59850dc17b22f0d6f03e103aa2c42c709a309af5
[releases.git] / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28         if (entry->file_offset + entry->num_bytes < entry->file_offset)
29                 return (u64)-1;
30         return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37                                    struct rb_node *node)
38 {
39         struct rb_node **p = &root->rb_node;
40         struct rb_node *parent = NULL;
41         struct btrfs_ordered_extent *entry;
42
43         while (*p) {
44                 parent = *p;
45                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47                 if (file_offset < entry->file_offset)
48                         p = &(*p)->rb_left;
49                 else if (file_offset >= entry_end(entry))
50                         p = &(*p)->rb_right;
51                 else
52                         return parent;
53         }
54
55         rb_link_node(node, parent, p);
56         rb_insert_color(node, root);
57         return NULL;
58 }
59
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65                                      struct rb_node **prev_ret)
66 {
67         struct rb_node *n = root->rb_node;
68         struct rb_node *prev = NULL;
69         struct rb_node *test;
70         struct btrfs_ordered_extent *entry;
71         struct btrfs_ordered_extent *prev_entry = NULL;
72
73         while (n) {
74                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75                 prev = n;
76                 prev_entry = entry;
77
78                 if (file_offset < entry->file_offset)
79                         n = n->rb_left;
80                 else if (file_offset >= entry_end(entry))
81                         n = n->rb_right;
82                 else
83                         return n;
84         }
85         if (!prev_ret)
86                 return NULL;
87
88         while (prev && file_offset >= entry_end(prev_entry)) {
89                 test = rb_next(prev);
90                 if (!test)
91                         break;
92                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93                                       rb_node);
94                 if (file_offset < entry_end(prev_entry))
95                         break;
96
97                 prev = test;
98         }
99         if (prev)
100                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101                                       rb_node);
102         while (prev && file_offset < entry_end(prev_entry)) {
103                 test = rb_prev(prev);
104                 if (!test)
105                         break;
106                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107                                       rb_node);
108                 prev = test;
109         }
110         *prev_ret = prev;
111         return NULL;
112 }
113
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115                           u64 len)
116 {
117         if (file_offset + len <= entry->file_offset ||
118             entry->file_offset + entry->num_bytes <= file_offset)
119                 return 0;
120         return 1;
121 }
122
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128                                                   u64 file_offset)
129 {
130         struct rb_node *prev = NULL;
131         struct rb_node *ret;
132         struct btrfs_ordered_extent *entry;
133
134         if (inode->ordered_tree_last) {
135                 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136                                  rb_node);
137                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138                         return inode->ordered_tree_last;
139         }
140         ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141         if (!ret)
142                 ret = prev;
143         if (ret)
144                 inode->ordered_tree_last = ret;
145         return ret;
146 }
147
148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149                         struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150                         u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151                         u64 offset, unsigned long flags, int compress_type)
152 {
153         struct btrfs_ordered_extent *entry;
154         int ret;
155         u64 qgroup_rsv = 0;
156
157         if (flags &
158             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159                 /* For nocow write, we can release the qgroup rsv right now */
160                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
161                 if (ret < 0)
162                         return ERR_PTR(ret);
163         } else {
164                 /*
165                  * The ordered extent has reserved qgroup space, release now
166                  * and pass the reserved number for qgroup_record to free.
167                  */
168                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
169                 if (ret < 0)
170                         return ERR_PTR(ret);
171         }
172         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173         if (!entry)
174                 return ERR_PTR(-ENOMEM);
175
176         entry->file_offset = file_offset;
177         entry->num_bytes = num_bytes;
178         entry->ram_bytes = ram_bytes;
179         entry->disk_bytenr = disk_bytenr;
180         entry->disk_num_bytes = disk_num_bytes;
181         entry->offset = offset;
182         entry->bytes_left = num_bytes;
183         entry->inode = igrab(&inode->vfs_inode);
184         entry->compress_type = compress_type;
185         entry->truncated_len = (u64)-1;
186         entry->qgroup_rsv = qgroup_rsv;
187         entry->flags = flags;
188         refcount_set(&entry->refs, 1);
189         init_waitqueue_head(&entry->wait);
190         INIT_LIST_HEAD(&entry->list);
191         INIT_LIST_HEAD(&entry->log_list);
192         INIT_LIST_HEAD(&entry->root_extent_list);
193         INIT_LIST_HEAD(&entry->work_list);
194         INIT_LIST_HEAD(&entry->bioc_list);
195         init_completion(&entry->completion);
196
197         /*
198          * We don't need the count_max_extents here, we can assume that all of
199          * that work has been done at higher layers, so this is truly the
200          * smallest the extent is going to get.
