Mention branches and keyring.
[releases.git] / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23         struct module           *owner;
24         struct device           dev;
25         int                     stride;
26         int                     word_size;
27         int                     id;
28         struct kref             refcnt;
29         size_t                  size;
30         bool                    read_only;
31         bool                    root_only;
32         int                     flags;
33         enum nvmem_type         type;
34         struct bin_attribute    eeprom;
35         struct device           *base_dev;
36         struct list_head        cells;
37         nvmem_reg_read_t        reg_read;
38         nvmem_reg_write_t       reg_write;
39         struct gpio_desc        *wp_gpio;
40         void *priv;
41 };
42
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44
45 #define FLAG_COMPAT             BIT(0)
46
47 struct nvmem_cell {
48         const char              *name;
49         int                     offset;
50         int                     bytes;
51         int                     bit_offset;
52         int                     nbits;
53         struct device_node      *np;
54         struct nvmem_device     *nvmem;
55         struct list_head        node;
56 };
57
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68
69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70                           void *val, size_t bytes)
71 {
72         if (nvmem->reg_read)
73                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74
75         return -EINVAL;
76 }
77
78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79                            void *val, size_t bytes)
80 {
81         int ret;
82
83         if (nvmem->reg_write) {
84                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87                 return ret;
88         }
89
90         return -EINVAL;
91 }
92
93 #ifdef CONFIG_NVMEM_SYSFS
94 static const char * const nvmem_type_str[] = {
95         [NVMEM_TYPE_UNKNOWN] = "Unknown",
96         [NVMEM_TYPE_EEPROM] = "EEPROM",
97         [NVMEM_TYPE_OTP] = "OTP",
98         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99 };
100
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 static struct lock_class_key eeprom_lock_key;
103 #endif
104
105 static ssize_t type_show(struct device *dev,
106                          struct device_attribute *attr, char *buf)
107 {
108         struct nvmem_device *nvmem = to_nvmem_device(dev);
109
110         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111 }
112
113 static DEVICE_ATTR_RO(type);
114
115 static struct attribute *nvmem_attrs[] = {
116         &dev_attr_type.attr,
117         NULL,
118 };
119
120 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121                                    struct bin_attribute *attr, char *buf,
122                                    loff_t pos, size_t count)
123 {
124         struct device *dev;
125         struct nvmem_device *nvmem;
126         int rc;
127
128         if (attr->private)
129                 dev = attr->private;
130         else
131                 dev = kobj_to_dev(kobj);
132         nvmem = to_nvmem_device(dev);
133
134         /* Stop the user from reading */
135         if (pos >= nvmem->size)
136                 return 0;
137
138         if (!IS_ALIGNED(pos, nvmem->stride))
139                 return -EINVAL;
140
141         if (count < nvmem->word_size)
142                 return -EINVAL;
143
144         if (pos + count > nvmem->size)
145                 count = nvmem->size - pos;
146
147         count = round_down(count, nvmem->word_size);
148
149         if (!nvmem->reg_read)
150                 return -EPERM;
151
152         rc = nvmem_reg_read(nvmem, pos, buf, count);
153
154         if (rc)
155                 return rc;
156
157         return count;
158 }
159
160 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161                                     struct bin_attribute *attr, char *buf,
162                                     loff_t pos, size_t count)
163 {
164         struct device *dev;
165         struct nvmem_device *nvmem;
166         int rc;
167
168         if (attr->private)
169                 dev = attr->private;
170         else
171                 dev = kobj_to_dev(kobj);
172         nvmem = to_nvmem_device(dev);
173
174         /* Stop the user from writing */
175         if (pos >= nvmem->size)
176                 return -EFBIG;
177
178         if (!IS_ALIGNED(pos, nvmem->stride))
179                 return -EINVAL;
180
181         if (count < nvmem->word_size)
182                 return -EINVAL;
183
184         if (pos + count > nvmem->size)
185                 count = nvmem->size - pos;
186
187         count = round_down(count, nvmem->word_size);
188
189         if (!nvmem->reg_write)
190                 return -EPERM;
191
192         rc = nvmem_reg_write(nvmem, pos, buf, count);
193
194         if (rc)
195                 return rc;
196
197         return count;
198 }
199
200 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201 {
202         umode_t mode = 0400;
203
204         if (!nvmem->root_only)
205                 mode |= 0044;
206
207         if (!nvmem->read_only)
208                 mode |= 0200;
209
210         if (!nvmem->reg_write)
211                 mode &= ~0200;
212
213         if (!nvmem->reg_read)
214                 mode &= ~0444;
215
216         return mode;
217 }
218
219 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220                                          struct bin_attribute *attr, int i)
221 {
222         struct device *dev = kobj_to_dev(kobj);
223         struct nvmem_device *nvmem = to_nvmem_device(dev);
224
225         attr->size = nvmem->size;
226
227         return nvmem_bin_attr_get_umode(nvmem);
228 }
229
230 /* default read/write permissions */
231 static struct bin_attribute bin_attr_rw_nvmem = {
232         .attr   = {
233                 .name   = "nvmem",
234                 .mode   = 0644,
235         },
236         .read   = bin_attr_nvmem_read,
237         .write  = bin_attr_nvmem_write,
238 };
239
240 static struct bin_attribute *nvmem_bin_attributes[] = {
241         &bin_attr_rw_nvmem,
242         NULL,
243 };
244
245 static const struct attribute_group nvmem_bin_group = {
246         .bin_attrs      = nvmem_bin_attributes,
247         .attrs          = nvmem_attrs,
248         .is_bin_visible = nvmem_bin_attr_is_visible,
249 };
250
251 static const struct attribute_group *nvmem_dev_groups[] = {
252         &nvmem_bin_group,
253         NULL,
254 };
255
256 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
257         .attr   = {
258                 .name   = "eeprom",
259         },
260         .read   = bin_attr_nvmem_read,
261         .write  = bin_attr_nvmem_write,
262 };
263
264 /*
265  * nvmem_setup_compat() - Create an additional binary entry in
266  * drivers sys directory, to be backwards compatible with the older
267  * drivers/misc/eeprom drivers.
