arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016       Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE    (30 * HZ)
78
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *      that operate in the same channel as the reported AP and that might be
89  *      detected by a STA receiving this frame, are transmitting unsolicited
90  *      Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *      colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
100  */
101 struct cfg80211_colocated_ap {
102         struct list_head list;
103         u8 bssid[ETH_ALEN];
104         u8 ssid[IEEE80211_MAX_SSID_LEN];
105         size_t ssid_len;
106         u32 short_ssid;
107         u32 center_freq;
108         u8 unsolicited_probe:1,
109            oct_recommended:1,
110            same_ssid:1,
111            multi_bss:1,
112            transmitted_bssid:1,
113            colocated_ess:1,
114            short_ssid_valid:1;
115         s8 psd_20;
116 };
117
118 static void bss_free(struct cfg80211_internal_bss *bss)
119 {
120         struct cfg80211_bss_ies *ies;
121
122         if (WARN_ON(atomic_read(&bss->hold)))
123                 return;
124
125         ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
126         if (ies && !bss->pub.hidden_beacon_bss)
127                 kfree_rcu(ies, rcu_head);
128         ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
129         if (ies)
130                 kfree_rcu(ies, rcu_head);
131
132         /*
133          * This happens when the module is removed, it doesn't
134          * really matter any more save for completeness
135          */
136         if (!list_empty(&bss->hidden_list))
137                 list_del(&bss->hidden_list);
138
139         kfree(bss);
140 }
141
142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
143                                struct cfg80211_internal_bss *bss)
144 {
145         lockdep_assert_held(&rdev->bss_lock);
146
147         bss->refcount++;
148
149         if (bss->pub.hidden_beacon_bss)
150                 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
151
152         if (bss->pub.transmitted_bss)
153                 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
154 }
155
156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
157                                struct cfg80211_internal_bss *bss)
158 {
159         lockdep_assert_held(&rdev->bss_lock);
160
161         if (bss->pub.hidden_beacon_bss) {
162                 struct cfg80211_internal_bss *hbss;
163
164                 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
165                 hbss->refcount--;
166                 if (hbss->refcount == 0)
167                         bss_free(hbss);
168         }
169
170         if (bss->pub.transmitted_bss) {
171                 struct cfg80211_internal_bss *tbss;
172
173                 tbss = bss_from_pub(bss->pub.transmitted_bss);
174                 tbss->refcount--;
175                 if (tbss->refcount == 0)
176                         bss_free(tbss);
177         }
178
179         bss->refcount--;
180         if (bss->refcount == 0)
181                 bss_free(bss);
182 }
183
184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
185                                   struct cfg80211_internal_bss *bss)
186 {
187         lockdep_assert_held(&rdev->bss_lock);
188
189         if (!list_empty(&bss->hidden_list)) {
190                 /*
191                  * don't remove the beacon entry if it has
192                  * probe responses associated with it
193                  */
194                 if (!bss->pub.hidden_beacon_bss)
195                         return false;
196                 /*
197                  * if it's a probe response entry break its
198                  * link to the other entries in the group
199                  */
200                 list_del_init(&bss->hidden_list);
201         }
202
203         list_del_init(&bss->list);
204         list_del_init(&bss->pub.nontrans_list);
205         rb_erase(&bss->rbn, &rdev->bss_tree);
206         rdev->bss_entries--;
207         WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
208                   "rdev bss entries[%d]/list[empty:%d] corruption\n",
209                   rdev->bss_entries, list_empty(&rdev->bss_list));
210         bss_ref_put(rdev, bss);
211         return true;
212 }
213
214 bool cfg80211_is_element_inherited(const struct element *elem,
215                                    const struct element *non_inherit_elem)
216 {
217         u8 id_len, ext_id_len, i, loop_len, id;
218         const u8 *list;
219
220         if (elem->id == WLAN_EID_MULTIPLE_BSSID)
221                 return false;
222
223         if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
224             elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
225                 return false;
226
227         if (!non_inherit_elem || non_inherit_elem->datalen < 2)
228                 return true;
229
230         /*
231          * non inheritance element format is:
232          * ext ID (56) | IDs list len | list | extension IDs list len | list
233          * Both lists are optional. Both lengths are mandatory.
234          * This means valid length is:
235          * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
236          */
237         id_len = non_inherit_elem->data[1];
238         if (non_inherit_elem->datalen < 3 + id_len)
239                 return true;
240
241         ext_id_len = non_inherit_elem->data[2 + id_len];
242         if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
243                 return true;
244
245         if (elem->id == WLAN_EID_EXTENSION) {
246                 if (!ext_id_len)
247                         return true;
248                 loop_len = ext_id_len;
249                 list = &non_inherit_elem->data[3 + id_len];
250                 id = elem->data[0];
251         } else {
252                 if (!id_len)
253                         return true;
254                 loop_len = id_len;
255                 list = &non_inherit_elem->data[2];
256                 id = elem->id;
257         }
258
259         for (i = 0; i < loop_len; i++) {
260                 if (list[i] == id)
261                         return false;
262         }
263
264         return true;
265 }
266 EXPORT_SYMBOL(cfg80211_is_element_inherited);
267
268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
269                                             const u8 *ie, size_t ie_len,
270                                             u8 **pos, u8 *buf, size_t buf_len)
271 {
272         if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
273                     elem->data + elem->datalen > ie + ie_len))
274                 return 0;
275
276         if (elem->datalen + 2 > buf + buf_len - *pos)
277                 return 0;
278
279         memcpy(*pos, elem, elem->datalen + 2);
280         *pos += elem->datalen + 2;
281
282         /* Finish if it is not fragmented  */
283         if (elem->datalen != 255)
284                 return *pos - buf;
285
286         ie_len = ie + ie_len - elem->data - elem->datalen;
287         ie = (const u8 *)elem->data + elem->datalen;
288
289         for_each_element(elem, ie, ie_len) {
290                 if (elem->id != WLAN_EID_FRAGMENT)
291                         break;
292
293                 if (elem->datalen + 2 > buf + buf_len - *pos)
294                         return 0;
295
296                 memcpy(*pos, elem, elem->datalen + 2);
297                 *pos += elem->datalen + 2;
298
299                 if (elem->datalen != 255)
300                         break;
301         }
302
303         return *pos - buf;
304 }
305
306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
307                                   const u8 *subie, size_t subie_len,
308                                   u8 *new_ie, size_t new_ie_len)
309 {
310         const struct element *non_inherit_elem, *parent, *sub;
311         u8 *pos = new_ie;
312         u8 id, ext_id;
313         unsigned int match_len;
314
315         non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
316                                                   subie, subie_len);
317
318         /* We copy the elements one by one from the parent to the generated
319          * elements.
320          * If they are not inherited (included in subie or in the non
321          * inheritance element), then we copy all occurrences the first time
322          * we see this element type.
323          */
324         for_each_element(parent, ie, ielen) {
325                 if (parent->id == WLAN_EID_FRAGMENT)
326                         continue;
327
328                 if (parent->id == WLAN_EID_EXTENSION) {
329                         if (parent->datalen < 1)
330                                 continue;
331
332                         id = WLAN_EID_EXTENSION;
333                         ext_id = parent->data[0];
334                         match_len = 1;
335                 } else {
336                         id = parent->id;
337                         match_len = 0;
338                 }
339
340                 /* Find first occurrence in subie */
341                 sub = cfg80211_find_elem_match(id, subie, subie_len,
342                                                &ext_id, match_len, 0);
343
344                 /* Copy from parent if not in subie and inherited */
345                 if (!sub &&
346                     cfg80211_is_element_inherited(parent, non_inherit_elem)) {
347                         if (!cfg80211_copy_elem_with_frags(parent,
348                                                            ie, ielen,
349                                                            &pos, new_ie,
350                                                            new_ie_len))
351                                 return 0;
352
353                         continue;
354                 }
355
356                 /* Already copied if an earlier element had the same type */
357                 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
358                                              &ext_id, match_len, 0))
359                         continue;
360
361                 /* Not inheriting, copy all similar elements from subie */
362                 while (sub) {
363                         if (!cfg80211_copy_elem_with_frags(sub,
364                                                            subie, subie_len,
365                                                            &pos, new_ie,
366                                                            new_ie_len))
367                                 return 0;
368
369                         sub = cfg80211_find_elem_match(id,
370                                                        sub->data + sub->datalen,
371                                                        subie_len + subie -
372                                                        (sub->data +
373                                                         sub->datalen),
374                                                        &ext_id, match_len, 0);
375                 }
376         }
377
378         /* The above misses elements that are included in subie but not in the
379          * parent, so do a pass over subie and append those.
380          * Skip the non-tx BSSID caps and non-inheritance element.
381          */
382         for_each_element(sub, subie, subie_len) {
383                 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
384                         continue;
385
386                 if (sub->id == WLAN_EID_FRAGMENT)
387                         continue;
388
389                 if (sub->id == WLAN_EID_EXTENSION) {
390                         if (sub->datalen < 1)
391                                 continue;
392
393                         id = WLAN_EID_EXTENSION;
394                         ext_id = sub->data[0];
395                         match_len = 1;
396
397                         if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
398                                 continue;
399                 } else {
400                         id = sub->id;
401                         match_len = 0;
402                 }
403
404                 /* Processed if one was included in the parent */
405                 if (cfg80211_find_elem_match(id, ie, ielen,
406                                              &ext_id, match_len, 0))
407                         continue;
408
409                 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
410                                                    &pos, new_ie, new_ie_len))
411                         return 0;
412         }
413
414         return pos - new_ie;
415 }
416
417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
418                    const u8 *ssid, size_t ssid_len)
419 {
420         const struct cfg80211_bss_ies *ies;
421         const struct element *ssid_elem;
422
423         if (bssid && !ether_addr_equal(a->bssid, bssid))
424                 return false;
425
426         if (!ssid)
427                 return true;
428
429         ies = rcu_access_pointer(a->ies);
430         if (!ies)
431                 return false;
432         ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
433         if (!ssid_elem)
434                 return false;
435         if (ssid_elem->datalen != ssid_len)
436                 return false;
437         return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
438 }
439
440 static int
441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
442                            struct cfg80211_bss *nontrans_bss)
443 {
444         const struct element *ssid_elem;
445         struct cfg80211_bss *bss = NULL;
446
447         rcu_read_lock();
448         ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
449         if (!ssid_elem) {
450                 rcu_read_unlock();
451                 return -EINVAL;
452         }
453
454         /* check if nontrans_bss is in the list */
455         list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456                 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
457                            ssid_elem->datalen)) {
458                         rcu_read_unlock();
459                         return 0;
460                 }
461         }
462
463         rcu_read_unlock();
464
465         /*
466          * This is a bit weird - it's not on the list, but already on another
467          * one! The only way that could happen is if there's some BSSID/SSID
468          * shared by multiple APs in their multi-BSSID profiles, potentially
469          * with hidden SSID mixed in ... ignore it.
470          */
471         if (!list_empty(&nontrans_bss->nontrans_list))
472                 return -EINVAL;
473
474         /* add to the list */
475         list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
476         return 0;
477 }
478
479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
480                                   unsigned long expire_time)
481 {
482         struct cfg80211_internal_bss *bss, *tmp;
483         bool expired = false;
484
485         lockdep_assert_held(&rdev->bss_lock);
486
487         list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
488                 if (atomic_read(&bss->hold))
489                         continue;
490                 if (!time_after(expire_time, bss->ts))
491                         continue;
492
493                 if (__cfg80211_unlink_bss(rdev, bss))
494                         expired = true;
495         }
496
497         if (expired)
498                 rdev->bss_generation++;
499 }
500
501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
502 {
503         struct cfg80211_internal_bss *bss, *oldest = NULL;
504         bool ret;
505
506         lockdep_assert_held(&rdev->bss_lock);
507
508         list_for_each_entry(bss, &rdev->bss_list, list) {
509                 if (atomic_read(&bss->hold))
510                         continue;
511
512                 if (!list_empty(&bss->hidden_list) &&
513                     !bss->pub.hidden_beacon_bss)
514                         continue;
515
516                 if (oldest && time_before(oldest->ts, bss->ts))
517                         continue;
518                 oldest = bss;
519         }
520
521         if (WARN_ON(!oldest))
522                 return false;
523
524         /*
525          * The callers make sure to increase rdev->bss_generation if anything
526          * gets removed (and a new entry added), so there's no need to also do
527          * it here.
