GNU Linux-libre 6.8.9-gnu
[releases.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2023 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140         return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rcu_dereference_check(wiphy->regd,
151                                      lockdep_is_held(&wiphy->mtx) ||
152                                      lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158         switch (dfs_region) {
159         case NL80211_DFS_UNSET:
160                 return "unset";
161         case NL80211_DFS_FCC:
162                 return "FCC";
163         case NL80211_DFS_ETSI:
164                 return "ETSI";
165         case NL80211_DFS_JP:
166                 return "JP";
167         }
168         return "Unknown";
169 }
170
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173         const struct ieee80211_regdomain *regd = NULL;
174         const struct ieee80211_regdomain *wiphy_regd = NULL;
175         enum nl80211_dfs_regions dfs_region;
176
177         rcu_read_lock();
178         regd = get_cfg80211_regdom();
179         dfs_region = regd->dfs_region;
180
181         if (!wiphy)
182                 goto out;
183
184         wiphy_regd = get_wiphy_regdom(wiphy);
185         if (!wiphy_regd)
186                 goto out;
187
188         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189                 dfs_region = wiphy_regd->dfs_region;
190                 goto out;
191         }
192
193         if (wiphy_regd->dfs_region == regd->dfs_region)
194                 goto out;
195
196         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197                  dev_name(&wiphy->dev),
198                  reg_dfs_region_str(wiphy_regd->dfs_region),
199                  reg_dfs_region_str(regd->dfs_region));
200
201 out:
202         rcu_read_unlock();
203
204         return dfs_region;
205 }
206
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209         if (!r)
210                 return;
211         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
214 static struct regulatory_request *get_last_request(void)
215 {
216         return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231         struct list_head list;
232         struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243         .n_reg_rules = 8,
244         .alpha2 =  "00",
245         .reg_rules = {
246                 /* IEEE 802.11b/g, channels 1..11 */
247                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248                 /* IEEE 802.11b/g, channels 12..13. */
249                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251                 /* IEEE 802.11 channel 14 - Only JP enables
252                  * this and for 802.11b only */
253                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_NO_OFDM),
256                 /* IEEE 802.11a, channel 36..48 */
257                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260
261                 /* IEEE 802.11a, channel 52..64 - DFS required */
262                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR |
264                         NL80211_RRF_AUTO_BW |
265                         NL80211_RRF_DFS),
266
267                 /* IEEE 802.11a, channel 100..144 - DFS required */
268                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269                         NL80211_RRF_NO_IR |
270                         NL80211_RRF_DFS),
271
272                 /* IEEE 802.11a, channel 149..165 */
273                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274                         NL80211_RRF_NO_IR),
275
276                 /* IEEE 802.11ad (60GHz), channels 1..3 */
277                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278         }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283         &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292 static void reg_free_request(struct regulatory_request *request)
293 {
294         if (request == &core_request_world)
295                 return;
296
297         if (request != get_last_request())
298                 kfree(request);
299 }
300
301 static void reg_free_last_request(void)
302 {
303         struct regulatory_request *lr = get_last_request();
304
305         if (lr != &core_request_world && lr)
306                 kfree_rcu(lr, rcu_head);
307 }
308
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311         struct regulatory_request *lr;
312
313         lr = get_last_request();
314         if (lr == request)
315                 return;
316
317         reg_free_last_request();
318         rcu_assign_pointer(last_request, request);
319 }
320
321 static void reset_regdomains(bool full_reset,
322                              const struct ieee80211_regdomain *new_regdom)
323 {
324         const struct ieee80211_regdomain *r;
325
326         ASSERT_RTNL();
327
328         r = get_cfg80211_regdom();
329
330         /* avoid freeing static information or freeing something twice */
331         if (r == cfg80211_world_regdom)
332                 r = NULL;
333         if (cfg80211_world_regdom == &world_regdom)
334                 cfg80211_world_regdom = NULL;
335         if (r == &world_regdom)
336                 r = NULL;
337
338         rcu_free_regdom(r);
339         rcu_free_regdom(cfg80211_world_regdom);
340
341         cfg80211_world_regdom = &world_regdom;
342         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344         if (!full_reset)
345                 return;
346
347         reg_update_last_request(&core_request_world);
348 }
349
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356         struct regulatory_request *lr;
357
358         lr = get_last_request();
359
360         WARN_ON(!lr);
361
362         reset_regdomains(false, rd);
363
364         cfg80211_world_regdom = rd;
365 }
366
367 bool is_world_regdom(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
374 static bool is_alpha2_set(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         return alpha2[0] && alpha2[1];
379 }
380
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383         if (!alpha2)
384                 return false;
385         /*
386          * Special case where regulatory domain was built by driver
387          * but a specific alpha2 cannot be determined
388          */
389         return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394         if (!alpha2)
395                 return false;
396         /*
397          * Special case where regulatory domain is the
398          * result of an intersection between two regulatory domain
399          * structures
400          */
401         return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
404 static bool is_an_alpha2(const char *alpha2)
405 {
406         if (!alpha2)
407                 return false;
408         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413         if (!alpha2_x || !alpha2_y)
414                 return false;
415         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
418 static bool regdom_changes(const char *alpha2)
419 {
420         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422         if (!r)
423                 return true;
424         return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435                 return false;
436
437         /* This would indicate a mistake on the design */
438         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439                  "Unexpected user alpha2: %c%c\n",
440                  user_alpha2[0], user_alpha2[1]))
441                 return false;
442
443         return true;
444 }
445
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449         struct ieee80211_regdomain *regd;
450         unsigned int i;
451
452         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453                        GFP_KERNEL);
454         if (!regd)
455                 return ERR_PTR(-ENOMEM);
456
457         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459         for (i = 0; i < src_regd->n_reg_rules; i++)
460                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461                        sizeof(struct ieee80211_reg_rule));
462
463         return regd;
464 }
465
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468         ASSERT_RTNL();
469
470         if (!IS_ERR(cfg80211_user_regdom))
471                 kfree(cfg80211_user_regdom);
472         cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476         struct list_head list;
477         const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485         struct reg_regdb_apply_request *request;
486
487         rtnl_lock();
488
489         mutex_lock(&reg_regdb_apply_mutex);
490         while (!list_empty(&reg_regdb_apply_list)) {
491                 request = list_first_entry(&reg_regdb_apply_list,
492                                            struct reg_regdb_apply_request,
493                                            list);
494                 list_del(&request->list);
495
496                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497                 kfree(request);
498         }
499         mutex_unlock(&reg_regdb_apply_mutex);
500
501         rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508         struct reg_regdb_apply_request *request;
509
510         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511         if (!request) {
