used[index] = 0;
968         qtd->qtd_buffer_len = 0;
969         qtd->buffer_dma = 0;
970         qtd->buffer = NULL;
971
972         spin_unlock(&oxu->mem_lock);
973 }
974
975 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
976 {
977         memset(qtd, 0, sizeof *qtd);
978         qtd->qtd_dma = dma;
979         qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
980         qtd->hw_next = EHCI_LIST_END;
981         qtd->hw_alt_next = EHCI_LIST_END;
982         INIT_LIST_HEAD(&qtd->qtd_list);
983 }
984
985 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
986 {
987         int index;
988
989         if (qtd->buffer)
990                 oxu_buf_free(oxu, qtd);
991
992         spin_lock(&oxu->mem_lock);
993
994         index = qtd - &oxu->mem->qtd_pool[0];
995         oxu->qtd_used[index] = 0;
996
997         spin_unlock(&oxu->mem_lock);
998 }
999
1000 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
1001 {
1002         int i;
1003         struct ehci_qtd *qtd = NULL;
1004
1005         spin_lock(&oxu->mem_lock);
1006
1007         for (i = 0; i < QTD_NUM; i++)
1008                 if (!oxu->qtd_used[i])
1009                         break;
1010
1011         if (i < QTD_NUM) {
1012                 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
1013                 memset(qtd, 0, sizeof *qtd);
1014
1015                 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
1016                 qtd->hw_next = EHCI_LIST_END;
1017                 qtd->hw_alt_next = EHCI_LIST_END;
1018                 INIT_LIST_HEAD(&qtd->qtd_list);
1019
1020                 qtd->qtd_dma = virt_to_phys(qtd);
1021
1022                 oxu->qtd_used[i] = 1;
1023         }
1024
1025         spin_unlock(&oxu->mem_lock);
1026
1027         return qtd;
1028 }
1029
1030 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1031 {
1032         int index;
1033
1034         spin_lock(&oxu->mem_lock);
1035
1036         index = qh - &oxu->mem->qh_pool[0];
1037         oxu->qh_used[index] = 0;
1038
1039         spin_unlock(&oxu->mem_lock);
1040 }
1041
1042 static void qh_destroy(struct kref *kref)
1043 {
1044         struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1045         struct oxu_hcd *oxu = qh->oxu;
1046
1047         /* clean qtds first, and know this is not linked */
1048         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1049                 oxu_dbg(oxu, "unused qh not empty!\n");
1050                 BUG();
1051         }
1052         if (qh->dummy)
1053                 oxu_qtd_free(oxu, qh->dummy);
1054         oxu_qh_free(oxu, qh);
1055 }
1056
1057 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1058 {
1059         int i;
1060         struct ehci_qh *qh = NULL;
1061
1062         spin_lock(&oxu->mem_lock);
1063
1064         for (i = 0; i < QHEAD_NUM; i++)
1065                 if (!oxu->qh_used[i])
1066                         break;
1067
1068         if (i < QHEAD_NUM) {
1069                 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1070                 memset(qh, 0, sizeof *qh);
1071
1072                 kref_init(&qh->kref);
1073                 qh->oxu = oxu;
1074                 qh->qh_dma = virt_to_phys(qh);
1075                 INIT_LIST_HEAD(&qh->qtd_list);
1076
1077                 /* dummy td enables safe urb queuing */
1078                 qh->dummy = ehci_qtd_alloc(oxu);
1079                 if (qh->dummy == NULL) {
1080                         oxu_dbg(oxu, "no dummy td\n");
1081                         oxu->qh_used[i] = 0;
1082                         qh = NULL;
1083                         goto unlock;
1084                 }
1085
1086                 oxu->qh_used[i] = 1;
1087         }
1088 unlock:
1089         spin_unlock(&oxu->mem_lock);
1090
1091         return qh;
1092 }
1093
1094 /* to share a qh (cpu threads, or hc) */
1095 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1096 {
1097         kref_get(&qh->kref);
1098         return qh;
1099 }
1100
1101 static inline void qh_put(struct ehci_qh *qh)
1102 {
1103         kref_put(&qh->kref, qh_destroy);
1104 }
1105
1106 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1107 {
1108         int index;
1109
1110         spin_lock(&oxu->mem_lock);
1111
1112         index = murb - &oxu->murb_pool[0];
1113         oxu->murb_used[index] = 0;
1114
1115         spin_unlock(&oxu->mem_lock);
1116 }
1117
1118 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1119
1120 {
1121         int i;
1122         struct oxu_murb *murb = NULL;
1123
1124         spin_lock(&oxu->mem_lock);
1125
1126         for (i = 0; i < MURB_NUM; i++)
1127                 if (!oxu->murb_used[i])
1128                         break;
1129
1130         if (i < MURB_NUM) {
1131                 murb = &(oxu->murb_pool)[i];
1132
1133                 oxu->murb_used[i] = 1;
1134         }
1135
1136         spin_unlock(&oxu->mem_lock);
1137
1138         return murb;
1139 }
1140
1141 /* The queue heads and transfer descriptors are managed from pools tied
1142  * to each of the "per device" structures.
1143  * This is the initialisation and cleanup code.
1144  */
1145 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1146 {
1147         kfree(oxu->murb_pool);
1148         oxu->murb_pool = NULL;
1149
1150         if (oxu->async)
1151                 qh_put(oxu->async);
1152         oxu->async = NULL;
1153
1154         del_timer(&oxu->urb_timer);
1155
1156         oxu->periodic = NULL;
1157
1158         /* shadow periodic table */
1159         kfree(oxu->pshadow);
1160         oxu->pshadow = NULL;
1161 }
1162
1163 /* Remember to add cleanup code (above) if you add anything here.
1164  */
1165 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1166 {
1167         int i;
1168
1169         for (i = 0; i < oxu->periodic_size; i++)
1170                 oxu->mem->frame_list[i] = EHCI_LIST_END;
1171         for (i = 0; i < QHEAD_NUM; i++)
1172                 oxu->qh_used[i] = 0;
1173         for (i = 0; i < QTD_NUM; i++)
1174                 oxu->qtd_used[i] = 0;
1175
1176         oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1177         if (!oxu->murb_pool)
1178                 goto fail;
1179
1180         for (i = 0; i < MURB_NUM; i++)
1181                 oxu->murb_used[i] = 0;
1182
1183         oxu->async = oxu_qh_alloc(oxu);
1184         if (!oxu->async)
1185                 goto fail;
1186
1187         oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1188         oxu->periodic_dma = virt_to_phys(oxu->periodic);
1189
1190         for (i = 0; i < oxu->periodic_size; i++)
1191                 oxu->periodic[i] = EHCI_LIST_END;
1192
1193         /* software shadow of hardware table */
1194         oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1195         if (oxu->pshadow != NULL)
1196                 return 0;
1197
1198 fail:
1199         oxu_dbg(oxu, "couldn't init memory\n");
1200         ehci_mem_cleanup(oxu);
1201         return -ENOMEM;
1202 }
1203
1204 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1205  */
1206 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1207                                 int token, int maxpacket)
1208 {
1209         int i, count;
1210         u64 addr = buf;
1211
1212         /* one buffer entry per 4K ... first might be short or unaligned */
1213         qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1214         qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1215         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
1216         if (likely(len < count))                /* ... iff needed */
1217                 count = len;
1218         else {
1219                 buf +=  0x1000;
1220                 buf &= ~0x0fff;
1221
1222                 /* per-qtd limit: from 16K to 20K (best alignment) */
1223                 for (i = 1; count < len && i < 5; i++) {
1224                         addr = buf;
1225                         qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1226                         qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1227                         buf += 0x1000;
1228                         if ((count + 0x1000) < len)
1229                                 count += 0x1000;
1230                         else
1231                                 count = len;
1232                 }
1233
1234                 /* short packets may only terminate transfers */
1235                 if (count != len)
1236                         count -= (count % maxpacket);
1237         }
1238         qtd->hw_token = cpu_to_le32((count << 16) | token);
1239         qtd->length = count;
1240
1241         return count;
1242 }
1243
1244 static inline void qh_update(struct oxu_hcd *oxu,
1245                                 struct ehci_qh *qh, struct ehci_qtd *qtd)
1246 {
1247         /* writes to an active overlay are unsafe */
1248         BUG_ON(qh->qh_state != QH_STATE_IDLE);
1249
1250         qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1251         qh->hw_alt_next = EHCI_LIST_END;
1252
1253         /* Except for control endpoints, we make hardware maintain data
1254          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1255          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1256          * ever clear it.
1257          */
1258         if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1259                 unsigned        is_out, epnum;
1260
1261                 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1262                 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1263                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1264                         qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1265                         usb_settoggle(qh->dev, epnum, is_out, 1);
1266                 }
1267         }
1268
1269         /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1270         wmb();
1271         qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1272 }
1273
1274 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1275  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1276  * recovery (including urb dequeue) would need software changes to a QH...
1277  */
1278 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1279 {
1280         struct ehci_qtd *qtd;
1281
1282         if (list_empty(&qh->qtd_list))
1283                 qtd = qh->dummy;
1284         else {
1285                 qtd = list_entry(qh->qtd_list.next,
1286                                 struct ehci_qtd, qtd_list);
1287                 /* first qtd may already be partially processed */
1288                 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1289                         qtd = NULL;
1290         }
1291
1292         if (qtd)
1293                 qh_update(oxu, qh, qtd);
1294 }
1295
1296 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1297                                 size_t length, u32 token)
1298 {
1299         /* count IN/OUT bytes, not SETUP (even short packets) */
1300         if (likely(QTD_PID(token) != 2))
1301                 urb->actual_length += length - QTD_LENGTH(token);
1302
1303         /* don't modify error codes */
1304         if (unlikely(urb->status != -EINPROGRESS))
1305                 return;
1306
1307         /* force cleanup after short read; not always an error */
1308         if (unlikely(IS_SHORT_READ(token)))
1309                 urb->status = -EREMOTEIO;
1310
1311         /* serious "can't proceed" faults reported by the hardware */
1312         if (token & QTD_STS_HALT) {
1313                 if (token & QTD_STS_BABBLE) {
1314                         /* FIXME "must" disable babbling device's port too */
1315                         urb->status = -EOVERFLOW;
1316                 } else if (token & QTD_STS_MMF) {
1317                         /* fs/ls interrupt xfer missed the complete-split */
1318                         urb->status = -EPROTO;
1319                 } else if (token & QTD_STS_DBE) {
1320                         urb->status = (QTD_PID(token) == 1) /* IN ? */
1321                                 ? -ENOSR  /* hc couldn't read data */
1322                                 : -ECOMM; /* hc couldn't write data */
1323                 } else if (token & QTD_STS_XACT) {
1324                         /* timeout, bad crc, wrong PID, etc; retried */
1325                         if (QTD_CERR(token))
1326                                 urb->status = -EPIPE;
1327                         else {
1328                                 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1329                                         urb->dev->devpath,
1330                                         usb_pipeendpoint(urb->pipe),
1331                                         usb_pipein(urb->pipe) ? "in" : "out");
1332                                 urb->status = -EPROTO;
1333                         }
1334                 /* CERR nonzero + no errors + halt --> stall */
1335                 } else if (QTD_CERR(token))
1336                         urb->status = -EPIPE;
1337                 else    /* unknown */
1338                         urb->status = -EPROTO;
1339
1340                 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1341                         usb_pipedevice(urb->pipe),
1342                         usb_pipeendpoint(urb->pipe),
1343                         usb_pipein(urb->pipe) ? "in" : "out",
1344                         token, urb->status);
1345         }
1346 }
1347
1348 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1349 __releases(oxu->lock)
1350 __acquires(oxu->lock)
1351 {
1352         if (likely(urb->hcpriv != NULL)) {
1353                 struct ehci_qh  *qh = (struct ehci_qh *) urb->hcpriv;
1354
1355                 /* S-mask in a QH means it's an interrupt urb */
1356                 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1357
1358                         /* ... update hc-wide periodic stats (for usbfs) */
1359                         oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1360                 }
1361                 qh_put(qh);
1362         }
1363
1364         urb->hcpriv = NULL;
1365         switch (urb->status) {
1366         case -EINPROGRESS:              /* success */
1367                 urb->status = 0;
1368                 break;
1369         default:                        /* fault */
1370                 break;
1371         case -EREMOTEIO:                /* fault or normal */
1372                 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1373                         urb->status = 0;
1374                 break;
1375         case -ECONNRESET:               /* canceled */
1376         case -ENOENT:
1377                 break;
1378         }
1379
1380 #ifdef OXU_URB_TRACE
1381         oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382                 __func__, urb->dev->devpath, urb,
1383                 usb_pipeendpoint(urb->pipe),
1384                 usb_pipein(urb->pipe) ? "in" : "out",
1385                 urb->status,
1386                 urb->actual_length, urb->transfer_buffer_length);
1387 #endif
1388
1389         /* complete() can reenter this HCD */
1390         spin_unlock(&oxu->lock);
1391         usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1392         spin_lock(&oxu->lock);
1393 }
1394
1395 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1396 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1397
1398 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1399 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1400
1401 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1402
1403 /* Process and free completed qtds for a qh, returning URBs to drivers.
1404  * Chases up to qh->hw_current.  Returns number of completions called,
1405  * indicating how much "real" work we did.
1406  */
1407 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1408 {
1409         struct ehci_qtd *last = NULL, *end = qh->dummy;
1410         struct ehci_qtd *qtd, *tmp;
1411         int stopped;
1412         unsigned count = 0;
1413         int do_status = 0;
1414         u8 state;
1415         struct oxu_murb *murb = NULL;
1416
1417         if (unlikely(list_empty(&qh->qtd_list)))
1418                 return count;
1419
1420         /* completions (or tasks on other cpus) must never clobber HALT
1421          * till we've gone through and cleaned everything up, even when
1422          * they add urbs to this qh's queue or mark them for unlinking.
1423          *
1424          * NOTE:  unlinking expects to be done in queue order.