528          */
529
530         ret = __cfg80211_unlink_bss(rdev, oldest);
531         WARN_ON(!ret);
532         return ret;
533 }
534
535 static u8 cfg80211_parse_bss_param(u8 data,
536                                    struct cfg80211_colocated_ap *coloc_ap)
537 {
538         coloc_ap->oct_recommended =
539                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
540         coloc_ap->same_ssid =
541                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
542         coloc_ap->multi_bss =
543                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
544         coloc_ap->transmitted_bssid =
545                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
546         coloc_ap->unsolicited_probe =
547                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
548         coloc_ap->colocated_ess =
549                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
550
551         return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
552 }
553
554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
555                                     const struct element **elem, u32 *s_ssid)
556 {
557
558         *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
559         if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
560                 return -EINVAL;
561
562         *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
563         return 0;
564 }
565
566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
567 {
568         struct cfg80211_colocated_ap *ap, *tmp_ap;
569
570         list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
571                 list_del(&ap->list);
572                 kfree(ap);
573         }
574 }
575
576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
577                                   const u8 *pos, u8 length,
578                                   const struct element *ssid_elem,
579                                   u32 s_ssid_tmp)
580 {
581         u8 bss_params;
582
583         entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
584
585         /* The length is already verified by the caller to contain bss_params */
586         if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
587                 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
588
589                 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
590                 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
591                 entry->short_ssid_valid = true;
592
593                 bss_params = tbtt_info->bss_params;
594
595                 /* Ignore disabled links */
596                 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
597                         if (le16_get_bits(tbtt_info->mld_params.params,
598                                           IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
599                                 return -EINVAL;
600                 }
601
602                 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
603                                           psd_20))
604                         entry->psd_20 = tbtt_info->psd_20;
605         } else {
606                 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
607
608                 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
609
610                 bss_params = tbtt_info->bss_params;
611
612                 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
613                                           psd_20))
614                         entry->psd_20 = tbtt_info->psd_20;
615         }
616
617         /* ignore entries with invalid BSSID */
618         if (!is_valid_ether_addr(entry->bssid))
619                 return -EINVAL;
620
621         /* skip non colocated APs */
622         if (!cfg80211_parse_bss_param(bss_params, entry))
623                 return -EINVAL;
624
625         /* no information about the short ssid. Consider the entry valid
626          * for now. It would later be dropped in case there are explicit
627          * SSIDs that need to be matched
628          */
629         if (!entry->same_ssid && !entry->short_ssid_valid)
630                 return 0;
631
632         if (entry->same_ssid) {
633                 entry->short_ssid = s_ssid_tmp;
634                 entry->short_ssid_valid = true;
635
636                 /*
637                  * This is safe because we validate datalen in
638                  * cfg80211_parse_colocated_ap(), before calling this
639                  * function.
640                  */
641                 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
642                 entry->ssid_len = ssid_elem->datalen;
643         }
644
645         return 0;
646 }
647
648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
649                                        struct list_head *list)
650 {
651         struct ieee80211_neighbor_ap_info *ap_info;
652         const struct element *elem, *ssid_elem;
653         const u8 *pos, *end;
654         u32 s_ssid_tmp;
655         int n_coloc = 0, ret;
656         LIST_HEAD(ap_list);
657
658         ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
659         if (ret)
660                 return 0;
661
662         for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
663                             ies->data, ies->len) {
664                 pos = elem->data;
665                 end = elem->data + elem->datalen;
666
667                 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
668                 while (pos + sizeof(*ap_info) <= end) {
669                         enum nl80211_band band;
670                         int freq;
671                         u8 length, i, count;
672
673                         ap_info = (void *)pos;
674                         count = u8_get_bits(ap_info->tbtt_info_hdr,
675                                             IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
676                         length = ap_info->tbtt_info_len;
677
678                         pos += sizeof(*ap_info);
679
680                         if (!ieee80211_operating_class_to_band(ap_info->op_class,
681                                                                &band))
682                                 break;
683
684                         freq = ieee80211_channel_to_frequency(ap_info->channel,
685                                                               band);
686
687                         if (end - pos < count * length)
688                                 break;
689
690                         if (u8_get_bits(ap_info->tbtt_info_hdr,
691                                         IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
692                             IEEE80211_TBTT_INFO_TYPE_TBTT) {
693                                 pos += count * length;
694                                 continue;
695                         }
696
697                         /* TBTT info must include bss param + BSSID +
698                          * (short SSID or same_ssid bit to be set).
699                          * ignore other options, and move to the
700                          * next AP info
701                          */
702                         if (band != NL80211_BAND_6GHZ ||
703                             !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
704                                                     bss_params) ||
705                               length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
706                               length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
707                                                     bss_params))) {
708                                 pos += count * length;
709                                 continue;
710                         }
711
712                         for (i = 0; i < count; i++) {
713                                 struct cfg80211_colocated_ap *entry;
714
715                                 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
716                                                 GFP_ATOMIC);
717
718                                 if (!entry)
719                                         goto error;
720
721                                 entry->center_freq = freq;
722
723                                 if (!cfg80211_parse_ap_info(entry, pos, length,
724                                                             ssid_elem,
725                                                             s_ssid_tmp)) {
726                                         n_coloc++;
727                                         list_add_tail(&entry->list, &ap_list);
728                                 } else {
729                                         kfree(entry);
730                                 }
731
732                                 pos += length;
733                         }
734                 }
735
736 error:
737                 if (pos != end) {
738                         cfg80211_free_coloc_ap_list(&ap_list);
739                         return 0;
740                 }
741         }
742
743         list_splice_tail(&ap_list, list);
744         return n_coloc;
745 }
746
747 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
748                                         struct ieee80211_channel *chan,
749                                         bool add_to_6ghz)
750 {
751         int i;
752         u32 n_channels = request->n_channels;
753         struct cfg80211_scan_6ghz_params *params =
754                 &request->scan_6ghz_params[request->n_6ghz_params];
755
756         for (i = 0; i < n_channels; i++) {
757                 if (request->channels[i] == chan) {
758                         if (add_to_6ghz)
759                                 params->channel_idx = i;
760                         return;
761                 }
762         }
763
764         request->channels[n_channels] = chan;
765         if (add_to_6ghz)
766                 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
767                         n_channels;
768
769         request->n_channels++;
770 }
771
772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
773                                      struct cfg80211_scan_request *request)
774 {
775         int i;
776         u32 s_ssid;
777
778         for (i = 0; i < request->n_ssids; i++) {
779                 /* wildcard ssid in the scan request */
780                 if (!request->ssids[i].ssid_len) {
781                         if (ap->multi_bss && !ap->transmitted_bssid)
782                                 continue;
783
784                         return true;
785                 }
786
787                 if (ap->ssid_len &&
788                     ap->ssid_len == request->ssids[i].ssid_len) {
789                         if (!memcmp(request->ssids[i].ssid, ap->ssid,
790                                     ap->ssid_len))
791                                 return true;
792                 } else if (ap->short_ssid_valid) {
793                         s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
794                                            request->ssids[i].ssid_len);
795
796                         if (ap->short_ssid == s_ssid)
797                                 return true;
798                 }
799         }
800
801         return false;
802 }
803
804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
805 {
806         u8 i;
807         struct cfg80211_colocated_ap *ap;
808         int n_channels, count = 0, err;
809         struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
810         LIST_HEAD(coloc_ap_list);
811         bool need_scan_psc = true;
812         const struct ieee80211_sband_iftype_data *iftd;
813
814         rdev_req->scan_6ghz = true;
815
816         if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
817                 return -EOPNOTSUPP;
818
819         iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
820                                                rdev_req->wdev->iftype);
821         if (!iftd || !iftd->he_cap.has_he)
822                 return -EOPNOTSUPP;
823
824         n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
825
826         if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
827                 struct cfg80211_internal_bss *intbss;
828
829                 spin_lock_bh(&rdev->bss_lock);
830                 list_for_each_entry(intbss, &rdev->bss_list, list) {
831                         struct cfg80211_bss *res = &intbss->pub;
832                         const struct cfg80211_bss_ies *ies;
833                         const struct element *ssid_elem;
834                         struct cfg80211_colocated_ap *entry;
835                         u32 s_ssid_tmp;
836                         int ret;
837
838                         ies = rcu_access_pointer(res->ies);
839                         count += cfg80211_parse_colocated_ap(ies,
840                                                              &coloc_ap_list);
841
842                         /* In case the scan request specified a specific BSSID
843                          * and the BSS is found and operating on 6GHz band then
844                          * add this AP to the collocated APs list.
845                          * This is relevant for ML probe requests when the lower
846                          * band APs have not been discovered.
847                          */
848                         if (is_broadcast_ether_addr(rdev_req->bssid) ||
849                             !ether_addr_equal(rdev_req->bssid, res->bssid) ||
850                             res->channel->band != NL80211_BAND_6GHZ)
851                                 continue;
852
853                         ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
854                                                        &s_ssid_tmp);
855                         if (ret)
856                                 continue;
857
858                         entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
859                                         GFP_ATOMIC);
860
861                         if (!entry)
862                                 continue;
863
864                         memcpy(entry->bssid, res->bssid, ETH_ALEN);
865                         entry->short_ssid = s_ssid_tmp;
866                         memcpy(entry->ssid, ssid_elem->data,
867                                ssid_elem->datalen);
868                         entry->ssid_len = ssid_elem->datalen;
869                         entry->short_ssid_valid = true;
870                         entry->center_freq = res->channel->center_freq;
871
872                         list_add_tail(&entry->list, &coloc_ap_list);
873                         count++;
874                 }
875                 spin_unlock_bh(&rdev->bss_lock);
876         }
877
878         request = kzalloc(struct_size(request, channels, n_channels) +
879                           sizeof(*request->scan_6ghz_params) * count +
880                           sizeof(*request->ssids) * rdev_req->n_ssids,
881                           GFP_KERNEL);
882         if (!request) {
883                 cfg80211_free_coloc_ap_list(&coloc_ap_list);
884                 return -ENOMEM;
885         }
886
887         *request = *rdev_req;
888         request->n_channels = 0;
889         request->scan_6ghz_params =
890                 (void *)&request->channels[n_channels];
891
892         /*
893          * PSC channels should not be scanned in case of direct scan with 1 SSID
894          * and at least one of the reported co-located APs with same SSID
895          * indicating that all APs in the same ESS are co-located
896          */
897         if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
898                 list_for_each_entry(ap, &coloc_ap_list, list) {
899                         if (ap->colocated_ess &&
900                             cfg80211_find_ssid_match(ap, request)) {
901                                 need_scan_psc = false;
902                                 break;
903                         }
904                 }
905         }
906
907         /*
908          * add to the scan request the channels that need to be scanned
909          * regardless of the collocated APs (PSC channels or all channels
910          * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
911          */
912         for (i = 0; i < rdev_req->n_channels; i++) {
913                 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
914                     ((need_scan_psc &&
915                       cfg80211_channel_is_psc(rdev_req->channels[i])) ||
916                      !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
917                         cfg80211_scan_req_add_chan(request,
918                                                    rdev_req->channels[i],
919                                                    false);
920                 }
921         }
922
923         if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
924                 goto skip;
925
926         list_for_each_entry(ap, &coloc_ap_list, list) {
927                 bool found = false;
928                 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
929                         &request->scan_6ghz_params[request->n_6ghz_params];
930                 struct ieee80211_channel *chan =
931                         ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
932
933                 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
934                         continue;
935
936                 for (i = 0; i < rdev_req->n_channels; i++) {
937                         if (rdev_req->channels[i] == chan)
938                                 found = true;
939                 }
940
941                 if (!found)
942                         continue;
943
944                 if (request->n_ssids > 0 &&
945                     !cfg80211_find_ssid_match(ap, request))
946                         continue;
947
948                 if (!is_broadcast_ether_addr(request->bssid) &&
949                     !ether_addr_equal(request->bssid, ap->bssid))
950                         continue;
951
952                 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
953                         continue;
954
955                 cfg80211_scan_req_add_chan(request, chan, true);
956                 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
957                 scan_6ghz_params->short_ssid = ap->short_ssid;
958                 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
959                 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
960                 scan_6ghz_params->psd_20 = ap->psd_20;
961
962                 /*
963                  * If a PSC channel is added to the scan and 'need_scan_psc' is
964                  * set to false, then all the APs that the scan logic is
965                  * interested with on the channel are collocated and thus there
966                  * is no need to perform the initial PSC channel listen.
967                  */
968                 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
969                         scan_6ghz_params->psc_no_listen = true;
970
971                 request->n_6ghz_params++;
972         }
973
974 skip:
975         cfg80211_free_coloc_ap_list(&coloc_ap_list);
976
977         if (request->n_channels) {
978                 struct cfg80211_scan_request *old = rdev->int_scan_req;
979                 rdev->int_scan_req = request;
980
981                 /*
982                  * Add the ssids from the parent scan request to the new scan
983                  * request, so the driver would be able to use them in its
984                  * probe requests to discover hidden APs on PSC channels.
985                  */
986                 request->ssids = (void *)&request->channels[request->n_channels];
987                 request->n_ssids = rdev_req->n_ssids;
988                 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
989                        request->n_ssids);
990
991                 /*
992                  * If this scan follows a previous scan, save the scan start
993                  * info from the first part of the scan
994                  */
995                 if (old)
996                         rdev->int_scan_req->info = old->info;
997
998                 err = rdev_scan(rdev, request);
999                 if (err) {
1000                         rdev->int_scan_req = old;
1001                         kfree(request);
1002                 } else {
1003                         kfree(old);
1004                 }
1005
1006                 return err;
1007         }
1008
1009         kfree(request);
1010         return -EINVAL;
1011 }
1012
1013 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1014 {
1015         struct cfg80211_scan_request *request;
1016         struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1017         u32 n_channels = 0, idx, i;
1018
1019         if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1020                 return rdev_scan(rdev, rdev_req);
1021
1022         for (i = 0; i < rdev_req->n_channels; i++) {
1023                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1024                         n_channels++;
1025         }
1026
1027         if (!n_channels)
1028                 return cfg80211_scan_6ghz(rdev);
1029
1030         request = kzalloc(struct_size(request, channels, n_channels),
1031                           GFP_KERNEL);
1032         if (!request)
1033                 return -ENOMEM;
1034
1035         *request = *rdev_req;
1036         request->n_channels = n_channels;
1037
1038         for (i = idx = 0; i < rdev_req->n_channels; i++) {
1039                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1040                         request->channels[idx++] = rdev_req->channels[i];
1041         }
1042
1043         rdev_req->scan_6ghz = false;
1044         rdev->int_scan_req = request;
1045         return rdev_scan(rdev, request);
1046 }
1047
1048 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1049                            bool send_message)
1050 {
1051         struct cfg80211_scan_request *request, *rdev_req;
1052         struct wireless_dev *wdev;
1053         struct sk_buff *msg;
1054 #ifdef CONFIG_CFG80211_WEXT
1055         union iwreq_data wrqu;
1056 #endif
1057
1058         lockdep_assert_held(&rdev->wiphy.mtx);
1059
1060         if (rdev->scan_msg) {
1061                 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1062                 rdev->scan_msg = NULL;
1063                 return;
1064         }
1065
1066         rdev_req = rdev->scan_req;
1067         if (!rdev_req)
1068                 return;
1069
1070         wdev = rdev_req->wdev;
1071         request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1072
1073         if (wdev_running(wdev) &&
1074             (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1075             !rdev_req->scan_6ghz && !request->info.aborted &&
1076             !cfg80211_scan_6ghz(rdev))
1077                 return;
1078
1079         /*
1080          * This must be before sending the other events!