512                 kfree(regdom);
513                 return -ENOMEM;
514         }
515
516         request->regdom = regdom;
517
518         mutex_lock(&reg_regdb_apply_mutex);
519         list_add_tail(&request->list, &reg_regdb_apply_list);
520         mutex_unlock(&reg_regdb_apply_mutex);
521
522         schedule_work(&reg_regdb_work);
523         return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true, false);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605         u8 alpha2[2];
606         __be16 coll_ptr;
607         /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611         u8 len;
612         u8 n_rules;
613         u8 dfs_region;
614         /* no optional data yet */
615         /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619         FWDB_FLAG_NO_OFDM       = BIT(0),
620         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
621         FWDB_FLAG_DFS           = BIT(2),
622         FWDB_FLAG_NO_IR         = BIT(3),
623         FWDB_FLAG_AUTO_BW       = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627         u8 ecw;
628         u8 aifsn;
629         __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638         u8 len;
639         u8 flags;
640         __be16 max_eirp;
641         __be32 start, end, max_bw;
642         /* start of optional data */
643         __be16 cac_timeout;
644         __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651         __be32 magic;
652         __be32 version;
653         struct fwdb_country country[];
654 } __packed __aligned(4);
655
656 static int ecw2cw(int ecw)
657 {
658         return (1 << ecw) - 1;
659 }
660
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664         int i;
665
666         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669                 u8 aifsn = ac[i].aifsn;
670
671                 if (cw_min >= cw_max)
672                         return false;
673
674                 if (aifsn < 1)
675                         return false;
676         }
677
678         return true;
679 }
680
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685         if ((u8 *)rule + sizeof(rule->len) > data + size)
686                 return false;
687
688         /* mandatory fields */
689         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690                 return false;
691         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693                 struct fwdb_wmm_rule *wmm;
694
695                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696                         return false;
697
698                 wmm = (void *)(data + wmm_ptr);
699
700                 if (!valid_wmm(wmm))
701                         return false;
702         }
703         return true;
704 }
705
706 static bool valid_country(const u8 *data, unsigned int size,
707                           const struct fwdb_country *country)
708 {
709         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710         struct fwdb_collection *coll = (void *)(data + ptr);
711         __be16 *rules_ptr;
712         unsigned int i;
713
714         /* make sure we can read len/n_rules */
715         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716                 return false;
717
718         /* make sure base struct and all rules fit */
719         if ((u8 *)coll + ALIGN(coll->len, 2) +
720             (coll->n_rules * 2) > data + size)
721                 return false;
722
723         /* mandatory fields must exist */
724         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725                 return false;
726
727         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729         for (i = 0; i < coll->n_rules; i++) {
730                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732                 if (!valid_rule(data, size, rule_ptr))
733                         return false;
734         }
735
736         return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741
742 static struct key *builtin_regdb_keys;
743
744 static int __init load_builtin_regdb_keys(void)
745 {
746         builtin_regdb_keys =
747                 keyring_alloc(".builtin_regdb_keys",
748                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752         if (IS_ERR(builtin_regdb_keys))
753                 return PTR_ERR(builtin_regdb_keys);
754
755         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758         x509_load_certificate_list(shipped_regdb_certs,
759                                    shipped_regdb_certs_len,
760                                    builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764                 x509_load_certificate_list(extra_regdb_certs,
765                                            extra_regdb_certs_len,
766                                            builtin_regdb_keys);
767 #endif
768
769         return 0;
770 }
771
772 MODULE_FIRMWARE("regulatory.db.p7s");
773
774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776         const struct firmware *sig;
777         bool result;
778
779         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780                 return false;
781
782         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783                                         builtin_regdb_keys,
784                                         VERIFYING_UNSPECIFIED_SIGNATURE,
785                                         NULL, NULL) == 0;
786
787         release_firmware(sig);
788
789         return result;
790 }
791
792 static void free_regdb_keyring(void)
793 {
794         key_put(builtin_regdb_keys);
795 }
796 #else
797 static int load_builtin_regdb_keys(void)
798 {
799         return 0;
800 }
801
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804         return true;
805 }
806
807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814         const struct fwdb_header *hdr = (void *)data;
815         const struct fwdb_country *country;
816
817         if (size < sizeof(*hdr))
818                 return false;
819
820         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821                 return false;
822
823         if (hdr->version != cpu_to_be32(FWDB_VERSION))
824                 return false;
825
826         if (!regdb_has_valid_signature(data, size))
827                 return false;
828
829         country = &hdr->country[0];
830         while ((u8 *)(country + 1) <= data + size) {
831                 if (!country->coll_ptr)
832                         break;
833                 if (!valid_country(data, size, country))
834                         return false;
835                 country++;
836         }
837
838         return true;
839 }
840
841 static void set_wmm_rule(const struct fwdb_header *db,
842                          const struct fwdb_country *country,
843                          const struct fwdb_rule *rule,
844                          struct ieee80211_reg_rule *rrule)
845 {
846         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847         struct fwdb_wmm_rule *wmm;
848         unsigned int i, wmm_ptr;
849
850         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851         wmm = (void *)((u8 *)db + wmm_ptr);
852
853         if (!valid_wmm(wmm)) {
854                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856                        country->alpha2[0], country->alpha2[1]);
857                 return;
858         }
859
860         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861                 wmm_rule->client[i].cw_min =
862                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865                 wmm_rule->client[i].cot =
866                         1000 * be16_to_cpu(wmm->client[i].cot);
867                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871         }
872
873         rrule->has_wmm = true;
874 }
875
876 static int __regdb_query_wmm(const struct fwdb_header *db,
877                              const struct fwdb_country *country, int freq,
878                              struct ieee80211_reg_rule *rrule)
879 {
880         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882         int i;
883
884         for (i = 0; i < coll->n_rules; i++) {
885                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890                         continue;
891
892                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894                         set_wmm_rule(db, country, rule, rrule);
895                         return 0;
896                 }
897         }
898
899         return -ENODATA;
900 }
901
902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904         const struct fwdb_header *hdr = regdb;
905         const struct fwdb_country *country;
906
907         if (!regdb)
908                 return -ENODATA;
909
910         if (IS_ERR(regdb))
911                 return PTR_ERR(regdb);
912
913         country = &hdr->country[0];
914         while (country->coll_ptr) {
915                 if (alpha2_equal(alpha2, country->alpha2))
916                         return __regdb_query_wmm(regdb, country, freq, rule);
917
918                 country++;
919         }
920
921         return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924
925 static int regdb_query_country(const struct fwdb_header *db,
926                                const struct fwdb_country *country)
927 {
928         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930         struct ieee80211_regdomain *regdom;
