GNU Linux-libre 5.10.217-gnu1
[releases.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83                 if (chan == 14)
84                         return MHZ_TO_KHZ(2484);
85                 else if (chan < 14)
86                         return MHZ_TO_KHZ(2407 + chan * 5);
87                 break;
88         case NL80211_BAND_5GHZ:
89                 if (chan >= 182 && chan <= 196)
90                         return MHZ_TO_KHZ(4000 + chan * 5);
91                 else
92                         return MHZ_TO_KHZ(5000 + chan * 5);
93                 break;
94         case NL80211_BAND_6GHZ:
95                 /* see 802.11ax D6.1 27.3.23.2 */
96                 if (chan == 2)
97                         return MHZ_TO_KHZ(5935);
98                 if (chan <= 233)
99                         return MHZ_TO_KHZ(5950 + chan * 5);
100                 break;
101         case NL80211_BAND_60GHZ:
102                 if (chan < 7)
103                         return MHZ_TO_KHZ(56160 + chan * 2160);
104                 break;
105         case NL80211_BAND_S1GHZ:
106                 return 902000 + chan * 500;
107         default:
108                 ;
109         }
110         return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114 enum nl80211_chan_width
115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116 {
117         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118                 return NL80211_CHAN_WIDTH_20_NOHT;
119
120         /*S1G defines a single allowed channel width per channel.
121          * Extract that width here.
122          */
123         if (chan->flags & IEEE80211_CHAN_1MHZ)
124                 return NL80211_CHAN_WIDTH_1;
125         else if (chan->flags & IEEE80211_CHAN_2MHZ)
126                 return NL80211_CHAN_WIDTH_2;
127         else if (chan->flags & IEEE80211_CHAN_4MHZ)
128                 return NL80211_CHAN_WIDTH_4;
129         else if (chan->flags & IEEE80211_CHAN_8MHZ)
130                 return NL80211_CHAN_WIDTH_8;
131         else if (chan->flags & IEEE80211_CHAN_16MHZ)
132                 return NL80211_CHAN_WIDTH_16;
133
134         pr_err("unknown channel width for channel at %dKHz?\n",
135                ieee80211_channel_to_khz(chan));
136
137         return NL80211_CHAN_WIDTH_1;
138 }
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140
141 int ieee80211_freq_khz_to_channel(u32 freq)
142 {
143         /* TODO: just handle MHz for now */
144         freq = KHZ_TO_MHZ(freq);
145
146         /* see 802.11 17.3.8.3.2 and Annex J */
147         if (freq == 2484)
148                 return 14;
149         else if (freq < 2484)
150                 return (freq - 2407) / 5;
151         else if (freq >= 4910 && freq <= 4980)
152                 return (freq - 4000) / 5;
153         else if (freq < 5925)
154                 return (freq - 5000) / 5;
155         else if (freq == 5935)
156                 return 2;
157         else if (freq <= 45000) /* DMG band lower limit */
158                 /* see 802.11ax D6.1 27.3.22.2 */
159                 return (freq - 5950) / 5;
160         else if (freq >= 58320 && freq <= 70200)
161                 return (freq - 56160) / 2160;
162         else
163                 return 0;
164 }
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166
167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168                                                     u32 freq)
169 {
170         enum nl80211_band band;
171         struct ieee80211_supported_band *sband;
172         int i;
173
174         for (band = 0; band < NUM_NL80211_BANDS; band++) {
175                 sband = wiphy->bands[band];
176
177                 if (!sband)
178                         continue;
179
180                 for (i = 0; i < sband->n_channels; i++) {
181                         struct ieee80211_channel *chan = &sband->channels[i];
182
183                         if (ieee80211_channel_to_khz(chan) == freq)
184                                 return chan;
185                 }
186         }
187
188         return NULL;
189 }
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
191
192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193 {
194         int i, want;
195
196         switch (sband->band) {
197         case NL80211_BAND_5GHZ:
198         case NL80211_BAND_6GHZ:
199                 want = 3;
200                 for (i = 0; i < sband->n_bitrates; i++) {
201                         if (sband->bitrates[i].bitrate == 60 ||
202                             sband->bitrates[i].bitrate == 120 ||
203                             sband->bitrates[i].bitrate == 240) {
204                                 sband->bitrates[i].flags |=
205                                         IEEE80211_RATE_MANDATORY_A;
206                                 want--;
207                         }
208                 }
209                 WARN_ON(want);
210                 break;
211         case NL80211_BAND_2GHZ:
212                 want = 7;
213                 for (i = 0; i < sband->n_bitrates; i++) {
214                         switch (sband->bitrates[i].bitrate) {
215                         case 10:
216                         case 20:
217                         case 55:
218                         case 110:
219                                 sband->bitrates[i].flags |=
220                                         IEEE80211_RATE_MANDATORY_B |
221                                         IEEE80211_RATE_MANDATORY_G;
222                                 want--;
223                                 break;
224                         case 60:
225                         case 120:
226                         case 240:
227                                 sband->bitrates[i].flags |=
228                                         IEEE80211_RATE_MANDATORY_G;
229                                 want--;
230                                 fallthrough;
231                         default:
232                                 sband->bitrates[i].flags |=
233                                         IEEE80211_RATE_ERP_G;
234                                 break;
235                         }
236                 }
237                 WARN_ON(want != 0 && want != 3);
238                 break;
239         case NL80211_BAND_60GHZ:
240                 /* check for mandatory HT MCS 1..4 */
241                 WARN_ON(!sband->ht_cap.ht_supported);
242                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243                 break;
244         case NL80211_BAND_S1GHZ:
245                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246                  * mandatory is ok.
247                  */
248                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249                 break;
250         case NUM_NL80211_BANDS:
251         default:
252                 WARN_ON(1);
253                 break;
254         }
255 }
256
257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258 {
259         enum nl80211_band band;
260
261         for (band = 0; band < NUM_NL80211_BANDS; band++)
262                 if (wiphy->bands[band])
263                         set_mandatory_flags_band(wiphy->bands[band]);
264 }
265
266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267 {
268         int i;
269         for (i = 0; i < wiphy->n_cipher_suites; i++)
270                 if (cipher == wiphy->cipher_suites[i])
271                         return true;
272         return false;
273 }
274
275 static bool
276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
277 {
278         struct wiphy *wiphy = &rdev->wiphy;
279         int i;
280
281         for (i = 0; i < wiphy->n_cipher_suites; i++) {
282                 switch (wiphy->cipher_suites[i]) {
283                 case WLAN_CIPHER_SUITE_AES_CMAC:
284                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
285                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
286                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
287                         return true;
288                 }
289         }
290
291         return false;
292 }
293
294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
295                             int key_idx, bool pairwise)
296 {
297         int max_key_idx;
298
299         if (pairwise)
300                 max_key_idx = 3;
301         else if (wiphy_ext_feature_isset(&rdev->wiphy,
302                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
303                  wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
305                 max_key_idx = 7;
306         else if (cfg80211_igtk_cipher_supported(rdev))
307                 max_key_idx = 5;
308         else
309                 max_key_idx = 3;
310
311         if (key_idx < 0 || key_idx > max_key_idx)
312                 return false;
313
314         return true;
315 }
316
317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
318                                    struct key_params *params, int key_idx,
319                                    bool pairwise, const u8 *mac_addr)
320 {
321         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
322                 return -EINVAL;
323
324         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
325                 return -EINVAL;
326
327         if (pairwise && !mac_addr)
328                 return -EINVAL;
329
330         switch (params->cipher) {
331         case WLAN_CIPHER_SUITE_TKIP:
332                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
333                 if ((pairwise && key_idx) ||
334                     params->mode != NL80211_KEY_RX_TX)
335                         return -EINVAL;
336                 break;
337         case WLAN_CIPHER_SUITE_CCMP:
338         case WLAN_CIPHER_SUITE_CCMP_256:
339         case WLAN_CIPHER_SUITE_GCMP:
340         case WLAN_CIPHER_SUITE_GCMP_256:
341                 /* IEEE802.11-2016 allows only 0 and - when supporting
342                  * Extended Key ID - 1 as index for pairwise keys.