201          */
202         spin_lock(&inode->lock);
203         btrfs_mod_outstanding_extents(inode, 1);
204         spin_unlock(&inode->lock);
205
206         return entry;
207 }
208
209 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
210 {
211         struct btrfs_inode *inode = BTRFS_I(entry->inode);
212         struct btrfs_root *root = inode->root;
213         struct btrfs_fs_info *fs_info = root->fs_info;
214         struct rb_node *node;
215
216         trace_btrfs_ordered_extent_add(inode, entry);
217
218         percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219                                  fs_info->delalloc_batch);
220
221         /* One ref for the tree. */
222         refcount_inc(&entry->refs);
223
224         spin_lock_irq(&inode->ordered_tree_lock);
225         node = tree_insert(&inode->ordered_tree, entry->file_offset,
226                            &entry->rb_node);
227         if (node)
228                 btrfs_panic(fs_info, -EEXIST,
229                                 "inconsistency in ordered tree at offset %llu",
230                                 entry->file_offset);
231         spin_unlock_irq(&inode->ordered_tree_lock);
232
233         spin_lock(&root->ordered_extent_lock);
234         list_add_tail(&entry->root_extent_list,
235                       &root->ordered_extents);
236         root->nr_ordered_extents++;
237         if (root->nr_ordered_extents == 1) {
238                 spin_lock(&fs_info->ordered_root_lock);
239                 BUG_ON(!list_empty(&root->ordered_root));
240                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241                 spin_unlock(&fs_info->ordered_root_lock);
242         }
243         spin_unlock(&root->ordered_extent_lock);
244 }
245
246 /*
247  * Add an ordered extent to the per-inode tree.
248  *
249  * @inode:           Inode that this extent is for.
250  * @file_offset:     Logical offset in file where the extent starts.
251  * @num_bytes:       Logical length of extent in file.
252  * @ram_bytes:       Full length of unencoded data.
253  * @disk_bytenr:     Offset of extent on disk.
254  * @disk_num_bytes:  Size of extent on disk.
255  * @offset:          Offset into unencoded data where file data starts.
256  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
257  * @compress_type:   Compression algorithm used for data.
258  *
259  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
260  * tree is given a single reference on the ordered extent that was inserted, and
261  * the returned pointer is given a second reference.
262  *
263  * Return: the new ordered extent or error pointer.
264  */
265 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
266                         struct btrfs_inode *inode, u64 file_offset,
267                         u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
268                         u64 disk_num_bytes, u64 offset, unsigned long flags,
269                         int compress_type)
270 {
271         struct btrfs_ordered_extent *entry;
272
273         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
274
275         entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
276                                      disk_bytenr, disk_num_bytes, offset, flags,
277                                      compress_type);
278         if (!IS_ERR(entry))
279                 insert_ordered_extent(entry);
280         return entry;
281 }
282
283 /*
284  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
285  * when an ordered extent is finished.  If the list covers more than one
286  * ordered extent, it is split across multiples.
287  */
288 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
289                            struct btrfs_ordered_sum *sum)
290 {
291         struct btrfs_inode *inode = BTRFS_I(entry->inode);
292
293         spin_lock_irq(&inode->ordered_tree_lock);
294         list_add_tail(&sum->list, &entry->list);
295         spin_unlock_irq(&inode->ordered_tree_lock);
296 }
297
298 static void finish_ordered_fn(struct btrfs_work *work)
299 {
300         struct btrfs_ordered_extent *ordered_extent;
301
302         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
303         btrfs_finish_ordered_io(ordered_extent);
304 }
305
306 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
307                                       struct page *page, u64 file_offset,
308                                       u64 len, bool uptodate)
309 {
310         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
311         struct btrfs_fs_info *fs_info = inode->root->fs_info;
312
313         lockdep_assert_held(&inode->ordered_tree_lock);
314
315         if (page) {
316                 ASSERT(page->mapping);
317                 ASSERT(page_offset(page) <= file_offset);
318                 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
319
320                 /*
321                  * Ordered (Private2) bit indicates whether we still have
322                  * pending io unfinished for the ordered extent.
323                  *
324                  * If there's no such bit, we need to skip to next range.
325                  */
326                 if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
327                                               file_offset, len))
328                         return false;
329                 btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
330         }
331
332         /* Now we're fine to update the accounting. */
333         if (WARN_ON_ONCE(len > ordered->bytes_left)) {
334                 btrfs_crit(fs_info,
335 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
336                            inode->root->root_key.objectid, btrfs_ino(inode),
337                            ordered->file_offset, ordered->num_bytes,
338                            len, ordered->bytes_left);
339                 ordered->bytes_left = 0;
340         } else {
341                 ordered->bytes_left -= len;
342         }
343
344         if (!uptodate)
345                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
346
347         if (ordered->bytes_left)
348                 return false;
349
350         /*
351          * All the IO of the ordered extent is finished, we need to queue
352          * the finish_func to be executed.