1425          */
1426         state = qh->qh_state;
1427         qh->qh_state = QH_STATE_COMPLETING;
1428         stopped = (state == QH_STATE_IDLE);
1429
1430         /* remove de-activated QTDs from front of queue.
1431          * after faults (including short reads), cleanup this urb
1432          * then let the queue advance.
1433          * if queue is stopped, handles unlinks.
1434          */
1435         list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1436                 struct urb *urb;
1437                 u32 token = 0;
1438
1439                 urb = qtd->urb;
1440
1441                 /* Clean up any state from previous QTD ...*/
1442                 if (last) {
1443                         if (likely(last->urb != urb)) {
1444                                 if (last->urb->complete == NULL) {
1445                                         murb = (struct oxu_murb *) last->urb;
1446                                         last->urb = murb->main;
1447                                         if (murb->last) {
1448                                                 ehci_urb_done(oxu, last->urb);
1449                                                 count++;
1450                                         }
1451                                         oxu_murb_free(oxu, murb);
1452                                 } else {
1453                                         ehci_urb_done(oxu, last->urb);
1454                                         count++;
1455                                 }
1456                         }
1457                         oxu_qtd_free(oxu, last);
1458                         last = NULL;
1459                 }
1460
1461                 /* ignore urbs submitted during completions we reported */
1462                 if (qtd == end)
1463                         break;
1464
1465                 /* hardware copies qtd out of qh overlay */
1466                 rmb();
1467                 token = le32_to_cpu(qtd->hw_token);
1468
1469                 /* always clean up qtds the hc de-activated */
1470                 if ((token & QTD_STS_ACTIVE) == 0) {
1471
1472                         if ((token & QTD_STS_HALT) != 0) {
1473                                 stopped = 1;
1474
1475                         /* magic dummy for some short reads; qh won't advance.
1476                          * that silicon quirk can kick in with this dummy too.
1477                          */
1478                         } else if (IS_SHORT_READ(token) &&
1479                                         !(qtd->hw_alt_next & EHCI_LIST_END)) {
1480                                 stopped = 1;
1481                                 goto halt;
1482                         }
1483
1484                 /* stop scanning when we reach qtds the hc is using */
1485                 } else if (likely(!stopped &&
1486                                 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1487                         break;
1488
1489                 } else {
1490                         stopped = 1;
1491
1492                         if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1493                                 urb->status = -ESHUTDOWN;
1494
1495                         /* ignore active urbs unless some previous qtd
1496                          * for the urb faulted (including short read) or
1497                          * its urb was canceled.  we may patch qh or qtds.
1498                          */
1499                         if (likely(urb->status == -EINPROGRESS))
1500                                 continue;
1501
1502                         /* issue status after short control reads */
1503                         if (unlikely(do_status != 0)
1504                                         && QTD_PID(token) == 0 /* OUT */) {
1505                                 do_status = 0;
1506                                 continue;
1507                         }
1508
1509                         /* token in overlay may be most current */
1510                         if (state == QH_STATE_IDLE
1511                                         && cpu_to_le32(qtd->qtd_dma)
1512                                                 == qh->hw_current)
1513                                 token = le32_to_cpu(qh->hw_token);
1514
1515                         /* force halt for unlinked or blocked qh, so we'll
1516                          * patch the qh later and so that completions can't
1517                          * activate it while we "know" it's stopped.
1518                          */
1519                         if ((HALT_BIT & qh->hw_token) == 0) {
1520 halt:
1521                                 qh->hw_token |= HALT_BIT;
1522                                 wmb();
1523                         }
1524                 }
1525
1526                 /* Remove it from the queue */
1527                 qtd_copy_status(oxu, urb->complete ?
1528                                         urb : ((struct oxu_murb *) urb)->main,
1529                                 qtd->length, token);
1530                 if ((usb_pipein(qtd->urb->pipe)) &&
1531                                 (NULL != qtd->transfer_buffer))
1532                         memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1533                 do_status = (urb->status == -EREMOTEIO)
1534                                 && usb_pipecontrol(urb->pipe);
1535
1536                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1537                         last = list_entry(qtd->qtd_list.prev,
1538                                         struct ehci_qtd, qtd_list);
1539                         last->hw_next = qtd->hw_next;
1540                 }
1541                 list_del(&qtd->qtd_list);
1542                 last = qtd;
1543         }
1544
1545         /* last urb's completion might still need calling */
1546         if (likely(last != NULL)) {
1547                 if (last->urb->complete == NULL) {
1548                         murb = (struct oxu_murb *) last->urb;
1549                         last->urb = murb->main;
1550                         if (murb->last) {
1551                                 ehci_urb_done(oxu, last->urb);
1552                                 count++;
1553                         }
1554                         oxu_murb_free(oxu, murb);
1555                 } else {
1556                         ehci_urb_done(oxu, last->urb);
1557                         count++;
1558                 }
1559                 oxu_qtd_free(oxu, last);
1560         }
1561
1562         /* restore original state; caller must unlink or relink */
1563         qh->qh_state = state;
1564
1565         /* be sure the hardware's done with the qh before refreshing
1566          * it after fault cleanup, or recovering from silicon wrongly
1567          * overlaying the dummy qtd (which reduces DMA chatter).
1568          */
1569         if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1570                 switch (state) {
1571                 case QH_STATE_IDLE:
1572                         qh_refresh(oxu, qh);
1573                         break;
1574                 case QH_STATE_LINKED:
1575                         /* should be rare for periodic transfers,
1576                          * except maybe high bandwidth ...
1577                          */
1578                         if ((cpu_to_le32(QH_SMASK)
1579                                         & qh->hw_info2) != 0) {
1580                                 intr_deschedule(oxu, qh);
1581                                 (void) qh_schedule(oxu, qh);
1582                         } else
1583                                 unlink_async(oxu, qh);
1584                         break;
1585                 /* otherwise, unlink already started */
1586                 }
1587         }
1588
1589         return count;
1590 }
1591
1592 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593 #define hb_mult(wMaxPacketSize)         (1 + (((wMaxPacketSize) >> 11) & 0x03))
1594 /* ... and packet size, for any kind of endpoint descriptor */
1595 #define max_packet(wMaxPacketSize)      ((wMaxPacketSize) & 0x07ff)
1596
1597 /* Reverse of qh_urb_transaction: free a list of TDs.
1598  * used for cleanup after errors, before HC sees an URB's TDs.
1599  */
1600 static void qtd_list_free(struct oxu_hcd *oxu,
1601                                 struct urb *urb, struct list_head *head)
1602 {
1603         struct ehci_qtd *qtd, *temp;
1604
1605         list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1606                 list_del(&qtd->qtd_list);
1607                 oxu_qtd_free(oxu, qtd);
1608         }
1609 }
1610
1611 /* Create a list of filled qtds for this URB; won't link into qh.
1612  */
1613 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1614                                                 struct urb *urb,
1615                                                 struct list_head *head,
1616                                                 gfp_t flags)
1617 {
1618         struct ehci_qtd *qtd, *qtd_prev;
1619         dma_addr_t buf;
1620         int len, maxpacket;
1621         int is_input;
1622         u32 token;
1623         void *transfer_buf = NULL;
1624         int ret;
1625
1626         /*
1627          * URBs map to sequences of QTDs: one logical transaction
1628          */
1629         qtd = ehci_qtd_alloc(oxu);
1630         if (unlikely(!qtd))
1631                 return NULL;
1632         list_add_tail(&qtd->qtd_list, head);
1633         qtd->urb = urb;
1634
1635         token = QTD_STS_ACTIVE;
1636         token |= (EHCI_TUNE_CERR << 10);
1637         /* for split transactions, SplitXState initialized to zero */
1638
1639         len = urb->transfer_buffer_length;
1640         is_input = usb_pipein(urb->pipe);
1641         if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1642                 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1643
1644         if (usb_pipecontrol(urb->pipe)) {
1645                 /* SETUP pid */
1646                 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1647                 if (ret)
1648                         goto cleanup;
1649
1650                 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1651                                 token | (2 /* "setup" */ << 8), 8);
1652                 memcpy(qtd->buffer, qtd->urb->setup_packet,
1653                                 sizeof(struct usb_ctrlrequest));
1654
1655                 /* ... and always at least one more pid */
1656                 token ^= QTD_TOGGLE;
1657                 qtd_prev = qtd;
1658                 qtd = ehci_qtd_alloc(oxu);
1659                 if (unlikely(!qtd))
1660                         goto cleanup;
1661                 qtd->urb = urb;
1662                 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1663                 list_add_tail(&qtd->qtd_list, head);
1664
1665                 /* for zero length DATA stages, STATUS is always IN */
1666                 if (len == 0)
1667                         token |= (1 /* "in" */ << 8);
1668         }
1669
1670         /*
1671          * Data transfer stage: buffer setup
1672          */
1673
1674         ret = oxu_buf_alloc(oxu, qtd, len);
1675         if (ret)
1676                 goto cleanup;
1677
1678         buf = qtd->buffer_dma;
1679         transfer_buf = urb->transfer_buffer;
1680
1681         if (!is_input)
1682                 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1683
1684         if (is_input)
1685                 token |= (1 /* "in" */ << 8);
1686         /* else it's already initted to "out" pid (0 << 8) */
1687
1688         maxpacket = usb_maxpacket(urb->dev, urb->pipe);
1689
1690         /*
1691          * buffer gets wrapped in one or more qtds;
1692          * last one may be "short" (including zero len)
1693          * and may serve as a control status ack
1694          */
1695         for (;;) {
1696                 int this_qtd_len;
1697
1698                 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1699                 qtd->transfer_buffer = transfer_buf;
1700                 len -= this_qtd_len;
1701                 buf += this_qtd_len;
1702                 transfer_buf += this_qtd_len;
1703                 if (is_input)
1704                         qtd->hw_alt_next = oxu->async->hw_alt_next;
1705
1706                 /* qh makes control packets use qtd toggle; maybe switch it */
1707                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1708                         token ^= QTD_TOGGLE;
1709
1710                 if (likely(len <= 0))
1711                         break;
1712
1713                 qtd_prev = qtd;
1714                 qtd = ehci_qtd_alloc(oxu);
1715                 if (unlikely(!qtd))
1716                         goto cleanup;
1717                 if (likely(len > 0)) {
1718                         ret = oxu_buf_alloc(oxu, qtd, len);
1719                         if (ret)
1720                                 goto cleanup;
1721                 }
1722                 qtd->urb = urb;
1723                 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1724                 list_add_tail(&qtd->qtd_list, head);
1725         }
1726
1727         /* unless the bulk/interrupt caller wants a chance to clean
1728          * up after short reads, hc should advance qh past this urb
1729          */
1730         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1731                                 || usb_pipecontrol(urb->pipe)))
1732                 qtd->hw_alt_next = EHCI_LIST_END;
1733
1734         /*
1735          * control requests may need a terminating data "status" ack;
1736          * bulk ones may need a terminating short packet (zero length).
1737          */
1738         if (likely(urb->transfer_buffer_length != 0)) {
1739                 int     one_more = 0;
1740
1741                 if (usb_pipecontrol(urb->pipe)) {
1742                         one_more = 1;
1743                         token ^= 0x0100;        /* "in" <--> "out"  */
1744                         token |= QTD_TOGGLE;    /* force DATA1 */
1745                 } else if (usb_pipebulk(urb->pipe)
1746                                 && (urb->transfer_flags & URB_ZERO_PACKET)
1747                                 && !(urb->transfer_buffer_length % maxpacket)) {
1748                         one_more = 1;
1749                 }
1750                 if (one_more) {
1751                         qtd_prev = qtd;
1752                         qtd = ehci_qtd_alloc(oxu);
1753                         if (unlikely(!qtd))
1754                                 goto cleanup;
1755                         qtd->urb = urb;
1756                         qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1757                         list_add_tail(&qtd->qtd_list, head);
1758
1759                         /* never any data in such packets */
1760                         qtd_fill(qtd, 0, 0, token, 0);
1761                 }
1762         }
1763
1764         /* by default, enable interrupt on urb completion */
1765         qtd->hw_token |= cpu_to_le32(QTD_IOC);
1766         return head;
1767
1768 cleanup:
1769         qtd_list_free(oxu, urb, head);
1770         return NULL;
1771 }
1772
1773 /* Each QH holds a qtd list; a QH is used for everything except iso.
1774  *
1775  * For interrupt urbs, the scheduler must set the microframe scheduling
1776  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1777  * just one microframe in the s-mask.  For split interrupt transactions
1778  * there are additional complications: c-mask, maybe FSTNs.
1779  */
1780 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1781                                 struct urb *urb, gfp_t flags)
1782 {
1783         struct ehci_qh *qh = oxu_qh_alloc(oxu);
1784         u32 info1 = 0, info2 = 0;
1785         int is_input, type;
1786         int maxp = 0;
1787
1788         if (!qh)
1789                 return qh;
1790
1791         /*
1792          * init endpoint/device data for this QH
1793          */
1794         info1 |= usb_pipeendpoint(urb->pipe) << 8;
1795         info1 |= usb_pipedevice(urb->pipe) << 0;
1796
1797         is_input = usb_pipein(urb->pipe);
1798         type = usb_pipetype(urb->pipe);
1799         maxp = usb_maxpacket(urb->dev, urb->pipe);
1800
1801         /* Compute interrupt scheduling parameters just once, and save.
1802          * - allowing for high bandwidth, how many nsec/uframe are used?
1803          * - split transactions need a second CSPLIT uframe; same question
1804          * - splits also need a schedule gap (for full/low speed I/O)
1805          * - qh has a polling interval
1806          *
1807          * For control/bulk requests, the HC or TT handles these.
1808          */
1809         if (type == PIPE_INTERRUPT) {
1810                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1811                                                                 is_input, 0,
1812                                 hb_mult(maxp) * max_packet(maxp)));
1813                 qh->start = NO_FRAME;
1814
1815                 if (urb->dev->speed == USB_SPEED_HIGH) {
1816                         qh->c_usecs = 0;
1817                         qh->gap_uf = 0;
1818
1819                         qh->period = urb->interval >> 3;
1820                         if (qh->period == 0 && urb->interval != 1) {
1821                                 /* NOTE interval 2 or 4 uframes could work.