343                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344                  * the driver supports Extended Key ID.
345                  * @NL80211_KEY_SET_TX can't be set when installing and
346                  * validating a key.
347                  */
348                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
349                     params->mode == NL80211_KEY_SET_TX)
350                         return -EINVAL;
351                 if (wiphy_ext_feature_isset(&rdev->wiphy,
352                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
353                         if (pairwise && (key_idx < 0 || key_idx > 1))
354                                 return -EINVAL;
355                 } else if (pairwise && key_idx) {
356                         return -EINVAL;
357                 }
358                 break;
359         case WLAN_CIPHER_SUITE_AES_CMAC:
360         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
361         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
362         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
363                 /* Disallow BIP (group-only) cipher as pairwise cipher */
364                 if (pairwise)
365                         return -EINVAL;
366                 if (key_idx < 4)
367                         return -EINVAL;
368                 break;
369         case WLAN_CIPHER_SUITE_WEP40:
370         case WLAN_CIPHER_SUITE_WEP104:
371                 if (key_idx > 3)
372                         return -EINVAL;
373         default:
374                 break;
375         }
376
377         switch (params->cipher) {
378         case WLAN_CIPHER_SUITE_WEP40:
379                 if (params->key_len != WLAN_KEY_LEN_WEP40)
380                         return -EINVAL;
381                 break;
382         case WLAN_CIPHER_SUITE_TKIP:
383                 if (params->key_len != WLAN_KEY_LEN_TKIP)
384                         return -EINVAL;
385                 break;
386         case WLAN_CIPHER_SUITE_CCMP:
387                 if (params->key_len != WLAN_KEY_LEN_CCMP)
388                         return -EINVAL;
389                 break;
390         case WLAN_CIPHER_SUITE_CCMP_256:
391                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
392                         return -EINVAL;
393                 break;
394         case WLAN_CIPHER_SUITE_GCMP:
395                 if (params->key_len != WLAN_KEY_LEN_GCMP)
396                         return -EINVAL;
397                 break;
398         case WLAN_CIPHER_SUITE_GCMP_256:
399                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
400                         return -EINVAL;
401                 break;
402         case WLAN_CIPHER_SUITE_WEP104:
403                 if (params->key_len != WLAN_KEY_LEN_WEP104)
404                         return -EINVAL;
405                 break;
406         case WLAN_CIPHER_SUITE_AES_CMAC:
407                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
408                         return -EINVAL;
409                 break;
410         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
411                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
412                         return -EINVAL;
413                 break;
414         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
415                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
416                         return -EINVAL;
417                 break;
418         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
419                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
420                         return -EINVAL;
421                 break;
422         default:
423                 /*
424                  * We don't know anything about this algorithm,
425                  * allow using it -- but the driver must check
426                  * all parameters! We still check below whether
427                  * or not the driver supports this algorithm,
428                  * of course.
429                  */
430                 break;
431         }
432
433         if (params->seq) {
434                 switch (params->cipher) {
435                 case WLAN_CIPHER_SUITE_WEP40:
436                 case WLAN_CIPHER_SUITE_WEP104:
437                         /* These ciphers do not use key sequence */
438                         return -EINVAL;
439                 case WLAN_CIPHER_SUITE_TKIP:
440                 case WLAN_CIPHER_SUITE_CCMP:
441                 case WLAN_CIPHER_SUITE_CCMP_256:
442                 case WLAN_CIPHER_SUITE_GCMP:
443                 case WLAN_CIPHER_SUITE_GCMP_256:
444                 case WLAN_CIPHER_SUITE_AES_CMAC:
445                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
446                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
447                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
448                         if (params->seq_len != 6)
449                                 return -EINVAL;
450                         break;
451                 }
452         }
453
454         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
455                 return -EINVAL;
456
457         return 0;
458 }
459
460 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
461 {
462         unsigned int hdrlen = 24;
463
464         if (ieee80211_is_ext(fc)) {
465                 hdrlen = 4;
466                 goto out;
467         }
468
469         if (ieee80211_is_data(fc)) {
470                 if (ieee80211_has_a4(fc))
471                         hdrlen = 30;
472                 if (ieee80211_is_data_qos(fc)) {
473                         hdrlen += IEEE80211_QOS_CTL_LEN;
474                         if (ieee80211_has_order(fc))
475                                 hdrlen += IEEE80211_HT_CTL_LEN;
476                 }
477                 goto out;
478         }
479
480         if (ieee80211_is_mgmt(fc)) {
481                 if (ieee80211_has_order(fc))
482                         hdrlen += IEEE80211_HT_CTL_LEN;
483                 goto out;
484         }
485
486         if (ieee80211_is_ctl(fc)) {
487                 /*
488                  * ACK and CTS are 10 bytes, all others 16. To see how
489                  * to get this condition consider
490                  *   subtype mask:   0b0000000011110000 (0x00F0)
491                  *   ACK subtype:    0b0000000011010000 (0x00D0)
492                  *   CTS subtype:    0b0000000011000000 (0x00C0)
493                  *   bits that matter:         ^^^      (0x00E0)
494                  *   value of those: 0b0000000011000000 (0x00C0)
495                  */
496                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
497                         hdrlen = 10;
498                 else
499                         hdrlen = 16;
500         }
501 out:
502         return hdrlen;
503 }
504 EXPORT_SYMBOL(ieee80211_hdrlen);
505
506 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
507 {
508         const struct ieee80211_hdr *hdr =
509                         (const struct ieee80211_hdr *)skb->data;
510         unsigned int hdrlen;
511
512         if (unlikely(skb->len < 10))
513                 return 0;
514         hdrlen = ieee80211_hdrlen(hdr->frame_control);
515         if (unlikely(hdrlen > skb->len))
516                 return 0;
517         return hdrlen;
518 }
519 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
520
521 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
522 {
523         int ae = flags & MESH_FLAGS_AE;
524         /* 802.11-2012, 8.2.4.7.3 */
525         switch (ae) {
526         default:
527         case 0:
528                 return 6;
529         case MESH_FLAGS_AE_A4:
530                 return 12;
531         case MESH_FLAGS_AE_A5_A6:
532                 return 18;
533         }
534 }
535
536 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
537 {
538         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
539 }
540 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
541
542 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
543                                   const u8 *addr, enum nl80211_iftype iftype,
544                                   u8 data_offset, bool is_amsdu)
545 {
546         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
547         struct {
548                 u8 hdr[ETH_ALEN] __aligned(2);
549                 __be16 proto;
550         } payload;
551         struct ethhdr tmp;
552         u16 hdrlen;
553         u8 mesh_flags = 0;
554
555         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
556                 return -1;
557
558         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
559         if (skb->len < hdrlen + 8)
560                 return -1;
561
562         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
563          * header
564          * IEEE 802.11 address fields:
565          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
566          *   0     0   DA    SA    BSSID n/a
567          *   0     1   DA    BSSID SA    n/a
568          *   1     0   BSSID SA    DA    n/a
569          *   1     1   RA    TA    DA    SA
570          */
571         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
572         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
573
574         if (iftype == NL80211_IFTYPE_MESH_POINT)
575                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
576
577         mesh_flags &= MESH_FLAGS_AE;
578
579         switch (hdr->frame_control &
580                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
581         case cpu_to_le16(IEEE80211_FCTL_TODS):
582                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
583                              iftype != NL80211_IFTYPE_AP_VLAN &&
584                              iftype != NL80211_IFTYPE_P2P_GO))
585                         return -1;
586                 break;
587         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
588                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
589                              iftype != NL80211_IFTYPE_MESH_POINT &&