268  */
269 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
270                                     const struct nvmem_config *config)
271 {
272         int rval;
273
274         if (!config->compat)
275                 return 0;
276
277         if (!config->base_dev)
278                 return -EINVAL;
279
280         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
281         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
282         nvmem->eeprom.size = nvmem->size;
283 #ifdef CONFIG_DEBUG_LOCK_ALLOC
284         nvmem->eeprom.attr.key = &eeprom_lock_key;
285 #endif
286         nvmem->eeprom.private = &nvmem->dev;
287         nvmem->base_dev = config->base_dev;
288
289         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
290         if (rval) {
291                 dev_err(&nvmem->dev,
292                         "Failed to create eeprom binary file %d\n", rval);
293                 return rval;
294         }
295
296         nvmem->flags |= FLAG_COMPAT;
297
298         return 0;
299 }
300
301 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
302                               const struct nvmem_config *config)
303 {
304         if (config->compat)
305                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
306 }
307
308 #else /* CONFIG_NVMEM_SYSFS */
309
310 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
311                                     const struct nvmem_config *config)
312 {
313         return -ENOSYS;
314 }
315 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
316                                       const struct nvmem_config *config)
317 {
318 }
319
320 #endif /* CONFIG_NVMEM_SYSFS */
321
322 static void nvmem_release(struct device *dev)
323 {
324         struct nvmem_device *nvmem = to_nvmem_device(dev);
325
326         ida_free(&nvmem_ida, nvmem->id);
327         gpiod_put(nvmem->wp_gpio);
328         kfree(nvmem);
329 }
330
331 static const struct device_type nvmem_provider_type = {
332         .release        = nvmem_release,
333 };
334
335 static struct bus_type nvmem_bus_type = {
336         .name           = "nvmem",
337 };
338
339 static void nvmem_cell_drop(struct nvmem_cell *cell)
340 {
341         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
342         mutex_lock(&nvmem_mutex);
343         list_del(&cell->node);
344         mutex_unlock(&nvmem_mutex);
345         of_node_put(cell->np);
346         kfree_const(cell->name);
347         kfree(cell);
348 }
349
350 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
351 {
352         struct nvmem_cell *cell, *p;
353
354         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
355                 nvmem_cell_drop(cell);
356 }
357
358 static void nvmem_cell_add(struct nvmem_cell *cell)
359 {
360         mutex_lock(&nvmem_mutex);
361         list_add_tail(&cell->node, &cell->nvmem->cells);
362         mutex_unlock(&nvmem_mutex);
363         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
364 }
365
366 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
367                                         const struct nvmem_cell_info *info,
368                                         struct nvmem_cell *cell)
369 {
370         cell->nvmem = nvmem;
371         cell->offset = info->offset;
372         cell->bytes = info->bytes;
373         cell->name = info->name;
374
375         cell->bit_offset = info->bit_offset;
376         cell->nbits = info->nbits;
377
378         if (cell->nbits)
379                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
380                                            BITS_PER_BYTE);
381
382         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
383                 dev_err(&nvmem->dev,
384                         "cell %s unaligned to nvmem stride %d\n",
385                         cell->name ?: "<unknown>", nvmem->stride);
386                 return -EINVAL;
387         }
388
389         return 0;
390 }
391
392 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
393                                 const struct nvmem_cell_info *info,
394                                 struct nvmem_cell *cell)
395 {
396         int err;
397
398         err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
399         if (err)
400                 return err;
401
402         cell->name = kstrdup_const(info->name, GFP_KERNEL);
403         if (!cell->name)
404                 return -ENOMEM;
405
406         return 0;
407 }
408
409 /**
410  * nvmem_add_cells() - Add cell information to an nvmem device
411  *
412  * @nvmem: nvmem device to add cells to.
413  * @info: nvmem cell info to add to the device
414  * @ncells: number of cells in info
415  *
416  * Return: 0 or negative error code on failure.
417  */
418 static int nvmem_add_cells(struct nvmem_device *nvmem,
419                     const struct nvmem_cell_info *info,
420                     int ncells)
421 {
422         struct nvmem_cell **cells;
423         int i, rval;
424
425         cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
426         if (!cells)
427                 return -ENOMEM;
428
429         for (i = 0; i < ncells; i++) {
430                 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
431                 if (!cells[i]) {
432                         rval = -ENOMEM;
433                         goto err;
434                 }
435
436                 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
437                 if (rval) {
438                         kfree(cells[i]);
439                         goto err;
440                 }
441
442                 nvmem_cell_add(cells[i]);
443         }
444
445         /* remove tmp array */
446         kfree(cells);
447
448         return 0;
449 err:
450         while (i--)
451                 nvmem_cell_drop(cells[i]);
452
453         kfree(cells);
454
455         return rval;
456 }
457
458 /**
459  * nvmem_register_notifier() - Register a notifier block for nvmem events.
460  *
461  * @nb: notifier block to be called on nvmem events.
462  *
463  * Return: 0 on success, negative error number on failure.