931         unsigned int i;
932
933         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934                          GFP_KERNEL);
935         if (!regdom)
936                 return -ENOMEM;
937
938         regdom->n_reg_rules = coll->n_rules;
939         regdom->alpha2[0] = country->alpha2[0];
940         regdom->alpha2[1] = country->alpha2[1];
941         regdom->dfs_region = coll->dfs_region;
942
943         for (i = 0; i < regdom->n_reg_rules; i++) {
944                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948
949                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953                 rrule->power_rule.max_antenna_gain = 0;
954                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956                 rrule->flags = 0;
957                 if (rule->flags & FWDB_FLAG_NO_OFDM)
958                         rrule->flags |= NL80211_RRF_NO_OFDM;
959                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961                 if (rule->flags & FWDB_FLAG_DFS)
962                         rrule->flags |= NL80211_RRF_DFS;
963                 if (rule->flags & FWDB_FLAG_NO_IR)
964                         rrule->flags |= NL80211_RRF_NO_IR;
965                 if (rule->flags & FWDB_FLAG_AUTO_BW)
966                         rrule->flags |= NL80211_RRF_AUTO_BW;
967
968                 rrule->dfs_cac_ms = 0;
969
970                 /* handle optional data */
971                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972                         rrule->dfs_cac_ms =
973                                 1000 * be16_to_cpu(rule->cac_timeout);
974                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975                         set_wmm_rule(db, country, rule, rrule);
976         }
977
978         return reg_schedule_apply(regdom);
979 }
980
981 static int query_regdb(const char *alpha2)
982 {
983         const struct fwdb_header *hdr = regdb;
984         const struct fwdb_country *country;
985
986         ASSERT_RTNL();
987
988         if (IS_ERR(regdb))
989                 return PTR_ERR(regdb);
990
991         country = &hdr->country[0];
992         while (country->coll_ptr) {
993                 if (alpha2_equal(alpha2, country->alpha2))
994                         return regdb_query_country(regdb, country);
995                 country++;
996         }
997
998         return -ENODATA;
999 }
1000
1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003         int set_error = 0;
1004         bool restore = true;
1005         void *db;
1006
1007         if (!fw) {
1008                 pr_info("failed to load regulatory.db\n");
1009                 set_error = -ENODATA;
1010         } else if (!valid_regdb(fw->data, fw->size)) {
1011                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012                 set_error = -EINVAL;
1013         }
1014
1015         rtnl_lock();
1016         if (regdb && !IS_ERR(regdb)) {
1017                 /* negative case - a bug
1018                  * positive case - can happen due to race in case of multiple cb's in
1019                  * queue, due to usage of asynchronous callback
1020                  *
1021                  * Either case, just restore and free new db.
1022                  */
1023         } else if (set_error) {
1024                 regdb = ERR_PTR(set_error);
1025         } else if (fw) {
1026                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027                 if (db) {
1028                         regdb = db;
1029                         restore = context && query_regdb(context);
1030                 } else {
1031                         restore = true;
1032                 }
1033         }
1034
1035         if (restore)
1036                 restore_regulatory_settings(true, false);
1037
1038         rtnl_unlock();
1039
1040         kfree(context);
1041
1042         release_firmware(fw);
1043 }
1044
1045 MODULE_FIRMWARE("regulatory.db");
1046
1047 static int query_regdb_file(const char *alpha2)
1048 {
1049         int err;
1050
1051         ASSERT_RTNL();
1052
1053         if (regdb)
1054                 return query_regdb(alpha2);
1055
1056         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057         if (!alpha2)
1058                 return -ENOMEM;
1059
1060         err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061                                       &reg_pdev->dev, GFP_KERNEL,
1062                                       (void *)alpha2, regdb_fw_cb);
1063         if (err)
1064                 kfree(alpha2);
1065
1066         return err;
1067 }
1068
1069 int reg_reload_regdb(void)
1070 {
1071         const struct firmware *fw;
1072         void *db;
1073         int err;
1074         const struct ieee80211_regdomain *current_regdomain;
1075         struct regulatory_request *request;
1076
1077         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078         if (err)
1079                 return err;
1080
1081         if (!valid_regdb(fw->data, fw->size)) {
1082                 err = -ENODATA;
1083                 goto out;
1084         }
1085
1086         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087         if (!db) {
1088                 err = -ENOMEM;
1089                 goto out;
1090         }
1091
1092         rtnl_lock();
1093         if (!IS_ERR_OR_NULL(regdb))
1094                 kfree(regdb);
1095         regdb = db;
1096
1097         /* reset regulatory domain */
1098         current_regdomain = get_cfg80211_regdom();
1099
1100         request = kzalloc(sizeof(*request), GFP_KERNEL);
1101         if (!request) {
1102                 err = -ENOMEM;
1103                 goto out_unlock;
1104         }
1105
1106         request->wiphy_idx = WIPHY_IDX_INVALID;
1107         request->alpha2[0] = current_regdomain->alpha2[0];
1108         request->alpha2[1] = current_regdomain->alpha2[1];
1109         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112         reg_process_hint(request);
1113
1114 out_unlock:
1115         rtnl_unlock();
1116  out:
1117         release_firmware(fw);
1118         return err;
1119 }
1120
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123         if (query_regdb_file(request->alpha2) == 0)
1124                 return true;
1125
1126         if (call_crda(request->alpha2) == 0)
1127                 return true;
1128
1129         return false;
1130 }
1131
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134         struct regulatory_request *lr = get_last_request();
1135
1136         if (!lr || lr->processed)
1137                 return false;
1138
1139         return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144         struct regulatory_request *lr = get_last_request();
1145
1146         /*
1147          * Follow the driver's regulatory domain, if present, unless a country
1148          * IE has been processed or a user wants to help complaince further
1149          */
1150         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152             wiphy->regd)
1153                 return get_wiphy_regdom(wiphy);
1154
1155         return get_cfg80211_regdom();
1156 }
1157
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160                                  const struct ieee80211_reg_rule *rule)
1161 {
1162         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163         const struct ieee80211_freq_range *freq_range_tmp;
1164         const struct ieee80211_reg_rule *tmp;
1165         u32 start_freq, end_freq, idx, no;
1166
1167         for (idx = 0; idx < rd->n_reg_rules; idx++)
1168                 if (rule == &rd->reg_rules[idx])
1169                         break;
1170
1171         if (idx == rd->n_reg_rules)
1172                 return 0;
1173
1174         /* get start_freq */
1175         no = idx;
1176
1177         while (no) {
1178                 tmp = &rd->reg_rules[--no];
1179                 freq_range_tmp = &tmp->freq_range;
1180
1181                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182                         break;
1183
1184                 freq_range = freq_range_tmp;
1185         }
1186
1187         start_freq = freq_range->start_freq_khz;
1188
1189         /* get end_freq */
1190         freq_range = &rule->freq_range;
1191         no = idx;
1192
1193         while (no < rd->n_reg_rules - 1) {
1194                 tmp = &rd->reg_rules[++no];
1195                 freq_range_tmp = &tmp->freq_range;
1196
1197                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198                         break;
1199
1200                 freq_range = freq_range_tmp;
1201         }
1202
1203         end_freq = freq_range->end_freq_khz;
1204
1205         return end_freq - start_freq;
1206 }
1207
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209                                    const struct ieee80211_reg_rule *rule)
1210 {
1211         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213         if (rule->flags & NL80211_RRF_NO_320MHZ)
1214                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215         if (rule->flags & NL80211_RRF_NO_160MHZ)
1216                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217         if (rule->flags & NL80211_RRF_NO_80MHZ)
1218                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220         /*
1221          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222          * are not allowed.