590                              iftype != NL80211_IFTYPE_AP_VLAN &&
591                              iftype != NL80211_IFTYPE_STATION))
592                         return -1;
593                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
594                         if (mesh_flags == MESH_FLAGS_AE_A4)
595                                 return -1;
596                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
597                                 skb_copy_bits(skb, hdrlen +
598                                         offsetof(struct ieee80211s_hdr, eaddr1),
599                                         tmp.h_dest, 2 * ETH_ALEN);
600                         }
601                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
602                 }
603                 break;
604         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
605                 if ((iftype != NL80211_IFTYPE_STATION &&
606                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
607                      iftype != NL80211_IFTYPE_MESH_POINT) ||
608                     (is_multicast_ether_addr(tmp.h_dest) &&
609                      ether_addr_equal(tmp.h_source, addr)))
610                         return -1;
611                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
612                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
613                                 return -1;
614                         if (mesh_flags == MESH_FLAGS_AE_A4)
615                                 skb_copy_bits(skb, hdrlen +
616                                         offsetof(struct ieee80211s_hdr, eaddr1),
617                                         tmp.h_source, ETH_ALEN);
618                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
619                 }
620                 break;
621         case cpu_to_le16(0):
622                 if (iftype != NL80211_IFTYPE_ADHOC &&
623                     iftype != NL80211_IFTYPE_STATION &&
624                     iftype != NL80211_IFTYPE_OCB)
625                                 return -1;
626                 break;
627         }
628
629         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
630         tmp.h_proto = payload.proto;
631
632         if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
633                     tmp.h_proto != htons(ETH_P_AARP) &&
634                     tmp.h_proto != htons(ETH_P_IPX)) ||
635                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
636                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
637                  * replace EtherType */
638                 hdrlen += ETH_ALEN + 2;
639         else
640                 tmp.h_proto = htons(skb->len - hdrlen);
641
642         pskb_pull(skb, hdrlen);
643
644         if (!ehdr)
645                 ehdr = skb_push(skb, sizeof(struct ethhdr));
646         memcpy(ehdr, &tmp, sizeof(tmp));
647
648         return 0;
649 }
650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
651
652 static void
653 __frame_add_frag(struct sk_buff *skb, struct page *page,
654                  void *ptr, int len, int size)
655 {
656         struct skb_shared_info *sh = skb_shinfo(skb);
657         int page_offset;
658
659         get_page(page);
660         page_offset = ptr - page_address(page);
661         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
662 }
663
664 static void
665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
666                             int offset, int len)
667 {
668         struct skb_shared_info *sh = skb_shinfo(skb);
669         const skb_frag_t *frag = &sh->frags[0];
670         struct page *frag_page;
671         void *frag_ptr;
672         int frag_len, frag_size;
673         int head_size = skb->len - skb->data_len;
674         int cur_len;
675
676         frag_page = virt_to_head_page(skb->head);
677         frag_ptr = skb->data;
678         frag_size = head_size;
679
680         while (offset >= frag_size) {
681                 offset -= frag_size;
682                 frag_page = skb_frag_page(frag);
683                 frag_ptr = skb_frag_address(frag);
684                 frag_size = skb_frag_size(frag);
685                 frag++;
686         }
687
688         frag_ptr += offset;
689         frag_len = frag_size - offset;
690
691         cur_len = min(len, frag_len);
692
693         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
694         len -= cur_len;
695
696         while (len > 0) {
697                 frag_len = skb_frag_size(frag);
698                 cur_len = min(len, frag_len);
699                 __frame_add_frag(frame, skb_frag_page(frag),
700                                  skb_frag_address(frag), cur_len, frag_len);
701                 len -= cur_len;
702                 frag++;
703         }
704 }
705
706 static struct sk_buff *
707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
708                        int offset, int len, bool reuse_frag)
709 {
710         struct sk_buff *frame;
711         int cur_len = len;
712
713         if (skb->len - offset < len)
714                 return NULL;
715
716         /*
717          * When reusing framents, copy some data to the head to simplify
718          * ethernet header handling and speed up protocol header processing
719          * in the stack later.
720          */
721         if (reuse_frag)
722                 cur_len = min_t(int, len, 32);
723
724         /*
725          * Allocate and reserve two bytes more for payload
726          * alignment since sizeof(struct ethhdr) is 14.
727          */
728         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
729         if (!frame)
730                 return NULL;
731
732         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
733         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
734
735         len -= cur_len;
736         if (!len)
737                 return frame;
738
739         offset += cur_len;
740         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
741
742         return frame;
743 }
744
745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
746                               const u8 *addr, enum nl80211_iftype iftype,
747                               const unsigned int extra_headroom,
748                               const u8 *check_da, const u8 *check_sa)
749 {
750         unsigned int hlen = ALIGN(extra_headroom, 4);
751         struct sk_buff *frame = NULL;
752         u16 ethertype;
753         u8 *payload;
754         int offset = 0, remaining;
755         struct ethhdr eth;
756         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
757         bool reuse_skb = false;
758         bool last = false;
759
760         while (!last) {
761                 unsigned int subframe_len;
762                 int len;
763                 u8 padding;
764
765                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
766                 len = ntohs(eth.h_proto);
767                 subframe_len = sizeof(struct ethhdr) + len;
768                 padding = (4 - subframe_len) & 0x3;
769
770                 /* the last MSDU has no padding */
771                 remaining = skb->len - offset;
772                 if (subframe_len > remaining)
773                         goto purge;
774                 /* mitigate A-MSDU aggregation injection attacks */
775                 if (ether_addr_equal(eth.h_dest, rfc1042_header))
776                         goto purge;
777
778                 offset += sizeof(struct ethhdr);
779                 last = remaining <= subframe_len + padding;
780
781                 /* FIXME: should we really accept multicast DA? */
782                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
783                      !ether_addr_equal(check_da, eth.h_dest)) ||
784                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
785                         offset += len + padding;
786                         continue;
787                 }
788
789                 /* reuse skb for the last subframe */
790                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
791                         skb_pull(skb, offset);
792                         frame = skb;
793                         reuse_skb = true;
794                 } else {
795                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
796                                                        reuse_frag);
797                         if (!frame)
798                                 goto purge;
799
800                         offset += len + padding;
801                 }
802
803                 skb_reset_network_header(frame);
804                 frame->dev = skb->dev;
805                 frame->priority = skb->priority;
806
807                 payload = frame->data;
808                 ethertype = (payload[6] << 8) | payload[7];
809                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
810                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
811                            ether_addr_equal(payload, bridge_tunnel_header))) {
812                         eth.h_proto = htons(ethertype);
813                         skb_pull(frame, ETH_ALEN + 2);
814                 }
815
816                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
817                 __skb_queue_tail(list, frame);
818         }
819
820         if (!reuse_skb)
821                 dev_kfree_skb(skb);
822
823         return;
824
825  purge:
826         __skb_queue_purge(list);
827         dev_kfree_skb(skb);
828 }
829 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
830
831 /* Given a data frame determine the 802.1p/1d tag to use. */
832 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
833                                     struct cfg80211_qos_map *qos_map)
834 {
835         unsigned int dscp;
836         unsigned char vlan_priority;
837         unsigned int ret;
838
839         /* skb->priority values from 256->263 are magic values to
840          * directly indicate a specific 802.1d priority.  This is used
841          * to allow 802.1d priority to be passed directly in from VLAN
842          * tags, etc.