464  */
465 int nvmem_register_notifier(struct notifier_block *nb)
466 {
467         return blocking_notifier_chain_register(&nvmem_notifier, nb);
468 }
469 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
470
471 /**
472  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
473  *
474  * @nb: notifier block to be unregistered.
475  *
476  * Return: 0 on success, negative error number on failure.
477  */
478 int nvmem_unregister_notifier(struct notifier_block *nb)
479 {
480         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
481 }
482 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
483
484 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
485 {
486         const struct nvmem_cell_info *info;
487         struct nvmem_cell_table *table;
488         struct nvmem_cell *cell;
489         int rval = 0, i;
490
491         mutex_lock(&nvmem_cell_mutex);
492         list_for_each_entry(table, &nvmem_cell_tables, node) {
493                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
494                         for (i = 0; i < table->ncells; i++) {
495                                 info = &table->cells[i];
496
497                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
498                                 if (!cell) {
499                                         rval = -ENOMEM;
500                                         goto out;
501                                 }
502
503                                 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
504                                                                      info,
505                                                                      cell);
506                                 if (rval) {
507                                         kfree(cell);
508                                         goto out;
509                                 }
510
511                                 nvmem_cell_add(cell);
512                         }
513                 }
514         }
515
516 out:
517         mutex_unlock(&nvmem_cell_mutex);
518         return rval;
519 }
520
521 static struct nvmem_cell *
522 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
523 {
524         struct nvmem_cell *iter, *cell = NULL;
525
526         mutex_lock(&nvmem_mutex);
527         list_for_each_entry(iter, &nvmem->cells, node) {
528                 if (strcmp(cell_id, iter->name) == 0) {
529                         cell = iter;
530                         break;
531                 }
532         }
533         mutex_unlock(&nvmem_mutex);
534
535         return cell;
536 }
537
538 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
539 {
540         struct device_node *parent, *child;
541         struct device *dev = &nvmem->dev;
542         struct nvmem_cell *cell;
543         const __be32 *addr;
544         int len;
545
546         parent = dev->of_node;
547
548         for_each_child_of_node(parent, child) {
549                 addr = of_get_property(child, "reg", &len);
550                 if (!addr)
551                         continue;
552                 if (len < 2 * sizeof(u32)) {
553                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
554                         of_node_put(child);
555                         return -EINVAL;
556                 }
557
558                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
559                 if (!cell) {
560                         of_node_put(child);
561                         return -ENOMEM;
562                 }
563
564                 cell->nvmem = nvmem;
565                 cell->offset = be32_to_cpup(addr++);
566                 cell->bytes = be32_to_cpup(addr);
567                 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
568
569                 addr = of_get_property(child, "bits", &len);
570                 if (addr && len == (2 * sizeof(u32))) {
571                         cell->bit_offset = be32_to_cpup(addr++);
572                         cell->nbits = be32_to_cpup(addr);
573                 }
574
575                 if (cell->nbits)
576                         cell->bytes = DIV_ROUND_UP(
577                                         cell->nbits + cell->bit_offset,
578                                         BITS_PER_BYTE);
579
580                 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
581                         dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
582                                 cell->name, nvmem->stride);
583                         /* Cells already added will be freed later. */
584                         kfree_const(cell->name);
585                         kfree(cell);
586                         of_node_put(child);
587                         return -EINVAL;
588                 }
589
590                 cell->np = of_node_get(child);
591                 nvmem_cell_add(cell);
592         }
593
594         return 0;
595 }
596
597 /**
598  * nvmem_register() - Register a nvmem device for given nvmem_config.
599  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
600  *
601  * @config: nvmem device configuration with which nvmem device is created.
602  *
603  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
604  * on success.
605  */
606
607 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
608 {
609         struct nvmem_device *nvmem;
610         int rval;
611
612         if (!config->dev)
613                 return ERR_PTR(-EINVAL);
614
615         if (!config->reg_read && !config->reg_write)
616                 return ERR_PTR(-EINVAL);
617
618         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
619         if (!nvmem)
620                 return ERR_PTR(-ENOMEM);
621
622         rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
623         if (rval < 0) {
624                 kfree(nvmem);
625                 return ERR_PTR(rval);
626         }
627
628         if (config->wp_gpio)
629                 nvmem->wp_gpio = config->wp_gpio;
630         else
631                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
632                                                     GPIOD_OUT_HIGH);
633         if (IS_ERR(nvmem->wp_gpio)) {
634                 ida_free(&nvmem_ida, nvmem->id);
635                 rval = PTR_ERR(nvmem->wp_gpio);
636                 kfree(nvmem);
637                 return ERR_PTR(rval);
638         }
639
640         kref_init(&nvmem->refcnt);
641         INIT_LIST_HEAD(&nvmem->cells);
642
643         nvmem->id = rval;
644         nvmem->owner = config->owner;
645         if (!nvmem->owner && config->dev->driver)
646                 nvmem->owner = config->dev->driver->owner;
647         nvmem->stride = config->stride ?: 1;
648         nvmem->word_size = config->word_size ?: 1;