1822                                  * But interval 1 scheduling is simpler, and
1823                                  * includes high bandwidth.
1824                                  */
1825                                 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1826                                         urb->interval);
1827                                 goto done;
1828                         }
1829                 } else {
1830                         struct usb_tt   *tt = urb->dev->tt;
1831                         int             think_time;
1832
1833                         /* gap is f(FS/LS transfer times) */
1834                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1835                                         is_input, 0, maxp) / (125 * 1000);
1836
1837                         /* FIXME this just approximates SPLIT/CSPLIT times */
1838                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
1839                                 qh->c_usecs = qh->usecs + HS_USECS(0);
1840                                 qh->usecs = HS_USECS(1);
1841                         } else {                /* SPLIT+DATA, gap, CSPLIT */
1842                                 qh->usecs += HS_USECS(1);
1843                                 qh->c_usecs = HS_USECS(0);
1844                         }
1845
1846                         think_time = tt ? tt->think_time : 0;
1847                         qh->tt_usecs = NS_TO_US(think_time +
1848                                         usb_calc_bus_time(urb->dev->speed,
1849                                         is_input, 0, max_packet(maxp)));
1850                         qh->period = urb->interval;
1851                 }
1852         }
1853
1854         /* support for tt scheduling, and access to toggles */
1855         qh->dev = urb->dev;
1856
1857         /* using TT? */
1858         switch (urb->dev->speed) {
1859         case USB_SPEED_LOW:
1860                 info1 |= (1 << 12);     /* EPS "low" */
1861                 fallthrough;
1862
1863         case USB_SPEED_FULL:
1864                 /* EPS 0 means "full" */
1865                 if (type != PIPE_INTERRUPT)
1866                         info1 |= (EHCI_TUNE_RL_TT << 28);
1867                 if (type == PIPE_CONTROL) {
1868                         info1 |= (1 << 27);     /* for TT */
1869                         info1 |= 1 << 14;       /* toggle from qtd */
1870                 }
1871                 info1 |= maxp << 16;
1872
1873                 info2 |= (EHCI_TUNE_MULT_TT << 30);
1874                 info2 |= urb->dev->ttport << 23;
1875
1876                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1877
1878                 break;
1879
1880         case USB_SPEED_HIGH:            /* no TT involved */
1881                 info1 |= (2 << 12);     /* EPS "high" */
1882                 if (type == PIPE_CONTROL) {
1883                         info1 |= (EHCI_TUNE_RL_HS << 28);
1884                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
1885                         info1 |= 1 << 14;       /* toggle from qtd */
1886                         info2 |= (EHCI_TUNE_MULT_HS << 30);
1887                 } else if (type == PIPE_BULK) {
1888                         info1 |= (EHCI_TUNE_RL_HS << 28);
1889                         info1 |= 512 << 16;     /* usb2 fixed maxpacket */
1890                         info2 |= (EHCI_TUNE_MULT_HS << 30);
1891                 } else {                /* PIPE_INTERRUPT */
1892                         info1 |= max_packet(maxp) << 16;
1893                         info2 |= hb_mult(maxp) << 30;
1894                 }
1895                 break;
1896         default:
1897                 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1898 done:
1899                 qh_put(qh);
1900                 return NULL;
1901         }
1902
1903         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1904
1905         /* init as live, toggle clear, advance to dummy */
1906         qh->qh_state = QH_STATE_IDLE;
1907         qh->hw_info1 = cpu_to_le32(info1);
1908         qh->hw_info2 = cpu_to_le32(info2);
1909         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1910         qh_refresh(oxu, qh);
1911         return qh;
1912 }
1913
1914 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1915  */
1916 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1917 {
1918         __le32 dma = QH_NEXT(qh->qh_dma);
1919         struct ehci_qh *head;
1920
1921         /* (re)start the async schedule? */
1922         head = oxu->async;
1923         timer_action_done(oxu, TIMER_ASYNC_OFF);
1924         if (!head->qh_next.qh) {
1925                 u32     cmd = readl(&oxu->regs->command);
1926
1927                 if (!(cmd & CMD_ASE)) {
1928                         /* in case a clear of CMD_ASE didn't take yet */
1929                         (void)handshake(oxu, &oxu->regs->status,
1930                                         STS_ASS, 0, 150);
1931                         cmd |= CMD_ASE | CMD_RUN;
1932                         writel(cmd, &oxu->regs->command);
1933                         oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1934                         /* posted write need not be known to HC yet ... */
1935                 }
1936         }
1937
1938         /* clear halt and/or toggle; and maybe recover from silicon quirk */
1939         if (qh->qh_state == QH_STATE_IDLE)
1940                 qh_refresh(oxu, qh);
1941
1942         /* splice right after start */
1943         qh->qh_next = head->qh_next;
1944         qh->hw_next = head->hw_next;
1945         wmb();
1946
1947         head->qh_next.qh = qh;
1948         head->hw_next = dma;
1949
1950         qh->qh_state = QH_STATE_LINKED;
1951         /* qtd completions reported later by interrupt */
1952 }
1953
1954 #define QH_ADDR_MASK    cpu_to_le32(0x7f)
1955
1956 /*
1957  * For control/bulk/interrupt, return QH with these TDs appended.
1958  * Allocates and initializes the QH if necessary.
1959  * Returns null if it can't allocate a QH it needs to.
1960  * If the QH has TDs (urbs) already, that's great.
1961  */
1962 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1963                                 struct urb *urb, struct list_head *qtd_list,
1964                                 int epnum, void **ptr)
1965 {
1966         struct ehci_qh *qh = NULL;
1967
1968         qh = (struct ehci_qh *) *ptr;
1969         if (unlikely(qh == NULL)) {
1970                 /* can't sleep here, we have oxu->lock... */
1971                 qh = qh_make(oxu, urb, GFP_ATOMIC);
1972                 *ptr = qh;
1973         }
1974         if (likely(qh != NULL)) {
1975                 struct ehci_qtd *qtd;
1976
1977                 if (unlikely(list_empty(qtd_list)))
1978                         qtd = NULL;
1979                 else
1980                         qtd = list_entry(qtd_list->next, struct ehci_qtd,
1981                                         qtd_list);
1982
1983                 /* control qh may need patching ... */
1984                 if (unlikely(epnum == 0)) {
1985
1986                         /* usb_reset_device() briefly reverts to address 0 */
1987                         if (usb_pipedevice(urb->pipe) == 0)
1988                                 qh->hw_info1 &= ~QH_ADDR_MASK;
1989                 }
1990
1991                 /* just one way to queue requests: swap with the dummy qtd.
1992                  * only hc or qh_refresh() ever modify the overlay.
1993                  */
1994                 if (likely(qtd != NULL)) {
1995                         struct ehci_qtd *dummy;
1996                         dma_addr_t dma;
1997                         __le32 token;
1998
1999                         /* to avoid racing the HC, use the dummy td instead of
2000                          * the first td of our list (becomes new dummy).  both
2001                          * tds stay deactivated until we're done, when the
2002                          * HC is allowed to fetch the old dummy (4.10.2).
2003                          */
2004                         token = qtd->hw_token;
2005                         qtd->hw_token = HALT_BIT;
2006                         wmb();
2007                         dummy = qh->dummy;
2008
2009                         dma = dummy->qtd_dma;
2010                         *dummy = *qtd;
2011                         dummy->qtd_dma = dma;
2012
2013                         list_del(&qtd->qtd_list);
2014                         list_add(&dummy->qtd_list, qtd_list);
2015                         list_splice(qtd_list, qh->qtd_list.prev);
2016
2017                         ehci_qtd_init(qtd, qtd->qtd_dma);
2018                         qh->dummy = qtd;
2019
2020                         /* hc must see the new dummy at list end */
2021                         dma = qtd->qtd_dma;
2022                         qtd = list_entry(qh->qtd_list.prev,
2023                                         struct ehci_qtd, qtd_list);
2024                         qtd->hw_next = QTD_NEXT(dma);
2025
2026                         /* let the hc process these next qtds */
2027                         dummy->hw_token = (token & ~(0x80));
2028                         wmb();
2029                         dummy->hw_token = token;
2030
2031                         urb->hcpriv = qh_get(qh);
2032                 }
2033         }
2034         return qh;
2035 }
2036
2037 static int submit_async(struct oxu_hcd  *oxu, struct urb *urb,
2038                         struct list_head *qtd_list, gfp_t mem_flags)
2039 {
2040         int epnum = urb->ep->desc.bEndpointAddress;
2041         unsigned long flags;
2042         struct ehci_qh *qh = NULL;
2043         int rc = 0;
2044 #ifdef OXU_URB_TRACE
2045         struct ehci_qtd *qtd;
2046
2047         qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2048
2049         oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2050                 __func__, urb->dev->devpath, urb,
2051                 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2052                 urb->transfer_buffer_length,
2053                 qtd, urb->ep->hcpriv);
2054 #endif
2055
2056         spin_lock_irqsave(&oxu->lock, flags);
2057         if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2058                 rc = -ESHUTDOWN;
2059                 goto done;
2060         }
2061
2062         qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2063         if (unlikely(qh == NULL)) {
2064                 rc = -ENOMEM;
2065                 goto done;
2066         }
2067
2068         /* Control/bulk operations through TTs don't need scheduling,
2069          * the HC and TT handle it when the TT has a buffer ready.
2070          */
2071         if (likely(qh->qh_state == QH_STATE_IDLE))
2072                 qh_link_async(oxu, qh_get(qh));
2073 done:
2074         spin_unlock_irqrestore(&oxu->lock, flags);
2075         if (unlikely(qh == NULL))
2076                 qtd_list_free(oxu, urb, qtd_list);
2077         return rc;
2078 }
2079
2080 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2081
2082 static void end_unlink_async(struct oxu_hcd *oxu)
2083 {
2084         struct ehci_qh *qh = oxu->reclaim;
2085         struct ehci_qh *next;
2086
2087         timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2088
2089         qh->qh_state = QH_STATE_IDLE;
2090         qh->qh_next.qh = NULL;
2091         qh_put(qh);                     /* refcount from reclaim */
2092
2093         /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2094         next = qh->reclaim;
2095         oxu->reclaim = next;
2096         oxu->reclaim_ready = 0;
2097         qh->reclaim = NULL;
2098
2099         qh_completions(oxu, qh);
2100
2101         if (!list_empty(&qh->qtd_list)
2102                         && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2103                 qh_link_async(oxu, qh);
2104         else {
2105                 qh_put(qh);             /* refcount from async list */
2106
2107                 /* it's not free to turn the async schedule on/off; leave it
2108                  * active but idle for a while once it empties.
2109                  */
2110                 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2111                                 && oxu->async->qh_next.qh == NULL)
2112                         timer_action(oxu, TIMER_ASYNC_OFF);
2113         }
2114
2115         if (next) {
2116                 oxu->reclaim = NULL;
2117                 start_unlink_async(oxu, next);
2118         }
2119 }
2120
2121 /* makes sure the async qh will become idle */
2122 /* caller must own oxu->lock */
2123
2124 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2125 {
2126         int cmd = readl(&oxu->regs->command);
2127         struct ehci_qh *prev;
2128
2129 #ifdef DEBUG
2130         assert_spin_locked(&oxu->lock);
2131         BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2132                                 && qh->qh_state != QH_STATE_UNLINK_WAIT));
2133 #endif
2134
2135         /* stop async schedule right now? */
2136         if (unlikely(qh == oxu->async)) {
2137                 /* can't get here without STS_ASS set */
2138                 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2139                                 && !oxu->reclaim) {
2140                         /* ... and CMD_IAAD clear */
2141                         writel(cmd & ~CMD_ASE, &oxu->regs->command);
2142                         wmb();
2143                         /* handshake later, if we need to */
2144                         timer_action_done(oxu, TIMER_ASYNC_OFF);
2145                 }
2146                 return;
2147         }
2148
2149         qh->qh_state = QH_STATE_UNLINK;
2150         oxu->reclaim = qh = qh_get(qh);
2151
2152         prev = oxu->async;
2153         while (prev->qh_next.qh != qh)
2154                 prev = prev->qh_next.qh;
2155
2156         prev->hw_next = qh->hw_next;
2157         prev->qh_next = qh->qh_next;
2158         wmb();
2159
2160         if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2161                 /* if (unlikely(qh->reclaim != 0))
2162                  *      this will recurse, probably not much
2163                  */
2164                 end_unlink_async(oxu);
2165                 return;
2166         }
2167
2168         oxu->reclaim_ready = 0;
2169         cmd |= CMD_IAAD;
2170         writel(cmd, &oxu->regs->command);
2171         (void) readl(&oxu->regs->command);
2172         timer_action(oxu, TIMER_IAA_WATCHDOG);
2173 }
2174
2175 static void scan_async(struct oxu_hcd *oxu)
2176 {
2177         struct ehci_qh *qh;
2178         enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2179
2180         if (!++(oxu->stamp))
2181                 oxu->stamp++;
2182         timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2183 rescan:
2184         qh = oxu->async->qh_next.qh;
2185         if (likely(qh != NULL)) {
2186                 do {
2187                         /* clean any finished work for this qh */
2188                         if (!list_empty(&qh->qtd_list)
2189                                         && qh->stamp != oxu->stamp) {
2190                                 int temp;
2191
2192                                 /* unlinks could happen here; completion
2193                                  * reporting drops the lock.  rescan using
2194                                  * the latest schedule, but don't rescan
2195                                  * qhs we already finished (no looping).
2196                                  */
2197                                 qh = qh_get(qh);
2198                                 qh->stamp = oxu->stamp;
2199                                 temp = qh_completions(oxu, qh);
2200                                 qh_put(qh);
2201                                 if (temp != 0)
2202                                         goto rescan;
2203                         }
2204
2205                         /* unlink idle entries, reducing HC PCI usage as well
2206                          * as HCD schedule-scanning costs.  delay for any qh
2207                          * we just scanned, there's a not-unusual case that it
2208                          * doesn't stay idle for long.