843          */
844         if (skb->priority >= 256 && skb->priority <= 263) {
845                 ret = skb->priority - 256;
846                 goto out;
847         }
848
849         if (skb_vlan_tag_present(skb)) {
850                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
851                         >> VLAN_PRIO_SHIFT;
852                 if (vlan_priority > 0) {
853                         ret = vlan_priority;
854                         goto out;
855                 }
856         }
857
858         switch (skb->protocol) {
859         case htons(ETH_P_IP):
860                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
861                 break;
862         case htons(ETH_P_IPV6):
863                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
864                 break;
865         case htons(ETH_P_MPLS_UC):
866         case htons(ETH_P_MPLS_MC): {
867                 struct mpls_label mpls_tmp, *mpls;
868
869                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
870                                           sizeof(*mpls), &mpls_tmp);
871                 if (!mpls)
872                         return 0;
873
874                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
875                         >> MPLS_LS_TC_SHIFT;
876                 goto out;
877         }
878         case htons(ETH_P_80221):
879                 /* 802.21 is always network control traffic */
880                 return 7;
881         default:
882                 return 0;
883         }
884
885         if (qos_map) {
886                 unsigned int i, tmp_dscp = dscp >> 2;
887
888                 for (i = 0; i < qos_map->num_des; i++) {
889                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
890                                 ret = qos_map->dscp_exception[i].up;
891                                 goto out;
892                         }
893                 }
894
895                 for (i = 0; i < 8; i++) {
896                         if (tmp_dscp >= qos_map->up[i].low &&
897                             tmp_dscp <= qos_map->up[i].high) {
898                                 ret = i;
899                                 goto out;
900                         }
901                 }
902         }
903
904         ret = dscp >> 5;
905 out:
906         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
907 }
908 EXPORT_SYMBOL(cfg80211_classify8021d);
909
910 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
911 {
912         const struct cfg80211_bss_ies *ies;
913
914         ies = rcu_dereference(bss->ies);
915         if (!ies)
916                 return NULL;
917
918         return cfg80211_find_elem(id, ies->data, ies->len);
919 }
920 EXPORT_SYMBOL(ieee80211_bss_get_elem);
921
922 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
923 {
924         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
925         struct net_device *dev = wdev->netdev;
926         int i;
927
928         if (!wdev->connect_keys)
929                 return;
930
931         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
932                 if (!wdev->connect_keys->params[i].cipher)
933                         continue;
934                 if (rdev_add_key(rdev, dev, i, false, NULL,
935                                  &wdev->connect_keys->params[i])) {
936                         netdev_err(dev, "failed to set key %d\n", i);
937                         continue;
938                 }
939                 if (wdev->connect_keys->def == i &&
940                     rdev_set_default_key(rdev, dev, i, true, true)) {
941                         netdev_err(dev, "failed to set defkey %d\n", i);
942                         continue;
943                 }
944         }
945
946         kfree_sensitive(wdev->connect_keys);
947         wdev->connect_keys = NULL;
948 }
949
950 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
951 {
952         struct cfg80211_event *ev;
953         unsigned long flags;
954
955         spin_lock_irqsave(&wdev->event_lock, flags);
956         while (!list_empty(&wdev->event_list)) {
957                 ev = list_first_entry(&wdev->event_list,
958                                       struct cfg80211_event, list);
959                 list_del(&ev->list);
960                 spin_unlock_irqrestore(&wdev->event_lock, flags);
961
962                 wdev_lock(wdev);
963                 switch (ev->type) {
964                 case EVENT_CONNECT_RESULT:
965                         __cfg80211_connect_result(
966                                 wdev->netdev,
967                                 &ev->cr,
968                                 ev->cr.status == WLAN_STATUS_SUCCESS);
969                         break;
970                 case EVENT_ROAMED:
971                         __cfg80211_roamed(wdev, &ev->rm);
972                         break;
973                 case EVENT_DISCONNECTED:
974                         __cfg80211_disconnected(wdev->netdev,
975                                                 ev->dc.ie, ev->dc.ie_len,
976                                                 ev->dc.reason,
977                                                 !ev->dc.locally_generated);
978                         break;
979                 case EVENT_IBSS_JOINED:
980                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
981                                                ev->ij.channel);
982                         break;
983                 case EVENT_STOPPED:
984                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
985                         break;
986                 case EVENT_PORT_AUTHORIZED:
987                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
988                         break;
989                 }
990                 wdev_unlock(wdev);
991
992                 kfree(ev);
993
994                 spin_lock_irqsave(&wdev->event_lock, flags);
995         }
996         spin_unlock_irqrestore(&wdev->event_lock, flags);
997 }
998
999 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1000 {
1001         struct wireless_dev *wdev;
1002
1003         ASSERT_RTNL();
1004
1005         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1006                 cfg80211_process_wdev_events(wdev);
1007 }
1008
1009 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1010                           struct net_device *dev, enum nl80211_iftype ntype,
1011                           struct vif_params *params)
1012 {
1013         int err;
1014         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1015
1016         ASSERT_RTNL();
1017
1018         /* don't support changing VLANs, you just re-create them */
1019         if (otype == NL80211_IFTYPE_AP_VLAN)
1020                 return -EOPNOTSUPP;
1021
1022         /* cannot change into P2P device or NAN */
1023         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1024             ntype == NL80211_IFTYPE_NAN)
1025                 return -EOPNOTSUPP;
1026
1027         if (!rdev->ops->change_virtual_intf ||
1028             !(rdev->wiphy.interface_modes & (1 << ntype)))
1029                 return -EOPNOTSUPP;
1030
1031         if (ntype != otype) {
1032                 /* if it's part of a bridge, reject changing type to station/ibss */
1033                 if (netif_is_bridge_port(dev) &&
1034                     (ntype == NL80211_IFTYPE_ADHOC ||
1035                      ntype == NL80211_IFTYPE_STATION ||
1036                      ntype == NL80211_IFTYPE_P2P_CLIENT))
1037                         return -EBUSY;
1038
1039                 dev->ieee80211_ptr->use_4addr = false;
1040                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1041                 wdev_lock(dev->ieee80211_ptr);
1042                 rdev_set_qos_map(rdev, dev, NULL);
1043                 wdev_unlock(dev->ieee80211_ptr);
1044
1045                 switch (otype) {
1046                 case NL80211_IFTYPE_AP:
1047                 case NL80211_IFTYPE_P2P_GO:
1048                         cfg80211_stop_ap(rdev, dev, true);
1049                         break;
1050                 case NL80211_IFTYPE_ADHOC:
1051                         cfg80211_leave_ibss(rdev, dev, false);
1052                         break;
1053                 case NL80211_IFTYPE_STATION:
1054                 case NL80211_IFTYPE_P2P_CLIENT:
1055                         wdev_lock(dev->ieee80211_ptr);
1056                         cfg80211_disconnect(rdev, dev,
1057                                             WLAN_REASON_DEAUTH_LEAVING, true);
1058                         wdev_unlock(dev->ieee80211_ptr);
1059                         break;
1060                 case NL80211_IFTYPE_MESH_POINT:
1061                         /* mesh should be handled? */
1062                         break;
1063                 case NL80211_IFTYPE_OCB:
1064                         cfg80211_leave_ocb(rdev, dev);
1065                         break;
1066                 default:
1067                         break;
1068                 }
1069
1070                 cfg80211_process_rdev_events(rdev);
1071                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1072         }
1073
1074         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1075
1076         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1077
1078         if (!err && params && params->use_4addr != -1)
1079                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1080
1081         if (!err) {
1082                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1083                 switch (ntype) {
1084                 case NL80211_IFTYPE_STATION:
1085                         if (dev->ieee80211_ptr->use_4addr)
1086                                 break;
1087                         fallthrough;
1088                 case NL80211_IFTYPE_OCB:
1089                 case NL80211_IFTYPE_P2P_CLIENT:
1090                 case NL80211_IFTYPE_ADHOC:
1091                         dev->priv_flags |= IFF_DONT_BRIDGE;
1092                         break;
1093                 case NL80211_IFTYPE_P2P_GO:
1094                 case NL80211_IFTYPE_AP:
1095                 case NL80211_IFTYPE_AP_VLAN:
1096                 case NL80211_IFTYPE_WDS:
1097                 case NL80211_IFTYPE_MESH_POINT:
1098                         /* bridging OK */
1099                         break;