649         nvmem->size = config->size;
650         nvmem->dev.type = &nvmem_provider_type;
651         nvmem->dev.bus = &nvmem_bus_type;
652         nvmem->dev.parent = config->dev;
653         nvmem->root_only = config->root_only;
654         nvmem->priv = config->priv;
655         nvmem->type = config->type;
656         nvmem->reg_read = config->reg_read;
657         nvmem->reg_write = config->reg_write;
658         if (!config->no_of_node)
659                 nvmem->dev.of_node = config->dev->of_node;
660
661         switch (config->id) {
662         case NVMEM_DEVID_NONE:
663                 dev_set_name(&nvmem->dev, "%s", config->name);
664                 break;
665         case NVMEM_DEVID_AUTO:
666                 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
667                 break;
668         default:
669                 dev_set_name(&nvmem->dev, "%s%d",
670                              config->name ? : "nvmem",
671                              config->name ? config->id : nvmem->id);
672                 break;
673         }
674
675         nvmem->read_only = device_property_present(config->dev, "read-only") ||
676                            config->read_only || !nvmem->reg_write;
677
678 #ifdef CONFIG_NVMEM_SYSFS
679         nvmem->dev.groups = nvmem_dev_groups;
680 #endif
681
682         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
683
684         rval = device_register(&nvmem->dev);
685         if (rval)
686                 goto err_put_device;
687
688         if (config->compat) {
689                 rval = nvmem_sysfs_setup_compat(nvmem, config);
690                 if (rval)
691                         goto err_device_del;
692         }
693
694         if (config->cells) {
695                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
696                 if (rval)
697                         goto err_teardown_compat;
698         }
699
700         rval = nvmem_add_cells_from_table(nvmem);
701         if (rval)
702                 goto err_remove_cells;
703
704         rval = nvmem_add_cells_from_of(nvmem);
705         if (rval)
706                 goto err_remove_cells;
707
708         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
709
710         return nvmem;
711
712 err_remove_cells:
713         nvmem_device_remove_all_cells(nvmem);
714 err_teardown_compat:
715         if (config->compat)
716                 nvmem_sysfs_remove_compat(nvmem, config);
717 err_device_del:
718         device_del(&nvmem->dev);
719 err_put_device:
720         put_device(&nvmem->dev);
721
722         return ERR_PTR(rval);
723 }
724 EXPORT_SYMBOL_GPL(nvmem_register);
725
726 static void nvmem_device_release(struct kref *kref)
727 {
728         struct nvmem_device *nvmem;
729
730         nvmem = container_of(kref, struct nvmem_device, refcnt);
731
732         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
733
734         if (nvmem->flags & FLAG_COMPAT)
735                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
736
737         nvmem_device_remove_all_cells(nvmem);
738         device_unregister(&nvmem->dev);
739 }
740
741 /**
742  * nvmem_unregister() - Unregister previously registered nvmem device
743  *
744  * @nvmem: Pointer to previously registered nvmem device.
745  */
746 void nvmem_unregister(struct nvmem_device *nvmem)
747 {
748         kref_put(&nvmem->refcnt, nvmem_device_release);
749 }
750 EXPORT_SYMBOL_GPL(nvmem_unregister);
751
752 static void devm_nvmem_release(struct device *dev, void *res)
753 {
754         nvmem_unregister(*(struct nvmem_device **)res);
755 }
756
757 /**
758  * devm_nvmem_register() - Register a managed nvmem device for given
759  * nvmem_config.
760  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
761  *
762  * @dev: Device that uses the nvmem device.
763  * @config: nvmem device configuration with which nvmem device is created.
764  *
765  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
766  * on success.
767  */
768 struct nvmem_device *devm_nvmem_register(struct device *dev,
769                                          const struct nvmem_config *config)
770 {
771         struct nvmem_device **ptr, *nvmem;
772
773         ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
774         if (!ptr)
775                 return ERR_PTR(-ENOMEM);
776
777         nvmem = nvmem_register(config);
778
779         if (!IS_ERR(nvmem)) {
780                 *ptr = nvmem;
781                 devres_add(dev, ptr);
782         } else {
783                 devres_free(ptr);
784         }
785
786         return nvmem;
787 }
788 EXPORT_SYMBOL_GPL(devm_nvmem_register);
789
790 static int devm_nvmem_match(struct device *dev, void *res, void *data)
791 {
792         struct nvmem_device **r = res;
793
794         return *r == data;
795 }
796
797 /**
798  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
799  * device.
800  *
801  * @dev: Device that uses the nvmem device.
802  * @nvmem: Pointer to previously registered nvmem device.
803  *
804  * Return: Will be negative on error or zero on success.
805  */
806 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
807 {
808         return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
809 }
810 EXPORT_SYMBOL(devm_nvmem_unregister);
811
812 static struct nvmem_device *__nvmem_device_get(void *data,
813                         int (*match)(struct device *dev, const void *data))
814 {
815         struct nvmem_device *nvmem = NULL;
816         struct device *dev;
817
818         mutex_lock(&nvmem_mutex);
819         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
820         if (dev)
821                 nvmem = to_nvmem_device(dev);
822         mutex_unlock(&nvmem_mutex);
823         if (!nvmem)
824                 return ERR_PTR(-EPROBE_DEFER);
825
826         if (!try_module_get(nvmem->owner)) {
827                 dev_err(&nvmem->dev,
828                         "could not increase module refcount for cell %s\n",
829                         nvmem_dev_name(nvmem));
830
831                 put_device(&nvmem->dev);
832                 return ERR_PTR(-EINVAL);
833         }
834
835         kref_get(&nvmem->refcnt);
836
837         return nvmem;
838 }
839
840 static void __nvmem_device_put(struct nvmem_device *nvmem)
841 {
842         put_device(&nvmem->dev);
843         module_put(nvmem->owner);
844         kref_put(&nvmem->refcnt, nvmem_device_release);
845 }
846
847 #if IS_ENABLED(CONFIG_OF)
848 /**
849  * of_nvmem_device_get() - Get nvmem device from a given id
850  *
851  * @np: Device tree node that uses the nvmem device.
852  * @id: nvmem name from nvmem-names property.
853  *
854  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
855  * on success.