1081          * Otherwise, wpa_supplicant gets completely confused with
1082          * wext events.
1083          */
1084         if (wdev->netdev)
1085                 cfg80211_sme_scan_done(wdev->netdev);
1086
1087         if (!request->info.aborted &&
1088             request->flags & NL80211_SCAN_FLAG_FLUSH) {
1089                 /* flush entries from previous scans */
1090                 spin_lock_bh(&rdev->bss_lock);
1091                 __cfg80211_bss_expire(rdev, request->scan_start);
1092                 spin_unlock_bh(&rdev->bss_lock);
1093         }
1094
1095         msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1096
1097 #ifdef CONFIG_CFG80211_WEXT
1098         if (wdev->netdev && !request->info.aborted) {
1099                 memset(&wrqu, 0, sizeof(wrqu));
1100
1101                 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1102         }
1103 #endif
1104
1105         dev_put(wdev->netdev);
1106
1107         kfree(rdev->int_scan_req);
1108         rdev->int_scan_req = NULL;
1109
1110         kfree(rdev->scan_req);
1111         rdev->scan_req = NULL;
1112
1113         if (!send_message)
1114                 rdev->scan_msg = msg;
1115         else
1116                 nl80211_send_scan_msg(rdev, msg);
1117 }
1118
1119 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1120 {
1121         ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1122 }
1123
1124 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1125                         struct cfg80211_scan_info *info)
1126 {
1127         struct cfg80211_scan_info old_info = request->info;
1128
1129         trace_cfg80211_scan_done(request, info);
1130         WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1131                 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1132
1133         request->info = *info;
1134
1135         /*
1136          * In case the scan is split, the scan_start_tsf and tsf_bssid should
1137          * be of the first part. In such a case old_info.scan_start_tsf should
1138          * be non zero.
1139          */
1140         if (request->scan_6ghz && old_info.scan_start_tsf) {
1141                 request->info.scan_start_tsf = old_info.scan_start_tsf;
1142                 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1143                        sizeof(request->info.tsf_bssid));
1144         }
1145
1146         request->notified = true;
1147         wiphy_work_queue(request->wiphy,
1148                          &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1149 }
1150 EXPORT_SYMBOL(cfg80211_scan_done);
1151
1152 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1153                                  struct cfg80211_sched_scan_request *req)
1154 {
1155         lockdep_assert_held(&rdev->wiphy.mtx);
1156
1157         list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1158 }
1159
1160 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1161                                         struct cfg80211_sched_scan_request *req)
1162 {
1163         lockdep_assert_held(&rdev->wiphy.mtx);
1164
1165         list_del_rcu(&req->list);
1166         kfree_rcu(req, rcu_head);
1167 }
1168
1169 static struct cfg80211_sched_scan_request *
1170 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1171 {
1172         struct cfg80211_sched_scan_request *pos;
1173
1174         list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1175                                 lockdep_is_held(&rdev->wiphy.mtx)) {
1176                 if (pos->reqid == reqid)
1177                         return pos;
1178         }
1179         return NULL;
1180 }
1181
1182 /*
1183  * Determines if a scheduled scan request can be handled. When a legacy
1184  * scheduled scan is running no other scheduled scan is allowed regardless
1185  * whether the request is for legacy or multi-support scan. When a multi-support
1186  * scheduled scan is running a request for legacy scan is not allowed. In this
1187  * case a request for multi-support scan can be handled if resources are
1188  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1189  */
1190 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1191                                      bool want_multi)
1192 {
1193         struct cfg80211_sched_scan_request *pos;
1194         int i = 0;
1195
1196         list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1197                 /* request id zero means legacy in progress */
1198                 if (!i && !pos->reqid)
1199                         return -EINPROGRESS;
1200                 i++;
1201         }
1202
1203         if (i) {
1204                 /* no legacy allowed when multi request(s) are active */
1205                 if (!want_multi)
1206                         return -EINPROGRESS;
1207
1208                 /* resource limit reached */
1209                 if (i == rdev->wiphy.max_sched_scan_reqs)
1210                         return -ENOSPC;
1211         }
1212         return 0;
1213 }
1214
1215 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1216 {
1217         struct cfg80211_registered_device *rdev;
1218         struct cfg80211_sched_scan_request *req, *tmp;
1219
1220         rdev = container_of(work, struct cfg80211_registered_device,
1221                            sched_scan_res_wk);
1222
1223         wiphy_lock(&rdev->wiphy);
1224         list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1225                 if (req->report_results) {
1226                         req->report_results = false;
1227                         if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1228                                 /* flush entries from previous scans */
1229                                 spin_lock_bh(&rdev->bss_lock);
1230                                 __cfg80211_bss_expire(rdev, req->scan_start);
1231                                 spin_unlock_bh(&rdev->bss_lock);
1232                                 req->scan_start = jiffies;
1233                         }
1234                         nl80211_send_sched_scan(req,
1235                                                 NL80211_CMD_SCHED_SCAN_RESULTS);
1236                 }
1237         }
1238         wiphy_unlock(&rdev->wiphy);
1239 }
1240
1241 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1242 {
1243         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1244         struct cfg80211_sched_scan_request *request;
1245
1246         trace_cfg80211_sched_scan_results(wiphy, reqid);
1247         /* ignore if we're not scanning */
1248
1249         rcu_read_lock();
1250         request = cfg80211_find_sched_scan_req(rdev, reqid);
1251         if (request) {
1252                 request->report_results = true;
1253                 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1254         }
1255         rcu_read_unlock();
1256 }
1257 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1258
1259 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1260 {
1261         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1262
1263         lockdep_assert_held(&wiphy->mtx);
1264
1265         trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1266
1267         __cfg80211_stop_sched_scan(rdev, reqid, true);
1268 }
1269 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1270
1271 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1272 {
1273         wiphy_lock(wiphy);
1274         cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1275         wiphy_unlock(wiphy);
1276 }
1277 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1278
1279 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1280                                  struct cfg80211_sched_scan_request *req,
1281                                  bool driver_initiated)
1282 {
1283         lockdep_assert_held(&rdev->wiphy.mtx);
1284
1285         if (!driver_initiated) {
1286                 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1287                 if (err)
1288                         return err;
1289         }
1290
1291         nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1292
1293         cfg80211_del_sched_scan_req(rdev, req);
1294
1295         return 0;
1296 }
1297
1298 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1299                                u64 reqid, bool driver_initiated)
1300 {
1301         struct cfg80211_sched_scan_request *sched_scan_req;
1302
1303         lockdep_assert_held(&rdev->wiphy.mtx);
1304
1305         sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1306         if (!sched_scan_req)
1307                 return -ENOENT;
1308
1309         return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1310                                             driver_initiated);
1311 }
1312
1313 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1314                       unsigned long age_secs)
1315 {
1316         struct cfg80211_internal_bss *bss;
1317         unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1318
1319         spin_lock_bh(&rdev->bss_lock);
1320         list_for_each_entry(bss, &rdev->bss_list, list)
1321                 bss->ts -= age_jiffies;
1322         spin_unlock_bh(&rdev->bss_lock);
1323 }
1324
1325 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1326 {
1327         __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1328 }
1329
1330 void cfg80211_bss_flush(struct wiphy *wiphy)
1331 {
1332         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1333
1334         spin_lock_bh(&rdev->bss_lock);
1335         __cfg80211_bss_expire(rdev, jiffies);
1336         spin_unlock_bh(&rdev->bss_lock);
1337 }
1338 EXPORT_SYMBOL(cfg80211_bss_flush);
1339
1340 const struct element *
1341 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1342                          const u8 *match, unsigned int match_len,
1343                          unsigned int match_offset)
1344 {
1345         const struct element *elem;
1346
1347         for_each_element_id(elem, eid, ies, len) {
1348                 if (elem->datalen >= match_offset + match_len &&
1349                     !memcmp(elem->data + match_offset, match, match_len))
1350                         return elem;
1351         }
1352
1353         return NULL;
1354 }
1355 EXPORT_SYMBOL(cfg80211_find_elem_match);
1356
1357 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1358                                                 const u8 *ies,
1359                                                 unsigned int len)
1360 {
1361         const struct element *elem;
1362         u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1363         int match_len = (oui_type < 0) ? 3 : sizeof(match);
1364
1365         if (WARN_ON(oui_type > 0xff))
1366                 return NULL;
1367
1368         elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1369                                         match, match_len, 0);
1370
1371         if (!elem || elem->datalen < 4)
1372                 return NULL;
1373
1374         return elem;
1375 }
1376 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1377
1378 /**
1379  * enum bss_compare_mode - BSS compare mode
1380  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1381  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1382  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1383  */
1384 enum bss_compare_mode {
1385         BSS_CMP_REGULAR,
1386         BSS_CMP_HIDE_ZLEN,
1387         BSS_CMP_HIDE_NUL,
1388 };
1389
1390 static int cmp_bss(struct cfg80211_bss *a,
1391                    struct cfg80211_bss *b,
1392                    enum bss_compare_mode mode)
1393 {
1394         const struct cfg80211_bss_ies *a_ies, *b_ies;
1395         const u8 *ie1 = NULL;
1396         const u8 *ie2 = NULL;
1397         int i, r;
1398
1399         if (a->channel != b->channel)
1400                 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1401                        (a->channel->center_freq * 1000 + a->channel->freq_offset);
1402
1403         a_ies = rcu_access_pointer(a->ies);
1404         if (!a_ies)
1405                 return -1;
1406         b_ies = rcu_access_pointer(b->ies);
1407         if (!b_ies)
1408                 return 1;
1409
1410         if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1411                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1412                                        a_ies->data, a_ies->len);
1413         if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1414                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1415                                        b_ies->data, b_ies->len);
1416         if (ie1 && ie2) {
1417                 int mesh_id_cmp;
1418
1419                 if (ie1[1] == ie2[1])
1420                         mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1421                 else
1422                         mesh_id_cmp = ie2[1] - ie1[1];
1423
1424                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1425                                        a_ies->data, a_ies->len);
1426                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1427                                        b_ies->data, b_ies->len);
1428                 if (ie1 && ie2) {
1429                         if (mesh_id_cmp)
1430                                 return mesh_id_cmp;
1431                         if (ie1[1] != ie2[1])
1432                                 return ie2[1] - ie1[1];
1433                         return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1434                 }
1435         }
1436
1437         r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1438         if (r)
1439                 return r;
1440
1441         ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1442         ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1443
1444         if (!ie1 && !ie2)
1445                 return 0;
1446
1447         /*
1448          * Note that with "hide_ssid", the function returns a match if
1449          * the already-present BSS ("b") is a hidden SSID beacon for
1450          * the new BSS ("a").
1451          */
1452
1453         /* sort missing IE before (left of) present IE */
1454         if (!ie1)
1455                 return -1;
1456         if (!ie2)
1457                 return 1;
1458
1459         switch (mode) {
1460         case BSS_CMP_HIDE_ZLEN:
1461                 /*
1462                  * In ZLEN mode we assume the BSS entry we're
1463                  * looking for has a zero-length SSID. So if
1464                  * the one we're looking at right now has that,
1465                  * return 0. Otherwise, return the difference
1466                  * in length, but since we're looking for the
1467                  * 0-length it's really equivalent to returning
1468                  * the length of the one we're looking at.
1469                  *
1470                  * No content comparison is needed as we assume
1471                  * the content length is zero.