353          */
354         set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
355         cond_wake_up(&ordered->wait);
356         refcount_inc(&ordered->refs);
357         trace_btrfs_ordered_extent_mark_finished(inode, ordered);
358         return true;
359 }
360
361 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
362 {
363         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
364         struct btrfs_fs_info *fs_info = inode->root->fs_info;
365         struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
366                 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
367
368         btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
369         btrfs_queue_work(wq, &ordered->work);
370 }
371
372 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
373                                  struct page *page, u64 file_offset, u64 len,
374                                  bool uptodate)
375 {
376         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
377         unsigned long flags;
378         bool ret;
379
380         trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
381
382         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
383         ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
384         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
385
386         if (ret)
387                 btrfs_queue_ordered_fn(ordered);
388         return ret;
389 }
390
391 /*
392  * Mark all ordered extents io inside the specified range finished.
393  *
394  * @page:        The involved page for the operation.
395  *               For uncompressed buffered IO, the page status also needs to be
396  *               updated to indicate whether the pending ordered io is finished.
397  *               Can be NULL for direct IO and compressed write.
398  *               For these cases, callers are ensured they won't execute the
399  *               endio function twice.
400  *
401  * This function is called for endio, thus the range must have ordered
402  * extent(s) covering it.
403  */
404 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
405                                     struct page *page, u64 file_offset,
406                                     u64 num_bytes, bool uptodate)
407 {
408         struct rb_node *node;
409         struct btrfs_ordered_extent *entry = NULL;
410         unsigned long flags;
411         u64 cur = file_offset;
412
413         trace_btrfs_writepage_end_io_hook(inode, file_offset,
414                                           file_offset + num_bytes - 1,
415                                           uptodate);
416
417         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
418         while (cur < file_offset + num_bytes) {
419                 u64 entry_end;
420                 u64 end;
421                 u32 len;
422
423                 node = ordered_tree_search(inode, cur);
424                 /* No ordered extents at all */
425                 if (!node)
426                         break;
427
428                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
429                 entry_end = entry->file_offset + entry->num_bytes;
430                 /*
431                  * |<-- OE --->|  |
432                  *                cur
433                  * Go to next OE.
434                  */
435                 if (cur >= entry_end) {
436                         node = rb_next(node);
437                         /* No more ordered extents, exit */
438                         if (!node)
439                                 break;
440                         entry = rb_entry(node, struct btrfs_ordered_extent,
441                                          rb_node);
442
443                         /* Go to next ordered extent and continue */
444                         cur = entry->file_offset;
445                         continue;
446                 }
447                 /*
448                  * |    |<--- OE --->|
449                  * cur
450                  * Go to the start of OE.
451                  */
452                 if (cur < entry->file_offset) {
453                         cur = entry->file_offset;
454                         continue;
455                 }
456
457                 /*
458                  * Now we are definitely inside one ordered extent.
459                  *
460                  * |<--- OE --->|
461                  *      |
462                  *      cur
463                  */
464                 end = min(entry->file_offset + entry->num_bytes,
465                           file_offset + num_bytes) - 1;
466                 ASSERT(end + 1 - cur < U32_MAX);
467                 len = end + 1 - cur;
468
469                 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
470                         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
471                         btrfs_queue_ordered_fn(entry);
472                         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
473                 }
474                 cur += len;
475         }
476         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
477 }
478
479 /*
480  * Finish IO for one ordered extent across a given range.  The range can only
481  * contain one ordered extent.
482  *
483  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
484  *               search and use the ordered extent directly.
485  *               Will be also used to store the finished ordered extent.
486  * @file_offset: File offset for the finished IO
487  * @io_size:     Length of the finish IO range
488  *
489  * Return true if the ordered extent is finished in the range, and update
490  * @cached.
491  * Return false otherwise.
492  *
493  * NOTE: The range can NOT cross multiple ordered extents.
494  * Thus caller should ensure the range doesn't cross ordered extents.