856  */
857 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
858 {
859
860         struct device_node *nvmem_np;
861         struct nvmem_device *nvmem;
862         int index = 0;
863
864         if (id)
865                 index = of_property_match_string(np, "nvmem-names", id);
866
867         nvmem_np = of_parse_phandle(np, "nvmem", index);
868         if (!nvmem_np)
869                 return ERR_PTR(-ENOENT);
870
871         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
872         of_node_put(nvmem_np);
873         return nvmem;
874 }
875 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
876 #endif
877
878 /**
879  * nvmem_device_get() - Get nvmem device from a given id
880  *
881  * @dev: Device that uses the nvmem device.
882  * @dev_name: name of the requested nvmem device.
883  *
884  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
885  * on success.
886  */
887 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
888 {
889         if (dev->of_node) { /* try dt first */
890                 struct nvmem_device *nvmem;
891
892                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
893
894                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
895                         return nvmem;
896
897         }
898
899         return __nvmem_device_get((void *)dev_name, device_match_name);
900 }
901 EXPORT_SYMBOL_GPL(nvmem_device_get);
902
903 /**
904  * nvmem_device_find() - Find nvmem device with matching function
905  *
906  * @data: Data to pass to match function
907  * @match: Callback function to check device
908  *
909  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
910  * on success.
911  */
912 struct nvmem_device *nvmem_device_find(void *data,
913                         int (*match)(struct device *dev, const void *data))
914 {
915         return __nvmem_device_get(data, match);
916 }
917 EXPORT_SYMBOL_GPL(nvmem_device_find);
918
919 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
920 {
921         struct nvmem_device **nvmem = res;
922
923         if (WARN_ON(!nvmem || !*nvmem))
924                 return 0;
925
926         return *nvmem == data;
927 }
928
929 static void devm_nvmem_device_release(struct device *dev, void *res)
930 {
931         nvmem_device_put(*(struct nvmem_device **)res);
932 }
933
934 /**
935  * devm_nvmem_device_put() - put alredy got nvmem device
936  *
937  * @dev: Device that uses the nvmem device.
938  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
939  * that needs to be released.
940  */
941 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
942 {
943         int ret;
944
945         ret = devres_release(dev, devm_nvmem_device_release,
946                              devm_nvmem_device_match, nvmem);
947
948         WARN_ON(ret);
949 }
950 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
951
952 /**
953  * nvmem_device_put() - put alredy got nvmem device
954  *
955  * @nvmem: pointer to nvmem device that needs to be released.
956  */
957 void nvmem_device_put(struct nvmem_device *nvmem)
958 {
959         __nvmem_device_put(nvmem);
960 }
961 EXPORT_SYMBOL_GPL(nvmem_device_put);
962
963 /**
964  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
965  *
966  * @dev: Device that requests the nvmem device.
967  * @id: name id for the requested nvmem device.
968  *
969  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
970  * on success.  The nvmem_cell will be freed by the automatically once the
971  * device is freed.
972  */
973 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
974 {
975         struct nvmem_device **ptr, *nvmem;
976
977         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
978         if (!ptr)
979                 return ERR_PTR(-ENOMEM);
980
981         nvmem = nvmem_device_get(dev, id);
982         if (!IS_ERR(nvmem)) {
983                 *ptr = nvmem;
984                 devres_add(dev, ptr);
985         } else {
986                 devres_free(ptr);
987         }
988
989         return nvmem;
990 }
991 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
992
993 static struct nvmem_cell *
994 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
995 {
996         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
997         struct nvmem_cell_lookup *lookup;
998         struct nvmem_device *nvmem;
999         const char *dev_id;
1000
1001         if (!dev)
1002                 return ERR_PTR(-EINVAL);
1003
1004         dev_id = dev_name(dev);
1005
1006         mutex_lock(&nvmem_lookup_mutex);
1007
1008         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1009                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1010                     (strcmp(lookup->con_id, con_id) == 0)) {
1011                         /* This is the right entry. */
1012                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1013                                                    device_match_name);
1014                         if (IS_ERR(nvmem)) {
1015                                 /* Provider may not be registered yet. */
1016                                 cell = ERR_CAST(nvmem);
1017                                 break;
1018                         }
1019
1020                         cell = nvmem_find_cell_by_name(nvmem,
1021                                                        lookup->cell_name);
1022                         if (!cell) {
1023                                 __nvmem_device_put(nvmem);
1024                                 cell = ERR_PTR(-ENOENT);
1025                         }
1026                         break;
1027                 }
1028         }
1029
1030         mutex_unlock(&nvmem_lookup_mutex);
1031         return cell;
1032 }
1033
1034 #if IS_ENABLED(CONFIG_OF)
1035 static struct nvmem_cell *
1036 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1037 {
1038         struct nvmem_cell *iter, *cell = NULL;
1039
1040         mutex_lock(&nvmem_mutex);
1041         list_for_each_entry(iter, &nvmem->cells, node) {
1042                 if (np == iter->np) {
1043                         cell = iter;
1044                         break;
1045                 }
1046         }
1047         mutex_unlock(&nvmem_mutex);
1048
1049         return cell;
1050 }
1051
1052 /**
1053  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1054  *
1055  * @np: Device tree node that uses the nvmem cell.
1056  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1057  *      for the cell at index 0 (the lone cell with no accompanying
1058  *      nvmem-cell-names property).
1059  *
1060  * Return: Will be an ERR_PTR() on error or a valid pointer
1061  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1062  * nvmem_cell_put().