1472                  */
1473                 return ie2[1];
1474         case BSS_CMP_REGULAR:
1475         default:
1476                 /* sort by length first, then by contents */
1477                 if (ie1[1] != ie2[1])
1478                         return ie2[1] - ie1[1];
1479                 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1480         case BSS_CMP_HIDE_NUL:
1481                 if (ie1[1] != ie2[1])
1482                         return ie2[1] - ie1[1];
1483                 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1484                 for (i = 0; i < ie2[1]; i++)
1485                         if (ie2[i + 2])
1486                                 return -1;
1487                 return 0;
1488         }
1489 }
1490
1491 static bool cfg80211_bss_type_match(u16 capability,
1492                                     enum nl80211_band band,
1493                                     enum ieee80211_bss_type bss_type)
1494 {
1495         bool ret = true;
1496         u16 mask, val;
1497
1498         if (bss_type == IEEE80211_BSS_TYPE_ANY)
1499                 return ret;
1500
1501         if (band == NL80211_BAND_60GHZ) {
1502                 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1503                 switch (bss_type) {
1504                 case IEEE80211_BSS_TYPE_ESS:
1505                         val = WLAN_CAPABILITY_DMG_TYPE_AP;
1506                         break;
1507                 case IEEE80211_BSS_TYPE_PBSS:
1508                         val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1509                         break;
1510                 case IEEE80211_BSS_TYPE_IBSS:
1511                         val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1512                         break;
1513                 default:
1514                         return false;
1515                 }
1516         } else {
1517                 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1518                 switch (bss_type) {
1519                 case IEEE80211_BSS_TYPE_ESS:
1520                         val = WLAN_CAPABILITY_ESS;
1521                         break;
1522                 case IEEE80211_BSS_TYPE_IBSS:
1523                         val = WLAN_CAPABILITY_IBSS;
1524                         break;
1525                 case IEEE80211_BSS_TYPE_MBSS:
1526                         val = 0;
1527                         break;
1528                 default:
1529                         return false;
1530                 }
1531         }
1532
1533         ret = ((capability & mask) == val);
1534         return ret;
1535 }
1536
1537 /* Returned bss is reference counted and must be cleaned up appropriately. */
1538 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1539                                       struct ieee80211_channel *channel,
1540                                       const u8 *bssid,
1541                                       const u8 *ssid, size_t ssid_len,
1542                                       enum ieee80211_bss_type bss_type,
1543                                       enum ieee80211_privacy privacy)
1544 {
1545         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1546         struct cfg80211_internal_bss *bss, *res = NULL;
1547         unsigned long now = jiffies;
1548         int bss_privacy;
1549
1550         trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1551                                privacy);
1552
1553         spin_lock_bh(&rdev->bss_lock);
1554
1555         list_for_each_entry(bss, &rdev->bss_list, list) {
1556                 if (!cfg80211_bss_type_match(bss->pub.capability,
1557                                              bss->pub.channel->band, bss_type))
1558                         continue;
1559
1560                 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1561                 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1562                     (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1563                         continue;
1564                 if (channel && bss->pub.channel != channel)
1565                         continue;
1566                 if (!is_valid_ether_addr(bss->pub.bssid))
1567                         continue;
1568                 /* Don't get expired BSS structs */
1569                 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1570                     !atomic_read(&bss->hold))
1571                         continue;
1572                 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1573                         res = bss;
1574                         bss_ref_get(rdev, res);
1575                         break;
1576                 }
1577         }
1578
1579         spin_unlock_bh(&rdev->bss_lock);
1580         if (!res)
1581                 return NULL;
1582         trace_cfg80211_return_bss(&res->pub);
1583         return &res->pub;
1584 }
1585 EXPORT_SYMBOL(cfg80211_get_bss);
1586
1587 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1588                           struct cfg80211_internal_bss *bss)
1589 {
1590         struct rb_node **p = &rdev->bss_tree.rb_node;
1591         struct rb_node *parent = NULL;
1592         struct cfg80211_internal_bss *tbss;
1593         int cmp;
1594
1595         while (*p) {
1596                 parent = *p;
1597                 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1598
1599                 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1600
1601                 if (WARN_ON(!cmp)) {
1602                         /* will sort of leak this BSS */
1603                         return;
1604                 }
1605
1606                 if (cmp < 0)
1607                         p = &(*p)->rb_left;
1608                 else
1609                         p = &(*p)->rb_right;
1610         }
1611
1612         rb_link_node(&bss->rbn, parent, p);
1613         rb_insert_color(&bss->rbn, &rdev->bss_tree);
1614 }
1615
1616 static struct cfg80211_internal_bss *
1617 rb_find_bss(struct cfg80211_registered_device *rdev,
1618             struct cfg80211_internal_bss *res,
1619             enum bss_compare_mode mode)
1620 {
1621         struct rb_node *n = rdev->bss_tree.rb_node;
1622         struct cfg80211_internal_bss *bss;
1623         int r;
1624
1625         while (n) {
1626                 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1627                 r = cmp_bss(&res->pub, &bss->pub, mode);
1628
1629                 if (r == 0)
1630                         return bss;
1631                 else if (r < 0)
1632                         n = n->rb_left;
1633                 else
1634                         n = n->rb_right;
1635         }
1636
1637         return NULL;
1638 }
1639
1640 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1641                                    struct cfg80211_internal_bss *new)
1642 {
1643         const struct cfg80211_bss_ies *ies;
1644         struct cfg80211_internal_bss *bss;
1645         const u8 *ie;
1646         int i, ssidlen;
1647         u8 fold = 0;
1648         u32 n_entries = 0;
1649
1650         ies = rcu_access_pointer(new->pub.beacon_ies);
1651         if (WARN_ON(!ies))
1652                 return false;
1653
1654         ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1655         if (!ie) {
1656                 /* nothing to do */
1657                 return true;
1658         }
1659
1660         ssidlen = ie[1];
1661         for (i = 0; i < ssidlen; i++)
1662                 fold |= ie[2 + i];
1663
1664         if (fold) {
1665                 /* not a hidden SSID */
1666                 return true;
1667         }
1668
1669         /* This is the bad part ... */
1670
1671         list_for_each_entry(bss, &rdev->bss_list, list) {
1672                 /*
1673                  * we're iterating all the entries anyway, so take the
1674                  * opportunity to validate the list length accounting
1675                  */
1676                 n_entries++;
1677
1678                 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1679                         continue;
1680                 if (bss->pub.channel != new->pub.channel)
1681                         continue;
1682                 if (rcu_access_pointer(bss->pub.beacon_ies))
1683                         continue;
1684                 ies = rcu_access_pointer(bss->pub.ies);
1685                 if (!ies)
1686                         continue;
1687                 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1688                 if (!ie)
1689                         continue;
1690                 if (ssidlen && ie[1] != ssidlen)
1691                         continue;
1692                 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1693                         continue;
1694                 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1695                         list_del(&bss->hidden_list);
1696                 /* combine them */
1697                 list_add(&bss->hidden_list, &new->hidden_list);
1698                 bss->pub.hidden_beacon_bss = &new->pub;
1699                 new->refcount += bss->refcount;
1700                 rcu_assign_pointer(bss->pub.beacon_ies,
1701                                    new->pub.beacon_ies);
1702         }
1703
1704         WARN_ONCE(n_entries != rdev->bss_entries,
1705                   "rdev bss entries[%d]/list[len:%d] corruption\n",
1706                   rdev->bss_entries, n_entries);
1707
1708         return true;
1709 }
1710
1711 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1712                                          const struct cfg80211_bss_ies *new_ies,
1713                                          const struct cfg80211_bss_ies *old_ies)
1714 {
1715         struct cfg80211_internal_bss *bss;
1716
1717         /* Assign beacon IEs to all sub entries */
1718         list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1719                 const struct cfg80211_bss_ies *ies;
1720
1721                 ies = rcu_access_pointer(bss->pub.beacon_ies);
1722                 WARN_ON(ies != old_ies);
1723
1724                 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1725         }
1726 }
1727
1728 static bool
1729 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1730                           struct cfg80211_internal_bss *known,
1731                           struct cfg80211_internal_bss *new,
1732                           bool signal_valid)
1733 {
1734         lockdep_assert_held(&rdev->bss_lock);
1735
1736         /* Update IEs */
1737         if (rcu_access_pointer(new->pub.proberesp_ies)) {
1738                 const struct cfg80211_bss_ies *old;
1739
1740                 old = rcu_access_pointer(known->pub.proberesp_ies);
1741
1742                 rcu_assign_pointer(known->pub.proberesp_ies,
1743                                    new->pub.proberesp_ies);
1744                 /* Override possible earlier Beacon frame IEs */
1745                 rcu_assign_pointer(known->pub.ies,
1746                                    new->pub.proberesp_ies);
1747                 if (old)
1748                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1749         } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1750                 const struct cfg80211_bss_ies *old;
1751
1752                 if (known->pub.hidden_beacon_bss &&
1753                     !list_empty(&known->hidden_list)) {
1754                         const struct cfg80211_bss_ies *f;
1755
1756                         /* The known BSS struct is one of the probe
1757                          * response members of a group, but we're
1758                          * receiving a beacon (beacon_ies in the new
1759                          * bss is used). This can only mean that the
1760                          * AP changed its beacon from not having an
1761                          * SSID to showing it, which is confusing so
1762                          * drop this information.
1763                          */
1764
1765                         f = rcu_access_pointer(new->pub.beacon_ies);
1766                         kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1767                         return false;
1768                 }
1769
1770                 old = rcu_access_pointer(known->pub.beacon_ies);
1771
1772                 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1773
1774                 /* Override IEs if they were from a beacon before */
1775                 if (old == rcu_access_pointer(known->pub.ies))
1776                         rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1777
1778                 cfg80211_update_hidden_bsses(known,
1779                                              rcu_access_pointer(new->pub.beacon_ies),
1780                                              old);
1781
1782                 if (old)
1783                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1784         }
1785
1786         known->pub.beacon_interval = new->pub.beacon_interval;
1787
1788         /* don't update the signal if beacon was heard on
1789          * adjacent channel.
1790          */
1791         if (signal_valid)
1792                 known->pub.signal = new->pub.signal;
1793         known->pub.capability = new->pub.capability;
1794         known->ts = new->ts;
1795         known->ts_boottime = new->ts_boottime;
1796         known->parent_tsf = new->parent_tsf;
1797         known->pub.chains = new->pub.chains;
1798         memcpy(known->pub.chain_signal, new->pub.chain_signal,
1799                IEEE80211_MAX_CHAINS);
1800         ether_addr_copy(known->parent_bssid, new->parent_bssid);
1801         known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1802         known->pub.bssid_index = new->pub.bssid_index;
1803
1804         return true;
1805 }
1806
1807 /* Returned bss is reference counted and must be cleaned up appropriately. */
1808 static struct cfg80211_internal_bss *
1809 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1810                       struct cfg80211_internal_bss *tmp,
1811                       bool signal_valid, unsigned long ts)
1812 {
1813         struct cfg80211_internal_bss *found = NULL;
1814
1815         if (WARN_ON(!tmp->pub.channel))
1816                 return NULL;
1817
1818         tmp->ts = ts;
1819
1820         if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1821                 return NULL;
1822         }
1823
1824         found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1825
1826         if (found) {
1827                 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1828                         return NULL;
1829         } else {
1830                 struct cfg80211_internal_bss *new;
1831                 struct cfg80211_internal_bss *hidden;
1832                 struct cfg80211_bss_ies *ies;
1833
1834                 /*
1835                  * create a copy -- the "res" variable that is passed in
1836                  * is allocated on the stack since it's not needed in the
1837                  * more common case of an update
1838                  */
1839                 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1840                               GFP_ATOMIC);
1841                 if (!new) {
1842                         ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1843                         if (ies)
1844                                 kfree_rcu(ies, rcu_head);
1845                         ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1846                         if (ies)
1847                                 kfree_rcu(ies, rcu_head);
1848                         return NULL;
1849                 }
1850                 memcpy(new, tmp, sizeof(*new));
1851                 new->refcount = 1;
1852                 INIT_LIST_HEAD(&new->hidden_list);
1853                 INIT_LIST_HEAD(&new->pub.nontrans_list);
1854                 /* we'll set this later if it was non-NULL */
1855                 new->pub.transmitted_bss = NULL;
1856
1857                 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1858                         hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1859                         if (!hidden)
1860                                 hidden = rb_find_bss(rdev, tmp,
1861                                                      BSS_CMP_HIDE_NUL);
1862                         if (hidden) {
1863                                 new->pub.hidden_beacon_bss = &hidden->pub;
1864                                 list_add(&new->hidden_list,
1865                                          &hidden->hidden_list);
1866                                 hidden->refcount++;
1867                                 rcu_assign_pointer(new->pub.beacon_ies,
1868                                                    hidden->pub.beacon_ies);
1869                         }
1870                 } else {
1871                         /*
1872                          * Ok so we found a beacon, and don't have an entry. If
1873                          * it's a beacon with hidden SSID, we might be in for an
1874                          * expensive search for any probe responses that should
1875                          * be grouped with this beacon for updates ...
1876                          */
1877                         if (!cfg80211_combine_bsses(rdev, new)) {
1878                                 bss_ref_put(rdev, new);
1879                                 return NULL;
1880                         }
1881                 }
1882
1883                 if (rdev->bss_entries >= bss_entries_limit &&
1884                     !cfg80211_bss_expire_oldest(rdev)) {
1885                         bss_ref_put(rdev, new);
1886                         return NULL;
1887                 }
1888
1889                 /* This must be before the call to bss_ref_get */
1890                 if (tmp->pub.transmitted_bss) {
1891                         new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1892                         bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1893                 }
1894
1895                 list_add_tail(&new->list, &rdev->bss_list);
1896                 rdev->bss_entries++;
1897                 rb_insert_bss(rdev, new);
1898                 found = new;
1899         }
1900
1901         rdev->bss_generation++;
1902         bss_ref_get(rdev, found);
1903
1904         return found;
1905 }
1906
1907 struct cfg80211_internal_bss *
1908 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1909                     struct cfg80211_internal_bss *tmp,
1910                     bool signal_valid, unsigned long ts)
1911 {
1912         struct cfg80211_internal_bss *res;
1913
1914         spin_lock_bh(&rdev->bss_lock);
1915         res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1916         spin_unlock_bh(&rdev->bss_lock);
1917
1918         return res;
1919 }
1920
1921 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1922                                     enum nl80211_band band)
1923 {
1924         const struct element *tmp;
1925
1926         if (band == NL80211_BAND_6GHZ) {
1927                 struct ieee80211_he_operation *he_oper;
1928
1929                 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1930                                              ielen);
1931                 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1932                     tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1933                         const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1934
1935                         he_oper = (void *)&tmp->data[1];
1936
1937                         he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1938                         if (!he_6ghz_oper)
1939                                 return -1;
1940
1941                         return he_6ghz_oper->primary;
1942                 }
1943         } else if (band == NL80211_BAND_S1GHZ) {
1944                 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1945                 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1946                         struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1947
1948                         return s1gop->oper_ch;
1949                 }
1950         } else {
1951                 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1952                 if (tmp && tmp->datalen == 1)
1953                         return tmp->data[0];
1954
1955                 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1956                 if (tmp &&
1957                     tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1958                         struct ieee80211_ht_operation *htop = (void *)tmp->data;
1959
1960                         return htop->primary_chan;
1961                 }
1962         }
1963
1964         return -1;
1965 }
1966 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1967
1968 /*
1969  * Update RX channel information based on the available frame payload
1970  * information. This is mainly for the 2.4 GHz band where frames can be received
1971  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1972  * element to indicate the current (transmitting) channel, but this might also
1973  * be needed on other bands if RX frequency does not match with the actual
1974  * operating channel of a BSS, or if the AP reports a different primary channel.