2209                          * (plus, avoids some kind of re-activation race.)
2210                          */
2211                         if (list_empty(&qh->qtd_list)) {
2212                                 if (qh->stamp == oxu->stamp)
2213                                         action = TIMER_ASYNC_SHRINK;
2214                                 else if (!oxu->reclaim
2215                                             && qh->qh_state == QH_STATE_LINKED)
2216                                         start_unlink_async(oxu, qh);
2217                         }
2218
2219                         qh = qh->qh_next.qh;
2220                 } while (qh);
2221         }
2222         if (action == TIMER_ASYNC_SHRINK)
2223                 timer_action(oxu, TIMER_ASYNC_SHRINK);
2224 }
2225
2226 /*
2227  * periodic_next_shadow - return "next" pointer on shadow list
2228  * @periodic: host pointer to qh/itd/sitd
2229  * @tag: hardware tag for type of this record
2230  */
2231 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2232                                                 __le32 tag)
2233 {
2234         switch (tag) {
2235         default:
2236         case Q_TYPE_QH:
2237                 return &periodic->qh->qh_next;
2238         }
2239 }
2240
2241 /* caller must hold oxu->lock */
2242 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2243 {
2244         union ehci_shadow *prev_p = &oxu->pshadow[frame];
2245         __le32 *hw_p = &oxu->periodic[frame];
2246         union ehci_shadow here = *prev_p;
2247
2248         /* find predecessor of "ptr"; hw and shadow lists are in sync */
2249         while (here.ptr && here.ptr != ptr) {
2250                 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2251                 hw_p = here.hw_next;
2252                 here = *prev_p;
2253         }
2254         /* an interrupt entry (at list end) could have been shared */
2255         if (!here.ptr)
2256                 return;
2257
2258         /* update shadow and hardware lists ... the old "next" pointers
2259          * from ptr may still be in use, the caller updates them.
2260          */
2261         *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2262         *hw_p = *here.hw_next;
2263 }
2264
2265 /* how many of the uframe's 125 usecs are allocated? */
2266 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2267                                         unsigned frame, unsigned uframe)
2268 {
2269         __le32 *hw_p = &oxu->periodic[frame];
2270         union ehci_shadow *q = &oxu->pshadow[frame];
2271         unsigned usecs = 0;
2272
2273         while (q->ptr) {
2274                 switch (Q_NEXT_TYPE(*hw_p)) {
2275                 case Q_TYPE_QH:
2276                 default:
2277                         /* is it in the S-mask? */
2278                         if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2279                                 usecs += q->qh->usecs;
2280                         /* ... or C-mask? */
2281                         if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2282                                 usecs += q->qh->c_usecs;
2283                         hw_p = &q->qh->hw_next;
2284                         q = &q->qh->qh_next;
2285                         break;
2286                 }
2287         }
2288 #ifdef DEBUG
2289         if (usecs > 100)
2290                 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2291                                                 frame * 8 + uframe, usecs);
2292 #endif
2293         return usecs;
2294 }
2295
2296 static int enable_periodic(struct oxu_hcd *oxu)
2297 {
2298         u32 cmd;
2299         int status;
2300
2301         /* did clearing PSE did take effect yet?
2302          * takes effect only at frame boundaries...
2303          */
2304         status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2305         if (status != 0) {
2306                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2307                 usb_hc_died(oxu_to_hcd(oxu));
2308                 return status;
2309         }
2310
2311         cmd = readl(&oxu->regs->command) | CMD_PSE;
2312         writel(cmd, &oxu->regs->command);
2313         /* posted write ... PSS happens later */
2314         oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2315
2316         /* make sure ehci_work scans these */
2317         oxu->next_uframe = readl(&oxu->regs->frame_index)
2318                 % (oxu->periodic_size << 3);
2319         return 0;
2320 }
2321
2322 static int disable_periodic(struct oxu_hcd *oxu)
2323 {
2324         u32 cmd;
2325         int status;
2326
2327         /* did setting PSE not take effect yet?
2328          * takes effect only at frame boundaries...
2329          */
2330         status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2331         if (status != 0) {
2332                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2333                 usb_hc_died(oxu_to_hcd(oxu));
2334                 return status;
2335         }
2336
2337         cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2338         writel(cmd, &oxu->regs->command);
2339         /* posted write ... */
2340
2341         oxu->next_uframe = -1;
2342         return 0;
2343 }
2344
2345 /* periodic schedule slots have iso tds (normal or split) first, then a
2346  * sparse tree for active interrupt transfers.
2347  *
2348  * this just links in a qh; caller guarantees uframe masks are set right.
2349  * no FSTN support (yet; oxu 0.96+)
2350  */
2351 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2352 {
2353         unsigned i;
2354         unsigned period = qh->period;
2355
2356         dev_dbg(&qh->dev->dev,
2357                 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2358                 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2359                 qh, qh->start, qh->usecs, qh->c_usecs);
2360
2361         /* high bandwidth, or otherwise every microframe */
2362         if (period == 0)
2363                 period = 1;
2364
2365         for (i = qh->start; i < oxu->periodic_size; i += period) {
2366                 union ehci_shadow       *prev = &oxu->pshadow[i];
2367                 __le32                  *hw_p = &oxu->periodic[i];
2368                 union ehci_shadow       here = *prev;
2369                 __le32                  type = 0;
2370
2371                 /* skip the iso nodes at list head */
2372                 while (here.ptr) {
2373                         type = Q_NEXT_TYPE(*hw_p);
2374                         if (type == Q_TYPE_QH)
2375                                 break;
2376                         prev = periodic_next_shadow(prev, type);
2377                         hw_p = &here.qh->hw_next;
2378                         here = *prev;
2379                 }
2380
2381                 /* sorting each branch by period (slow-->fast)
2382                  * enables sharing interior tree nodes
2383                  */
2384                 while (here.ptr && qh != here.qh) {
2385                         if (qh->period > here.qh->period)
2386                                 break;
2387                         prev = &here.qh->qh_next;
2388                         hw_p = &here.qh->hw_next;
2389                         here = *prev;
2390                 }
2391                 /* link in this qh, unless some earlier pass did that */
2392                 if (qh != here.qh) {
2393                         qh->qh_next = here;
2394                         if (here.qh)
2395                                 qh->hw_next = *hw_p;
2396                         wmb();
2397                         prev->qh = qh;
2398                         *hw_p = QH_NEXT(qh->qh_dma);
2399                 }
2400         }
2401         qh->qh_state = QH_STATE_LINKED;
2402         qh_get(qh);
2403
2404         /* update per-qh bandwidth for usbfs */
2405         oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2406                 ? ((qh->usecs + qh->c_usecs) / qh->period)
2407                 : (qh->usecs * 8);
2408
2409         /* maybe enable periodic schedule processing */
2410         if (!oxu->periodic_sched++)
2411                 return enable_periodic(oxu);
2412
2413         return 0;
2414 }
2415
2416 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2417 {
2418         unsigned i;
2419         unsigned period;
2420
2421         /* FIXME:
2422          *   IF this isn't high speed
2423          *   and this qh is active in the current uframe
2424          *   (and overlay token SplitXstate is false?)
2425          * THEN
2426          *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2427          */
2428
2429         /* high bandwidth, or otherwise part of every microframe */
2430         period = qh->period;
2431         if (period == 0)
2432                 period = 1;
2433
2434         for (i = qh->start; i < oxu->periodic_size; i += period)
2435                 periodic_unlink(oxu, i, qh);
2436
2437         /* update per-qh bandwidth for usbfs */
2438         oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2439                 ? ((qh->usecs + qh->c_usecs) / qh->period)
2440                 : (qh->usecs * 8);
2441
2442         dev_dbg(&qh->dev->dev,
2443                 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2444                 qh->period,
2445                 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2446                 qh, qh->start, qh->usecs, qh->c_usecs);
2447
2448         /* qh->qh_next still "live" to HC */
2449         qh->qh_state = QH_STATE_UNLINK;
2450         qh->qh_next.ptr = NULL;
2451         qh_put(qh);
2452
2453         /* maybe turn off periodic schedule */
2454         oxu->periodic_sched--;
2455         if (!oxu->periodic_sched)
2456                 (void) disable_periodic(oxu);
2457 }
2458
2459 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2460 {
2461         unsigned wait;
2462
2463         qh_unlink_periodic(oxu, qh);
2464
2465         /* simple/paranoid:  always delay, expecting the HC needs to read
2466          * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2467          * expect hub_wq to clean up after any CSPLITs we won't issue.
2468          * active high speed queues may need bigger delays...
2469          */
2470         if (list_empty(&qh->qtd_list)
2471                 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2472                 wait = 2;
2473         else
2474                 wait = 55;      /* worst case: 3 * 1024 */
2475
2476         udelay(wait);
2477         qh->qh_state = QH_STATE_IDLE;
2478         qh->hw_next = EHCI_LIST_END;
2479         wmb();
2480 }
2481
2482 static int check_period(struct oxu_hcd *oxu,
2483                         unsigned frame, unsigned uframe,
2484                         unsigned period, unsigned usecs)
2485 {
2486         int claimed;
2487
2488         /* complete split running into next frame?
2489          * given FSTN support, we could sometimes check...
2490          */
2491         if (uframe >= 8)
2492                 return 0;
2493
2494         /*
2495          * 80% periodic == 100 usec/uframe available
2496          * convert "usecs we need" to "max already claimed"
2497          */
2498         usecs = 100 - usecs;
2499
2500         /* we "know" 2 and 4 uframe intervals were rejected; so
2501          * for period 0, check _every_ microframe in the schedule.
2502          */
2503         if (unlikely(period == 0)) {
2504                 do {
2505                         for (uframe = 0; uframe < 7; uframe++) {
2506                                 claimed = periodic_usecs(oxu, frame, uframe);
2507                                 if (claimed > usecs)
2508                                         return 0;
2509                         }
2510                 } while ((frame += 1) < oxu->periodic_size);
2511
2512         /* just check the specified uframe, at that period */
2513         } else {
2514                 do {
2515                         claimed = periodic_usecs(oxu, frame, uframe);
2516                         if (claimed > usecs)
2517                                 return 0;
2518                 } while ((frame += period) < oxu->periodic_size);
2519         }
2520
2521         return 1;
2522 }
2523
2524 static int check_intr_schedule(struct oxu_hcd   *oxu,
2525                                 unsigned frame, unsigned uframe,
2526                                 const struct ehci_qh *qh, __le32 *c_maskp)
2527 {
2528         int retval = -ENOSPC;
2529
2530         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
2531                 goto done;
2532
2533         if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2534                 goto done;
2535         if (!qh->c_usecs) {
2536                 retval = 0;
2537                 *c_maskp = 0;
2538                 goto done;
2539         }
2540
2541 done:
2542         return retval;
2543 }
2544
2545 /* "first fit" scheduling policy used the first time through,
2546  * or when the previous schedule slot can't be re-used.
2547  */
2548 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2549 {
2550         int             status;
2551         unsigned        uframe;
2552         __le32          c_mask;
2553         unsigned        frame;          /* 0..(qh->period - 1), or NO_FRAME */
2554
2555         qh_refresh(oxu, qh);
2556         qh->hw_next = EHCI_LIST_END;
2557         frame = qh->start;
2558
2559         /* reuse the previous schedule slots, if we can */
2560         if (frame < qh->period) {
2561                 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2562                 status = check_intr_schedule(oxu, frame, --uframe,
2563                                 qh, &c_mask);
2564         } else {
2565                 uframe = 0;
2566                 c_mask = 0;
2567                 status = -ENOSPC;
2568         }
2569
2570         /* else scan the schedule to find a group of slots such that all
2571          * uframes have enough periodic bandwidth available.
2572          */
2573         if (status) {
2574                 /* "normal" case, uframing flexible except with splits */
2575                 if (qh->period) {
2576                         frame = qh->period - 1;
2577                         do {
2578                                 for (uframe = 0; uframe < 8; uframe++) {
2579                                         status = check_intr_schedule(oxu,
2580                                                         frame, uframe, qh,
2581                                                         &c_mask);
2582                                         if (status == 0)
2583                                                 break;
2584                                 }
2585                         } while (status && frame--);
2586
2587                 /* qh->period == 0 means every uframe */
2588                 } else {
2589                         frame = 0;
2590                         status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2591                 }
2592                 if (status)
2593                         goto done;
2594                 qh->start = frame;
2595
2596                 /* reset S-frame and (maybe) C-frame masks */
2597                 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2598                 qh->hw_info2 |= qh->period
2599                         ? cpu_to_le32(1 << uframe)
2600                         : cpu_to_le32(QH_SMASK);
2601                 qh->hw_info2 |= c_mask;
2602         } else
2603                 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2604
2605         /* stuff into the periodic schedule */
2606         status = qh_link_periodic(oxu, qh);
2607 done:
2608         return status;
2609 }
2610
2611 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2612                         struct list_head *qtd_list, gfp_t mem_flags)
2613 {
2614         unsigned epnum;
2615         unsigned long flags;
2616         struct ehci_qh *qh;
2617         int status = 0;
2618         struct list_head        empty;
2619
2620         /* get endpoint and transfer/schedule data */
2621         epnum = urb->ep->desc.bEndpointAddress;
2622
2623         spin_lock_irqsave(&oxu->lock, flags);
2624
2625         if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2626                 status = -ESHUTDOWN;
2627                 goto done;
2628         }
2629
2630         /* get qh and force any scheduling errors */
2631         INIT_LIST_HEAD(&empty);
2632         qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2633         if (qh == NULL) {
2634                 status = -ENOMEM;
2635                 goto done;
2636         }
2637         if (qh->qh_state == QH_STATE_IDLE) {
2638                 status = qh_schedule(oxu, qh);
2639                 if (status != 0)
2640                         goto done;
2641         }
2642
2643         /* then queue the urb's tds to the qh */
2644         qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2645         BUG_ON(qh == NULL);
2646
2647         /* ... update usbfs periodic stats */
2648         oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2649
2650 done:
2651         spin_unlock_irqrestore(&oxu->lock, flags);
2652         if (status)
2653                 qtd_list_free(oxu, urb, qtd_list);
2654
2655         return status;
2656 }
2657
2658 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2659                                                 gfp_t mem_flags)
2660 {
2661         oxu_dbg(oxu, "iso support is missing!\n");
2662         return -ENOSYS;
2663 }
2664
2665 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2666                                                 gfp_t mem_flags)
2667 {
2668         oxu_dbg(oxu, "split iso support is missing!\n");
2669         return -ENOSYS;
2670 }
2671
2672 static void scan_periodic(struct oxu_hcd *oxu)
2673 {
2674         unsigned frame, clock, now_uframe, mod;
2675         unsigned modified;
2676
2677         mod = oxu->periodic_size << 3;
2678
2679         /*
2680          * When running, scan from last scan point up to "now"
2681          * else clean up by scanning everything that's left.