1063  */
1064 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1065 {
1066         struct device_node *cell_np, *nvmem_np;
1067         struct nvmem_device *nvmem;
1068         struct nvmem_cell *cell;
1069         int index = 0;
1070
1071         /* if cell name exists, find index to the name */
1072         if (id)
1073                 index = of_property_match_string(np, "nvmem-cell-names", id);
1074
1075         cell_np = of_parse_phandle(np, "nvmem-cells", index);
1076         if (!cell_np)
1077                 return ERR_PTR(-ENOENT);
1078
1079         nvmem_np = of_get_next_parent(cell_np);
1080         if (!nvmem_np)
1081                 return ERR_PTR(-EINVAL);
1082
1083         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1084         of_node_put(nvmem_np);
1085         if (IS_ERR(nvmem))
1086                 return ERR_CAST(nvmem);
1087
1088         cell = nvmem_find_cell_by_node(nvmem, cell_np);
1089         if (!cell) {
1090                 __nvmem_device_put(nvmem);
1091                 return ERR_PTR(-ENOENT);
1092         }
1093
1094         return cell;
1095 }
1096 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1097 #endif
1098
1099 /**
1100  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1101  *
1102  * @dev: Device that requests the nvmem cell.
1103  * @id: nvmem cell name to get (this corresponds with the name from the
1104  *      nvmem-cell-names property for DT systems and with the con_id from
1105  *      the lookup entry for non-DT systems).
1106  *
1107  * Return: Will be an ERR_PTR() on error or a valid pointer
1108  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1109  * nvmem_cell_put().
1110  */
1111 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1112 {
1113         struct nvmem_cell *cell;
1114
1115         if (dev->of_node) { /* try dt first */
1116                 cell = of_nvmem_cell_get(dev->of_node, id);
1117                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1118                         return cell;
1119         }
1120
1121         /* NULL cell id only allowed for device tree; invalid otherwise */
1122         if (!id)
1123                 return ERR_PTR(-EINVAL);
1124
1125         return nvmem_cell_get_from_lookup(dev, id);
1126 }
1127 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1128
1129 static void devm_nvmem_cell_release(struct device *dev, void *res)
1130 {
1131         nvmem_cell_put(*(struct nvmem_cell **)res);
1132 }
1133
1134 /**
1135  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1136  *
1137  * @dev: Device that requests the nvmem cell.
1138  * @id: nvmem cell name id to get.
1139  *
1140  * Return: Will be an ERR_PTR() on error or a valid pointer
1141  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1142  * automatically once the device is freed.
1143  */
1144 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1145 {
1146         struct nvmem_cell **ptr, *cell;
1147
1148         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1149         if (!ptr)
1150                 return ERR_PTR(-ENOMEM);
1151
1152         cell = nvmem_cell_get(dev, id);
1153         if (!IS_ERR(cell)) {
1154                 *ptr = cell;
1155                 devres_add(dev, ptr);
1156         } else {
1157                 devres_free(ptr);
1158         }
1159
1160         return cell;
1161 }
1162 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1163
1164 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1165 {
1166         struct nvmem_cell **c = res;
1167
1168         if (WARN_ON(!c || !*c))
1169                 return 0;
1170
1171         return *c == data;
1172 }
1173
1174 /**
1175  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1176  * from devm_nvmem_cell_get.
1177  *
1178  * @dev: Device that requests the nvmem cell.
1179  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1180  */
1181 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1182 {
1183         int ret;
1184
1185         ret = devres_release(dev, devm_nvmem_cell_release,
1186                                 devm_nvmem_cell_match, cell);
1187
1188         WARN_ON(ret);
1189 }
1190 EXPORT_SYMBOL(devm_nvmem_cell_put);
1191
1192 /**
1193  * nvmem_cell_put() - Release previously allocated nvmem cell.
1194  *
1195  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1196  */
1197 void nvmem_cell_put(struct nvmem_cell *cell)
1198 {
1199         struct nvmem_device *nvmem = cell->nvmem;
1200
1201         __nvmem_device_put(nvmem);
1202 }
1203 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1204
1205 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1206 {
1207         u8 *p, *b;
1208         int i, extra, bit_offset = cell->bit_offset;
1209
1210         p = b = buf;
1211         if (bit_offset) {
1212                 /* First shift */
1213                 *b++ >>= bit_offset;
1214
1215                 /* setup rest of the bytes if any */
1216                 for (i = 1; i < cell->bytes; i++) {
1217                         /* Get bits from next byte and shift them towards msb */
1218                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1219
1220                         p = b;
1221                         *b++ >>= bit_offset;
1222                 }
1223         } else {
1224                 /* point to the msb */
1225                 p += cell->bytes - 1;
1226         }
1227
1228         /* result fits in less bytes */
1229         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1230         while (--extra >= 0)
1231                 *p-- = 0;
1232
1233         /* clear msb bits if any leftover in the last byte */
1234         if (cell->nbits % BITS_PER_BYTE)
1235                 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1236 }
1237
1238 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1239                       struct nvmem_cell *cell,
1240                       void *buf, size_t *len)
1241 {
1242         int rc;
1243
1244         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1245
1246         if (rc)
1247                 return rc;
1248
1249         /* shift bits in-place */
1250         if (cell->bit_offset || cell->nbits)
1251                 nvmem_shift_read_buffer_in_place(cell, buf);
1252
1253         if (len)
1254                 *len = cell->bytes;
1255
1256         return 0;
1257 }
1258
1259 /**
1260  * nvmem_cell_read() - Read a given nvmem cell
1261  *
1262  * @cell: nvmem cell to be read.
1263  * @len: pointer to length of cell which will be populated on successful read;
1264  *       can be NULL.
1265  *
1266  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1267  * buffer should be freed by the consumer with a kfree().