1975  */
1976 static struct ieee80211_channel *
1977 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1978                          struct ieee80211_channel *channel)
1979 {
1980         u32 freq;
1981         int channel_number;
1982         struct ieee80211_channel *alt_channel;
1983
1984         channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1985                                                          channel->band);
1986
1987         if (channel_number < 0) {
1988                 /* No channel information in frame payload */
1989                 return channel;
1990         }
1991
1992         freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1993
1994         /*
1995          * Frame info (beacon/prob res) is the same as received channel,
1996          * no need for further processing.
1997          */
1998         if (freq == ieee80211_channel_to_khz(channel))
1999                 return channel;
2000
2001         alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2002         if (!alt_channel) {
2003                 if (channel->band == NL80211_BAND_2GHZ ||
2004                     channel->band == NL80211_BAND_6GHZ) {
2005                         /*
2006                          * Better not allow unexpected channels when that could
2007                          * be going beyond the 1-11 range (e.g., discovering
2008                          * BSS on channel 12 when radio is configured for
2009                          * channel 11) or beyond the 6 GHz channel range.
2010                          */
2011                         return NULL;
2012                 }
2013
2014                 /* No match for the payload channel number - ignore it */
2015                 return channel;
2016         }
2017
2018         /*
2019          * Use the channel determined through the payload channel number
2020          * instead of the RX channel reported by the driver.
2021          */
2022         if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2023                 return NULL;
2024         return alt_channel;
2025 }
2026
2027 struct cfg80211_inform_single_bss_data {
2028         struct cfg80211_inform_bss *drv_data;
2029         enum cfg80211_bss_frame_type ftype;
2030         struct ieee80211_channel *channel;
2031         u8 bssid[ETH_ALEN];
2032         u64 tsf;
2033         u16 capability;
2034         u16 beacon_interval;
2035         const u8 *ie;
2036         size_t ielen;
2037
2038         enum {
2039                 BSS_SOURCE_DIRECT = 0,
2040                 BSS_SOURCE_MBSSID,
2041                 BSS_SOURCE_STA_PROFILE,
2042         } bss_source;
2043         /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2044         struct cfg80211_bss *source_bss;
2045         u8 max_bssid_indicator;
2046         u8 bssid_index;
2047 };
2048
2049 /* Returned bss is reference counted and must be cleaned up appropriately. */
2050 static struct cfg80211_bss *
2051 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2052                                 struct cfg80211_inform_single_bss_data *data,
2053                                 gfp_t gfp)
2054 {
2055         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2056         struct cfg80211_inform_bss *drv_data = data->drv_data;
2057         struct cfg80211_bss_ies *ies;
2058         struct ieee80211_channel *channel;
2059         struct cfg80211_internal_bss tmp = {}, *res;
2060         int bss_type;
2061         bool signal_valid;
2062         unsigned long ts;
2063
2064         if (WARN_ON(!wiphy))
2065                 return NULL;
2066
2067         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2068                     (drv_data->signal < 0 || drv_data->signal > 100)))
2069                 return NULL;
2070
2071         if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2072                 return NULL;
2073
2074         channel = data->channel;
2075         if (!channel)
2076                 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2077                                                    drv_data->chan);
2078         if (!channel)
2079                 return NULL;
2080
2081         memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2082         tmp.pub.channel = channel;
2083         if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2084                 tmp.pub.signal = drv_data->signal;
2085         else
2086                 tmp.pub.signal = 0;
2087         tmp.pub.beacon_interval = data->beacon_interval;
2088         tmp.pub.capability = data->capability;
2089         tmp.ts_boottime = drv_data->boottime_ns;
2090         tmp.parent_tsf = drv_data->parent_tsf;
2091         ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2092
2093         if (data->bss_source != BSS_SOURCE_DIRECT) {
2094                 tmp.pub.transmitted_bss = data->source_bss;
2095                 ts = bss_from_pub(data->source_bss)->ts;
2096                 tmp.pub.bssid_index = data->bssid_index;
2097                 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2098         } else {
2099                 ts = jiffies;
2100
2101                 if (channel->band == NL80211_BAND_60GHZ) {
2102                         bss_type = data->capability &
2103                                    WLAN_CAPABILITY_DMG_TYPE_MASK;
2104                         if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2105                             bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2106                                 regulatory_hint_found_beacon(wiphy, channel,
2107                                                              gfp);
2108                 } else {
2109                         if (data->capability & WLAN_CAPABILITY_ESS)
2110                                 regulatory_hint_found_beacon(wiphy, channel,
2111                                                              gfp);
2112                 }
2113         }
2114
2115         /*
2116          * If we do not know here whether the IEs are from a Beacon or Probe
2117          * Response frame, we need to pick one of the options and only use it
2118          * with the driver that does not provide the full Beacon/Probe Response
2119          * frame. Use Beacon frame pointer to avoid indicating that this should
2120          * override the IEs pointer should we have received an earlier
2121          * indication of Probe Response data.
2122          */
2123         ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2124         if (!ies)
2125                 return NULL;
2126         ies->len = data->ielen;
2127         ies->tsf = data->tsf;
2128         ies->from_beacon = false;
2129         memcpy(ies->data, data->ie, data->ielen);
2130
2131         switch (data->ftype) {
2132         case CFG80211_BSS_FTYPE_BEACON:
2133                 ies->from_beacon = true;
2134                 fallthrough;
2135         case CFG80211_BSS_FTYPE_UNKNOWN:
2136                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2137                 break;
2138         case CFG80211_BSS_FTYPE_PRESP:
2139                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2140                 break;
2141         }
2142         rcu_assign_pointer(tmp.pub.ies, ies);
2143
2144         signal_valid = drv_data->chan == channel;
2145         spin_lock_bh(&rdev->bss_lock);
2146         res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2147         if (!res)
2148                 goto drop;
2149
2150         rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2151
2152         if (data->bss_source == BSS_SOURCE_MBSSID) {
2153                 /* this is a nontransmitting bss, we need to add it to
2154                  * transmitting bss' list if it is not there
2155                  */
2156                 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2157                         if (__cfg80211_unlink_bss(rdev, res)) {
2158                                 rdev->bss_generation++;
2159                                 res = NULL;
2160                         }
2161                 }
2162
2163                 if (!res)
2164                         goto drop;
2165         }
2166         spin_unlock_bh(&rdev->bss_lock);
2167
2168         trace_cfg80211_return_bss(&res->pub);
2169         /* __cfg80211_bss_update gives us a referenced result */
2170         return &res->pub;
2171
2172 drop:
2173         spin_unlock_bh(&rdev->bss_lock);
2174         return NULL;
2175 }
2176
2177 static const struct element
2178 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2179                                    const struct element *mbssid_elem,
2180                                    const struct element *sub_elem)
2181 {
2182         const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2183         const struct element *next_mbssid;
2184         const struct element *next_sub;
2185
2186         next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2187                                          mbssid_end,
2188                                          ielen - (mbssid_end - ie));
2189
2190         /*
2191          * If it is not the last subelement in current MBSSID IE or there isn't
2192          * a next MBSSID IE - profile is complete.
2193         */
2194         if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2195             !next_mbssid)
2196                 return NULL;
2197
2198         /* For any length error, just return NULL */
2199
2200         if (next_mbssid->datalen < 4)
2201                 return NULL;
2202
2203         next_sub = (void *)&next_mbssid->data[1];
2204
2205         if (next_mbssid->data + next_mbssid->datalen <
2206             next_sub->data + next_sub->datalen)
2207                 return NULL;
2208
2209         if (next_sub->id != 0 || next_sub->datalen < 2)
2210                 return NULL;
2211
2212         /*
2213          * Check if the first element in the next sub element is a start
2214          * of a new profile
2215          */
2216         return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2217                NULL : next_mbssid;
2218 }
2219
2220 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2221                               const struct element *mbssid_elem,
2222                               const struct element *sub_elem,
2223                               u8 *merged_ie, size_t max_copy_len)
2224 {
2225         size_t copied_len = sub_elem->datalen;
2226         const struct element *next_mbssid;
2227
2228         if (sub_elem->datalen > max_copy_len)
2229                 return 0;
2230
2231         memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2232
2233         while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2234                                                                 mbssid_elem,
2235                                                                 sub_elem))) {
2236                 const struct element *next_sub = (void *)&next_mbssid->data[1];
2237
2238                 if (copied_len + next_sub->datalen > max_copy_len)
2239                         break;
2240                 memcpy(merged_ie + copied_len, next_sub->data,
2241                        next_sub->datalen);
2242                 copied_len += next_sub->datalen;
2243         }
2244
2245         return copied_len;
2246 }
2247 EXPORT_SYMBOL(cfg80211_merge_profile);
2248
2249 static void
2250 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2251                            struct cfg80211_inform_single_bss_data *tx_data,
2252                            struct cfg80211_bss *source_bss,
2253                            gfp_t gfp)
2254 {
2255         struct cfg80211_inform_single_bss_data data = {
2256                 .drv_data = tx_data->drv_data,
2257                 .ftype = tx_data->ftype,
2258                 .tsf = tx_data->tsf,
2259                 .beacon_interval = tx_data->beacon_interval,
2260                 .source_bss = source_bss,
2261                 .bss_source = BSS_SOURCE_MBSSID,
2262         };
2263         const u8 *mbssid_index_ie;
2264         const struct element *elem, *sub;
2265         u8 *new_ie, *profile;
2266         u64 seen_indices = 0;
2267         struct cfg80211_bss *bss;
2268
2269         if (!source_bss)
2270                 return;
2271         if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2272                                 tx_data->ie, tx_data->ielen))
2273                 return;
2274         if (!wiphy->support_mbssid)
2275                 return;
2276         if (wiphy->support_only_he_mbssid &&
2277             !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2278                                     tx_data->ie, tx_data->ielen))
2279                 return;
2280
2281         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2282         if (!new_ie)
2283                 return;
2284
2285         profile = kmalloc(tx_data->ielen, gfp);
2286         if (!profile)
2287                 goto out;
2288
2289         for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2290                             tx_data->ie, tx_data->ielen) {
2291                 if (elem->datalen < 4)
2292                         continue;
2293                 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2294                         continue;
2295                 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2296                         u8 profile_len;
2297
2298                         if (sub->id != 0 || sub->datalen < 4) {
2299                                 /* not a valid BSS profile */
2300                                 continue;
2301                         }
2302
2303                         if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2304                             sub->data[1] != 2) {
2305                                 /* The first element within the Nontransmitted
2306                                  * BSSID Profile is not the Nontransmitted
2307                                  * BSSID Capability element.