1223          */
1224         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225             rule->flags & NL80211_RRF_NO_HT40PLUS)
1226                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228         return bw;
1229 }
1230
1231 /* Sanity check on a regulatory rule */
1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235         u32 freq_diff;
1236
1237         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238                 return false;
1239
1240         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241                 return false;
1242
1243         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246             freq_range->max_bandwidth_khz > freq_diff)
1247                 return false;
1248
1249         return true;
1250 }
1251
1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254         const struct ieee80211_reg_rule *reg_rule = NULL;
1255         unsigned int i;
1256
1257         if (!rd->n_reg_rules)
1258                 return false;
1259
1260         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261                 return false;
1262
1263         for (i = 0; i < rd->n_reg_rules; i++) {
1264                 reg_rule = &rd->reg_rules[i];
1265                 if (!is_valid_reg_rule(reg_rule))
1266                         return false;
1267         }
1268
1269         return true;
1270 }
1271
1272 /**
1273  * freq_in_rule_band - tells us if a frequency is in a frequency band
1274  * @freq_range: frequency rule we want to query
1275  * @freq_khz: frequency we are inquiring about
1276  *
1277  * This lets us know if a specific frequency rule is or is not relevant to
1278  * a specific frequency's band. Bands are device specific and artificial
1279  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280  * however it is safe for now to assume that a frequency rule should not be
1281  * part of a frequency's band if the start freq or end freq are off by more
1282  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283  * 60 GHz band.
1284  * This resolution can be lowered and should be considered as we add
1285  * regulatory rule support for other "bands".
1286  *
1287  * Returns: whether or not the frequency is in the range
1288  */
1289 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290                               u32 freq_khz)
1291 {
1292 #define ONE_GHZ_IN_KHZ  1000000
1293         /*
1294          * From 802.11ad: directional multi-gigabit (DMG):
1295          * Pertaining to operation in a frequency band containing a channel
1296          * with the Channel starting frequency above 45 GHz.
1297          */
1298         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301                 return true;
1302         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303                 return true;
1304         return false;
1305 #undef ONE_GHZ_IN_KHZ
1306 }
1307
1308 /*
1309  * Later on we can perhaps use the more restrictive DFS
1310  * region but we don't have information for that yet so
1311  * for now simply disallow conflicts.
1312  */
1313 static enum nl80211_dfs_regions
1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315                          const enum nl80211_dfs_regions dfs_region2)
1316 {
1317         if (dfs_region1 != dfs_region2)
1318                 return NL80211_DFS_UNSET;
1319         return dfs_region1;
1320 }
1321
1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323                                     const struct ieee80211_wmm_ac *wmm_ac2,
1324                                     struct ieee80211_wmm_ac *intersect)
1325 {
1326         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330 }
1331
1332 /*
1333  * Helper for regdom_intersect(), this does the real
1334  * mathematical intersection fun
1335  */
1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337                                const struct ieee80211_regdomain *rd2,
1338                                const struct ieee80211_reg_rule *rule1,
1339                                const struct ieee80211_reg_rule *rule2,
1340                                struct ieee80211_reg_rule *intersected_rule)
1341 {
1342         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343         struct ieee80211_freq_range *freq_range;
1344         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345         struct ieee80211_power_rule *power_rule;
1346         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347         struct ieee80211_wmm_rule *wmm_rule;
1348         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350         freq_range1 = &rule1->freq_range;
1351         freq_range2 = &rule2->freq_range;
1352         freq_range = &intersected_rule->freq_range;
1353
1354         power_rule1 = &rule1->power_rule;
1355         power_rule2 = &rule2->power_rule;
1356         power_rule = &intersected_rule->power_rule;
1357
1358         wmm_rule1 = &rule1->wmm_rule;
1359         wmm_rule2 = &rule2->wmm_rule;
1360         wmm_rule = &intersected_rule->wmm_rule;
1361
1362         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363                                          freq_range2->start_freq_khz);
1364         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365                                        freq_range2->end_freq_khz);
1366
1367         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370         if (rule1->flags & NL80211_RRF_AUTO_BW)
1371                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372         if (rule2->flags & NL80211_RRF_AUTO_BW)
1373                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377         intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379         /*
1380          * In case NL80211_RRF_AUTO_BW requested for both rules
1381          * set AUTO_BW in intersected rule also. Next we will
1382          * calculate BW correctly in handle_channel function.
1383          * In other case remove AUTO_BW flag while we calculate
1384          * maximum bandwidth correctly and auto calculation is
1385          * not required.
1386          */
1387         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388             (rule2->flags & NL80211_RRF_AUTO_BW))
1389                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390         else
1391                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394         if (freq_range->max_bandwidth_khz > freq_diff)
1395                 freq_range->max_bandwidth_khz = freq_diff;
1396
1397         power_rule->max_eirp = min(power_rule1->max_eirp,
1398                 power_rule2->max_eirp);
1399         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400                 power_rule2->max_antenna_gain);
1401
1402         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403                                            rule2->dfs_cac_ms);
1404
1405         if (rule1->has_wmm && rule2->has_wmm) {
1406                 u8 ac;
1407
1408                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410                                                 &wmm_rule2->client[ac],
1411                                                 &wmm_rule->client[ac]);
1412                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413                                                 &wmm_rule2->ap[ac],
1414                                                 &wmm_rule->ap[ac]);
1415                 }
1416
1417                 intersected_rule->has_wmm = true;
1418         } else if (rule1->has_wmm) {
1419                 *wmm_rule = *wmm_rule1;
1420                 intersected_rule->has_wmm = true;
1421         } else if (rule2->has_wmm) {
1422                 *wmm_rule = *wmm_rule2;
1423                 intersected_rule->has_wmm = true;
1424         } else {
1425                 intersected_rule->has_wmm = false;
1426         }
1427
1428         if (!is_valid_reg_rule(intersected_rule))
1429                 return -EINVAL;
1430
1431         return 0;
1432 }
1433
1434 /* check whether old rule contains new rule */
1435 static bool rule_contains(struct ieee80211_reg_rule *r1,
1436                           struct ieee80211_reg_rule *r2)
1437 {
1438         /* for simplicity, currently consider only same flags */
1439         if (r1->flags != r2->flags)
1440                 return false;
1441
1442         /* verify r1 is more restrictive */
1443         if ((r1->power_rule.max_antenna_gain >
1444              r2->power_rule.max_antenna_gain) ||
1445             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446                 return false;
1447
1448         /* make sure r2's range is contained within r1 */
1449         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451                 return false;
1452
1453         /* and finally verify that r1.max_bw >= r2.max_bw */
1454         if (r1->freq_range.max_bandwidth_khz <
1455             r2->freq_range.max_bandwidth_khz)
1456                 return false;
1457
1458         return true;
1459 }
1460
1461 /* add or extend current rules. do nothing if rule is already contained */
1462 static void add_rule(struct ieee80211_reg_rule *rule,
1463                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464 {
1465         struct ieee80211_reg_rule *tmp_rule;
1466         int i;
1467
1468         for (i = 0; i < *n_rules; i++) {
1469                 tmp_rule = &reg_rules[i];
1470                 /* rule is already contained - do nothing */
1471                 if (rule_contains(tmp_rule, rule))
1472                         return;
1473
1474                 /* extend rule if possible */
1475                 if (rule_contains(rule, tmp_rule)) {
1476                         memcpy(tmp_rule, rule, sizeof(*rule));
1477                         return;
1478                 }
1479         }
1480
1481         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482         (*n_rules)++;
1483 }
1484
1485 /**
1486  * regdom_intersect - do the intersection between two regulatory domains
1487  * @rd1: first regulatory domain
1488  * @rd2: second regulatory domain
1489  *
1490  * Use this function to get the intersection between two regulatory domains.