2682          * Touches as few pages as possible:  cache-friendly.
2683          */
2684         now_uframe = oxu->next_uframe;
2685         if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2686                 clock = readl(&oxu->regs->frame_index);
2687         else
2688                 clock = now_uframe + mod - 1;
2689         clock %= mod;
2690
2691         for (;;) {
2692                 union ehci_shadow       q, *q_p;
2693                 __le32                  type, *hw_p;
2694
2695                 /* don't scan past the live uframe */
2696                 frame = now_uframe >> 3;
2697                 if (frame != (clock >> 3)) {
2698                         /* safe to scan the whole frame at once */
2699                         now_uframe |= 0x07;
2700                 }
2701
2702 restart:
2703                 /* scan each element in frame's queue for completions */
2704                 q_p = &oxu->pshadow[frame];
2705                 hw_p = &oxu->periodic[frame];
2706                 q.ptr = q_p->ptr;
2707                 type = Q_NEXT_TYPE(*hw_p);
2708                 modified = 0;
2709
2710                 while (q.ptr != NULL) {
2711                         union ehci_shadow temp;
2712
2713                         switch (type) {
2714                         case Q_TYPE_QH:
2715                                 /* handle any completions */
2716                                 temp.qh = qh_get(q.qh);
2717                                 type = Q_NEXT_TYPE(q.qh->hw_next);
2718                                 q = q.qh->qh_next;
2719                                 modified = qh_completions(oxu, temp.qh);
2720                                 if (unlikely(list_empty(&temp.qh->qtd_list)))
2721                                         intr_deschedule(oxu, temp.qh);
2722                                 qh_put(temp.qh);
2723                                 break;
2724                         default:
2725                                 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2726                                         type, frame, q.ptr);
2727                                 q.ptr = NULL;
2728                         }
2729
2730                         /* assume completion callbacks modify the queue */
2731                         if (unlikely(modified))
2732                                 goto restart;
2733                 }
2734
2735                 /* Stop when we catch up to the HC */
2736
2737                 /* FIXME:  this assumes we won't get lapped when
2738                  * latencies climb; that should be rare, but...
2739                  * detect it, and just go all the way around.
2740                  * FLR might help detect this case, so long as latencies
2741                  * don't exceed periodic_size msec (default 1.024 sec).
2742                  */
2743
2744                 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2745
2746                 if (now_uframe == clock) {
2747                         unsigned        now;
2748
2749                         if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2750                                 break;
2751                         oxu->next_uframe = now_uframe;
2752                         now = readl(&oxu->regs->frame_index) % mod;
2753                         if (now_uframe == now)
2754                                 break;
2755
2756                         /* rescan the rest of this frame, then ... */
2757                         clock = now;
2758                 } else {
2759                         now_uframe++;
2760                         now_uframe %= mod;
2761                 }
2762         }
2763 }
2764
2765 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2766  * The firmware seems to think that powering off is a wakeup event!
2767  * This routine turns off remote wakeup and everything else, on all ports.
2768  */
2769 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2770 {
2771         int port = HCS_N_PORTS(oxu->hcs_params);
2772
2773         while (port--)
2774                 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2775 }
2776
2777 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2778 {
2779         unsigned port;
2780
2781         if (!HCS_PPC(oxu->hcs_params))
2782                 return;
2783
2784         oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2785         for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2786                 if (is_on)
2787                         oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2788                                 USB_PORT_FEAT_POWER, port--, NULL, 0);
2789                 else
2790                         oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2791                                 USB_PORT_FEAT_POWER, port--, NULL, 0);
2792         }
2793
2794         msleep(20);
2795 }
2796
2797 /* Called from some interrupts, timers, and so on.
2798  * It calls driver completion functions, after dropping oxu->lock.
2799  */
2800 static void ehci_work(struct oxu_hcd *oxu)
2801 {
2802         timer_action_done(oxu, TIMER_IO_WATCHDOG);
2803         if (oxu->reclaim_ready)
2804                 end_unlink_async(oxu);
2805
2806         /* another CPU may drop oxu->lock during a schedule scan while
2807          * it reports urb completions.  this flag guards against bogus
2808          * attempts at re-entrant schedule scanning.
2809          */
2810         if (oxu->scanning)
2811                 return;
2812         oxu->scanning = 1;
2813         scan_async(oxu);
2814         if (oxu->next_uframe != -1)
2815                 scan_periodic(oxu);
2816         oxu->scanning = 0;
2817
2818         /* the IO watchdog guards against hardware or driver bugs that
2819          * misplace IRQs, and should let us run completely without IRQs.
2820          * such lossage has been observed on both VT6202 and VT8235.
2821          */
2822         if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2823                         (oxu->async->qh_next.ptr != NULL ||
2824                          oxu->periodic_sched != 0))
2825                 timer_action(oxu, TIMER_IO_WATCHDOG);
2826 }
2827
2828 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2829 {
2830         /* if we need to use IAA and it's busy, defer */
2831         if (qh->qh_state == QH_STATE_LINKED
2832                         && oxu->reclaim
2833                         && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2834                 struct ehci_qh          *last;
2835
2836                 for (last = oxu->reclaim;
2837                                 last->reclaim;
2838                                 last = last->reclaim)
2839                         continue;
2840                 qh->qh_state = QH_STATE_UNLINK_WAIT;
2841                 last->reclaim = qh;
2842
2843         /* bypass IAA if the hc can't care */
2844         } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2845                 end_unlink_async(oxu);
2846
2847         /* something else might have unlinked the qh by now */
2848         if (qh->qh_state == QH_STATE_LINKED)
2849                 start_unlink_async(oxu, qh);
2850 }
2851
2852 /*
2853  * USB host controller methods
2854  */
2855
2856 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2857 {
2858         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2859         u32 status, pcd_status = 0;
2860         int bh;
2861
2862         spin_lock(&oxu->lock);
2863
2864         status = readl(&oxu->regs->status);
2865
2866         /* e.g. cardbus physical eject */
2867         if (status == ~(u32) 0) {
2868                 oxu_dbg(oxu, "device removed\n");
2869                 goto dead;
2870         }
2871
2872         /* Shared IRQ? */
2873         status &= INTR_MASK;
2874         if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2875                 spin_unlock(&oxu->lock);
2876                 return IRQ_NONE;
2877         }
2878
2879         /* clear (just) interrupts */
2880         writel(status, &oxu->regs->status);
2881         readl(&oxu->regs->command);     /* unblock posted write */
2882         bh = 0;
2883
2884 #ifdef OXU_VERBOSE_DEBUG
2885         /* unrequested/ignored: Frame List Rollover */
2886         dbg_status(oxu, "irq", status);
2887 #endif
2888
2889         /* INT, ERR, and IAA interrupt rates can be throttled */
2890
2891         /* normal [4.15.1.2] or error [4.15.1.1] completion */
2892         if (likely((status & (STS_INT|STS_ERR)) != 0))
2893                 bh = 1;
2894
2895         /* complete the unlinking of some qh [4.15.2.3] */
2896         if (status & STS_IAA) {
2897                 oxu->reclaim_ready = 1;
2898                 bh = 1;
2899         }
2900
2901         /* remote wakeup [4.3.1] */
2902         if (status & STS_PCD) {
2903                 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2904                 pcd_status = status;
2905
2906                 /* resume root hub? */
2907                 if (!(readl(&oxu->regs->command) & CMD_RUN))
2908                         usb_hcd_resume_root_hub(hcd);
2909
2910                 while (i--) {
2911                         int pstatus = readl(&oxu->regs->port_status[i]);
2912
2913                         if (pstatus & PORT_OWNER)
2914                                 continue;
2915                         if (!(pstatus & PORT_RESUME)
2916                                         || oxu->reset_done[i] != 0)
2917                                 continue;
2918
2919                         /* start USB_RESUME_TIMEOUT resume signaling from this
2920                          * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2921                          * stop that signaling.
2922                          */
2923                         oxu->reset_done[i] = jiffies +
2924                                 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2925                         oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2926                         mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2927                 }
2928         }
2929
2930         /* PCI errors [4.15.2.4] */
2931         if (unlikely((status & STS_FATAL) != 0)) {
2932                 /* bogus "fatal" IRQs appear on some chips... why?  */
2933                 status = readl(&oxu->regs->status);
2934                 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2935                 dbg_status(oxu, "fatal", status);
2936                 if (status & STS_HALT) {
2937                         oxu_err(oxu, "fatal error\n");
2938 dead:
2939                         ehci_reset(oxu);
2940                         writel(0, &oxu->regs->configured_flag);
2941                         usb_hc_died(hcd);
2942                         /* generic layer kills/unlinks all urbs, then
2943                          * uses oxu_stop to clean up the rest
2944                          */
2945                         bh = 1;
2946                 }
2947         }
2948
2949         if (bh)
2950                 ehci_work(oxu);
2951         spin_unlock(&oxu->lock);
2952         if (pcd_status & STS_PCD)
2953                 usb_hcd_poll_rh_status(hcd);
2954         return IRQ_HANDLED;
2955 }
2956
2957 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2958 {
2959         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2960         int ret = IRQ_HANDLED;
2961
2962         u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2963         u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2964
2965         /* Disable all interrupt */
2966         oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2967
2968         if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2969                 (!oxu->is_otg && (status & OXU_USBSPHI)))
2970                 oxu210_hcd_irq(hcd);
2971         else
2972                 ret = IRQ_NONE;
2973
2974         /* Enable all interrupt back */
2975         oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2976
2977         return ret;
2978 }
2979
2980 static void oxu_watchdog(struct timer_list *t)
2981 {
2982         struct oxu_hcd  *oxu = from_timer(oxu, t, watchdog);
2983         unsigned long flags;
2984
2985         spin_lock_irqsave(&oxu->lock, flags);
2986
2987         /* lost IAA irqs wedge things badly; seen with a vt8235 */
2988         if (oxu->reclaim) {
2989                 u32 status = readl(&oxu->regs->status);
2990                 if (status & STS_IAA) {
2991                         oxu_vdbg(oxu, "lost IAA\n");
2992                         writel(STS_IAA, &oxu->regs->status);
2993                         oxu->reclaim_ready = 1;
2994                 }
2995         }
2996
2997         /* stop async processing after it's idled a bit */
2998         if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2999                 start_unlink_async(oxu, oxu->async);
3000
3001         /* oxu could run by timer, without IRQs ... */
3002         ehci_work(oxu);
3003
3004         spin_unlock_irqrestore(&oxu->lock, flags);
3005 }
3006
3007 /* One-time init, only for memory state.
3008  */
3009 static int oxu_hcd_init(struct usb_hcd *hcd)
3010 {
3011         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3012         u32 temp;
3013         int retval;
3014         u32 hcc_params;
3015
3016         spin_lock_init(&oxu->lock);
3017
3018         timer_setup(&oxu->watchdog, oxu_watchdog, 0);
3019
3020         /*
3021          * hw default: 1K periodic list heads, one per frame.
3022          * periodic_size can shrink by USBCMD update if hcc_params allows.
3023          */
3024         oxu->periodic_size = DEFAULT_I_TDPS;
3025         retval = ehci_mem_init(oxu, GFP_KERNEL);
3026         if (retval < 0)
3027                 return retval;
3028
3029         /* controllers may cache some of the periodic schedule ... */
3030         hcc_params = readl(&oxu->caps->hcc_params);
3031         if (HCC_ISOC_CACHE(hcc_params))         /* full frame cache */
3032                 oxu->i_thresh = 8;
3033         else                                    /* N microframes cached */
3034                 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3035
3036         oxu->reclaim = NULL;
3037         oxu->reclaim_ready = 0;
3038         oxu->next_uframe = -1;
3039
3040         /*
3041          * dedicate a qh for the async ring head, since we couldn't unlink
3042          * a 'real' qh without stopping the async schedule [4.8].  use it
3043          * as the 'reclamation list head' too.
3044          * its dummy is used in hw_alt_next of many tds, to prevent the qh
3045          * from automatically advancing to the next td after short reads.
3046          */
3047         oxu->async->qh_next.qh = NULL;
3048         oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3049         oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3050         oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3051         oxu->async->hw_qtd_next = EHCI_LIST_END;
3052         oxu->async->qh_state = QH_STATE_LINKED;
3053         oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3054
3055         /* clear interrupt enables, set irq latency */
3056         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3057                 log2_irq_thresh = 0;
3058         temp = 1 << (16 + log2_irq_thresh);
3059         if (HCC_CANPARK(hcc_params)) {
3060                 /* HW default park == 3, on hardware that supports it (like
3061                  * NVidia and ALI silicon), maximizes throughput on the async
3062                  * schedule by avoiding QH fetches between transfers.
3063                  *
3064                  * With fast usb storage devices and NForce2, "park" seems to
3065                  * make problems:  throughput reduction (!), data errors...