2308                                  */
2309                                 continue;
2310                         }
2311
2312                         memset(profile, 0, tx_data->ielen);
2313                         profile_len = cfg80211_merge_profile(tx_data->ie,
2314                                                              tx_data->ielen,
2315                                                              elem,
2316                                                              sub,
2317                                                              profile,
2318                                                              tx_data->ielen);
2319
2320                         /* found a Nontransmitted BSSID Profile */
2321                         mbssid_index_ie = cfg80211_find_ie
2322                                 (WLAN_EID_MULTI_BSSID_IDX,
2323                                  profile, profile_len);
2324                         if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2325                             mbssid_index_ie[2] == 0 ||
2326                             mbssid_index_ie[2] > 46) {
2327                                 /* No valid Multiple BSSID-Index element */
2328                                 continue;
2329                         }
2330
2331                         if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2332                                 /* We don't support legacy split of a profile */
2333                                 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2334                                                     mbssid_index_ie[2]);
2335
2336                         seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2337
2338                         data.bssid_index = mbssid_index_ie[2];
2339                         data.max_bssid_indicator = elem->data[0];
2340
2341                         cfg80211_gen_new_bssid(tx_data->bssid,
2342                                                data.max_bssid_indicator,
2343                                                data.bssid_index,
2344                                                data.bssid);
2345
2346                         memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2347                         data.ie = new_ie;
2348                         data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2349                                                          tx_data->ielen,
2350                                                          profile,
2351                                                          profile_len,
2352                                                          new_ie,
2353                                                          IEEE80211_MAX_DATA_LEN);
2354                         if (!data.ielen)
2355                                 continue;
2356
2357                         data.capability = get_unaligned_le16(profile + 2);
2358                         bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2359                         if (!bss)
2360                                 break;
2361                         cfg80211_put_bss(wiphy, bss);
2362                 }
2363         }
2364
2365 out:
2366         kfree(new_ie);
2367         kfree(profile);
2368 }
2369
2370 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2371                                     size_t ieslen, u8 *data, size_t data_len,
2372                                     u8 frag_id)
2373 {
2374         const struct element *next;
2375         ssize_t copied;
2376         u8 elem_datalen;
2377
2378         if (!elem)
2379                 return -EINVAL;
2380
2381         /* elem might be invalid after the memmove */
2382         next = (void *)(elem->data + elem->datalen);
2383         elem_datalen = elem->datalen;
2384
2385         if (elem->id == WLAN_EID_EXTENSION) {
2386                 copied = elem->datalen - 1;
2387                 if (copied > data_len)
2388                         return -ENOSPC;
2389
2390                 memmove(data, elem->data + 1, copied);
2391         } else {
2392                 copied = elem->datalen;
2393                 if (copied > data_len)
2394                         return -ENOSPC;
2395
2396                 memmove(data, elem->data, copied);
2397         }
2398
2399         /* Fragmented elements must have 255 bytes */
2400         if (elem_datalen < 255)
2401                 return copied;
2402
2403         for (elem = next;
2404              elem->data < ies + ieslen &&
2405                 elem->data + elem->datalen <= ies + ieslen;
2406              elem = next) {
2407                 /* elem might be invalid after the memmove */
2408                 next = (void *)(elem->data + elem->datalen);
2409
2410                 if (elem->id != frag_id)
2411                         break;
2412
2413                 elem_datalen = elem->datalen;
2414
2415                 if (copied + elem_datalen > data_len)
2416                         return -ENOSPC;
2417
2418                 memmove(data + copied, elem->data, elem_datalen);
2419                 copied += elem_datalen;
2420
2421                 /* Only the last fragment may be short */
2422                 if (elem_datalen != 255)
2423                         break;
2424         }
2425
2426         return copied;
2427 }
2428 EXPORT_SYMBOL(cfg80211_defragment_element);
2429
2430 struct cfg80211_mle {
2431         struct ieee80211_multi_link_elem *mle;
2432         struct ieee80211_mle_per_sta_profile
2433                 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2434         ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2435
2436         u8 data[];
2437 };
2438
2439 static struct cfg80211_mle *
2440 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2441                     gfp_t gfp)
2442 {
2443         const struct element *elem;
2444         struct cfg80211_mle *res;
2445         size_t buf_len;
2446         ssize_t mle_len;
2447         u8 common_size, idx;
2448
2449         if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2450                 return NULL;
2451
2452         /* Required length for first defragmentation */
2453         buf_len = mle->datalen - 1;
2454         for_each_element(elem, mle->data + mle->datalen,
2455                          ielen - sizeof(*mle) + mle->datalen) {
2456                 if (elem->id != WLAN_EID_FRAGMENT)
2457                         break;
2458
2459                 buf_len += elem->datalen;
2460         }
2461
2462         res = kzalloc(struct_size(res, data, buf_len), gfp);
2463         if (!res)
2464                 return NULL;
2465
2466         mle_len = cfg80211_defragment_element(mle, ie, ielen,
2467                                               res->data, buf_len,
2468                                               WLAN_EID_FRAGMENT);
2469         if (mle_len < 0)
2470                 goto error;
2471
2472         res->mle = (void *)res->data;
2473
2474         /* Find the sub-element area in the buffer */
2475         common_size = ieee80211_mle_common_size((u8 *)res->mle);
2476         ie = res->data + common_size;
2477         ielen = mle_len - common_size;
2478
2479         idx = 0;
2480         for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2481                             ie, ielen) {
2482                 res->sta_prof[idx] = (void *)elem->data;
2483                 res->sta_prof_len[idx] = elem->datalen;
2484
2485                 idx++;
2486                 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2487                         break;
2488         }
2489         if (!for_each_element_completed(elem, ie, ielen))
2490                 goto error;
2491
2492         /* Defragment sta_info in-place */
2493         for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2494              idx++) {
2495                 if (res->sta_prof_len[idx] < 255)
2496                         continue;
2497
2498                 elem = (void *)res->sta_prof[idx] - 2;
2499
2500                 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2501                     res->sta_prof[idx + 1])
2502                         buf_len = (u8 *)res->sta_prof[idx + 1] -
2503                                   (u8 *)res->sta_prof[idx];
2504                 else
2505                         buf_len = ielen + ie - (u8 *)elem;
2506
2507                 res->sta_prof_len[idx] =
2508                         cfg80211_defragment_element(elem,
2509                                                     (u8 *)elem, buf_len,
2510                                                     (u8 *)res->sta_prof[idx],
2511                                                     buf_len,
2512                                                     IEEE80211_MLE_SUBELEM_FRAGMENT);
2513                 if (res->sta_prof_len[idx] < 0)
2514                         goto error;
2515         }
2516
2517         return res;
2518
2519 error:
2520         kfree(res);
2521         return NULL;
2522 }
2523
2524 static bool
2525 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2526                               const struct ieee80211_neighbor_ap_info **ap_info,
2527                               const u8 **tbtt_info)
2528 {
2529         const struct ieee80211_neighbor_ap_info *info;
2530         const struct element *rnr;
2531         const u8 *pos, *end;
2532
2533         for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2534                 pos = rnr->data;
2535                 end = rnr->data + rnr->datalen;
2536
2537                 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2538                 while (sizeof(*info) <= end - pos) {
2539                         const struct ieee80211_rnr_mld_params *mld_params;
2540                         u16 params;
2541                         u8 length, i, count, mld_params_offset;
2542                         u8 type, lid;
2543
2544                         info = (void *)pos;
2545                         count = u8_get_bits(info->tbtt_info_hdr,
2546                                             IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2547                         length = info->tbtt_info_len;
2548
2549                         pos += sizeof(*info);
2550
2551                         if (count * length > end - pos)
2552                                 return false;
2553
2554                         type = u8_get_bits(info->tbtt_info_hdr,
2555                                            IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2556
2557                         /* Only accept full TBTT information. NSTR mobile APs
2558                          * use the shortened version, but we ignore them here.
2559                          */
2560                         if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2561                             length >=
2562                             offsetofend(struct ieee80211_tbtt_info_ge_11,
2563                                         mld_params)) {
2564                                 mld_params_offset =
2565                                         offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2566                         } else {
2567                                 pos += count * length;
2568                                 continue;
2569                         }
2570
2571                         for (i = 0; i < count; i++) {
2572                                 mld_params = (void *)pos + mld_params_offset;
2573                                 params = le16_to_cpu(mld_params->params);
2574
2575                                 lid = u16_get_bits(params,
2576                                                    IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2577
2578                                 if (mld_id == mld_params->mld_id &&
2579                                     link_id == lid) {
2580                                         *ap_info = info;
2581                                         *tbtt_info = pos;
2582
2583                                         return true;
2584                                 }
2585
2586                                 pos += length;
2587                         }
2588                 }
2589         }
2590
2591         return false;
2592 }
2593
2594 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2595                                        struct cfg80211_inform_single_bss_data *tx_data,
2596                                        struct cfg80211_bss *source_bss,
2597                                        gfp_t gfp)
2598 {
2599         struct cfg80211_inform_single_bss_data data = {
2600                 .drv_data = tx_data->drv_data,
2601                 .ftype = tx_data->ftype,
2602                 .source_bss = source_bss,
2603                 .bss_source = BSS_SOURCE_STA_PROFILE,
2604         };
2605         struct ieee80211_multi_link_elem *ml_elem;
2606         const struct element *elem;
2607         struct cfg80211_mle *mle;
2608         u16 control;
2609         u8 *new_ie;
2610         struct cfg80211_bss *bss;
2611         int mld_id;
2612         u16 seen_links = 0;
2613         const u8 *pos;
2614         u8 i;
2615
2616         if (!source_bss)
2617                 return;
2618
2619         if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2620                 return;
2621
2622         elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK,
2623                                       tx_data->ie, tx_data->ielen);
2624         if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2625                 return;
2626
2627         ml_elem = (void *)elem->data + 1;
2628         control = le16_to_cpu(ml_elem->control);
2629         if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2630             IEEE80211_ML_CONTROL_TYPE_BASIC)
2631                 return;
2632
2633         /* Must be present when transmitted by an AP (in a probe response) */
2634         if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2635             !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2636             !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2637                 return;
2638
2639         /* length + MLD MAC address + link ID info + BSS Params Change Count */
2640         pos = ml_elem->variable + 1 + 6 + 1 + 1;
2641
2642         if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2643                 pos += 2;
2644         if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2645                 pos += 2;
2646
2647         /* MLD capabilities and operations */
2648         pos += 2;
2649
2650         /* Not included when the (nontransmitted) AP is responding itself,
2651          * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2)
2652          */
2653         if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2654                 mld_id = *pos;
2655                 pos += 1;
2656         } else {
2657                 mld_id = 0;
2658         }
2659
2660         /* Extended MLD capabilities and operations */
2661         pos += 2;
2662
2663         /* Fully defrag the ML element for sta information/profile iteration */
2664         mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2665         if (!mle)
2666                 return;
2667
2668         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2669         if (!new_ie)
2670                 goto out;
2671
2672         for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2673                 const struct ieee80211_neighbor_ap_info *ap_info;
2674                 enum nl80211_band band;
2675                 u32 freq;
2676                 const u8 *profile;
2677                 const u8 *tbtt_info;
2678                 ssize_t profile_len;
2679                 u8 link_id;
2680
2681                 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2682                                                           mle->sta_prof_len[i]))
2683                         continue;
2684
2685                 control = le16_to_cpu(mle->sta_prof[i]->control);
2686
2687                 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2688                         continue;
2689
2690                 link_id = u16_get_bits(control,
2691                                        IEEE80211_MLE_STA_CONTROL_LINK_ID);
2692                 if (seen_links & BIT(link_id))
2693                         break;
2694                 seen_links |= BIT(link_id);
2695
2696                 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2697                     !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2698                     !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2699                         continue;
2700
2701                 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2702                 data.beacon_interval =
2703                         get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2704                 data.tsf = tx_data->tsf +
2705                            get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2706
2707                 /* sta_info_len counts itself */
2708                 profile = mle->sta_prof[i]->variable +
2709                           mle->sta_prof[i]->sta_info_len - 1;
2710                 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2711                               profile;
2712
2713                 if (profile_len < 2)
2714                         continue;
2715
2716                 data.capability = get_unaligned_le16(profile);
2717                 profile += 2;
2718                 profile_len -= 2;
2719
2720                 /* Find in RNR to look up channel information */
2721                 if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen,
2722                                                    mld_id, link_id,
2723                                                    &ap_info, &tbtt_info))
2724                         continue;
2725
2726                 /* We could sanity check the BSSID is included */
2727
2728                 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2729                                                        &band))
2730                         continue;
2731
2732                 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2733                 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2734
2735                 /* Generate new elements */
2736                 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2737                 data.ie = new_ie;