1491  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492  * as no one single alpha2 can represent this regulatory domain.
1493  *
1494  * Returns a pointer to the regulatory domain structure which will hold the
1495  * resulting intersection of rules between rd1 and rd2. We will
1496  * kzalloc() this structure for you.
1497  *
1498  * Returns: the intersected regdomain
1499  */
1500 static struct ieee80211_regdomain *
1501 regdom_intersect(const struct ieee80211_regdomain *rd1,
1502                  const struct ieee80211_regdomain *rd2)
1503 {
1504         int r;
1505         unsigned int x, y;
1506         unsigned int num_rules = 0;
1507         const struct ieee80211_reg_rule *rule1, *rule2;
1508         struct ieee80211_reg_rule intersected_rule;
1509         struct ieee80211_regdomain *rd;
1510
1511         if (!rd1 || !rd2)
1512                 return NULL;
1513
1514         /*
1515          * First we get a count of the rules we'll need, then we actually
1516          * build them. This is to so we can malloc() and free() a
1517          * regdomain once. The reason we use reg_rules_intersect() here
1518          * is it will return -EINVAL if the rule computed makes no sense.
1519          * All rules that do check out OK are valid.
1520          */
1521
1522         for (x = 0; x < rd1->n_reg_rules; x++) {
1523                 rule1 = &rd1->reg_rules[x];
1524                 for (y = 0; y < rd2->n_reg_rules; y++) {
1525                         rule2 = &rd2->reg_rules[y];
1526                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527                                                  &intersected_rule))
1528                                 num_rules++;
1529                 }
1530         }
1531
1532         if (!num_rules)
1533                 return NULL;
1534
1535         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536         if (!rd)
1537                 return NULL;
1538
1539         for (x = 0; x < rd1->n_reg_rules; x++) {
1540                 rule1 = &rd1->reg_rules[x];
1541                 for (y = 0; y < rd2->n_reg_rules; y++) {
1542                         rule2 = &rd2->reg_rules[y];
1543                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544                                                 &intersected_rule);
1545                         /*
1546                          * No need to memset here the intersected rule here as
1547                          * we're not using the stack anymore
1548                          */
1549                         if (r)
1550                                 continue;
1551
1552                         add_rule(&intersected_rule, rd->reg_rules,
1553                                  &rd->n_reg_rules);
1554                 }
1555         }
1556
1557         rd->alpha2[0] = '9';
1558         rd->alpha2[1] = '8';
1559         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560                                                   rd2->dfs_region);
1561
1562         return rd;
1563 }
1564
1565 /*
1566  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567  * want to just have the channel structure use these
1568  */
1569 static u32 map_regdom_flags(u32 rd_flags)
1570 {
1571         u32 channel_flags = 0;
1572         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573                 channel_flags |= IEEE80211_CHAN_NO_IR;
1574         if (rd_flags & NL80211_RRF_DFS)
1575                 channel_flags |= IEEE80211_CHAN_RADAR;
1576         if (rd_flags & NL80211_RRF_NO_OFDM)
1577                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586         if (rd_flags & NL80211_RRF_NO_80MHZ)
1587                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588         if (rd_flags & NL80211_RRF_NO_160MHZ)
1589                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590         if (rd_flags & NL80211_RRF_NO_HE)
1591                 channel_flags |= IEEE80211_CHAN_NO_HE;
1592         if (rd_flags & NL80211_RRF_NO_320MHZ)
1593                 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594         if (rd_flags & NL80211_RRF_NO_EHT)
1595                 channel_flags |= IEEE80211_CHAN_NO_EHT;
1596         if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597                 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598         if (rd_flags & NL80211_RRF_NO_UHB_VLP_CLIENT)
1599                 channel_flags |= IEEE80211_CHAN_NO_UHB_VLP_CLIENT;
1600         if (rd_flags & NL80211_RRF_NO_UHB_AFC_CLIENT)
1601                 channel_flags |= IEEE80211_CHAN_NO_UHB_AFC_CLIENT;
1602         if (rd_flags & NL80211_RRF_PSD)
1603                 channel_flags |= IEEE80211_CHAN_PSD;
1604         return channel_flags;
1605 }
1606
1607 static const struct ieee80211_reg_rule *
1608 freq_reg_info_regd(u32 center_freq,
1609                    const struct ieee80211_regdomain *regd, u32 bw)
1610 {
1611         int i;
1612         bool band_rule_found = false;
1613         bool bw_fits = false;
1614
1615         if (!regd)
1616                 return ERR_PTR(-EINVAL);
1617
1618         for (i = 0; i < regd->n_reg_rules; i++) {
1619                 const struct ieee80211_reg_rule *rr;
1620                 const struct ieee80211_freq_range *fr = NULL;
1621
1622                 rr = &regd->reg_rules[i];
1623                 fr = &rr->freq_range;
1624
1625                 /*
1626                  * We only need to know if one frequency rule was
1627                  * in center_freq's band, that's enough, so let's
1628                  * not overwrite it once found
1629                  */
1630                 if (!band_rule_found)
1631                         band_rule_found = freq_in_rule_band(fr, center_freq);
1632
1633                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1634
1635                 if (band_rule_found && bw_fits)
1636                         return rr;
1637         }
1638
1639         if (!band_rule_found)
1640                 return ERR_PTR(-ERANGE);
1641
1642         return ERR_PTR(-EINVAL);
1643 }
1644
1645 static const struct ieee80211_reg_rule *
1646 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1647 {
1648         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1649         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1650         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1651         int i = ARRAY_SIZE(bws) - 1;
1652         u32 bw;
1653
1654         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1655                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1656                 if (!IS_ERR(reg_rule))
1657                         return reg_rule;
1658         }
1659
1660         return reg_rule;
1661 }
1662
1663 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1664                                                u32 center_freq)
1665 {
1666         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1667
1668         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1669 }
1670 EXPORT_SYMBOL(freq_reg_info);
1671
1672 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1673 {
1674         switch (initiator) {
1675         case NL80211_REGDOM_SET_BY_CORE:
1676                 return "core";
1677         case NL80211_REGDOM_SET_BY_USER:
1678                 return "user";
1679         case NL80211_REGDOM_SET_BY_DRIVER:
1680                 return "driver";
1681         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1682                 return "country element";
1683         default:
1684                 WARN_ON(1);
1685                 return "bug";
1686         }
1687 }
1688 EXPORT_SYMBOL(reg_initiator_name);
1689
1690 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1691                                           const struct ieee80211_reg_rule *reg_rule,
1692                                           const struct ieee80211_channel *chan)
1693 {
1694         const struct ieee80211_freq_range *freq_range = NULL;
1695         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1696         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1697
1698         freq_range = &reg_rule->freq_range;
1699
1700         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1701         center_freq_khz = ieee80211_channel_to_khz(chan);
1702         /* Check if auto calculation requested */
1703         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1704                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1705
1706         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1707         if (!cfg80211_does_bw_fit_range(freq_range,
1708                                         center_freq_khz,
1709                                         MHZ_TO_KHZ(10)))
1710                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1711         if (!cfg80211_does_bw_fit_range(freq_range,
1712                                         center_freq_khz,
1713                                         MHZ_TO_KHZ(20)))
1714                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1715
1716         if (is_s1g) {
1717                 /* S1G is strict about non overlapping channels. We can
1718                  * calculate which bandwidth is allowed per channel by finding
1719                  * the largest bandwidth which cleanly divides the freq_range.