3066                  */
3067                 if (park) {
3068                         park = min(park, (unsigned) 3);
3069                         temp |= CMD_PARK;
3070                         temp |= park << 8;
3071                 }
3072                 oxu_dbg(oxu, "park %d\n", park);
3073         }
3074         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3075                 /* periodic schedule size can be smaller than default */
3076                 temp &= ~(3 << 2);
3077                 temp |= (EHCI_TUNE_FLS << 2);
3078         }
3079         oxu->command = temp;
3080
3081         return 0;
3082 }
3083
3084 /* Called during probe() after chip reset completes.
3085  */
3086 static int oxu_reset(struct usb_hcd *hcd)
3087 {
3088         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3089
3090         spin_lock_init(&oxu->mem_lock);
3091         INIT_LIST_HEAD(&oxu->urb_list);
3092         oxu->urb_len = 0;
3093
3094         if (oxu->is_otg) {
3095                 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3096                 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3097                         HC_LENGTH(readl(&oxu->caps->hc_capbase));
3098
3099                 oxu->mem = hcd->regs + OXU_SPH_MEM;
3100         } else {
3101                 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3102                 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3103                         HC_LENGTH(readl(&oxu->caps->hc_capbase));
3104
3105                 oxu->mem = hcd->regs + OXU_OTG_MEM;
3106         }
3107
3108         oxu->hcs_params = readl(&oxu->caps->hcs_params);
3109         oxu->sbrn = 0x20;
3110
3111         return oxu_hcd_init(hcd);
3112 }
3113
3114 static int oxu_run(struct usb_hcd *hcd)
3115 {
3116         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3117         int retval;
3118         u32 temp, hcc_params;
3119
3120         hcd->uses_new_polling = 1;
3121
3122         /* EHCI spec section 4.1 */
3123         retval = ehci_reset(oxu);
3124         if (retval != 0) {
3125                 ehci_mem_cleanup(oxu);
3126                 return retval;
3127         }
3128         writel(oxu->periodic_dma, &oxu->regs->frame_list);
3129         writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3130
3131         /* hcc_params controls whether oxu->regs->segment must (!!!)
3132          * be used; it constrains QH/ITD/SITD and QTD locations.
3133          * dma_pool consistent memory always uses segment zero.
3134          * streaming mappings for I/O buffers, like dma_map_single(),
3135          * can return segments above 4GB, if the device allows.
3136          *
3137          * NOTE:  the dma mask is visible through dev->dma_mask, so
3138          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3139          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
3140          * host side drivers though.
3141          */
3142         hcc_params = readl(&oxu->caps->hcc_params);
3143         if (HCC_64BIT_ADDR(hcc_params))
3144                 writel(0, &oxu->regs->segment);
3145
3146         oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3147                                 CMD_ASE | CMD_RESET);
3148         oxu->command |= CMD_RUN;
3149         writel(oxu->command, &oxu->regs->command);
3150         dbg_cmd(oxu, "init", oxu->command);
3151
3152         /*
3153          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3154          * are explicitly handed to companion controller(s), so no TT is
3155          * involved with the root hub.  (Except where one is integrated,
3156          * and there's no companion controller unless maybe for USB OTG.)
3157          */
3158         hcd->state = HC_STATE_RUNNING;
3159         writel(FLAG_CF, &oxu->regs->configured_flag);
3160         readl(&oxu->regs->command);     /* unblock posted writes */
3161
3162         temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3163         oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3164                 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3165                 temp >> 8, temp & 0xff, DRIVER_VERSION,
3166                 ignore_oc ? ", overcurrent ignored" : "");
3167
3168         writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3169
3170         return 0;
3171 }
3172
3173 static void oxu_stop(struct usb_hcd *hcd)
3174 {
3175         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3176
3177         /* Turn off port power on all root hub ports. */
3178         ehci_port_power(oxu, 0);
3179
3180         /* no more interrupts ... */
3181         del_timer_sync(&oxu->watchdog);
3182
3183         spin_lock_irq(&oxu->lock);
3184         if (HC_IS_RUNNING(hcd->state))
3185                 ehci_quiesce(oxu);
3186
3187         ehci_reset(oxu);
3188         writel(0, &oxu->regs->intr_enable);
3189         spin_unlock_irq(&oxu->lock);
3190
3191         /* let companion controllers work when we aren't */
3192         writel(0, &oxu->regs->configured_flag);
3193
3194         /* root hub is shut down separately (first, when possible) */
3195         spin_lock_irq(&oxu->lock);
3196         if (oxu->async)
3197                 ehci_work(oxu);
3198         spin_unlock_irq(&oxu->lock);
3199         ehci_mem_cleanup(oxu);
3200
3201         dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3202 }
3203
3204 /* Kick in for silicon on any bus (not just pci, etc).
3205  * This forcibly disables dma and IRQs, helping kexec and other cases
3206  * where the next system software may expect clean state.
3207  */
3208 static void oxu_shutdown(struct usb_hcd *hcd)
3209 {
3210         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3211
3212         (void) ehci_halt(oxu);
3213         ehci_turn_off_all_ports(oxu);
3214
3215         /* make BIOS/etc use companion controller during reboot */
3216         writel(0, &oxu->regs->configured_flag);
3217
3218         /* unblock posted writes */
3219         readl(&oxu->regs->configured_flag);
3220 }
3221
3222 /* Non-error returns are a promise to giveback() the urb later
3223  * we drop ownership so next owner (or urb unlink) can get it
3224  *
3225  * urb + dev is in hcd.self.controller.urb_list
3226  * we're queueing TDs onto software and hardware lists
3227  *
3228  * hcd-specific init for hcpriv hasn't been done yet
3229  *
3230  * NOTE:  control, bulk, and interrupt share the same code to append TDs
3231  * to a (possibly active) QH, and the same QH scanning code.
3232  */
3233 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3234                                 gfp_t mem_flags)
3235 {
3236         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3237         struct list_head qtd_list;
3238
3239         INIT_LIST_HEAD(&qtd_list);
3240
3241         switch (usb_pipetype(urb->pipe)) {
3242         case PIPE_CONTROL:
3243         case PIPE_BULK:
3244         default:
3245                 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3246                         return -ENOMEM;
3247                 return submit_async(oxu, urb, &qtd_list, mem_flags);
3248
3249         case PIPE_INTERRUPT:
3250                 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3251                         return -ENOMEM;
3252                 return intr_submit(oxu, urb, &qtd_list, mem_flags);
3253
3254         case PIPE_ISOCHRONOUS:
3255                 if (urb->dev->speed == USB_SPEED_HIGH)
3256                         return itd_submit(oxu, urb, mem_flags);
3257                 else
3258                         return sitd_submit(oxu, urb, mem_flags);
3259         }
3260 }
3261
3262 /* This function is responsible for breaking URBs with big data size
3263  * into smaller size and processing small urbs in sequence.
3264  */
3265 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3266                                 gfp_t mem_flags)
3267 {
3268         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3269         int num, rem;
3270         void *transfer_buffer;
3271         struct urb *murb;
3272         int i, ret;
3273
3274         /* If not bulk pipe just enqueue the URB */
3275         if (!usb_pipebulk(urb->pipe))
3276                 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3277
3278         /* Otherwise we should verify the USB transfer buffer size! */
3279         transfer_buffer = urb->transfer_buffer;
3280
3281         num = urb->transfer_buffer_length / 4096;
3282         rem = urb->transfer_buffer_length % 4096;
3283         if (rem != 0)
3284                 num++;
3285
3286         /* If URB is smaller than 4096 bytes just enqueue it! */
3287         if (num == 1)
3288                 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3289
3290         /* Ok, we have more job to do! :) */
3291
3292         for (i = 0; i < num - 1; i++) {
3293                 /* Get free micro URB poll till a free urb is received */
3294
3295                 do {
3296                         murb = (struct urb *) oxu_murb_alloc(oxu);
3297                         if (!murb)
3298                                 schedule();
3299                 } while (!murb);
3300
3301                 /* Coping the urb */
3302                 memcpy(murb, urb, sizeof(struct urb));
3303
3304                 murb->transfer_buffer_length = 4096;
3305                 murb->transfer_buffer = transfer_buffer + i * 4096;
3306
3307                 /* Null pointer for the encodes that this is a micro urb */
3308                 murb->complete = NULL;
3309
3310                 ((struct oxu_murb *) murb)->main = urb;
3311                 ((struct oxu_murb *) murb)->last = 0;
3312
3313                 /* This loop is to guarantee urb to be processed when there's
3314                  * not enough resources at a particular time by retrying.
3315                  */
3316                 do {
3317                         ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
3318                         if (ret)
3319                                 schedule();
3320                 } while (ret);
3321         }
3322
3323         /* Last urb requires special handling  */
3324
3325         /* Get free micro URB poll till a free urb is received */
3326         do {
3327                 murb = (struct urb *) oxu_murb_alloc(oxu);
3328                 if (!murb)
3329                         schedule();
3330         } while (!murb);
3331
3332         /* Coping the urb */
3333         memcpy(murb, urb, sizeof(struct urb));
3334
3335         murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3336         murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3337
3338         /* Null pointer for the encodes that this is a micro urb */
3339         murb->complete = NULL;
3340
3341         ((struct oxu_murb *) murb)->main = urb;
3342         ((struct oxu_murb *) murb)->last = 1;
3343
3344         do {
3345                 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3346                 if (ret)
3347                         schedule();
3348         } while (ret);
3349
3350         return ret;
3351 }
3352
3353 /* Remove from hardware lists.
3354  * Completions normally happen asynchronously
3355  */
3356 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3357 {
3358         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3359         struct ehci_qh *qh;
3360         unsigned long flags;
3361
3362         spin_lock_irqsave(&oxu->lock, flags);
3363         switch (usb_pipetype(urb->pipe)) {
3364         case PIPE_CONTROL:
3365         case PIPE_BULK:
3366         default:
3367                 qh = (struct ehci_qh *) urb->hcpriv;
3368                 if (!qh)
3369                         break;
3370                 unlink_async(oxu, qh);
3371                 break;
3372
3373         case PIPE_INTERRUPT:
3374                 qh = (struct ehci_qh *) urb->hcpriv;
3375                 if (!qh)
3376                         break;
3377                 switch (qh->qh_state) {
3378                 case QH_STATE_LINKED:
3379                         intr_deschedule(oxu, qh);
3380                         fallthrough;
3381                 case QH_STATE_IDLE:
3382                         qh_completions(oxu, qh);
3383                         break;
3384                 default:
3385                         oxu_dbg(oxu, "bogus qh %p state %d\n",
3386                                         qh, qh->qh_state);
3387                         goto done;
3388                 }
3389
3390                 /* reschedule QH iff another request is queued */
3391                 if (!list_empty(&qh->qtd_list)
3392                                 && HC_IS_RUNNING(hcd->state)) {
3393                         int status;
3394
3395                         status = qh_schedule(oxu, qh);
3396                         spin_unlock_irqrestore(&oxu->lock, flags);
3397
3398                         if (status != 0) {
3399                                 /* shouldn't happen often, but ...
3400                                  * FIXME kill those tds' urbs
3401                                  */
3402                                 dev_err(hcd->self.controller,
3403                                         "can't reschedule qh %p, err %d\n", qh,
3404                                         status);
3405                         }
3406                         return status;
3407                 }
3408                 break;
3409         }
3410 done:
3411         spin_unlock_irqrestore(&oxu->lock, flags);
3412         return 0;
3413 }
3414
3415 /* Bulk qh holds the data toggle */
3416 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3417                                         struct usb_host_endpoint *ep)
3418 {
3419         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3420         unsigned long           flags;
3421         struct ehci_qh          *qh, *tmp;
3422
3423         /* ASSERT:  any requests/urbs are being unlinked */
3424         /* ASSERT:  nobody can be submitting urbs for this any more */
3425
3426 rescan:
3427         spin_lock_irqsave(&oxu->lock, flags);
3428         qh = ep->hcpriv;
3429         if (!qh)
3430                 goto done;
3431
3432         /* endpoints can be iso streams.  for now, we don't
3433          * accelerate iso completions ... so spin a while.
3434          */
3435         if (qh->hw_info1 == 0) {
3436                 oxu_vdbg(oxu, "iso delay\n");
3437                 goto idle_timeout;
3438         }
3439
3440         if (!HC_IS_RUNNING(hcd->state))
3441                 qh->qh_state = QH_STATE_IDLE;
3442         switch (qh->qh_state) {
3443         case QH_STATE_LINKED:
3444                 for (tmp = oxu->async->qh_next.qh;
3445                                 tmp && tmp != qh;
3446                                 tmp = tmp->qh_next.qh)
3447                         continue;
3448                 /* periodic qh self-unlinks on empty */
3449                 if (!tmp)
3450                         goto nogood;
3451                 unlink_async(oxu, qh);
3452                 fallthrough;
3453         case QH_STATE_UNLINK:           /* wait for hw to finish? */
3454 idle_timeout:
3455                 spin_unlock_irqrestore(&oxu->lock, flags);
3456                 schedule_timeout_uninterruptible(1);
3457                 goto rescan;
3458         case QH_STATE_IDLE:             /* fully unlinked */
3459                 if (list_empty(&qh->qtd_list)) {
3460                         qh_put(qh);
3461                         break;
3462                 }
3463                 fallthrough;
3464         default:
3465 nogood:
3466                 /* caller was supposed to have unlinked any requests;
3467                  * that's not our job.  just leak this memory.