2738                 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2739                                                  profile, profile_len,
2740                                                  new_ie,
2741                                                  IEEE80211_MAX_DATA_LEN);
2742                 if (!data.ielen)
2743                         continue;
2744
2745                 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2746                 if (!bss)
2747                         break;
2748                 cfg80211_put_bss(wiphy, bss);
2749         }
2750
2751 out:
2752         kfree(new_ie);
2753         kfree(mle);
2754 }
2755
2756 struct cfg80211_bss *
2757 cfg80211_inform_bss_data(struct wiphy *wiphy,
2758                          struct cfg80211_inform_bss *data,
2759                          enum cfg80211_bss_frame_type ftype,
2760                          const u8 *bssid, u64 tsf, u16 capability,
2761                          u16 beacon_interval, const u8 *ie, size_t ielen,
2762                          gfp_t gfp)
2763 {
2764         struct cfg80211_inform_single_bss_data inform_data = {
2765                 .drv_data = data,
2766                 .ftype = ftype,
2767                 .tsf = tsf,
2768                 .capability = capability,
2769                 .beacon_interval = beacon_interval,
2770                 .ie = ie,
2771                 .ielen = ielen,
2772         };
2773         struct cfg80211_bss *res;
2774
2775         memcpy(inform_data.bssid, bssid, ETH_ALEN);
2776
2777         res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2778         if (!res)
2779                 return NULL;
2780
2781         cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2782
2783         cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2784
2785         return res;
2786 }
2787 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2788
2789 /* cfg80211_inform_bss_width_frame helper */
2790 static struct cfg80211_bss *
2791 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2792                                       struct cfg80211_inform_bss *data,
2793                                       struct ieee80211_mgmt *mgmt, size_t len,
2794                                       gfp_t gfp)
2795 {
2796         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2797         struct cfg80211_internal_bss tmp = {}, *res;
2798         struct cfg80211_bss_ies *ies;
2799         struct ieee80211_channel *channel;
2800         bool signal_valid;
2801         struct ieee80211_ext *ext = NULL;
2802         u8 *bssid, *variable;
2803         u16 capability, beacon_int;
2804         size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2805                                              u.probe_resp.variable);
2806         int bss_type;
2807
2808         BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2809                         offsetof(struct ieee80211_mgmt, u.beacon.variable));
2810
2811         trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2812
2813         if (WARN_ON(!mgmt))
2814                 return NULL;
2815
2816         if (WARN_ON(!wiphy))
2817                 return NULL;
2818
2819         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2820                     (data->signal < 0 || data->signal > 100)))
2821                 return NULL;
2822
2823         if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2824                 ext = (void *) mgmt;
2825                 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2826                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2827                         min_hdr_len = offsetof(struct ieee80211_ext,
2828                                                u.s1g_short_beacon.variable);
2829         }
2830
2831         if (WARN_ON(len < min_hdr_len))
2832                 return NULL;
2833
2834         ielen = len - min_hdr_len;
2835         variable = mgmt->u.probe_resp.variable;
2836         if (ext) {
2837                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2838                         variable = ext->u.s1g_short_beacon.variable;
2839                 else
2840                         variable = ext->u.s1g_beacon.variable;
2841         }
2842
2843         channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
2844         if (!channel)
2845                 return NULL;
2846
2847         if (ext) {
2848                 const struct ieee80211_s1g_bcn_compat_ie *compat;
2849                 const struct element *elem;
2850
2851                 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2852                                           variable, ielen);
2853                 if (!elem)
2854                         return NULL;
2855                 if (elem->datalen < sizeof(*compat))
2856                         return NULL;
2857                 compat = (void *)elem->data;
2858                 bssid = ext->u.s1g_beacon.sa;
2859                 capability = le16_to_cpu(compat->compat_info);
2860                 beacon_int = le16_to_cpu(compat->beacon_int);
2861         } else {
2862                 bssid = mgmt->bssid;
2863                 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2864                 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2865         }
2866
2867         if (channel->band == NL80211_BAND_60GHZ) {
2868                 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2869                 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2870                     bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2871                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2872         } else {
2873                 if (capability & WLAN_CAPABILITY_ESS)
2874                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2875         }
2876
2877         ies = kzalloc(sizeof(*ies) + ielen, gfp);
2878         if (!ies)
2879                 return NULL;
2880         ies->len = ielen;
2881         ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2882         ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2883                            ieee80211_is_s1g_beacon(mgmt->frame_control);
2884         memcpy(ies->data, variable, ielen);
2885
2886         if (ieee80211_is_probe_resp(mgmt->frame_control))
2887                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2888         else
2889                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2890         rcu_assign_pointer(tmp.pub.ies, ies);
2891
2892         memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2893         tmp.pub.beacon_interval = beacon_int;
2894         tmp.pub.capability = capability;
2895         tmp.pub.channel = channel;
2896         tmp.pub.signal = data->signal;
2897         tmp.ts_boottime = data->boottime_ns;
2898         tmp.parent_tsf = data->parent_tsf;
2899         tmp.pub.chains = data->chains;
2900         memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2901         ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2902
2903         signal_valid = data->chan == channel;
2904         spin_lock_bh(&rdev->bss_lock);
2905         res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
2906         if (!res)
2907                 goto drop;
2908
2909         rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2910
2911         spin_unlock_bh(&rdev->bss_lock);
2912
2913         trace_cfg80211_return_bss(&res->pub);
2914         /* __cfg80211_bss_update gives us a referenced result */
2915         return &res->pub;
2916
2917 drop:
2918         spin_unlock_bh(&rdev->bss_lock);
2919         return NULL;
2920 }
2921
2922 struct cfg80211_bss *
2923 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2924                                struct cfg80211_inform_bss *data,
2925                                struct ieee80211_mgmt *mgmt, size_t len,
2926                                gfp_t gfp)
2927 {
2928         struct cfg80211_inform_single_bss_data inform_data = {
2929                 .drv_data = data,
2930                 .ie = mgmt->u.probe_resp.variable,
2931                 .ielen = len - offsetof(struct ieee80211_mgmt,
2932                                         u.probe_resp.variable),
2933         };
2934         struct cfg80211_bss *res;
2935
2936         res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2937                                                     len, gfp);
2938         if (!res)
2939                 return NULL;
2940
2941         /* don't do any further MBSSID/ML handling for S1G */
2942         if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2943                 return res;
2944
2945         inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2946                 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2947         memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
2948         inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2949         inform_data.beacon_interval =
2950                 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2951
2952         /* process each non-transmitting bss */
2953         cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2954
2955         cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2956
2957         return res;
2958 }
2959 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2960
2961 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2962 {
2963         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2964
2965         if (!pub)
2966                 return;
2967
2968         spin_lock_bh(&rdev->bss_lock);
2969         bss_ref_get(rdev, bss_from_pub(pub));
2970         spin_unlock_bh(&rdev->bss_lock);
2971 }
2972 EXPORT_SYMBOL(cfg80211_ref_bss);
2973
2974 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2975 {
2976         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2977
2978         if (!pub)
2979                 return;
2980
2981         spin_lock_bh(&rdev->bss_lock);
2982         bss_ref_put(rdev, bss_from_pub(pub));
2983         spin_unlock_bh(&rdev->bss_lock);
2984 }
2985 EXPORT_SYMBOL(cfg80211_put_bss);
2986
2987 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2988 {
2989         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2990         struct cfg80211_internal_bss *bss, *tmp1;
2991         struct cfg80211_bss *nontrans_bss, *tmp;
2992
2993         if (WARN_ON(!pub))
2994                 return;
2995
2996         bss = bss_from_pub(pub);
2997
2998         spin_lock_bh(&rdev->bss_lock);
2999         if (list_empty(&bss->list))
3000                 goto out;
3001
3002         list_for_each_entry_safe(nontrans_bss, tmp,
3003                                  &pub->nontrans_list,
3004                                  nontrans_list) {
3005                 tmp1 = bss_from_pub(nontrans_bss);
3006                 if (__cfg80211_unlink_bss(rdev, tmp1))
3007                         rdev->bss_generation++;
3008         }
3009
3010         if (__cfg80211_unlink_bss(rdev, bss))
3011                 rdev->bss_generation++;
3012 out:
3013         spin_unlock_bh(&rdev->bss_lock);
3014 }
3015 EXPORT_SYMBOL(cfg80211_unlink_bss);
3016
3017 void cfg80211_bss_iter(struct wiphy *wiphy,
3018                        struct cfg80211_chan_def *chandef,
3019                        void (*iter)(struct wiphy *wiphy,
3020                                     struct cfg80211_bss *bss,
3021                                     void *data),
3022                        void *iter_data)
3023 {
3024         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3025         struct cfg80211_internal_bss *bss;
3026
3027         spin_lock_bh(&rdev->bss_lock);
3028
3029         list_for_each_entry(bss, &rdev->bss_list, list) {
3030                 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3031                                                      false))
3032                         iter(wiphy, &bss->pub, iter_data);
3033         }
3034
3035         spin_unlock_bh(&rdev->bss_lock);
3036 }
3037 EXPORT_SYMBOL(cfg80211_bss_iter);
3038
3039 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3040                                      unsigned int link_id,
3041                                      struct ieee80211_channel *chan)
3042 {
3043         struct wiphy *wiphy = wdev->wiphy;
3044         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3045         struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3046         struct cfg80211_internal_bss *new = NULL;
3047         struct cfg80211_internal_bss *bss;
3048         struct cfg80211_bss *nontrans_bss;
3049         struct cfg80211_bss *tmp;
3050
3051         spin_lock_bh(&rdev->bss_lock);
3052
3053         /*
3054          * Some APs use CSA also for bandwidth changes, i.e., without actually
3055          * changing the control channel, so no need to update in such a case.
3056          */
3057         if (cbss->pub.channel == chan)
3058                 goto done;
3059
3060         /* use transmitting bss */
3061         if (cbss->pub.transmitted_bss)
3062                 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3063
3064         cbss->pub.channel = chan;
3065
3066         list_for_each_entry(bss, &rdev->bss_list, list) {
3067                 if (!cfg80211_bss_type_match(bss->pub.capability,
3068                                              bss->pub.channel->band,
3069                                              wdev->conn_bss_type))
3070                         continue;
3071
3072                 if (bss == cbss)
3073                         continue;
3074
3075                 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3076                         new = bss;
3077                         break;
3078                 }
3079         }
3080
3081         if (new) {
3082                 /* to save time, update IEs for transmitting bss only */
3083                 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
3084                         new->pub.proberesp_ies = NULL;
3085                         new->pub.beacon_ies = NULL;
3086                 }
3087
3088                 list_for_each_entry_safe(nontrans_bss, tmp,
3089                                          &new->pub.nontrans_list,
3090                                          nontrans_list) {
3091                         bss = bss_from_pub(nontrans_bss);
3092                         if (__cfg80211_unlink_bss(rdev, bss))
3093                                 rdev->bss_generation++;
3094                 }
3095
3096                 WARN_ON(atomic_read(&new->hold));
3097                 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3098                         rdev->bss_generation++;
3099         }
3100
3101         rb_erase(&cbss->rbn, &rdev->bss_tree);
3102         rb_insert_bss(rdev, cbss);
3103         rdev->bss_generation++;
3104
3105         list_for_each_entry_safe(nontrans_bss, tmp,
3106                                  &cbss->pub.nontrans_list,
3107                                  nontrans_list) {
3108                 bss = bss_from_pub(nontrans_bss);
3109                 bss->pub.channel = chan;
3110                 rb_erase(&bss->rbn, &rdev->bss_tree);
3111                 rb_insert_bss(rdev, bss);
3112                 rdev->bss_generation++;
3113         }
3114
3115 done:
3116         spin_unlock_bh(&rdev->bss_lock);
3117 }
3118
3119 #ifdef CONFIG_CFG80211_WEXT
3120 static struct cfg80211_registered_device *
3121 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3122 {
3123         struct cfg80211_registered_device *rdev;
3124         struct net_device *dev;
3125
3126         ASSERT_RTNL();
3127
3128         dev = dev_get_by_index(net, ifindex);
3129         if (!dev)
3130                 return ERR_PTR(-ENODEV);
3131         if (dev->ieee80211_ptr)
3132                 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3133         else
3134                 rdev = ERR_PTR(-ENODEV);
3135         dev_put(dev);
3136         return rdev;
3137 }
3138
3139 int cfg80211_wext_siwscan(struct net_device *dev,
3140                           struct iw_request_info *info,
3141                           union iwreq_data *wrqu, char *extra)
3142 {
3143         struct cfg80211_registered_device *rdev;
3144         struct wiphy *wiphy;
3145         struct iw_scan_req *wreq = NULL;
3146         struct cfg80211_scan_request *creq;
3147         int i, err, n_channels = 0;
3148         enum nl80211_band band;
3149
3150         if (!netif_running(dev))
3151                 return -ENETDOWN;
3152
3153         if (wrqu->data.length == sizeof(struct iw_scan_req))
3154                 wreq = (struct iw_scan_req *)extra;
3155
3156         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3157
3158         if (IS_ERR(rdev))
3159                 return PTR_ERR(rdev);
3160
3161         if (rdev->scan_req || rdev->scan_msg)
3162                 return -EBUSY;
3163
3164         wiphy = &rdev->wiphy;
3165
3166         /* Determine number of channels, needed to allocate creq */
3167         if (wreq && wreq->num_channels)
3168                 n_channels = wreq->num_channels;
3169         else
3170                 n_channels = ieee80211_get_num_supported_channels(wiphy);
3171
3172         creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3173                        n_channels * sizeof(void *),
3174                        GFP_ATOMIC);
3175         if (!creq)
3176                 return -ENOMEM;
3177
3178         creq->wiphy = wiphy;
3179         creq->wdev = dev->ieee80211_ptr;
3180         /* SSIDs come after channels */
3181         creq->ssids = (void *)&creq->channels[n_channels];
3182         creq->n_channels = n_channels;
3183         creq->n_ssids = 1;
3184         creq->scan_start = jiffies;
3185
3186         /* translate "Scan on frequencies" request */
3187         i = 0;
3188         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3189                 int j;
3190
3191                 if (!wiphy->bands[band])
3192                         continue;
3193
3194                 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3195                         /* ignore disabled channels */
3196                         if (wiphy->bands[band]->channels[j].flags &
3197                                                 IEEE80211_CHAN_DISABLED)
3198                                 continue;
3199
3200                         /* If we have a wireless request structure and the
3201                          * wireless request specifies frequencies, then search
3202                          * for the matching hardware channel.