495  */
496 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
497                                     struct btrfs_ordered_extent **cached,
498                                     u64 file_offset, u64 io_size)
499 {
500         struct rb_node *node;
501         struct btrfs_ordered_extent *entry = NULL;
502         unsigned long flags;
503         bool finished = false;
504
505         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
506         if (cached && *cached) {
507                 entry = *cached;
508                 goto have_entry;
509         }
510
511         node = ordered_tree_search(inode, file_offset);
512         if (!node)
513                 goto out;
514
515         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
516 have_entry:
517         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
518                 goto out;
519
520         if (io_size > entry->bytes_left)
521                 btrfs_crit(inode->root->fs_info,
522                            "bad ordered accounting left %llu size %llu",
523                        entry->bytes_left, io_size);
524
525         entry->bytes_left -= io_size;
526
527         if (entry->bytes_left == 0) {
528                 /*
529                  * Ensure only one caller can set the flag and finished_ret
530                  * accordingly
531                  */
532                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
533                 /* test_and_set_bit implies a barrier */
534                 cond_wake_up_nomb(&entry->wait);
535         }
536 out:
537         if (finished && cached && entry) {
538                 *cached = entry;
539                 refcount_inc(&entry->refs);
540                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
541         }
542         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
543         return finished;
544 }
545
546 /*
547  * used to drop a reference on an ordered extent.  This will free
548  * the extent if the last reference is dropped
549  */
550 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
551 {
552         struct list_head *cur;
553         struct btrfs_ordered_sum *sum;
554
555         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
556
557         if (refcount_dec_and_test(&entry->refs)) {
558                 ASSERT(list_empty(&entry->root_extent_list));
559                 ASSERT(list_empty(&entry->log_list));
560                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
561                 if (entry->inode)
562                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
563                 while (!list_empty(&entry->list)) {
564                         cur = entry->list.next;
565                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
566                         list_del(&sum->list);
567                         kvfree(sum);
568                 }
569                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
570         }
571 }
572
573 /*
574  * remove an ordered extent from the tree.  No references are dropped
575  * and waiters are woken up.
576  */
577 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
578                                  struct btrfs_ordered_extent *entry)
579 {
580         struct btrfs_root *root = btrfs_inode->root;
581         struct btrfs_fs_info *fs_info = root->fs_info;
582         struct rb_node *node;
583         bool pending;
584         bool freespace_inode;
585
586         /*
587          * If this is a free space inode the thread has not acquired the ordered
588          * extents lockdep map.
589          */
590         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
591
592         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
593         /* This is paired with btrfs_alloc_ordered_extent. */
594         spin_lock(&btrfs_inode->lock);
595         btrfs_mod_outstanding_extents(btrfs_inode, -1);
596         spin_unlock(&btrfs_inode->lock);
597         if (root != fs_info->tree_root) {
598                 u64 release;
599
600                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
601                         release = entry->disk_num_bytes;
602                 else
603                         release = entry->num_bytes;
604                 btrfs_delalloc_release_metadata(btrfs_inode, release,
605                                                 test_bit(BTRFS_ORDERED_IOERR,
606                                                          &entry->flags));
607         }
608
609         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
610                                  fs_info->delalloc_batch);
611
612         spin_lock_irq(&btrfs_inode->ordered_tree_lock);
613         node = &entry->rb_node;
614         rb_erase(node, &btrfs_inode->ordered_tree);
615         RB_CLEAR_NODE(node);
616         if (btrfs_inode->ordered_tree_last == node)
617                 btrfs_inode->ordered_tree_last = NULL;
618         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
619         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
620         spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
621
622         /*
623          * The current running transaction is waiting on us, we need to let it
624          * know that we're complete and wake it up.
625          */
626         if (pending) {
627                 struct btrfs_transaction *trans;
628
629                 /*
630                  * The checks for trans are just a formality, it should be set,
631                  * but if it isn't we don't want to deref/assert under the spin
632                  * lock, so be nice and check if trans is set, but ASSERT() so
633                  * if it isn't set a developer will notice.
634                  */
635                 spin_lock(&fs_info->trans_lock);
636                 trans = fs_info->running_transaction;
637                 if (trans)
638                         refcount_inc(&trans->use_count);
639                 spin_unlock(&fs_info->trans_lock);
640
641                 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
642                 if (trans) {
643                         if (atomic_dec_and_test(&trans->pending_ordered))
644                                 wake_up(&trans->pending_wait);
645                         btrfs_put_transaction(trans);
646                 }
647         }
648
649         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
650
651         spin_lock(&root->ordered_extent_lock);
652         list_del_init(&entry->root_extent_list);
653         root->nr_ordered_extents--;
654
655         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
656
657         if (!root->nr_ordered_extents) {
658                 spin_lock(&fs_info->ordered_root_lock);
659                 BUG_ON(list_empty(&root->ordered_root));
660                 list_del_init(&root->ordered_root);
661                 spin_unlock(&fs_info->ordered_root_lock);
662         }
663         spin_unlock(&root->ordered_extent_lock);
664         wake_up(&entry->wait);
665         if (!freespace_inode)
666                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
667 }
668
669 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
670 {
671         struct btrfs_ordered_extent *ordered;
672
673         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
674         btrfs_start_ordered_extent(ordered);
675         complete(&ordered->completion);
676 }
677
678 /*
679  * wait for all the ordered extents in a root.  This is done when balancing
680  * space between drives.