3468                  */
3469                 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3470                         qh, ep->desc.bEndpointAddress, qh->qh_state,
3471                         list_empty(&qh->qtd_list) ? "" : "(has tds)");
3472                 break;
3473         }
3474         ep->hcpriv = NULL;
3475 done:
3476         spin_unlock_irqrestore(&oxu->lock, flags);
3477 }
3478
3479 static int oxu_get_frame(struct usb_hcd *hcd)
3480 {
3481         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3482
3483         return (readl(&oxu->regs->frame_index) >> 3) %
3484                 oxu->periodic_size;
3485 }
3486
3487 /* Build "status change" packet (one or two bytes) from HC registers */
3488 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3489 {
3490         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3491         u32 temp, mask, status = 0;
3492         int ports, i, retval = 1;
3493         unsigned long flags;
3494
3495         /* if !PM, root hub timers won't get shut down ... */
3496         if (!HC_IS_RUNNING(hcd->state))
3497                 return 0;
3498
3499         /* init status to no-changes */
3500         buf[0] = 0;
3501         ports = HCS_N_PORTS(oxu->hcs_params);
3502         if (ports > 7) {
3503                 buf[1] = 0;
3504                 retval++;
3505         }
3506
3507         /* Some boards (mostly VIA?) report bogus overcurrent indications,
3508          * causing massive log spam unless we completely ignore them.  It
3509          * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3510          * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3511          * PORT_POWER; that's surprising, but maybe within-spec.
3512          */
3513         if (!ignore_oc)
3514                 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3515         else
3516                 mask = PORT_CSC | PORT_PEC;
3517
3518         /* no hub change reports (bit 0) for now (power, ...) */
3519
3520         /* port N changes (bit N)? */
3521         spin_lock_irqsave(&oxu->lock, flags);
3522         for (i = 0; i < ports; i++) {
3523                 temp = readl(&oxu->regs->port_status[i]);
3524
3525                 /*
3526                  * Return status information even for ports with OWNER set.
3527                  * Otherwise hub_wq wouldn't see the disconnect event when a
3528                  * high-speed device is switched over to the companion
3529                  * controller by the user.
3530                  */
3531
3532                 if (!(temp & PORT_CONNECT))
3533                         oxu->reset_done[i] = 0;
3534                 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3535                                 time_after_eq(jiffies, oxu->reset_done[i]))) {
3536                         if (i < 7)
3537                                 buf[0] |= 1 << (i + 1);
3538                         else
3539                                 buf[1] |= 1 << (i - 7);
3540                         status = STS_PCD;
3541                 }
3542         }
3543         /* FIXME autosuspend idle root hubs */
3544         spin_unlock_irqrestore(&oxu->lock, flags);
3545         return status ? retval : 0;
3546 }
3547
3548 /* Returns the speed of a device attached to a port on the root hub. */
3549 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3550                                                 unsigned int portsc)
3551 {
3552         switch ((portsc >> 26) & 3) {
3553         case 0:
3554                 return 0;
3555         case 1:
3556                 return USB_PORT_STAT_LOW_SPEED;
3557         case 2:
3558         default:
3559                 return USB_PORT_STAT_HIGH_SPEED;
3560         }
3561 }
3562
3563 #define PORT_WAKE_BITS  (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3564 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3565                                 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3566 {
3567         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3568         int ports = HCS_N_PORTS(oxu->hcs_params);
3569         u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3570         u32 temp, status;
3571         unsigned long   flags;
3572         int retval = 0;
3573         unsigned selector;
3574
3575         /*
3576          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3577          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3578          * (track current state ourselves) ... blink for diagnostics,
3579          * power, "this is the one", etc.  EHCI spec supports this.
3580          */
3581
3582         spin_lock_irqsave(&oxu->lock, flags);
3583         switch (typeReq) {
3584         case ClearHubFeature:
3585                 switch (wValue) {
3586                 case C_HUB_LOCAL_POWER:
3587                 case C_HUB_OVER_CURRENT:
3588                         /* no hub-wide feature/status flags */
3589                         break;
3590                 default:
3591                         goto error;
3592                 }
3593                 break;
3594         case ClearPortFeature:
3595                 if (!wIndex || wIndex > ports)
3596                         goto error;
3597                 wIndex--;
3598                 temp = readl(status_reg);
3599
3600                 /*
3601                  * Even if OWNER is set, so the port is owned by the
3602                  * companion controller, hub_wq needs to be able to clear
3603                  * the port-change status bits (especially
3604                  * USB_PORT_STAT_C_CONNECTION).
3605                  */
3606
3607                 switch (wValue) {
3608                 case USB_PORT_FEAT_ENABLE:
3609                         writel(temp & ~PORT_PE, status_reg);
3610                         break;
3611                 case USB_PORT_FEAT_C_ENABLE:
3612                         writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3613                         break;
3614                 case USB_PORT_FEAT_SUSPEND:
3615                         if (temp & PORT_RESET)
3616                                 goto error;
3617                         if (temp & PORT_SUSPEND) {
3618                                 if ((temp & PORT_PE) == 0)
3619                                         goto error;
3620                                 /* resume signaling for 20 msec */
3621                                 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3622                                 writel(temp | PORT_RESUME, status_reg);
3623                                 oxu->reset_done[wIndex] = jiffies
3624                                                 + msecs_to_jiffies(20);
3625                         }
3626                         break;
3627                 case USB_PORT_FEAT_C_SUSPEND:
3628                         /* we auto-clear this feature */
3629                         break;
3630                 case USB_PORT_FEAT_POWER:
3631                         if (HCS_PPC(oxu->hcs_params))
3632                                 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3633                                           status_reg);
3634                         break;
3635                 case USB_PORT_FEAT_C_CONNECTION:
3636                         writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3637                         break;
3638                 case USB_PORT_FEAT_C_OVER_CURRENT:
3639                         writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3640                         break;
3641                 case USB_PORT_FEAT_C_RESET:
3642                         /* GetPortStatus clears reset */
3643                         break;
3644                 default:
3645                         goto error;
3646                 }
3647                 readl(&oxu->regs->command);     /* unblock posted write */
3648                 break;
3649         case GetHubDescriptor:
3650                 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3651                         buf);
3652                 break;
3653         case GetHubStatus:
3654                 /* no hub-wide feature/status flags */
3655                 memset(buf, 0, 4);
3656                 break;
3657         case GetPortStatus:
3658                 if (!wIndex || wIndex > ports)
3659                         goto error;
3660                 wIndex--;
3661                 status = 0;
3662                 temp = readl(status_reg);
3663
3664                 /* wPortChange bits */
3665                 if (temp & PORT_CSC)
3666                         status |= USB_PORT_STAT_C_CONNECTION << 16;
3667                 if (temp & PORT_PEC)
3668                         status |= USB_PORT_STAT_C_ENABLE << 16;
3669                 if ((temp & PORT_OCC) && !ignore_oc)
3670                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3671
3672                 /* whoever resumes must GetPortStatus to complete it!! */
3673                 if (temp & PORT_RESUME) {
3674
3675                         /* Remote Wakeup received? */
3676                         if (!oxu->reset_done[wIndex]) {
3677                                 /* resume signaling for 20 msec */
3678                                 oxu->reset_done[wIndex] = jiffies
3679                                                 + msecs_to_jiffies(20);
3680                                 /* check the port again */
3681                                 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3682                                                 oxu->reset_done[wIndex]);
3683                         }
3684
3685                         /* resume completed? */
3686                         else if (time_after_eq(jiffies,
3687                                         oxu->reset_done[wIndex])) {
3688                                 status |= USB_PORT_STAT_C_SUSPEND << 16;
3689                                 oxu->reset_done[wIndex] = 0;
3690
3691                                 /* stop resume signaling */
3692                                 temp = readl(status_reg);
3693                                 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3694                                         status_reg);
3695                                 retval = handshake(oxu, status_reg,
3696                                            PORT_RESUME, 0, 2000 /* 2msec */);
3697                                 if (retval != 0) {
3698                                         oxu_err(oxu,
3699                                                 "port %d resume error %d\n",
3700                                                 wIndex + 1, retval);
3701                                         goto error;
3702                                 }
3703                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3704                         }
3705                 }
3706
3707                 /* whoever resets must GetPortStatus to complete it!! */
3708                 if ((temp & PORT_RESET)
3709                                 && time_after_eq(jiffies,
3710                                         oxu->reset_done[wIndex])) {
3711                         status |= USB_PORT_STAT_C_RESET << 16;
3712                         oxu->reset_done[wIndex] = 0;
3713
3714                         /* force reset to complete */
3715                         writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3716                                         status_reg);
3717                         /* REVISIT:  some hardware needs 550+ usec to clear
3718                          * this bit; seems too long to spin routinely...
3719                          */
3720                         retval = handshake(oxu, status_reg,
3721                                         PORT_RESET, 0, 750);
3722                         if (retval != 0) {
3723                                 oxu_err(oxu, "port %d reset error %d\n",
3724                                         wIndex + 1, retval);
3725                                 goto error;
3726                         }
3727
3728                         /* see what we found out */
3729                         temp = check_reset_complete(oxu, wIndex, status_reg,
3730                                         readl(status_reg));
3731                 }
3732
3733                 /* transfer dedicated ports to the companion hc */
3734                 if ((temp & PORT_CONNECT) &&
3735                                 test_bit(wIndex, &oxu->companion_ports)) {
3736                         temp &= ~PORT_RWC_BITS;
3737                         temp |= PORT_OWNER;
3738                         writel(temp, status_reg);
3739                         oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3740                         temp = readl(status_reg);
3741                 }
3742
3743                 /*
3744                  * Even if OWNER is set, there's no harm letting hub_wq
3745                  * see the wPortStatus values (they should all be 0 except
3746                  * for PORT_POWER anyway).
3747                  */
3748
3749                 if (temp & PORT_CONNECT) {
3750                         status |= USB_PORT_STAT_CONNECTION;
3751                         /* status may be from integrated TT */
3752                         status |= oxu_port_speed(oxu, temp);
3753                 }
3754                 if (temp & PORT_PE)
3755                         status |= USB_PORT_STAT_ENABLE;
3756                 if (temp & (PORT_SUSPEND|PORT_RESUME))
3757                         status |= USB_PORT_STAT_SUSPEND;
3758                 if (temp & PORT_OC)
3759                         status |= USB_PORT_STAT_OVERCURRENT;
3760                 if (temp & PORT_RESET)
3761                         status |= USB_PORT_STAT_RESET;
3762                 if (temp & PORT_POWER)
3763                         status |= USB_PORT_STAT_POWER;
3764
3765 #ifndef OXU_VERBOSE_DEBUG
3766         if (status & ~0xffff)   /* only if wPortChange is interesting */
3767 #endif
3768                 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3769                 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3770                 break;
3771         case SetHubFeature:
3772                 switch (wValue) {
3773                 case C_HUB_LOCAL_POWER:
3774                 case C_HUB_OVER_CURRENT:
3775                         /* no hub-wide feature/status flags */
3776                         break;
3777                 default:
3778                         goto error;
3779                 }
3780                 break;
3781         case SetPortFeature:
3782                 selector = wIndex >> 8;
3783                 wIndex &= 0xff;
3784                 if (!wIndex || wIndex > ports)
3785                         goto error;
3786                 wIndex--;
3787                 temp = readl(status_reg);
3788                 if (temp & PORT_OWNER)
3789                         break;
3790
3791                 temp &= ~PORT_RWC_BITS;
3792                 switch (wValue) {
3793                 case USB_PORT_FEAT_SUSPEND:
3794                         if ((temp & PORT_PE) == 0
3795                                         || (temp & PORT_RESET) != 0)
3796                                 goto error;
3797                         if (device_may_wakeup(&hcd->self.root_hub->dev))
3798                                 temp |= PORT_WAKE_BITS;
3799                         writel(temp | PORT_SUSPEND, status_reg);
3800                         break;
3801                 case USB_PORT_FEAT_POWER:
3802                         if (HCS_PPC(oxu->hcs_params))
3803                                 writel(temp | PORT_POWER, status_reg);
3804                         break;
3805                 case USB_PORT_FEAT_RESET:
3806                         if (temp & PORT_RESUME)
3807                                 goto error;
3808                         /* line status bits may report this as low speed,
3809                          * which can be fine if this root hub has a
3810                          * transaction translator built in.
3811                          */
3812                         oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3813                         temp |= PORT_RESET;
3814                         temp &= ~PORT_PE;
3815
3816                         /*
3817                          * caller must wait, then call GetPortStatus
3818                          * usb 2.0 spec says 50 ms resets on root
3819                          */
3820                         oxu->reset_done[wIndex] = jiffies
3821                                         + msecs_to_jiffies(50);
3822                         writel(temp, status_reg);
3823                         break;
3824
3825                 /* For downstream facing ports (these):  one hub port is put
3826                  * into test mode according to USB2 11.24.2.13, then the hub
3827                  * must be reset (which for root hub now means rmmod+modprobe,
3828                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3829                  * about the EHCI-specific stuff.
3830                  */
3831                 case USB_PORT_FEAT_TEST:
3832                         if (!selector || selector > 5)
3833                                 goto error;
3834                         ehci_quiesce(oxu);
3835                         ehci_halt(oxu);
3836                         temp |= selector << 16;
3837                         writel(temp, status_reg);
3838                         break;
3839
3840                 default:
3841                         goto error;
3842                 }
3843                 readl(&oxu->regs->command);     /* unblock posted writes */
3844                 break;
3845
3846         default:
3847 error:
3848                 /* "stall" on error */
3849                 retval = -EPIPE;
3850         }
3851         spin_unlock_irqrestore(&oxu->lock, flags);
3852         return retval;
3853 }
3854
3855 #ifdef CONFIG_PM
3856
3857 static int oxu_bus_suspend(struct usb_hcd *hcd)
3858 {
3859         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3860         int port;
3861         int mask;
3862
3863         oxu_dbg(oxu, "suspend root hub\n");
3864
3865         if (time_before(jiffies, oxu->next_statechange))
3866                 msleep(5);
3867
3868         port = HCS_N_PORTS(oxu->hcs_params);
3869         spin_lock_irq(&oxu->lock);
3870
3871         /* stop schedules, clean any completed work */
3872         if (HC_IS_RUNNING(hcd->state)) {
3873                 ehci_quiesce(oxu);
3874                 hcd->state = HC_STATE_QUIESCING;
3875         }
3876         oxu->command = readl(&oxu->regs->command);
3877         if (oxu->reclaim)
3878                 oxu->reclaim_ready = 1;
3879         ehci_work(oxu);
3880
3881         /* Unlike other USB host controller types, EHCI doesn't have
3882          * any notion of "global" or bus-wide suspend.  The driver has
3883          * to manually suspend all the active unsuspended ports, and
3884          * then manually resume them in the bus_resume() routine.