1720                  */
1721                 int edge_offset;
1722                 int ch_bw = max_bandwidth_khz;
1723
1724                 while (ch_bw) {
1725                         edge_offset = (center_freq_khz - ch_bw / 2) -
1726                                       freq_range->start_freq_khz;
1727                         if (edge_offset % ch_bw == 0) {
1728                                 switch (KHZ_TO_MHZ(ch_bw)) {
1729                                 case 1:
1730                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1731                                         break;
1732                                 case 2:
1733                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1734                                         break;
1735                                 case 4:
1736                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1737                                         break;
1738                                 case 8:
1739                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1740                                         break;
1741                                 case 16:
1742                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1743                                         break;
1744                                 default:
1745                                         /* If we got here, no bandwidths fit on
1746                                          * this frequency, ie. band edge.
1747                                          */
1748                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1749                                         break;
1750                                 }
1751                                 break;
1752                         }
1753                         ch_bw /= 2;
1754                 }
1755         } else {
1756                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1757                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1759                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1760                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1761                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1762                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1763                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1764                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1765                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1766                 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1767                         bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1768         }
1769         return bw_flags;
1770 }
1771
1772 static void handle_channel_single_rule(struct wiphy *wiphy,
1773                                        enum nl80211_reg_initiator initiator,
1774                                        struct ieee80211_channel *chan,
1775                                        u32 flags,
1776                                        struct regulatory_request *lr,
1777                                        struct wiphy *request_wiphy,
1778                                        const struct ieee80211_reg_rule *reg_rule)
1779 {
1780         u32 bw_flags = 0;
1781         const struct ieee80211_power_rule *power_rule = NULL;
1782         const struct ieee80211_regdomain *regd;
1783
1784         regd = reg_get_regdomain(wiphy);
1785
1786         power_rule = &reg_rule->power_rule;
1787         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1788
1789         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1790             request_wiphy && request_wiphy == wiphy &&
1791             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1792                 /*
1793                  * This guarantees the driver's requested regulatory domain
1794                  * will always be used as a base for further regulatory
1795                  * settings
1796                  */
1797                 chan->flags = chan->orig_flags =
1798                         map_regdom_flags(reg_rule->flags) | bw_flags;
1799                 chan->max_antenna_gain = chan->orig_mag =
1800                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1801                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1802                         (int) MBM_TO_DBM(power_rule->max_eirp);
1803
1804                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1805                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1806                         if (reg_rule->dfs_cac_ms)
1807                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1808                 }
1809
1810                 if (chan->flags & IEEE80211_CHAN_PSD)
1811                         chan->psd = reg_rule->psd;
1812
1813                 return;
1814         }
1815
1816         chan->dfs_state = NL80211_DFS_USABLE;
1817         chan->dfs_state_entered = jiffies;
1818
1819         chan->beacon_found = false;
1820         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1821         chan->max_antenna_gain =
1822                 min_t(int, chan->orig_mag,
1823                       MBI_TO_DBI(power_rule->max_antenna_gain));
1824         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1825
1826         if (chan->flags & IEEE80211_CHAN_RADAR) {
1827                 if (reg_rule->dfs_cac_ms)
1828                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1829                 else
1830                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1831         }
1832
1833         if (chan->flags & IEEE80211_CHAN_PSD)
1834                 chan->psd = reg_rule->psd;
1835
1836         if (chan->orig_mpwr) {
1837                 /*
1838                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1839                  * will always follow the passed country IE power settings.