1100                 case NL80211_IFTYPE_MONITOR:
1101                         /* monitor can't bridge anyway */
1102                         break;
1103                 case NL80211_IFTYPE_UNSPECIFIED:
1104                 case NUM_NL80211_IFTYPES:
1105                         /* not happening */
1106                         break;
1107                 case NL80211_IFTYPE_P2P_DEVICE:
1108                 case NL80211_IFTYPE_NAN:
1109                         WARN_ON(1);
1110                         break;
1111                 }
1112         }
1113
1114         if (!err && ntype != otype && netif_running(dev)) {
1115                 cfg80211_update_iface_num(rdev, ntype, 1);
1116                 cfg80211_update_iface_num(rdev, otype, -1);
1117         }
1118
1119         return err;
1120 }
1121
1122 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1123 {
1124         int modulation, streams, bitrate;
1125
1126         /* the formula below does only work for MCS values smaller than 32 */
1127         if (WARN_ON_ONCE(rate->mcs >= 32))
1128                 return 0;
1129
1130         modulation = rate->mcs & 7;
1131         streams = (rate->mcs >> 3) + 1;
1132
1133         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1134
1135         if (modulation < 4)
1136                 bitrate *= (modulation + 1);
1137         else if (modulation == 4)
1138                 bitrate *= (modulation + 2);
1139         else
1140                 bitrate *= (modulation + 3);
1141
1142         bitrate *= streams;
1143
1144         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1145                 bitrate = (bitrate / 9) * 10;
1146
1147         /* do NOT round down here */
1148         return (bitrate + 50000) / 100000;
1149 }
1150
1151 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1152 {
1153         static const u32 __mcs2bitrate[] = {
1154                 /* control PHY */
1155                 [0] =   275,
1156                 /* SC PHY */
1157                 [1] =  3850,
1158                 [2] =  7700,
1159                 [3] =  9625,
1160                 [4] = 11550,
1161                 [5] = 12512, /* 1251.25 mbps */
1162                 [6] = 15400,
1163                 [7] = 19250,
1164                 [8] = 23100,
1165                 [9] = 25025,
1166                 [10] = 30800,
1167                 [11] = 38500,
1168                 [12] = 46200,
1169                 /* OFDM PHY */
1170                 [13] =  6930,
1171                 [14] =  8662, /* 866.25 mbps */
1172                 [15] = 13860,
1173                 [16] = 17325,
1174                 [17] = 20790,
1175                 [18] = 27720,
1176                 [19] = 34650,
1177                 [20] = 41580,
1178                 [21] = 45045,
1179                 [22] = 51975,
1180                 [23] = 62370,
1181                 [24] = 67568, /* 6756.75 mbps */
1182                 /* LP-SC PHY */
1183                 [25] =  6260,
1184                 [26] =  8340,
1185                 [27] = 11120,
1186                 [28] = 12510,
1187                 [29] = 16680,
1188                 [30] = 22240,
1189                 [31] = 25030,
1190         };
1191
1192         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1193                 return 0;
1194
1195         return __mcs2bitrate[rate->mcs];
1196 }
1197
1198 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1199 {
1200         static const u32 __mcs2bitrate[] = {
1201                 /* control PHY */
1202                 [0] =   275,
1203                 /* SC PHY */
1204                 [1] =  3850,
1205                 [2] =  7700,
1206                 [3] =  9625,
1207                 [4] = 11550,
1208                 [5] = 12512, /* 1251.25 mbps */
1209                 [6] = 13475,
1210                 [7] = 15400,
1211                 [8] = 19250,
1212                 [9] = 23100,
1213                 [10] = 25025,
1214                 [11] = 26950,
1215                 [12] = 30800,
1216                 [13] = 38500,
1217                 [14] = 46200,
1218                 [15] = 50050,
1219                 [16] = 53900,
1220                 [17] = 57750,
1221                 [18] = 69300,
1222                 [19] = 75075,
1223                 [20] = 80850,
1224         };
1225
1226         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1227                 return 0;
1228
1229         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1230 }
1231
1232 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1233 {
1234         static const u32 base[4][10] = {
1235                 {   6500000,
1236                    13000000,
1237                    19500000,
1238                    26000000,
1239                    39000000,
1240                    52000000,
1241                    58500000,
1242                    65000000,
1243                    78000000,
1244                 /* not in the spec, but some devices use this: */
1245                    86500000,
1246                 },
1247                 {  13500000,
1248                    27000000,
1249                    40500000,
1250                    54000000,
1251                    81000000,
1252                   108000000,
1253                   121500000,
1254                   135000000,
1255                   162000000,
1256                   180000000,
1257                 },
1258                 {  29300000,
1259                    58500000,
1260                    87800000,
1261                   117000000,
1262                   175500000,
1263                   234000000,
1264                   263300000,
1265                   292500000,
1266                   351000000,
1267                   390000000,
1268                 },
1269                 {  58500000,
1270                   117000000,
1271                   175500000,
1272                   234000000,
1273                   351000000,
1274                   468000000,
1275                   526500000,
1276                   585000000,
1277                   702000000,
1278                   780000000,
1279                 },
1280         };
1281         u32 bitrate;
1282         int idx;
1283
1284         if (rate->mcs > 9)
1285                 goto warn;
1286
1287         switch (rate->bw) {
1288         case RATE_INFO_BW_160:
1289                 idx = 3;
1290                 break;
1291         case RATE_INFO_BW_80:
1292                 idx = 2;
1293                 break;
1294         case RATE_INFO_BW_40:
1295                 idx = 1;
1296                 break;
1297         case RATE_INFO_BW_5:
1298         case RATE_INFO_BW_10:
1299         default:
1300                 goto warn;
1301         case RATE_INFO_BW_20:
1302                 idx = 0;
1303         }
1304
1305         bitrate = base[idx][rate->mcs];
1306         bitrate *= rate->nss;
1307
1308         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1309                 bitrate = (bitrate / 9) * 10;
1310
1311         /* do NOT round down here */
1312         return (bitrate + 50000) / 100000;
1313  warn:
1314         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1315                   rate->bw, rate->mcs, rate->nss);
1316         return 0;
1317 }
1318
1319 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1320 {
1321 #define SCALE 2048
1322         u16 mcs_divisors[12] = {
1323                 34133, /* 16.666666... */
1324                 17067, /*  8.333333... */
1325                 11378, /*  5.555555... */
1326                  8533, /*  4.166666... */
1327                  5689, /*  2.777777... */
1328                  4267, /*  2.083333... */
1329                  3923, /*  1.851851... */
1330                  3413, /*  1.666666... */
1331                  2844, /*  1.388888... */
1332                  2560, /*  1.250000... */
1333                  2276, /*  1.111111... */
1334                  2048, /*  1.000000... */
1335         };
1336         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1337         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1338         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1339         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1340         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1341         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1342         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1343         u64 tmp;
1344         u32 result;
1345
1346         if (WARN_ON_ONCE(rate->mcs > 11))
1347                 return 0;
1348
1349         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1350                 return 0;
1351         if (WARN_ON_ONCE(rate->he_ru_alloc >
1352                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1353                 return 0;
1354         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1355                 return 0;
1356
1357         if (rate->bw == RATE_INFO_BW_160)
1358                 result = rates_160M[rate->he_gi];
1359         else if (rate->bw == RATE_INFO_BW_80 ||
1360                  (rate->bw == RATE_INFO_BW_HE_RU &&
1361                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1362                 result = rates_969[rate->he_gi];
1363         else if (rate->bw == RATE_INFO_BW_40 ||
1364                  (rate->bw == RATE_INFO_BW_HE_RU &&
1365                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1366                 result = rates_484[rate->he_gi];
1367         else if (rate->bw == RATE_INFO_BW_20 ||
1368                  (rate->bw == RATE_INFO_BW_HE_RU &&
1369                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1370                 result = rates_242[rate->he_gi];
1371         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1372                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1373                 result = rates_106[rate->he_gi];
1374         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1375                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1376                 result = rates_52[rate->he_gi];
1377         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1378                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1379                 result = rates_26[rate->he_gi];
1380         else {
1381                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1382                      rate->bw, rate->he_ru_alloc);