681  */
682 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
683                                const u64 range_start, const u64 range_len)
684 {
685         struct btrfs_fs_info *fs_info = root->fs_info;
686         LIST_HEAD(splice);
687         LIST_HEAD(skipped);
688         LIST_HEAD(works);
689         struct btrfs_ordered_extent *ordered, *next;
690         u64 count = 0;
691         const u64 range_end = range_start + range_len;
692
693         mutex_lock(&root->ordered_extent_mutex);
694         spin_lock(&root->ordered_extent_lock);
695         list_splice_init(&root->ordered_extents, &splice);
696         while (!list_empty(&splice) && nr) {
697                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
698                                            root_extent_list);
699
700                 if (range_end <= ordered->disk_bytenr ||
701                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
702                         list_move_tail(&ordered->root_extent_list, &skipped);
703                         cond_resched_lock(&root->ordered_extent_lock);
704                         continue;
705                 }
706
707                 list_move_tail(&ordered->root_extent_list,
708                                &root->ordered_extents);
709                 refcount_inc(&ordered->refs);
710                 spin_unlock(&root->ordered_extent_lock);
711
712                 btrfs_init_work(&ordered->flush_work,
713                                 btrfs_run_ordered_extent_work, NULL);
714                 list_add_tail(&ordered->work_list, &works);
715                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
716
717                 cond_resched();
718                 spin_lock(&root->ordered_extent_lock);
719                 if (nr != U64_MAX)
720                         nr--;
721                 count++;
722         }
723         list_splice_tail(&skipped, &root->ordered_extents);
724         list_splice_tail(&splice, &root->ordered_extents);
725         spin_unlock(&root->ordered_extent_lock);
726
727         list_for_each_entry_safe(ordered, next, &works, work_list) {
728                 list_del_init(&ordered->work_list);
729                 wait_for_completion(&ordered->completion);
730                 btrfs_put_ordered_extent(ordered);
731                 cond_resched();
732         }
733         mutex_unlock(&root->ordered_extent_mutex);
734
735         return count;
736 }
737
738 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
739                              const u64 range_start, const u64 range_len)
740 {
741         struct btrfs_root *root;
742         LIST_HEAD(splice);
743         u64 done;
744
745         mutex_lock(&fs_info->ordered_operations_mutex);
746         spin_lock(&fs_info->ordered_root_lock);
747         list_splice_init(&fs_info->ordered_roots, &splice);
748         while (!list_empty(&splice) && nr) {
749                 root = list_first_entry(&splice, struct btrfs_root,
750                                         ordered_root);
751                 root = btrfs_grab_root(root);
752                 BUG_ON(!root);
753                 list_move_tail(&root->ordered_root,
754                                &fs_info->ordered_roots);
755                 spin_unlock(&fs_info->ordered_root_lock);
756
757                 done = btrfs_wait_ordered_extents(root, nr,
758                                                   range_start, range_len);
759                 btrfs_put_root(root);
760
761                 spin_lock(&fs_info->ordered_root_lock);
762                 if (nr != U64_MAX) {
763                         nr -= done;
764                 }
765         }
766         list_splice_tail(&splice, &fs_info->ordered_roots);
767         spin_unlock(&fs_info->ordered_root_lock);
768         mutex_unlock(&fs_info->ordered_operations_mutex);
769 }
770
771 /*
772  * Start IO and wait for a given ordered extent to finish.
773  *
774  * Wait on page writeback for all the pages in the extent and the IO completion
775  * code to insert metadata into the btree corresponding to the extent.
776  */
777 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
778 {
779         u64 start = entry->file_offset;
780         u64 end = start + entry->num_bytes - 1;
781         struct btrfs_inode *inode = BTRFS_I(entry->inode);
782         bool freespace_inode;
783
784         trace_btrfs_ordered_extent_start(inode, entry);
785
786         /*
787          * If this is a free space inode do not take the ordered extents lockdep
788          * map.
789          */
790         freespace_inode = btrfs_is_free_space_inode(inode);
791
792         /*
793          * pages in the range can be dirty, clean or writeback.  We
794          * start IO on any dirty ones so the wait doesn't stall waiting
795          * for the flusher thread to find them
796          */
797         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
798                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
799
800         if (!freespace_inode)
801                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
802         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
803 }
804
805 /*
806  * Used to wait on ordered extents across a large range of bytes.