1268  */
1269 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1270 {
1271         struct nvmem_device *nvmem = cell->nvmem;
1272         u8 *buf;
1273         int rc;
1274
1275         if (!nvmem)
1276                 return ERR_PTR(-EINVAL);
1277
1278         buf = kzalloc(cell->bytes, GFP_KERNEL);
1279         if (!buf)
1280                 return ERR_PTR(-ENOMEM);
1281
1282         rc = __nvmem_cell_read(nvmem, cell, buf, len);
1283         if (rc) {
1284                 kfree(buf);
1285                 return ERR_PTR(rc);
1286         }
1287
1288         return buf;
1289 }
1290 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1291
1292 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1293                                              u8 *_buf, int len)
1294 {
1295         struct nvmem_device *nvmem = cell->nvmem;
1296         int i, rc, nbits, bit_offset = cell->bit_offset;
1297         u8 v, *p, *buf, *b, pbyte, pbits;
1298
1299         nbits = cell->nbits;
1300         buf = kzalloc(cell->bytes, GFP_KERNEL);
1301         if (!buf)
1302                 return ERR_PTR(-ENOMEM);
1303
1304         memcpy(buf, _buf, len);
1305         p = b = buf;
1306
1307         if (bit_offset) {
1308                 pbyte = *b;
1309                 *b <<= bit_offset;
1310
1311                 /* setup the first byte with lsb bits from nvmem */
1312                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1313                 if (rc)
1314                         goto err;
1315                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1316
1317                 /* setup rest of the byte if any */
1318                 for (i = 1; i < cell->bytes; i++) {
1319                         /* Get last byte bits and shift them towards lsb */
1320                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1321                         pbyte = *b;
1322                         p = b;
1323                         *b <<= bit_offset;
1324                         *b++ |= pbits;
1325                 }
1326         }
1327
1328         /* if it's not end on byte boundary */
1329         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1330                 /* setup the last byte with msb bits from nvmem */
1331                 rc = nvmem_reg_read(nvmem,
1332                                     cell->offset + cell->bytes - 1, &v, 1);
1333                 if (rc)
1334                         goto err;
1335                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1336
1337         }
1338
1339         return buf;
1340 err:
1341         kfree(buf);
1342         return ERR_PTR(rc);
1343 }
1344
1345 /**
1346  * nvmem_cell_write() - Write to a given nvmem cell
1347  *
1348  * @cell: nvmem cell to be written.
1349  * @buf: Buffer to be written.
1350  * @len: length of buffer to be written to nvmem cell.
1351  *
1352  * Return: length of bytes written or negative on failure.
1353  */
1354 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1355 {
1356         struct nvmem_device *nvmem = cell->nvmem;
1357         int rc;
1358
1359         if (!nvmem || nvmem->read_only ||
1360             (cell->bit_offset == 0 && len != cell->bytes))
1361                 return -EINVAL;
1362
1363         if (cell->bit_offset || cell->nbits) {
1364                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1365                 if (IS_ERR(buf))
1366                         return PTR_ERR(buf);
1367         }
1368
1369         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1370
1371         /* free the tmp buffer */
1372         if (cell->bit_offset || cell->nbits)
1373                 kfree(buf);
1374
1375         if (rc)
1376                 return rc;
1377
1378         return len;
1379 }
1380 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1381
1382 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1383                                   void *val, size_t count)
1384 {
1385         struct nvmem_cell *cell;
1386         void *buf;
1387         size_t len;
1388
1389         cell = nvmem_cell_get(dev, cell_id);
1390         if (IS_ERR(cell))
1391                 return PTR_ERR(cell);
1392
1393         buf = nvmem_cell_read(cell, &len);
1394         if (IS_ERR(buf)) {
1395                 nvmem_cell_put(cell);
1396                 return PTR_ERR(buf);
1397         }
1398         if (len != count) {
1399                 kfree(buf);
1400                 nvmem_cell_put(cell);
1401                 return -EINVAL;
1402         }
1403         memcpy(val, buf, count);
1404         kfree(buf);
1405         nvmem_cell_put(cell);
1406
1407         return 0;
1408 }
1409
1410 /**
1411  * nvmem_cell_read_u8() - Read a cell value as a u8
1412  *
1413  * @dev: Device that requests the nvmem cell.
1414  * @cell_id: Name of nvmem cell to read.
1415  * @val: pointer to output value.
1416  *
1417  * Return: 0 on success or negative errno.
1418  */
1419 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1420 {
1421         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1422 }
1423 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1424
1425 /**
1426  * nvmem_cell_read_u16() - Read a cell value as a u16
1427  *
1428  * @dev: Device that requests the nvmem cell.
1429  * @cell_id: Name of nvmem cell to read.
1430  * @val: pointer to output value.
1431  *
1432  * Return: 0 on success or negative errno.
1433  */
1434 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1435 {
1436         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1437 }
1438 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1439
1440 /**
1441  * nvmem_cell_read_u32() - Read a cell value as a u32
1442  *
1443  * @dev: Device that requests the nvmem cell.
1444  * @cell_id: Name of nvmem cell to read.
1445  * @val: pointer to output value.
1446  *
1447  * Return: 0 on success or negative errno.
1448  */
1449 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1450 {
1451         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1452 }
1453 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1454
1455 /**
1456  * nvmem_cell_read_u64() - Read a cell value as a u64
1457  *
1458  * @dev: Device that requests the nvmem cell.
1459  * @cell_id: Name of nvmem cell to read.
1460  * @val: pointer to output value.
1461  *
1462  * Return: 0 on success or negative errno.