3203                          */
3204                         if (wreq && wreq->num_channels) {
3205                                 int k;
3206                                 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3207                                 for (k = 0; k < wreq->num_channels; k++) {
3208                                         struct iw_freq *freq =
3209                                                 &wreq->channel_list[k];
3210                                         int wext_freq =
3211                                                 cfg80211_wext_freq(freq);
3212
3213                                         if (wext_freq == wiphy_freq)
3214                                                 goto wext_freq_found;
3215                                 }
3216                                 goto wext_freq_not_found;
3217                         }
3218
3219                 wext_freq_found:
3220                         creq->channels[i] = &wiphy->bands[band]->channels[j];
3221                         i++;
3222                 wext_freq_not_found: ;
3223                 }
3224         }
3225         /* No channels found? */
3226         if (!i) {
3227                 err = -EINVAL;
3228                 goto out;
3229         }
3230
3231         /* Set real number of channels specified in creq->channels[] */
3232         creq->n_channels = i;
3233
3234         /* translate "Scan for SSID" request */
3235         if (wreq) {
3236                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3237                         if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3238                                 err = -EINVAL;
3239                                 goto out;
3240                         }
3241                         memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3242                         creq->ssids[0].ssid_len = wreq->essid_len;
3243                 }
3244                 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3245                         creq->n_ssids = 0;
3246         }
3247
3248         for (i = 0; i < NUM_NL80211_BANDS; i++)
3249                 if (wiphy->bands[i])
3250                         creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3251
3252         eth_broadcast_addr(creq->bssid);
3253
3254         wiphy_lock(&rdev->wiphy);
3255
3256         rdev->scan_req = creq;
3257         err = rdev_scan(rdev, creq);
3258         if (err) {
3259                 rdev->scan_req = NULL;
3260                 /* creq will be freed below */
3261         } else {
3262                 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3263                 /* creq now owned by driver */
3264                 creq = NULL;
3265                 dev_hold(dev);
3266         }
3267         wiphy_unlock(&rdev->wiphy);
3268  out:
3269         kfree(creq);
3270         return err;
3271 }
3272 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3273
3274 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3275                                     const struct cfg80211_bss_ies *ies,
3276                                     char *current_ev, char *end_buf)
3277 {
3278         const u8 *pos, *end, *next;
3279         struct iw_event iwe;
3280
3281         if (!ies)
3282                 return current_ev;
3283
3284         /*
3285          * If needed, fragment the IEs buffer (at IE boundaries) into short
3286          * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3287          */
3288         pos = ies->data;
3289         end = pos + ies->len;
3290
3291         while (end - pos > IW_GENERIC_IE_MAX) {
3292                 next = pos + 2 + pos[1];
3293                 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3294                         next = next + 2 + next[1];
3295
3296                 memset(&iwe, 0, sizeof(iwe));
3297                 iwe.cmd = IWEVGENIE;
3298                 iwe.u.data.length = next - pos;
3299                 current_ev = iwe_stream_add_point_check(info, current_ev,
3300                                                         end_buf, &iwe,
3301                                                         (void *)pos);
3302                 if (IS_ERR(current_ev))
3303                         return current_ev;
3304                 pos = next;
3305         }
3306
3307         if (end > pos) {
3308                 memset(&iwe, 0, sizeof(iwe));
3309                 iwe.cmd = IWEVGENIE;
3310                 iwe.u.data.length = end - pos;
3311                 current_ev = iwe_stream_add_point_check(info, current_ev,
3312                                                         end_buf, &iwe,
3313                                                         (void *)pos);
3314                 if (IS_ERR(current_ev))
3315                         return current_ev;
3316         }
3317
3318         return current_ev;
3319 }
3320
3321 static char *
3322 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3323               struct cfg80211_internal_bss *bss, char *current_ev,
3324               char *end_buf)
3325 {
3326         const struct cfg80211_bss_ies *ies;
3327         struct iw_event iwe;
3328         const u8 *ie;
3329         u8 buf[50];
3330         u8 *cfg, *p, *tmp;
3331         int rem, i, sig;
3332         bool ismesh = false;
3333
3334         memset(&iwe, 0, sizeof(iwe));
3335         iwe.cmd = SIOCGIWAP;
3336         iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3337         memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3338         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3339                                                 IW_EV_ADDR_LEN);
3340         if (IS_ERR(current_ev))
3341                 return current_ev;
3342
3343         memset(&iwe, 0, sizeof(iwe));
3344         iwe.cmd = SIOCGIWFREQ;
3345         iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3346         iwe.u.freq.e = 0;
3347         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3348                                                 IW_EV_FREQ_LEN);
3349         if (IS_ERR(current_ev))
3350                 return current_ev;
3351
3352         memset(&iwe, 0, sizeof(iwe));
3353         iwe.cmd = SIOCGIWFREQ;
3354         iwe.u.freq.m = bss->pub.channel->center_freq;
3355         iwe.u.freq.e = 6;
3356         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3357                                                 IW_EV_FREQ_LEN);
3358         if (IS_ERR(current_ev))
3359                 return current_ev;
3360
3361         if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3362                 memset(&iwe, 0, sizeof(iwe));
3363                 iwe.cmd = IWEVQUAL;
3364                 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3365                                      IW_QUAL_NOISE_INVALID |
3366                                      IW_QUAL_QUAL_UPDATED;
3367                 switch (wiphy->signal_type) {
3368                 case CFG80211_SIGNAL_TYPE_MBM:
3369                         sig = bss->pub.signal / 100;
3370                         iwe.u.qual.level = sig;
3371                         iwe.u.qual.updated |= IW_QUAL_DBM;
3372                         if (sig < -110)         /* rather bad */
3373                                 sig = -110;
3374                         else if (sig > -40)     /* perfect */
3375                                 sig = -40;
3376                         /* will give a range of 0 .. 70 */
3377                         iwe.u.qual.qual = sig + 110;
3378                         break;
3379                 case CFG80211_SIGNAL_TYPE_UNSPEC:
3380                         iwe.u.qual.level = bss->pub.signal;
3381                         /* will give range 0 .. 100 */
3382                         iwe.u.qual.qual = bss->pub.signal;
3383                         break;
3384                 default:
3385                         /* not reached */
3386                         break;
3387                 }
3388                 current_ev = iwe_stream_add_event_check(info, current_ev,
3389                                                         end_buf, &iwe,
3390                                                         IW_EV_QUAL_LEN);
3391                 if (IS_ERR(current_ev))
3392                         return current_ev;
3393         }
3394
3395         memset(&iwe, 0, sizeof(iwe));
3396         iwe.cmd = SIOCGIWENCODE;
3397         if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3398                 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3399         else
3400                 iwe.u.data.flags = IW_ENCODE_DISABLED;
3401         iwe.u.data.length = 0;
3402         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3403                                                 &iwe, "");
3404         if (IS_ERR(current_ev))
3405                 return current_ev;
3406
3407         rcu_read_lock();
3408         ies = rcu_dereference(bss->pub.ies);
3409         rem = ies->len;
3410         ie = ies->data;
3411
3412         while (rem >= 2) {
3413                 /* invalid data */
3414                 if (ie[1] > rem - 2)
3415                         break;
3416
3417                 switch (ie[0]) {
3418                 case WLAN_EID_SSID:
3419                         memset(&iwe, 0, sizeof(iwe));
3420                         iwe.cmd = SIOCGIWESSID;
3421                         iwe.u.data.length = ie[1];
3422                         iwe.u.data.flags = 1;
3423                         current_ev = iwe_stream_add_point_check(info,
3424                                                                 current_ev,
3425                                                                 end_buf, &iwe,
3426                                                                 (u8 *)ie + 2);
3427                         if (IS_ERR(current_ev))
3428                                 goto unlock;
3429                         break;
3430                 case WLAN_EID_MESH_ID:
3431                         memset(&iwe, 0, sizeof(iwe));
3432                         iwe.cmd = SIOCGIWESSID;
3433                         iwe.u.data.length = ie[1];
3434                         iwe.u.data.flags = 1;
3435                         current_ev = iwe_stream_add_point_check(info,
3436                                                                 current_ev,
3437                                                                 end_buf, &iwe,
3438                                                                 (u8 *)ie + 2);
3439                         if (IS_ERR(current_ev))
3440                                 goto unlock;
3441                         break;
3442                 case WLAN_EID_MESH_CONFIG:
3443                         ismesh = true;
3444                         if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3445                                 break;
3446                         cfg = (u8 *)ie + 2;
3447                         memset(&iwe, 0, sizeof(iwe));
3448                         iwe.cmd = IWEVCUSTOM;
3449                         iwe.u.data.length = sprintf(buf,
3450                                                     "Mesh Network Path Selection Protocol ID: 0x%02X",
3451                                                     cfg[0]);
3452                         current_ev = iwe_stream_add_point_check(info,
3453                                                                 current_ev,
3454                                                                 end_buf,
3455                                                                 &iwe, buf);
3456                         if (IS_ERR(current_ev))
3457                                 goto unlock;
3458                         iwe.u.data.length = sprintf(buf,
3459                                                     "Path Selection Metric ID: 0x%02X",
3460                                                     cfg[1]);
3461                         current_ev = iwe_stream_add_point_check(info,
3462                                                                 current_ev,
3463                                                                 end_buf,
3464                                                                 &iwe, buf);
3465                         if (IS_ERR(current_ev))
3466                                 goto unlock;
3467                         iwe.u.data.length = sprintf(buf,
3468                                                     "Congestion Control Mode ID: 0x%02X",
3469                                                     cfg[2]);
3470                         current_ev = iwe_stream_add_point_check(info,
3471                                                                 current_ev,
3472                                                                 end_buf,
3473                                                                 &iwe, buf);
3474                         if (IS_ERR(current_ev))
3475                                 goto unlock;
3476                         iwe.u.data.length = sprintf(buf,
3477                                                     "Synchronization ID: 0x%02X",
3478                                                     cfg[3]);
3479                         current_ev = iwe_stream_add_point_check(info,
3480                                                                 current_ev,
3481                                                                 end_buf,
3482                                                                 &iwe, buf);
3483                         if (IS_ERR(current_ev))
3484                                 goto unlock;
3485                         iwe.u.data.length = sprintf(buf,
3486                                                     "Authentication ID: 0x%02X",
3487                                                     cfg[4]);
3488                         current_ev = iwe_stream_add_point_check(info,
3489                                                                 current_ev,
3490                                                                 end_buf,
3491                                                                 &iwe, buf);
3492                         if (IS_ERR(current_ev))
3493                                 goto unlock;
3494                         iwe.u.data.length = sprintf(buf,
3495                                                     "Formation Info: 0x%02X",
3496                                                     cfg[5]);
3497                         current_ev = iwe_stream_add_point_check(info,
3498                                                                 current_ev,
3499                                                                 end_buf,
3500                                                                 &iwe, buf);
3501                         if (IS_ERR(current_ev))
3502                                 goto unlock;
3503                         iwe.u.data.length = sprintf(buf,
3504                                                     "Capabilities: 0x%02X",
3505                                                     cfg[6]);
3506                         current_ev = iwe_stream_add_point_check(info,
3507                                                                 current_ev,
3508                                                                 end_buf,
3509                                                                 &iwe, buf);
3510                         if (IS_ERR(current_ev))
3511                                 goto unlock;
3512                         break;
3513                 case WLAN_EID_SUPP_RATES:
3514                 case WLAN_EID_EXT_SUPP_RATES:
3515                         /* display all supported rates in readable format */
3516                         p = current_ev + iwe_stream_lcp_len(info);
3517
3518                         memset(&iwe, 0, sizeof(iwe));
3519                         iwe.cmd = SIOCGIWRATE;
3520                         /* Those two flags are ignored... */
3521                         iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3522
3523                         for (i = 0; i < ie[1]; i++) {
3524                                 iwe.u.bitrate.value =
3525                                         ((ie[i + 2] & 0x7f) * 500000);
3526                                 tmp = p;
3527                                 p = iwe_stream_add_value(info, current_ev, p,
3528                                                          end_buf, &iwe,
3529                                                          IW_EV_PARAM_LEN);
3530                                 if (p == tmp) {
3531                                         current_ev = ERR_PTR(-E2BIG);
3532                                         goto unlock;
3533                                 }
3534                         }
3535                         current_ev = p;
3536                         break;
3537                 }
3538                 rem -= ie[1] + 2;
3539                 ie += ie[1] + 2;
3540         }
3541
3542         if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3543             ismesh) {
3544                 memset(&iwe, 0, sizeof(iwe));
3545                 iwe.cmd = SIOCGIWMODE;
3546                 if (ismesh)
3547                         iwe.u.mode = IW_MODE_MESH;
3548                 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3549                         iwe.u.mode = IW_MODE_MASTER;
3550                 else
3551                         iwe.u.mode = IW_MODE_ADHOC;
3552                 current_ev = iwe_stream_add_event_check(info, current_ev,
3553                                                         end_buf, &iwe,
3554                                                         IW_EV_UINT_LEN);
3555                 if (IS_ERR(current_ev))
3556                         goto unlock;
3557         }
3558
3559         memset(&iwe, 0, sizeof(iwe));
3560         iwe.cmd = IWEVCUSTOM;
3561         iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3562                                     (unsigned long long)(ies->tsf));
3563         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3564                                                 &iwe, buf);
3565         if (IS_ERR(current_ev))
3566                 goto unlock;
3567         memset(&iwe, 0, sizeof(iwe));
3568         iwe.cmd = IWEVCUSTOM;
3569         iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3570                                     elapsed_jiffies_msecs(bss->ts));
3571         current_ev = iwe_stream_add_point_check(info, current_ev,
3572                                                 end_buf, &iwe, buf);
3573         if (IS_ERR(current_ev))
3574                 goto unlock;
3575
3576         current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3577
3578  unlock:
3579         rcu_read_unlock();
3580         return current_ev;
3581 }
3582
3583
3584 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3585                                   struct iw_request_info *info,
3586                                   char *buf, size_t len)
3587 {
3588         char *current_ev = buf;
3589         char *end_buf = buf + len;
3590         struct cfg80211_internal_bss *bss;
3591         int err = 0;
3592
3593         spin_lock_bh(&rdev->bss_lock);
3594         cfg80211_bss_expire(rdev);
3595
3596         list_for_each_entry(bss, &rdev->bss_list, list) {
3597                 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3598                         err = -E2BIG;
3599                         break;
3600                 }
3601                 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3602                                            current_ev, end_buf);
3603                 if (IS_ERR(current_ev)) {
3604                         err = PTR_ERR(current_ev);
3605                         break;
3606                 }
3607         }
3608         spin_unlock_bh(&rdev->bss_lock);
3609
3610         if (err)
3611                 return err;
3612         return current_ev - buf;
3613 }
3614
3615
3616 int cfg80211_wext_giwscan(struct net_device *dev,
3617                           struct iw_request_info *info,
3618                           union iwreq_data *wrqu, char *extra)
3619 {
3620         struct iw_point *data = &wrqu->data;
3621         struct cfg80211_registered_device *rdev;
3622         int res;
3623
3624         if (!netif_running(dev))
3625                 return -ENETDOWN;
3626
3627         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3628
3629         if (IS_ERR(rdev))
3630                 return PTR_ERR(rdev);
3631
3632         if (rdev->scan_req || rdev->scan_msg)
3633                 return -EAGAIN;
3634
3635         res = ieee80211_scan_results(rdev, info, extra, data->length);
3636         data->length = 0;
3637         if (res >= 0) {
3638                 data->length = res;
3639                 res = 0;
3640         }
3641
3642         return res;
3643 }
3644 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3645 #endif