807  */
808 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
809 {
810         int ret = 0;
811         int ret_wb = 0;
812         u64 end;
813         u64 orig_end;
814         struct btrfs_ordered_extent *ordered;
815
816         if (start + len < start) {
817                 orig_end = OFFSET_MAX;
818         } else {
819                 orig_end = start + len - 1;
820                 if (orig_end > OFFSET_MAX)
821                         orig_end = OFFSET_MAX;
822         }
823
824         /* start IO across the range first to instantiate any delalloc
825          * extents
826          */
827         ret = btrfs_fdatawrite_range(inode, start, orig_end);
828         if (ret)
829                 return ret;
830
831         /*
832          * If we have a writeback error don't return immediately. Wait first
833          * for any ordered extents that haven't completed yet. This is to make
834          * sure no one can dirty the same page ranges and call writepages()
835          * before the ordered extents complete - to avoid failures (-EEXIST)
836          * when adding the new ordered extents to the ordered tree.
837          */
838         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
839
840         end = orig_end;
841         while (1) {
842                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
843                 if (!ordered)
844                         break;
845                 if (ordered->file_offset > orig_end) {
846                         btrfs_put_ordered_extent(ordered);
847                         break;
848                 }
849                 if (ordered->file_offset + ordered->num_bytes <= start) {
850                         btrfs_put_ordered_extent(ordered);
851                         break;
852                 }
853                 btrfs_start_ordered_extent(ordered);
854                 end = ordered->file_offset;
855                 /*
856                  * If the ordered extent had an error save the error but don't
857                  * exit without waiting first for all other ordered extents in
858                  * the range to complete.
859                  */
860                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
861                         ret = -EIO;
862                 btrfs_put_ordered_extent(ordered);
863                 if (end == 0 || end == start)
864                         break;
865                 end--;
866         }
867         return ret_wb ? ret_wb : ret;
868 }
869
870 /*
871  * find an ordered extent corresponding to file_offset.  return NULL if
872  * nothing is found, otherwise take a reference on the extent and return it
873  */
874 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
875                                                          u64 file_offset)
876 {
877         struct rb_node *node;
878         struct btrfs_ordered_extent *entry = NULL;
879         unsigned long flags;
880
881         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
882         node = ordered_tree_search(inode, file_offset);
883         if (!node)
884                 goto out;
885
886         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
887         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
888                 entry = NULL;
889         if (entry) {
890                 refcount_inc(&entry->refs);
891                 trace_btrfs_ordered_extent_lookup(inode, entry);
892         }
893 out:
894         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
895         return entry;
896 }
897
898 /* Since the DIO code tries to lock a wide area we need to look for any ordered
899  * extents that exist in the range, rather than just the start of the range.
900  */
901 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
902                 struct btrfs_inode *inode, u64 file_offset, u64 len)
903 {
904         struct rb_node *node;
905         struct btrfs_ordered_extent *entry = NULL;
906
907         spin_lock_irq(&inode->ordered_tree_lock);
908         node = ordered_tree_search(inode, file_offset);
909         if (!node) {
910                 node = ordered_tree_search(inode, file_offset + len);
911                 if (!node)
912                         goto out;
913         }
914
915         while (1) {
916                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
917                 if (range_overlaps(entry, file_offset, len))
918                         break;
919
920                 if (entry->file_offset >= file_offset + len) {
921                         entry = NULL;
922                         break;
923                 }
924                 entry = NULL;
925                 node = rb_next(node);
926                 if (!node)
927                         break;
928         }
929 out:
930         if (entry) {
931                 refcount_inc(&entry->refs);
932                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
933         }
934         spin_unlock_irq(&inode->ordered_tree_lock);
935         return entry;
936 }
937
938 /*
939  * Adds all ordered extents to the given list. The list ends up sorted by the
940  * file_offset of the ordered extents.
941  */
942 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
943                                            struct list_head *list)
944 {
945         struct rb_node *n;
946
947         ASSERT(inode_is_locked(&inode->vfs_inode));
948
949         spin_lock_irq(&inode->ordered_tree_lock);
950         for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
951                 struct btrfs_ordered_extent *ordered;
952
953                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
954
955                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
956                         continue;
957
958                 ASSERT(list_empty(&ordered->log_list));
959                 list_add_tail(&ordered->log_list, list);
960                 refcount_inc(&ordered->refs);
961                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
962         }
963         spin_unlock_irq(&inode->ordered_tree_lock);
964 }
965
966 /*
967  * lookup and return any extent before 'file_offset'.  NULL is returned
968  * if none is found
969  */
970 struct btrfs_ordered_extent *
971 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
972 {
973         struct rb_node *node;
974         struct btrfs_ordered_extent *entry = NULL;
975
976         spin_lock_irq(&inode->ordered_tree_lock);
977         node = ordered_tree_search(inode, file_offset);
978         if (!node)
979                 goto out;
980
981         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
982         refcount_inc(&entry->refs);
983         trace_btrfs_ordered_extent_lookup_first(inode, entry);
984 out:
985         spin_unlock_irq(&inode->ordered_tree_lock);
986         return entry;
987 }
988
989 /*
990  * Lookup the first ordered extent that overlaps the range
991  * [@file_offset, @file_offset + @len).