1840                  */
1841                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1842                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1843                         chan->max_power = chan->max_reg_power;
1844                 else
1845                         chan->max_power = min(chan->orig_mpwr,
1846                                               chan->max_reg_power);
1847         } else
1848                 chan->max_power = chan->max_reg_power;
1849 }
1850
1851 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1852                                           enum nl80211_reg_initiator initiator,
1853                                           struct ieee80211_channel *chan,
1854                                           u32 flags,
1855                                           struct regulatory_request *lr,
1856                                           struct wiphy *request_wiphy,
1857                                           const struct ieee80211_reg_rule *rrule1,
1858                                           const struct ieee80211_reg_rule *rrule2,
1859                                           struct ieee80211_freq_range *comb_range)
1860 {
1861         u32 bw_flags1 = 0;
1862         u32 bw_flags2 = 0;
1863         const struct ieee80211_power_rule *power_rule1 = NULL;
1864         const struct ieee80211_power_rule *power_rule2 = NULL;
1865         const struct ieee80211_regdomain *regd;
1866
1867         regd = reg_get_regdomain(wiphy);
1868
1869         power_rule1 = &rrule1->power_rule;
1870         power_rule2 = &rrule2->power_rule;
1871         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1872         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1873
1874         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1875             request_wiphy && request_wiphy == wiphy &&
1876             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1877                 /* This guarantees the driver's requested regulatory domain
1878                  * will always be used as a base for further regulatory
1879                  * settings
1880                  */
1881                 chan->flags =
1882                         map_regdom_flags(rrule1->flags) |
1883                         map_regdom_flags(rrule2->flags) |
1884                         bw_flags1 |
1885                         bw_flags2;
1886                 chan->orig_flags = chan->flags;
1887                 chan->max_antenna_gain =
1888                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1889                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1890                 chan->orig_mag = chan->max_antenna_gain;
1891                 chan->max_reg_power =
1892                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1893                               MBM_TO_DBM(power_rule2->max_eirp));
1894                 chan->max_power = chan->max_reg_power;
1895                 chan->orig_mpwr = chan->max_reg_power;
1896
1897                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1898                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1899                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1900                                 chan->dfs_cac_ms = max_t(unsigned int,
1901                                                          rrule1->dfs_cac_ms,
1902                                                          rrule2->dfs_cac_ms);
1903                 }
1904
1905                 if ((rrule1->flags & NL80211_RRF_PSD) &&
1906                     (rrule2->flags & NL80211_RRF_PSD))
1907                         chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1908                 else
1909                         chan->flags &= ~NL80211_RRF_PSD;
1910
1911                 return;
1912         }
1913
1914         chan->dfs_state = NL80211_DFS_USABLE;
1915         chan->dfs_state_entered = jiffies;
1916
1917         chan->beacon_found = false;
1918         chan->flags = flags | bw_flags1 | bw_flags2 |
1919                       map_regdom_flags(rrule1->flags) |
1920                       map_regdom_flags(rrule2->flags);
1921
1922         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1923          * (otherwise no adj. rule case), recheck therefore
1924          */
1925         if (cfg80211_does_bw_fit_range(comb_range,
1926                                        ieee80211_channel_to_khz(chan),
1927                                        MHZ_TO_KHZ(10)))
1928                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1929         if (cfg80211_does_bw_fit_range(comb_range,
1930                                        ieee80211_channel_to_khz(chan),
1931                                        MHZ_TO_KHZ(20)))
1932                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1933
1934         chan->max_antenna_gain =
1935                 min_t(int, chan->orig_mag,
1936                       min_t(int,
1937                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1938                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1939         chan->max_reg_power = min_t(int,
1940                                     MBM_TO_DBM(power_rule1->max_eirp),
1941                                     MBM_TO_DBM(power_rule2->max_eirp));
1942
1943         if (chan->flags & IEEE80211_CHAN_RADAR) {
1944                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1945                         chan->dfs_cac_ms = max_t(unsigned int,
1946                                                  rrule1->dfs_cac_ms,
1947                                                  rrule2->dfs_cac_ms);
1948                 else
1949                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1950         }
1951
1952         if (chan->orig_mpwr) {
1953                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1954                  * will always follow the passed country IE power settings.
1955                  */
1956                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1957                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1958                         chan->max_power = chan->max_reg_power;
1959                 else
1960                         chan->max_power = min(chan->orig_mpwr,
1961                                               chan->max_reg_power);
1962         } else {
1963                 chan->max_power = chan->max_reg_power;
1964         }
1965 }
1966
1967 /* Note that right now we assume the desired channel bandwidth
1968  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1969  * per channel, the primary and the extension channel).
1970  */
1971 static void handle_channel(struct wiphy *wiphy,
1972                            enum nl80211_reg_initiator initiator,
1973                            struct ieee80211_channel *chan)
1974 {
1975         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1976         struct regulatory_request *lr = get_last_request();
1977         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1978         const struct ieee80211_reg_rule *rrule = NULL;
1979         const struct ieee80211_reg_rule *rrule1 = NULL;
1980         const struct ieee80211_reg_rule *rrule2 = NULL;
1981
1982         u32 flags = chan->orig_flags;
1983
1984         rrule = freq_reg_info(wiphy, orig_chan_freq);
1985         if (IS_ERR(rrule)) {
1986                 /* check for adjacent match, therefore get rules for
1987                  * chan - 20 MHz and chan + 20 MHz and test
1988                  * if reg rules are adjacent
1989                  */
1990                 rrule1 = freq_reg_info(wiphy,
1991                                        orig_chan_freq - MHZ_TO_KHZ(20));
1992                 rrule2 = freq_reg_info(wiphy,
1993                                        orig_chan_freq + MHZ_TO_KHZ(20));
1994                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1995                         struct ieee80211_freq_range comb_range;
1996
1997                         if (rrule1->freq_range.end_freq_khz !=
1998                             rrule2->freq_range.start_freq_khz)
1999                                 goto disable_chan;
2000
2001                         comb_range.start_freq_khz =
2002                                 rrule1->freq_range.start_freq_khz;
2003                         comb_range.end_freq_khz =
2004                                 rrule2->freq_range.end_freq_khz;
2005                         comb_range.max_bandwidth_khz =
2006                                 min_t(u32,
2007                                       rrule1->freq_range.max_bandwidth_khz,
2008                                       rrule2->freq_range.max_bandwidth_khz);
2009
2010                         if (!cfg80211_does_bw_fit_range(&comb_range,
2011                                                         orig_chan_freq,
2012                                                         MHZ_TO_KHZ(20)))
2013                                 goto disable_chan;
2014
2015                         handle_channel_adjacent_rules(wiphy, initiator, chan,
2016                                                       flags, lr, request_wiphy,
2017                                                       rrule1, rrule2,
2018                                                       &comb_range);
2019                         return;
2020                 }
2021
2022 disable_chan:
2023                 /* We will disable all channels that do not match our
2024                  * received regulatory rule unless the hint is coming
2025                  * from a Country IE and the Country IE had no information
2026                  * about a band. The IEEE 802.11 spec allows for an AP
2027                  * to send only a subset of the regulatory rules allowed,
2028                  * so an AP in the US that only supports 2.4 GHz may only send
2029                  * a country IE with information for the 2.4 GHz band
2030                  * while 5 GHz is still supported.