1383                 return 0;
1384         }
1385
1386         /* now scale to the appropriate MCS */
1387         tmp = result;
1388         tmp *= SCALE;
1389         do_div(tmp, mcs_divisors[rate->mcs]);
1390         result = tmp;
1391
1392         /* and take NSS, DCM into account */
1393         result = (result * rate->nss) / 8;
1394         if (rate->he_dcm)
1395                 result /= 2;
1396
1397         return result / 10000;
1398 }
1399
1400 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1401 {
1402         if (rate->flags & RATE_INFO_FLAGS_MCS)
1403                 return cfg80211_calculate_bitrate_ht(rate);
1404         if (rate->flags & RATE_INFO_FLAGS_DMG)
1405                 return cfg80211_calculate_bitrate_dmg(rate);
1406         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1407                 return cfg80211_calculate_bitrate_edmg(rate);
1408         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1409                 return cfg80211_calculate_bitrate_vht(rate);
1410         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1411                 return cfg80211_calculate_bitrate_he(rate);
1412
1413         return rate->legacy;
1414 }
1415 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1416
1417 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1418                           enum ieee80211_p2p_attr_id attr,
1419                           u8 *buf, unsigned int bufsize)
1420 {
1421         u8 *out = buf;
1422         u16 attr_remaining = 0;
1423         bool desired_attr = false;
1424         u16 desired_len = 0;
1425
1426         while (len > 0) {
1427                 unsigned int iedatalen;
1428                 unsigned int copy;
1429                 const u8 *iedata;
1430
1431                 if (len < 2)
1432                         return -EILSEQ;
1433                 iedatalen = ies[1];
1434                 if (iedatalen + 2 > len)
1435                         return -EILSEQ;
1436
1437                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1438                         goto cont;
1439
1440                 if (iedatalen < 4)
1441                         goto cont;
1442
1443                 iedata = ies + 2;
1444
1445                 /* check WFA OUI, P2P subtype */
1446                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1447                     iedata[2] != 0x9a || iedata[3] != 0x09)
1448                         goto cont;
1449
1450                 iedatalen -= 4;
1451                 iedata += 4;
1452
1453                 /* check attribute continuation into this IE */
1454                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1455                 if (copy && desired_attr) {
1456                         desired_len += copy;
1457                         if (out) {
1458                                 memcpy(out, iedata, min(bufsize, copy));
1459                                 out += min(bufsize, copy);
1460                                 bufsize -= min(bufsize, copy);
1461                         }
1462
1463
1464                         if (copy == attr_remaining)
1465                                 return desired_len;
1466                 }
1467
1468                 attr_remaining -= copy;
1469                 if (attr_remaining)
1470                         goto cont;
1471
1472                 iedatalen -= copy;
1473                 iedata += copy;
1474
1475                 while (iedatalen > 0) {
1476                         u16 attr_len;
1477
1478                         /* P2P attribute ID & size must fit */
1479                         if (iedatalen < 3)
1480                                 return -EILSEQ;
1481                         desired_attr = iedata[0] == attr;
1482                         attr_len = get_unaligned_le16(iedata + 1);
1483                         iedatalen -= 3;
1484                         iedata += 3;
1485
1486                         copy = min_t(unsigned int, attr_len, iedatalen);
1487
1488                         if (desired_attr) {
1489                                 desired_len += copy;
1490                                 if (out) {
1491                                         memcpy(out, iedata, min(bufsize, copy));
1492                                         out += min(bufsize, copy);
1493                                         bufsize -= min(bufsize, copy);
1494                                 }
1495
1496                                 if (copy == attr_len)
1497                                         return desired_len;
1498                         }
1499
1500                         iedata += copy;
1501                         iedatalen -= copy;
1502                         attr_remaining = attr_len - copy;
1503                 }
1504
1505  cont:
1506                 len -= ies[1] + 2;
1507                 ies += ies[1] + 2;
1508         }
1509
1510         if (attr_remaining && desired_attr)
1511                 return -EILSEQ;
1512
1513         return -ENOENT;
1514 }
1515 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1516
1517 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1518 {
1519         int i;
1520
1521         /* Make sure array values are legal */
1522         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1523                 return false;
1524
1525         i = 0;
1526         while (i < n_ids) {
1527                 if (ids[i] == WLAN_EID_EXTENSION) {
1528                         if (id_ext && (ids[i + 1] == id))
1529                                 return true;
1530
1531                         i += 2;
1532                         continue;
1533                 }
1534
1535                 if (ids[i] == id && !id_ext)
1536                         return true;
1537
1538                 i++;
1539         }
1540         return false;
1541 }
1542
1543 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1544 {
1545         /* we assume a validly formed IEs buffer */
1546         u8 len = ies[pos + 1];
1547
1548         pos += 2 + len;
1549
1550         /* the IE itself must have 255 bytes for fragments to follow */
1551         if (len < 255)
1552                 return pos;
1553
1554         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1555                 len = ies[pos + 1];
1556                 pos += 2 + len;
1557         }
1558
1559         return pos;
1560 }
1561
1562 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1563                               const u8 *ids, int n_ids,
1564                               const u8 *after_ric, int n_after_ric,
1565                               size_t offset)
1566 {
1567         size_t pos = offset;
1568
1569         while (pos < ielen) {
1570                 u8 ext = 0;
1571
1572                 if (ies[pos] == WLAN_EID_EXTENSION)
1573                         ext = 2;
1574                 if ((pos + ext) >= ielen)
1575                         break;
1576
1577                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1578                                           ies[pos] == WLAN_EID_EXTENSION))
1579                         break;
1580
1581                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1582                         pos = skip_ie(ies, ielen, pos);
1583
1584                         while (pos < ielen) {
1585                                 if (ies[pos] == WLAN_EID_EXTENSION)
1586                                         ext = 2;
1587                                 else
1588                                         ext = 0;
1589
1590                                 if ((pos + ext) >= ielen)
1591                                         break;
1592
1593                                 if (!ieee80211_id_in_list(after_ric,
1594                                                           n_after_ric,
1595                                                           ies[pos + ext],
1596                                                           ext == 2))
1597                                         pos = skip_ie(ies, ielen, pos);
1598                                 else
1599                                         break;
1600                         }
1601                 } else {
1602                         pos = skip_ie(ies, ielen, pos);
1603                 }
1604         }
1605
1606         return pos;
1607 }
1608 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1609
1610 bool ieee80211_operating_class_to_band(u8 operating_class,
1611                                        enum nl80211_band *band)
1612 {
1613         switch (operating_class) {
1614         case 112:
1615         case 115 ... 127:
1616         case 128 ... 130:
1617                 *band = NL80211_BAND_5GHZ;
1618                 return true;
1619         case 131 ... 135:
1620                 *band = NL80211_BAND_6GHZ;
1621                 return true;
1622         case 81:
1623         case 82:
1624         case 83:
1625         case 84:
1626                 *band = NL80211_BAND_2GHZ;
1627                 return true;
1628         case 180:
1629                 *band = NL80211_BAND_60GHZ;
1630                 return true;
1631         }
1632
1633         return false;
1634 }
1635 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1636
1637 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1638                                           u8 *op_class)
1639 {
1640         u8 vht_opclass;
1641         u32 freq = chandef->center_freq1;
1642
1643         if (freq >= 2412 && freq <= 2472) {
1644                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1645                         return false;
1646
1647                 /* 2.407 GHz, channels 1..13 */
1648                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1649                         if (freq > chandef->chan->center_freq)
1650                                 *op_class = 83; /* HT40+ */
1651                         else
1652                                 *op_class = 84; /* HT40- */
1653                 } else {
1654                         *op_class = 81;
1655                 }
1656
1657                 return true;
1658         }
1659
1660         if (freq == 2484) {
1661                 /* channel 14 is only for IEEE 802.11b */
1662                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1663                         return false;
1664
1665                 *op_class = 82; /* channel 14 */
1666                 return true;