3885          */
3886         oxu->bus_suspended = 0;
3887         while (port--) {
3888                 u32 __iomem *reg = &oxu->regs->port_status[port];
3889                 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3890                 u32 t2 = t1;
3891
3892                 /* keep track of which ports we suspend */
3893                 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3894                                 !(t1 & PORT_SUSPEND)) {
3895                         t2 |= PORT_SUSPEND;
3896                         set_bit(port, &oxu->bus_suspended);
3897                 }
3898
3899                 /* enable remote wakeup on all ports */
3900                 if (device_may_wakeup(&hcd->self.root_hub->dev))
3901                         t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3902                 else
3903                         t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3904
3905                 if (t1 != t2) {
3906                         oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3907                                 port + 1, t1, t2);
3908                         writel(t2, reg);
3909                 }
3910         }
3911
3912         spin_unlock_irq(&oxu->lock);
3913         /* turn off now-idle HC */
3914         del_timer_sync(&oxu->watchdog);
3915         spin_lock_irq(&oxu->lock);
3916         ehci_halt(oxu);
3917         hcd->state = HC_STATE_SUSPENDED;
3918
3919         /* allow remote wakeup */
3920         mask = INTR_MASK;
3921         if (!device_may_wakeup(&hcd->self.root_hub->dev))
3922                 mask &= ~STS_PCD;
3923         writel(mask, &oxu->regs->intr_enable);
3924         readl(&oxu->regs->intr_enable);
3925
3926         oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3927         spin_unlock_irq(&oxu->lock);
3928         return 0;
3929 }
3930
3931 /* Caller has locked the root hub, and should reset/reinit on error */
3932 static int oxu_bus_resume(struct usb_hcd *hcd)
3933 {
3934         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3935         u32 temp;
3936         int i;
3937
3938         if (time_before(jiffies, oxu->next_statechange))
3939                 msleep(5);
3940         spin_lock_irq(&oxu->lock);
3941
3942         /* Ideally and we've got a real resume here, and no port's power
3943          * was lost.  (For PCI, that means Vaux was maintained.)  But we
3944          * could instead be restoring a swsusp snapshot -- so that BIOS was
3945          * the last user of the controller, not reset/pm hardware keeping
3946          * state we gave to it.
3947          */
3948         temp = readl(&oxu->regs->intr_enable);
3949         oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3950
3951         /* at least some APM implementations will try to deliver
3952          * IRQs right away, so delay them until we're ready.
3953          */
3954         writel(0, &oxu->regs->intr_enable);
3955
3956         /* re-init operational registers */
3957         writel(0, &oxu->regs->segment);
3958         writel(oxu->periodic_dma, &oxu->regs->frame_list);
3959         writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3960
3961         /* restore CMD_RUN, framelist size, and irq threshold */
3962         writel(oxu->command, &oxu->regs->command);
3963
3964         /* Some controller/firmware combinations need a delay during which
3965          * they set up the port statuses.  See Bugzilla #8190. */
3966         mdelay(8);
3967
3968         /* manually resume the ports we suspended during bus_suspend() */
3969         i = HCS_N_PORTS(oxu->hcs_params);
3970         while (i--) {
3971                 temp = readl(&oxu->regs->port_status[i]);
3972                 temp &= ~(PORT_RWC_BITS
3973                         | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3974                 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3975                         oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3976                         temp |= PORT_RESUME;
3977                 }
3978                 writel(temp, &oxu->regs->port_status[i]);
3979         }
3980         i = HCS_N_PORTS(oxu->hcs_params);
3981         mdelay(20);
3982         while (i--) {
3983                 temp = readl(&oxu->regs->port_status[i]);
3984                 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3985                         temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3986                         writel(temp, &oxu->regs->port_status[i]);
3987                         oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3988                 }
3989         }
3990         (void) readl(&oxu->regs->command);
3991
3992         /* maybe re-activate the schedule(s) */
3993         temp = 0;
3994         if (oxu->async->qh_next.qh)
3995                 temp |= CMD_ASE;
3996         if (oxu->periodic_sched)
3997                 temp |= CMD_PSE;
3998         if (temp) {
3999                 oxu->command |= temp;
4000                 writel(oxu->command, &oxu->regs->command);
4001         }
4002
4003         oxu->next_statechange = jiffies + msecs_to_jiffies(5);
4004         hcd->state = HC_STATE_RUNNING;
4005
4006         /* Now we can safely re-enable irqs */
4007         writel(INTR_MASK, &oxu->regs->intr_enable);
4008
4009         spin_unlock_irq(&oxu->lock);
4010         return 0;
4011 }
4012
4013 #else
4014
4015 static int oxu_bus_suspend(struct usb_hcd *hcd)
4016 {
4017         return 0;
4018 }
4019
4020 static int oxu_bus_resume(struct usb_hcd *hcd)
4021 {
4022         return 0;
4023 }
4024
4025 #endif  /* CONFIG_PM */
4026
4027 static const struct hc_driver oxu_hc_driver = {
4028         .description =          "oxu210hp_hcd",
4029         .product_desc =         "oxu210hp HCD",
4030         .hcd_priv_size =        sizeof(struct oxu_hcd),
4031
4032         /*
4033          * Generic hardware linkage
4034          */
4035         .irq =                  oxu_irq,
4036         .flags =                HCD_MEMORY | HCD_USB2,
4037
4038         /*
4039          * Basic lifecycle operations
4040          */
4041         .reset =                oxu_reset,
4042         .start =                oxu_run,
4043         .stop =                 oxu_stop,
4044         .shutdown =             oxu_shutdown,
4045
4046         /*
4047          * Managing i/o requests and associated device resources
4048          */
4049         .urb_enqueue =          oxu_urb_enqueue,
4050         .urb_dequeue =          oxu_urb_dequeue,
4051         .endpoint_disable =     oxu_endpoint_disable,
4052
4053         /*
4054          * Scheduling support
4055          */
4056         .get_frame_number =     oxu_get_frame,
4057
4058         /*
4059          * Root hub support
4060          */
4061         .hub_status_data =      oxu_hub_status_data,
4062         .hub_control =          oxu_hub_control,
4063         .bus_suspend =          oxu_bus_suspend,
4064         .bus_resume =           oxu_bus_resume,
4065 };
4066
4067 /*
4068  * Module stuff
4069  */
4070
4071 static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4072 {
4073         u32 tmp;
4074
4075         /* Initialize top level registers.
4076          * First write ever
4077          */
4078         oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4079         oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4080         oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4081
4082         tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4083         oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4084
4085         oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4086                                         OXU_COMPARATOR | OXU_ASO_OP);
4087
4088         tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4089         oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4090
4091         /* Clear all top interrupt enable */
4092         oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4093
4094         /* Clear all top interrupt status */
4095         oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4096
4097         /* Enable all needed top interrupt except OTG SPH core */
4098         oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4099 }
4100
4101 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4102 {
4103         u32 id;
4104         static const char * const bo[] = {
4105                 "reserved",
4106                 "128-pin LQFP",
4107                 "84-pin TFBGA",
4108                 "reserved",
4109         };
4110
4111         /* Read controller signature register to find a match */
4112         id = oxu_readl(base, OXU_DEVICEID);
4113         dev_info(&pdev->dev, "device ID %x\n", id);
4114         if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4115                 return -1;
4116
4117         dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4118                 id >> OXU_REV_SHIFT,
4119                 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4120                 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4121                 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4122
4123         return 0;
4124 }
4125
4126 static const struct hc_driver oxu_hc_driver;
4127 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4128                                 unsigned long memstart, unsigned long memlen,
4129                                 void __iomem *base, int irq, int otg)
4130 {
4131         struct device *dev = &pdev->dev;
4132
4133         struct usb_hcd *hcd;
4134         struct oxu_hcd *oxu;
4135         int ret;
4136
4137         /* Set endian mode and host mode */
4138         oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4139                                 OXU_USBMODE,
4140                                 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4141
4142         hcd = usb_create_hcd(&oxu_hc_driver, dev,
4143                                 otg ? "oxu210hp_otg" : "oxu210hp_sph");
4144         if (!hcd)
4145                 return ERR_PTR(-ENOMEM);
4146
4147         hcd->rsrc_start = memstart;
4148         hcd->rsrc_len = memlen;
4149         hcd->regs = base;
4150         hcd->irq = irq;
4151         hcd->state = HC_STATE_HALT;
4152
4153         oxu = hcd_to_oxu(hcd);
4154         oxu->is_otg = otg;
4155
4156         ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4157         if (ret < 0) {
4158                 usb_put_hcd(hcd);
4159                 return ERR_PTR(ret);
4160         }
4161
4162         device_wakeup_enable(hcd->self.controller);
4163         return hcd;
4164 }
4165
4166 static int oxu_init(struct platform_device *pdev,
4167                                 unsigned long memstart, unsigned long memlen,
4168                                 void __iomem *base, int irq)
4169 {
4170         struct oxu_info *info = platform_get_drvdata(pdev);
4171         struct usb_hcd *hcd;
4172         int ret;
4173
4174         /* First time configuration at start up */
4175         oxu_configuration(pdev, base);
4176
4177         ret = oxu_verify_id(pdev, base);
4178         if (ret) {
4179                 dev_err(&pdev->dev, "no devices found!\n");
4180                 return -ENODEV;
4181         }
4182
4183         /* Create the OTG controller */
4184         hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4185         if (IS_ERR(hcd)) {
4186                 dev_err(&pdev->dev, "cannot create OTG controller!\n");
4187                 ret = PTR_ERR(hcd);
4188                 goto error_create_otg;
4189         }
4190         info->hcd[0] = hcd;
4191
4192         /* Create the SPH host controller */
4193         hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4194         if (IS_ERR(hcd)) {
4195                 dev_err(&pdev->dev, "cannot create SPH controller!\n");
4196                 ret = PTR_ERR(hcd);
4197                 goto error_create_sph;
4198         }
4199         info->hcd[1] = hcd;
4200
4201         oxu_writel(base, OXU_CHIPIRQEN_SET,
4202                 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4203
4204         return 0;
4205
4206 error_create_sph:
4207         usb_remove_hcd(info->hcd[0]);
4208         usb_put_hcd(info->hcd[0]);
4209
4210 error_create_otg:
4211         return ret;
4212 }
4213
4214 static int oxu_drv_probe(struct platform_device *pdev)
4215 {
4216         struct resource *res;
4217         void __iomem *base;
4218         unsigned long memstart, memlen;
4219         int irq, ret;
4220         struct oxu_info *info;
4221
4222         if (usb_disabled())
4223                 return -ENODEV;
4224
4225         /*
4226          * Get the platform resources
4227          */
4228         irq = platform_get_irq(pdev, 0);
4229         if (irq < 0)
4230                 return irq;
4231         dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4232
4233         base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
4234         if (IS_ERR(base)) {
4235                 ret = PTR_ERR(base);
4236                 goto error;
4237         }
4238         memstart = res->start;
4239         memlen = resource_size(res);
4240
4241         ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4242         if (ret) {
4243                 dev_err(&pdev->dev, "error setting irq type\n");
4244                 ret = -EFAULT;
4245                 goto error;
4246         }
4247
4248         /* Allocate a driver data struct to hold useful info for both
4249          * SPH & OTG devices
4250          */
4251         info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4252         if (!info) {
4253                 ret = -EFAULT;
4254                 goto error;
4255         }
4256         platform_set_drvdata(pdev, info);
4257
4258         ret = oxu_init(pdev, memstart, memlen, base, irq);
4259         if (ret < 0) {
4260                 dev_dbg(&pdev->dev, "cannot init USB devices\n");
4261                 goto error;
4262         }
4263
4264         dev_info(&pdev->dev, "devices enabled and running\n");
4265         platform_set_drvdata(pdev, info);
4266
4267         return 0;
4268
4269 error:
4270         dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4271         return ret;
4272 }
4273
4274 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4275 {
4276         usb_remove_hcd(hcd);
4277         usb_put_hcd(hcd);
4278 }
4279
4280 static void oxu_drv_remove(struct platform_device *pdev)
4281 {
4282         struct oxu_info *info = platform_get_drvdata(pdev);
4283
4284         oxu_remove(pdev, info->hcd[0]);
4285         oxu_remove(pdev, info->hcd[1]);
4286 }
4287
4288 static void oxu_drv_shutdown(struct platform_device *pdev)
4289 {
4290         oxu_drv_remove(pdev);
4291 }
4292
4293 #if 0
4294 /* FIXME: TODO */
4295 static int oxu_drv_suspend(struct device *dev)
4296 {
4297         struct platform_device *pdev = to_platform_device(dev);
4298         struct usb_hcd *hcd = dev_get_drvdata(dev);
4299
4300         return 0;
4301 }
4302
4303 static int oxu_drv_resume(struct device *dev)
4304 {
4305         struct platform_device *pdev = to_platform_device(dev);
4306         struct usb_hcd *hcd = dev_get_drvdata(dev);
4307
4308         return 0;
4309 }
4310 #else
4311 #define oxu_drv_suspend NULL
4312 #define oxu_drv_resume  NULL
4313 #endif
4314
4315 static struct platform_driver oxu_driver = {
4316         .probe          = oxu_drv_probe,
4317         .remove_new     = oxu_drv_remove,
4318         .shutdown       = oxu_drv_shutdown,
4319         .suspend        = oxu_drv_suspend,
4320         .resume         = oxu_drv_resume,
4321         .driver = {
4322                 .name = "oxu210hp-hcd",
4323                 .bus = &platform_bus_type
4324         }
4325 };
4326
4327 module_platform_driver(oxu_driver);
4328
4329 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4330 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4331 MODULE_LICENSE("GPL");