992  *
993  * The difference between this and btrfs_lookup_first_ordered_extent() is
994  * that this one won't return any ordered extent that does not overlap the range.
995  * And the difference against btrfs_lookup_ordered_extent() is, this function
996  * ensures the first ordered extent gets returned.
997  */
998 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
999                         struct btrfs_inode *inode, u64 file_offset, u64 len)
1000 {
1001         struct rb_node *node;
1002         struct rb_node *cur;
1003         struct rb_node *prev;
1004         struct rb_node *next;
1005         struct btrfs_ordered_extent *entry = NULL;
1006
1007         spin_lock_irq(&inode->ordered_tree_lock);
1008         node = inode->ordered_tree.rb_node;
1009         /*
1010          * Here we don't want to use tree_search() which will use tree->last
1011          * and screw up the search order.
1012          * And __tree_search() can't return the adjacent ordered extents
1013          * either, thus here we do our own search.
1014          */
1015         while (node) {
1016                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1017
1018                 if (file_offset < entry->file_offset) {
1019                         node = node->rb_left;
1020                 } else if (file_offset >= entry_end(entry)) {
1021                         node = node->rb_right;
1022                 } else {
1023                         /*
1024                          * Direct hit, got an ordered extent that starts at
1025                          * @file_offset
1026                          */
1027                         goto out;
1028                 }
1029         }
1030         if (!entry) {
1031                 /* Empty tree */
1032                 goto out;
1033         }
1034
1035         cur = &entry->rb_node;
1036         /* We got an entry around @file_offset, check adjacent entries */
1037         if (entry->file_offset < file_offset) {
1038                 prev = cur;
1039                 next = rb_next(cur);
1040         } else {
1041                 prev = rb_prev(cur);
1042                 next = cur;
1043         }
1044         if (prev) {
1045                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1046                 if (range_overlaps(entry, file_offset, len))
1047                         goto out;
1048         }
1049         if (next) {
1050                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1051                 if (range_overlaps(entry, file_offset, len))
1052                         goto out;
1053         }
1054         /* No ordered extent in the range */
1055         entry = NULL;
1056 out:
1057         if (entry) {
1058                 refcount_inc(&entry->refs);
1059                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1060         }
1061
1062         spin_unlock_irq(&inode->ordered_tree_lock);
1063         return entry;
1064 }
1065
1066 /*
1067  * Lock the passed range and ensures all pending ordered extents in it are run
1068  * to completion.
1069  *
1070  * @inode:        Inode whose ordered tree is to be searched
1071  * @start:        Beginning of range to flush
1072  * @end:          Last byte of range to lock
1073  * @cached_state: If passed, will return the extent state responsible for the
1074  *                locked range. It's the caller's responsibility to free the
1075  *                cached state.
1076  *
1077  * Always return with the given range locked, ensuring after it's called no
1078  * order extent can be pending.
1079  */
1080 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1081                                         u64 end,
1082                                         struct extent_state **cached_state)
1083 {
1084         struct btrfs_ordered_extent *ordered;
1085         struct extent_state *cache = NULL;
1086         struct extent_state **cachedp = &cache;
1087
1088         if (cached_state)
1089                 cachedp = cached_state;
1090
1091         while (1) {
1092                 lock_extent(&inode->io_tree, start, end, cachedp);
1093                 ordered = btrfs_lookup_ordered_range(inode, start,
1094                                                      end - start + 1);
1095                 if (!ordered) {
1096                         /*
1097                          * If no external cached_state has been passed then
1098                          * decrement the extra ref taken for cachedp since we
1099                          * aren't exposing it outside of this function
1100                          */
1101                         if (!cached_state)
1102                                 refcount_dec(&cache->refs);
1103                         break;
1104                 }
1105                 unlock_extent(&inode->io_tree, start, end, cachedp);
1106                 btrfs_start_ordered_extent(ordered);
1107                 btrfs_put_ordered_extent(ordered);
1108         }
1109 }
1110
1111 /*
1112  * Lock the passed range and ensure all pending ordered extents in it are run
1113  * to completion in nowait mode.