1667         }
1668
1669         switch (chandef->width) {
1670         case NL80211_CHAN_WIDTH_80:
1671                 vht_opclass = 128;
1672                 break;
1673         case NL80211_CHAN_WIDTH_160:
1674                 vht_opclass = 129;
1675                 break;
1676         case NL80211_CHAN_WIDTH_80P80:
1677                 vht_opclass = 130;
1678                 break;
1679         case NL80211_CHAN_WIDTH_10:
1680         case NL80211_CHAN_WIDTH_5:
1681                 return false; /* unsupported for now */
1682         default:
1683                 vht_opclass = 0;
1684                 break;
1685         }
1686
1687         /* 5 GHz, channels 36..48 */
1688         if (freq >= 5180 && freq <= 5240) {
1689                 if (vht_opclass) {
1690                         *op_class = vht_opclass;
1691                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1692                         if (freq > chandef->chan->center_freq)
1693                                 *op_class = 116;
1694                         else
1695                                 *op_class = 117;
1696                 } else {
1697                         *op_class = 115;
1698                 }
1699
1700                 return true;
1701         }
1702
1703         /* 5 GHz, channels 52..64 */
1704         if (freq >= 5260 && freq <= 5320) {
1705                 if (vht_opclass) {
1706                         *op_class = vht_opclass;
1707                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1708                         if (freq > chandef->chan->center_freq)
1709                                 *op_class = 119;
1710                         else
1711                                 *op_class = 120;
1712                 } else {
1713                         *op_class = 118;
1714                 }
1715
1716                 return true;
1717         }
1718
1719         /* 5 GHz, channels 100..144 */
1720         if (freq >= 5500 && freq <= 5720) {
1721                 if (vht_opclass) {
1722                         *op_class = vht_opclass;
1723                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1724                         if (freq > chandef->chan->center_freq)
1725                                 *op_class = 122;
1726                         else
1727                                 *op_class = 123;
1728                 } else {
1729                         *op_class = 121;
1730                 }
1731
1732                 return true;
1733         }
1734
1735         /* 5 GHz, channels 149..169 */
1736         if (freq >= 5745 && freq <= 5845) {
1737                 if (vht_opclass) {
1738                         *op_class = vht_opclass;
1739                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1740                         if (freq > chandef->chan->center_freq)
1741                                 *op_class = 126;
1742                         else
1743                                 *op_class = 127;
1744                 } else if (freq <= 5805) {
1745                         *op_class = 124;
1746                 } else {
1747                         *op_class = 125;
1748                 }
1749
1750                 return true;
1751         }
1752
1753         /* 56.16 GHz, channel 1..4 */
1754         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1755                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1756                         return false;
1757
1758                 *op_class = 180;
1759                 return true;
1760         }
1761
1762         /* not supported yet */
1763         return false;
1764 }
1765 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1766
1767 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1768                                        u32 *beacon_int_gcd,
1769                                        bool *beacon_int_different)
1770 {
1771         struct wireless_dev *wdev;
1772
1773         *beacon_int_gcd = 0;
1774         *beacon_int_different = false;
1775
1776         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1777                 if (!wdev->beacon_interval)
1778                         continue;
1779
1780                 if (!*beacon_int_gcd) {
1781                         *beacon_int_gcd = wdev->beacon_interval;
1782                         continue;
1783                 }
1784
1785                 if (wdev->beacon_interval == *beacon_int_gcd)
1786                         continue;
1787
1788                 *beacon_int_different = true;
1789                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1790         }
1791
1792         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1793                 if (*beacon_int_gcd)
1794                         *beacon_int_different = true;
1795                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1796         }
1797 }
1798
1799 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1800                                  enum nl80211_iftype iftype, u32 beacon_int)
1801 {
1802         /*
1803          * This is just a basic pre-condition check; if interface combinations
1804          * are possible the driver must already be checking those with a call
1805          * to cfg80211_check_combinations(), in which case we'll validate more
1806          * through the cfg80211_calculate_bi_data() call and code in
1807          * cfg80211_iter_combinations().
1808          */
1809
1810         if (beacon_int < 10 || beacon_int > 10000)
1811                 return -EINVAL;
1812
1813         return 0;
1814 }
1815
1816 int cfg80211_iter_combinations(struct wiphy *wiphy,
1817                                struct iface_combination_params *params,
1818                                void (*iter)(const struct ieee80211_iface_combination *c,
1819                                             void *data),
1820                                void *data)
1821 {
1822         const struct ieee80211_regdomain *regdom;
1823         enum nl80211_dfs_regions region = 0;
1824         int i, j, iftype;
1825         int num_interfaces = 0;
1826         u32 used_iftypes = 0;
1827         u32 beacon_int_gcd;
1828         bool beacon_int_different;
1829
1830         /*
1831          * This is a bit strange, since the iteration used to rely only on
1832          * the data given by the driver, but here it now relies on context,
1833          * in form of the currently operating interfaces.
1834          * This is OK for all current users, and saves us from having to
1835          * push the GCD calculations into all the drivers.
1836          * In the future, this should probably rely more on data that's in
1837          * cfg80211 already - the only thing not would appear to be any new
1838          * interfaces (while being brought up) and channel/radar data.
1839          */
1840         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1841                                    &beacon_int_gcd, &beacon_int_different);
1842
1843         if (params->radar_detect) {
1844                 rcu_read_lock();
1845                 regdom = rcu_dereference(cfg80211_regdomain);
1846                 if (regdom)
1847                         region = regdom->dfs_region;
1848                 rcu_read_unlock();
1849         }
1850
1851         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1852                 num_interfaces += params->iftype_num[iftype];
1853                 if (params->iftype_num[iftype] > 0 &&
1854                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1855                         used_iftypes |= BIT(iftype);
1856         }
1857
1858         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1859                 const struct ieee80211_iface_combination *c;
1860                 struct ieee80211_iface_limit *limits;
1861                 u32 all_iftypes = 0;
1862
1863                 c = &wiphy->iface_combinations[i];
1864
1865                 if (num_interfaces > c->max_interfaces)
1866                         continue;
1867                 if (params->num_different_channels > c->num_different_channels)
1868                         continue;
1869
1870                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1871                                  GFP_KERNEL);
1872                 if (!limits)
1873                         return -ENOMEM;
1874
1875                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1876                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1877                                 continue;
1878                         for (j = 0; j < c->n_limits; j++) {
1879                                 all_iftypes |= limits[j].types;
1880                                 if (!(limits[j].types & BIT(iftype)))
1881                                         continue;
1882                                 if (limits[j].max < params->iftype_num[iftype])
1883                                         goto cont;
1884                                 limits[j].max -= params->iftype_num[iftype];
1885                         }
1886                 }
1887
1888                 if (params->radar_detect !=
1889                         (c->radar_detect_widths & params->radar_detect))
1890                         goto cont;
1891
1892                 if (params->radar_detect && c->radar_detect_regions &&
1893                     !(c->radar_detect_regions & BIT(region)))
1894                         goto cont;
1895
1896                 /* Finally check that all iftypes that we're currently
1897                  * using are actually part of this combination. If they
1898                  * aren't then we can't use this combination and have
1899                  * to continue to the next.
1900                  */
1901                 if ((all_iftypes & used_iftypes) != used_iftypes)
1902                         goto cont;
1903
1904                 if (beacon_int_gcd) {
1905                         if (c->beacon_int_min_gcd &&
1906                             beacon_int_gcd < c->beacon_int_min_gcd)
1907                                 goto cont;
1908                         if (!c->beacon_int_min_gcd && beacon_int_different)
1909                                 goto cont;
1910                 }
1911
1912                 /* This combination covered all interface types and
1913                  * supported the requested numbers, so we're good.