1463  */
1464 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1465 {
1466         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1467 }
1468 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1469
1470 /**
1471  * nvmem_device_cell_read() - Read a given nvmem device and cell
1472  *
1473  * @nvmem: nvmem device to read from.
1474  * @info: nvmem cell info to be read.
1475  * @buf: buffer pointer which will be populated on successful read.
1476  *
1477  * Return: length of successful bytes read on success and negative
1478  * error code on error.
1479  */
1480 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1481                            struct nvmem_cell_info *info, void *buf)
1482 {
1483         struct nvmem_cell cell;
1484         int rc;
1485         ssize_t len;
1486
1487         if (!nvmem)
1488                 return -EINVAL;
1489
1490         rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1491         if (rc)
1492                 return rc;
1493
1494         rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1495         if (rc)
1496                 return rc;
1497
1498         return len;
1499 }
1500 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1501
1502 /**
1503  * nvmem_device_cell_write() - Write cell to a given nvmem device
1504  *
1505  * @nvmem: nvmem device to be written to.
1506  * @info: nvmem cell info to be written.
1507  * @buf: buffer to be written to cell.
1508  *
1509  * Return: length of bytes written or negative error code on failure.
1510  */
1511 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1512                             struct nvmem_cell_info *info, void *buf)
1513 {
1514         struct nvmem_cell cell;
1515         int rc;
1516
1517         if (!nvmem)
1518                 return -EINVAL;
1519
1520         rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1521         if (rc)
1522                 return rc;
1523
1524         return nvmem_cell_write(&cell, buf, cell.bytes);
1525 }
1526 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1527
1528 /**
1529  * nvmem_device_read() - Read from a given nvmem device
1530  *
1531  * @nvmem: nvmem device to read from.
1532  * @offset: offset in nvmem device.
1533  * @bytes: number of bytes to read.
1534  * @buf: buffer pointer which will be populated on successful read.
1535  *
1536  * Return: length of successful bytes read on success and negative
1537  * error code on error.
1538  */
1539 int nvmem_device_read(struct nvmem_device *nvmem,
1540                       unsigned int offset,
1541                       size_t bytes, void *buf)
1542 {
1543         int rc;
1544
1545         if (!nvmem)
1546                 return -EINVAL;
1547
1548         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1549
1550         if (rc)
1551                 return rc;
1552
1553         return bytes;
1554 }
1555 EXPORT_SYMBOL_GPL(nvmem_device_read);
1556
1557 /**
1558  * nvmem_device_write() - Write cell to a given nvmem device
1559  *
1560  * @nvmem: nvmem device to be written to.
1561  * @offset: offset in nvmem device.
1562  * @bytes: number of bytes to write.
1563  * @buf: buffer to be written.
1564  *
1565  * Return: length of bytes written or negative error code on failure.
1566  */
1567 int nvmem_device_write(struct nvmem_device *nvmem,
1568                        unsigned int offset,
1569                        size_t bytes, void *buf)
1570 {
1571         int rc;
1572
1573         if (!nvmem)
1574                 return -EINVAL;
1575
1576         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1577
1578         if (rc)
1579                 return rc;
1580
1581
1582         return bytes;
1583 }
1584 EXPORT_SYMBOL_GPL(nvmem_device_write);
1585
1586 /**
1587  * nvmem_add_cell_table() - register a table of cell info entries
1588  *
1589  * @table: table of cell info entries
1590  */
1591 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1592 {
1593         mutex_lock(&nvmem_cell_mutex);
1594         list_add_tail(&table->node, &nvmem_cell_tables);
1595         mutex_unlock(&nvmem_cell_mutex);
1596 }
1597 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1598
1599 /**
1600  * nvmem_del_cell_table() - remove a previously registered cell info table
1601  *
1602  * @table: table of cell info entries
1603  */
1604 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1605 {
1606         mutex_lock(&nvmem_cell_mutex);
1607         list_del(&table->node);
1608         mutex_unlock(&nvmem_cell_mutex);
1609 }
1610 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1611
1612 /**
1613  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1614  *
1615  * @entries: array of cell lookup entries
1616  * @nentries: number of cell lookup entries in the array
1617  */
1618 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1619 {
1620         int i;
1621
1622         mutex_lock(&nvmem_lookup_mutex);
1623         for (i = 0; i < nentries; i++)
1624                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1625         mutex_unlock(&nvmem_lookup_mutex);
1626 }
1627 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1628
1629 /**
1630  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1631  *                            entries
1632  *
1633  * @entries: array of cell lookup entries
1634  * @nentries: number of cell lookup entries in the array
1635  */
1636 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1637 {
1638         int i;
1639
1640         mutex_lock(&nvmem_lookup_mutex);
1641         for (i = 0; i < nentries; i++)
1642                 list_del(&entries[i].node);
1643         mutex_unlock(&nvmem_lookup_mutex);
1644 }
1645 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1646
1647 /**
1648  * nvmem_dev_name() - Get the name of a given nvmem device.
1649  *
1650  * @nvmem: nvmem device.
1651  *
1652  * Return: name of the nvmem device.
1653  */
1654 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1655 {
1656         return dev_name(&nvmem->dev);
1657 }
1658 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1659
1660 static int __init nvmem_init(void)
1661 {
1662         return bus_register(&nvmem_bus_type);
1663 }
1664
1665 static void __exit nvmem_exit(void)
1666 {
1667         bus_unregister(&nvmem_bus_type);
1668 }
1669
1670 subsys_initcall(nvmem_init);
1671 module_exit(nvmem_exit);
1672
1673 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1674 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1675 MODULE_DESCRIPTION("nvmem Driver Core");
1676 MODULE_LICENSE("GPL v2");