1114  *
1115  * Return true if btrfs_lock_ordered_range does not return any extents,
1116  * otherwise false.
1117  */
1118 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1119                                   struct extent_state **cached_state)
1120 {
1121         struct btrfs_ordered_extent *ordered;
1122
1123         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1124                 return false;
1125
1126         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1127         if (!ordered)
1128                 return true;
1129
1130         btrfs_put_ordered_extent(ordered);
1131         unlock_extent(&inode->io_tree, start, end, cached_state);
1132
1133         return false;
1134 }
1135
1136 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1137 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1138                         struct btrfs_ordered_extent *ordered, u64 len)
1139 {
1140         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1141         struct btrfs_root *root = inode->root;
1142         struct btrfs_fs_info *fs_info = root->fs_info;
1143         u64 file_offset = ordered->file_offset;
1144         u64 disk_bytenr = ordered->disk_bytenr;
1145         unsigned long flags = ordered->flags;
1146         struct btrfs_ordered_sum *sum, *tmpsum;
1147         struct btrfs_ordered_extent *new;
1148         struct rb_node *node;
1149         u64 offset = 0;
1150
1151         trace_btrfs_ordered_extent_split(inode, ordered);
1152
1153         ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1154
1155         /*
1156          * The entire bio must be covered by the ordered extent, but we can't
1157          * reduce the original extent to a zero length either.
1158          */
1159         if (WARN_ON_ONCE(len >= ordered->num_bytes))
1160                 return ERR_PTR(-EINVAL);
1161         /* We cannot split partially completed ordered extents. */
1162         if (ordered->bytes_left) {
1163                 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1164                 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1165                         return ERR_PTR(-EINVAL);
1166         }
1167         /* We cannot split a compressed ordered extent. */
1168         if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1169                 return ERR_PTR(-EINVAL);
1170
1171         new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1172                                    len, 0, flags, ordered->compress_type);
1173         if (IS_ERR(new))
1174                 return new;
1175
1176         /* One ref for the tree. */
1177         refcount_inc(&new->refs);
1178
1179         spin_lock_irq(&root->ordered_extent_lock);
1180         spin_lock(&inode->ordered_tree_lock);
1181         /* Remove from tree once */
1182         node = &ordered->rb_node;
1183         rb_erase(node, &inode->ordered_tree);
1184         RB_CLEAR_NODE(node);
1185         if (inode->ordered_tree_last == node)
1186                 inode->ordered_tree_last = NULL;
1187
1188         ordered->file_offset += len;
1189         ordered->disk_bytenr += len;
1190         ordered->num_bytes -= len;
1191         ordered->disk_num_bytes -= len;
1192
1193         if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1194                 ASSERT(ordered->bytes_left == 0);
1195                 new->bytes_left = 0;
1196         } else {
1197                 ordered->bytes_left -= len;
1198         }
1199
1200         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1201                 if (ordered->truncated_len > len) {
1202                         ordered->truncated_len -= len;
1203                 } else {
1204                         new->truncated_len = ordered->truncated_len;
1205                         ordered->truncated_len = 0;
1206                 }
1207         }
1208
1209         list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1210                 if (offset == len)
1211                         break;
1212                 list_move_tail(&sum->list, &new->list);
1213                 offset += sum->len;
1214         }
1215
1216         /* Re-insert the node */
1217         node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1218                            &ordered->rb_node);
1219         if (node)
1220                 btrfs_panic(fs_info, -EEXIST,
1221                         "zoned: inconsistency in ordered tree at offset %llu",
1222                         ordered->file_offset);
1223
1224         node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1225         if (node)
1226                 btrfs_panic(fs_info, -EEXIST,
1227                         "zoned: inconsistency in ordered tree at offset %llu",
1228                         new->file_offset);
1229         spin_unlock(&inode->ordered_tree_lock);
1230
1231         list_add_tail(&new->root_extent_list, &root->ordered_extents);
1232         root->nr_ordered_extents++;
1233         spin_unlock_irq(&root->ordered_extent_lock);
1234         return new;
1235 }
1236
1237 int __init ordered_data_init(void)
1238 {
1239         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1240                                      sizeof(struct btrfs_ordered_extent), 0,
1241                                      SLAB_MEM_SPREAD,
1242                                      NULL);
1243         if (!btrfs_ordered_extent_cache)
1244                 return -ENOMEM;
1245
1246         return 0;
1247 }
1248
1249 void __cold ordered_data_exit(void)
1250 {
1251         kmem_cache_destroy(btrfs_ordered_extent_cache);
1252 }