1914                  */
1915
1916                 (*iter)(c, data);
1917  cont:
1918                 kfree(limits);
1919         }
1920
1921         return 0;
1922 }
1923 EXPORT_SYMBOL(cfg80211_iter_combinations);
1924
1925 static void
1926 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1927                           void *data)
1928 {
1929         int *num = data;
1930         (*num)++;
1931 }
1932
1933 int cfg80211_check_combinations(struct wiphy *wiphy,
1934                                 struct iface_combination_params *params)
1935 {
1936         int err, num = 0;
1937
1938         err = cfg80211_iter_combinations(wiphy, params,
1939                                          cfg80211_iter_sum_ifcombs, &num);
1940         if (err)
1941                 return err;
1942         if (num == 0)
1943                 return -EBUSY;
1944
1945         return 0;
1946 }
1947 EXPORT_SYMBOL(cfg80211_check_combinations);
1948
1949 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1950                            const u8 *rates, unsigned int n_rates,
1951                            u32 *mask)
1952 {
1953         int i, j;
1954
1955         if (!sband)
1956                 return -EINVAL;
1957
1958         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1959                 return -EINVAL;
1960
1961         *mask = 0;
1962
1963         for (i = 0; i < n_rates; i++) {
1964                 int rate = (rates[i] & 0x7f) * 5;
1965                 bool found = false;
1966
1967                 for (j = 0; j < sband->n_bitrates; j++) {
1968                         if (sband->bitrates[j].bitrate == rate) {
1969                                 found = true;
1970                                 *mask |= BIT(j);
1971                                 break;
1972                         }
1973                 }
1974                 if (!found)
1975                         return -EINVAL;
1976         }
1977
1978         /*
1979          * mask must have at least one bit set here since we
1980          * didn't accept a 0-length rates array nor allowed
1981          * entries in the array that didn't exist
1982          */
1983
1984         return 0;
1985 }
1986
1987 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1988 {
1989         enum nl80211_band band;
1990         unsigned int n_channels = 0;
1991
1992         for (band = 0; band < NUM_NL80211_BANDS; band++)
1993                 if (wiphy->bands[band])
1994                         n_channels += wiphy->bands[band]->n_channels;
1995
1996         return n_channels;
1997 }
1998 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1999
2000 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2001                          struct station_info *sinfo)
2002 {
2003         struct cfg80211_registered_device *rdev;
2004         struct wireless_dev *wdev;
2005
2006         wdev = dev->ieee80211_ptr;
2007         if (!wdev)
2008                 return -EOPNOTSUPP;
2009
2010         rdev = wiphy_to_rdev(wdev->wiphy);
2011         if (!rdev->ops->get_station)
2012                 return -EOPNOTSUPP;
2013
2014         memset(sinfo, 0, sizeof(*sinfo));
2015
2016         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2017 }
2018 EXPORT_SYMBOL(cfg80211_get_station);
2019
2020 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2021 {
2022         int i;
2023
2024         if (!f)
2025                 return;
2026
2027         kfree(f->serv_spec_info);
2028         kfree(f->srf_bf);
2029         kfree(f->srf_macs);
2030         for (i = 0; i < f->num_rx_filters; i++)
2031                 kfree(f->rx_filters[i].filter);
2032
2033         for (i = 0; i < f->num_tx_filters; i++)
2034                 kfree(f->tx_filters[i].filter);
2035
2036         kfree(f->rx_filters);
2037         kfree(f->tx_filters);
2038         kfree(f);
2039 }
2040 EXPORT_SYMBOL(cfg80211_free_nan_func);
2041
2042 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2043                                 u32 center_freq_khz, u32 bw_khz)
2044 {
2045         u32 start_freq_khz, end_freq_khz;
2046
2047         start_freq_khz = center_freq_khz - (bw_khz / 2);
2048         end_freq_khz = center_freq_khz + (bw_khz / 2);
2049
2050         if (start_freq_khz >= freq_range->start_freq_khz &&
2051             end_freq_khz <= freq_range->end_freq_khz)
2052                 return true;
2053
2054         return false;
2055 }
2056
2057 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2058 {
2059         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2060                                 sizeof(*(sinfo->pertid)),
2061                                 gfp);
2062         if (!sinfo->pertid)
2063                 return -ENOMEM;
2064
2065         return 0;
2066 }
2067 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2068
2069 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2070 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2071 const unsigned char rfc1042_header[] __aligned(2) =
2072         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2073 EXPORT_SYMBOL(rfc1042_header);
2074
2075 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2076 const unsigned char bridge_tunnel_header[] __aligned(2) =
2077         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2078 EXPORT_SYMBOL(bridge_tunnel_header);
2079
2080 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2081 struct iapp_layer2_update {
2082         u8 da[ETH_ALEN];        /* broadcast */
2083         u8 sa[ETH_ALEN];        /* STA addr */
2084         __be16 len;             /* 6 */
2085         u8 dsap;                /* 0 */
2086         u8 ssap;                /* 0 */
2087         u8 control;
2088         u8 xid_info[3];
2089 } __packed;
2090
2091 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2092 {
2093         struct iapp_layer2_update *msg;
2094         struct sk_buff *skb;
2095
2096         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2097          * bridge devices */
2098
2099         skb = dev_alloc_skb(sizeof(*msg));
2100         if (!skb)
2101                 return;
2102         msg = skb_put(skb, sizeof(*msg));
2103
2104         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2105          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2106
2107         eth_broadcast_addr(msg->da);
2108         ether_addr_copy(msg->sa, addr);
2109         msg->len = htons(6);
2110         msg->dsap = 0;
2111         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2112         msg->control = 0xaf;    /* XID response lsb.1111F101.
2113                                  * F=0 (no poll command; unsolicited frame) */
2114         msg->xid_info[0] = 0x81;        /* XID format identifier */
2115         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2116         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2117
2118         skb->dev = dev;
2119         skb->protocol = eth_type_trans(skb, dev);
2120         memset(skb->cb, 0, sizeof(skb->cb));
2121         netif_rx_ni(skb);
2122 }
2123 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2124
2125 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2126                               enum ieee80211_vht_chanwidth bw,
2127                               int mcs, bool ext_nss_bw_capable,
2128                               unsigned int max_vht_nss)
2129 {
2130         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2131         int ext_nss_bw;
2132         int supp_width;
2133         int i, mcs_encoding;
2134
2135         if (map == 0xffff)
2136                 return 0;
2137
2138         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2139                 return 0;
2140         if (mcs <= 7)
2141                 mcs_encoding = 0;
2142         else if (mcs == 8)
2143                 mcs_encoding = 1;
2144         else
2145                 mcs_encoding = 2;
2146
2147         if (!max_vht_nss) {
2148                 /* find max_vht_nss for the given MCS */
2149                 for (i = 7; i >= 0; i--) {
2150                         int supp = (map >> (2 * i)) & 3;
2151
2152                         if (supp == 3)
2153                                 continue;
2154
2155                         if (supp >= mcs_encoding) {
2156                                 max_vht_nss = i + 1;
2157                                 break;
2158                         }
2159                 }
2160         }
2161
2162         if (!(cap->supp_mcs.tx_mcs_map &
2163                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2164                 return max_vht_nss;
2165
2166         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2167                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2168         supp_width = le32_get_bits(cap->vht_cap_info,
2169                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2170
2171         /* if not capable, treat ext_nss_bw as 0 */
2172         if (!ext_nss_bw_capable)
2173                 ext_nss_bw = 0;
2174
2175         /* This is invalid */
2176         if (supp_width == 3)
2177                 return 0;
2178
2179         /* This is an invalid combination so pretend nothing is supported */
2180         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2181                 return 0;
2182
2183         /*
2184          * Cover all the special cases according to IEEE 802.11-2016
2185          * Table 9-250. All other cases are either factor of 1 or not
2186          * valid/supported.
2187          */
2188         switch (bw) {
2189         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2190         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2191                 if ((supp_width == 1 || supp_width == 2) &&
2192                     ext_nss_bw == 3)
2193                         return 2 * max_vht_nss;
2194                 break;
2195         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2196                 if (supp_width == 0 &&
2197                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2198                         return max_vht_nss / 2;
2199                 if (supp_width == 0 &&
2200                     ext_nss_bw == 3)
2201                         return (3 * max_vht_nss) / 4;
2202                 if (supp_width == 1 &&
2203                     ext_nss_bw == 3)
2204                         return 2 * max_vht_nss;
2205                 break;
2206         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2207                 if (supp_width == 0 && ext_nss_bw == 1)
2208                         return 0; /* not possible */
2209                 if (supp_width == 0 &&
2210                     ext_nss_bw == 2)
2211                         return max_vht_nss / 2;
2212                 if (supp_width == 0 &&
2213                     ext_nss_bw == 3)
2214                         return (3 * max_vht_nss) / 4;
2215                 if (supp_width == 1 &&
2216                     ext_nss_bw == 0)
2217                         return 0; /* not possible */
2218                 if (supp_width == 1 &&
2219                     ext_nss_bw == 1)
2220                         return max_vht_nss / 2;
2221                 if (supp_width == 1 &&
2222                     ext_nss_bw == 2)
2223                         return (3 * max_vht_nss) / 4;
2224                 break;
2225         }
2226
2227         /* not covered or invalid combination received */
2228         return max_vht_nss;
2229 }
2230 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2231
2232 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2233                              bool is_4addr, u8 check_swif)
2234
2235 {
2236         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2237
2238         switch (check_swif) {
2239         case 0:
2240                 if (is_vlan && is_4addr)
2241                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2242                 return wiphy->interface_modes & BIT(iftype);
2243         case 1:
2244                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2245                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2246                 return wiphy->software_iftypes & BIT(iftype);
2247         default:
2248                 break;
2249         }
2250
2251         return false;
2252 }
2253 EXPORT_SYMBOL(cfg80211_iftype_allowed);