2031                  */
2032                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2033                     PTR_ERR(rrule) == -ERANGE)
2034                         return;
2035
2036                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2037                     request_wiphy && request_wiphy == wiphy &&
2038                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2039                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2040                                  chan->center_freq, chan->freq_offset);
2041                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2042                         chan->flags = chan->orig_flags;
2043                 } else {
2044                         pr_debug("Disabling freq %d.%03d MHz\n",
2045                                  chan->center_freq, chan->freq_offset);
2046                         chan->flags |= IEEE80211_CHAN_DISABLED;
2047                 }
2048                 return;
2049         }
2050
2051         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2052                                    request_wiphy, rrule);
2053 }
2054
2055 static void handle_band(struct wiphy *wiphy,
2056                         enum nl80211_reg_initiator initiator,
2057                         struct ieee80211_supported_band *sband)
2058 {
2059         unsigned int i;
2060
2061         if (!sband)
2062                 return;
2063
2064         for (i = 0; i < sband->n_channels; i++)
2065                 handle_channel(wiphy, initiator, &sband->channels[i]);
2066 }
2067
2068 static bool reg_request_cell_base(struct regulatory_request *request)
2069 {
2070         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2071                 return false;
2072         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2073 }
2074
2075 bool reg_last_request_cell_base(void)
2076 {
2077         return reg_request_cell_base(get_last_request());
2078 }
2079
2080 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2081 /* Core specific check */
2082 static enum reg_request_treatment
2083 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2084 {
2085         struct regulatory_request *lr = get_last_request();
2086
2087         if (!reg_num_devs_support_basehint)
2088                 return REG_REQ_IGNORE;
2089
2090         if (reg_request_cell_base(lr) &&
2091             !regdom_changes(pending_request->alpha2))
2092                 return REG_REQ_ALREADY_SET;
2093
2094         return REG_REQ_OK;
2095 }
2096
2097 /* Device specific check */
2098 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2099 {
2100         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2101 }
2102 #else
2103 static enum reg_request_treatment
2104 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2105 {
2106         return REG_REQ_IGNORE;
2107 }
2108
2109 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2110 {
2111         return true;
2112 }
2113 #endif
2114
2115 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2116 {
2117         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2118             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2119                 return true;
2120         return false;
2121 }
2122
2123 static bool ignore_reg_update(struct wiphy *wiphy,
2124                               enum nl80211_reg_initiator initiator)
2125 {
2126         struct regulatory_request *lr = get_last_request();
2127
2128         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2129                 return true;
2130
2131         if (!lr) {
2132                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2133                          reg_initiator_name(initiator));
2134                 return true;
2135         }
2136
2137         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2138             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2139                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2140                          reg_initiator_name(initiator));
2141                 return true;
2142         }
2143
2144         /*
2145          * wiphy->regd will be set once the device has its own
2146          * desired regulatory domain set
2147          */
2148         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2149             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2150             !is_world_regdom(lr->alpha2)) {
2151                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2152                          reg_initiator_name(initiator));
2153                 return true;
2154         }
2155
2156         if (reg_request_cell_base(lr))
2157                 return reg_dev_ignore_cell_hint(wiphy);
2158
2159         return false;
2160 }
2161
2162 static bool reg_is_world_roaming(struct wiphy *wiphy)
2163 {
2164         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2165         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2166         struct regulatory_request *lr = get_last_request();
2167
2168         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2169                 return true;
2170
2171         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2172             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2173                 return true;
2174
2175         return false;
2176 }
2177
2178 static void reg_call_notifier(struct wiphy *wiphy,
2179                               struct regulatory_request *request)
2180 {
2181         if (wiphy->reg_notifier)
2182                 wiphy->reg_notifier(wiphy, request);
2183 }
2184
2185 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2186                               struct reg_beacon *reg_beacon)
2187 {
2188         struct ieee80211_supported_band *sband;
2189         struct ieee80211_channel *chan;
2190         bool channel_changed = false;
2191         struct ieee80211_channel chan_before;
2192         struct regulatory_request *lr = get_last_request();
2193
2194         sband = wiphy->bands[reg_beacon->chan.band];
2195         chan = &sband->channels[chan_idx];
2196
2197         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2198                 return;
2199
2200         if (chan->beacon_found)
2201                 return;
2202
2203         chan->beacon_found = true;
2204
2205         if (!reg_is_world_roaming(wiphy))
2206                 return;
2207
2208         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2209                 return;
2210
2211         chan_before = *chan;
2212
2213         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2214                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2215                 channel_changed = true;
2216         }
2217
2218         if (channel_changed) {
2219                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2220                 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2221                         reg_call_notifier(wiphy, lr);
2222         }
2223 }
2224
2225 /*
2226  * Called when a scan on a wiphy finds a beacon on
2227  * new channel
2228  */
2229 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2230                                     struct reg_beacon *reg_beacon)
2231 {
2232         unsigned int i;
2233         struct ieee80211_supported_band *sband;
2234
2235         if (!wiphy->bands[reg_beacon->chan.band])
2236                 return;
2237
2238         sband = wiphy->bands[reg_beacon->chan.band];
2239
2240         for (i = 0; i < sband->n_channels; i++)
2241                 handle_reg_beacon(wiphy, i, reg_beacon);
2242 }
2243
2244 /*
2245  * Called upon reg changes or a new wiphy is added
2246  */
2247 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2248 {
2249         unsigned int i;
2250         struct ieee80211_supported_band *sband;
2251         struct reg_beacon *reg_beacon;
2252
2253         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2254                 if (!wiphy->bands[reg_beacon->chan.band])
2255                         continue;
2256                 sband = wiphy->bands[reg_beacon->chan.band];
2257                 for (i = 0; i < sband->n_channels; i++)
2258                         handle_reg_beacon(wiphy, i, reg_beacon);
2259         }
2260 }
2261
2262 /* Reap the advantages of previously found beacons */
2263 static void reg_process_beacons(struct wiphy *wiphy)
2264 {
2265         /*
2266          * Means we are just firing up cfg80211, so no beacons would
2267          * have been processed yet.
2268          */
2269         if (!last_request)
2270                 return;
2271         wiphy_update_beacon_reg(wiphy);
2272 }
2273
2274 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2275 {
2276         if (!chan)
2277                 return false;
2278         if (chan->flags & IEEE80211_CHAN_DISABLED)
2279                 return false;
2280         /* This would happen when regulatory rules disallow HT40 completely */
2281         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2282                 return false;
2283         return true;
2284 }
2285
2286 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2287                                          struct ieee80211_channel *channel)
2288 {
2289         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2290         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2291         const struct ieee80211_regdomain *regd;
2292         unsigned int i;
2293         u32 flags;
2294
2295         if (!is_ht40_allowed(channel)) {
2296                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2297                 return;
2298         }
2299
2300         /*
2301          * We need to ensure the extension channels exist to
2302          * be able to use HT40- or HT40+, this finds them (or not)
2303          */
2304         for (i = 0; i < sband->n_channels; i++) {
2305                 struct ieee80211_channel *c = &sband->channels[i];
2306
2307                 if (c->center_freq == (channel->center_freq - 20))
2308                         channel_before = c;
2309                 if (c->center_freq == (channel->center_freq + 20))
2310                         channel_after = c;
2311         }
2312
2313         flags = 0;
2314         regd = get_wiphy_regdom(wiphy);
2315         if (regd) {
2316                 const struct ieee80211_reg_rule *reg_rule =
2317                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2318                                            regd, MHZ_TO_KHZ(20));
2319
2320                 if (!IS_ERR(reg_rule))
2321                         flags = reg_rule->flags;
2322         }
2323
2324         /*
2325          * Please note that this assumes target bandwidth is 20 MHz,
2326          * if that ever changes we also need to change the below logic
2327          * to include that as well.
2328          */
2329         if (!is_ht40_allowed(channel_before) ||
2330             flags & NL80211_RRF_NO_HT40MINUS)
2331                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2332         else
2333                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2334
2335         if (!is_ht40_allowed(channel_after) ||
2336             flags & NL80211_RRF_NO_HT40PLUS)
2337                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2338         else
2339                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2340 }
2341
2342 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2343                                       struct ieee80211_supported_band *sband)
2344 {
2345         unsigned int i;
2346
2347         if (!sband)
2348                 return;
2349
2350         for (i = 0; i < sband->n_channels; i++)
2351                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2352 }
2353
2354 static void reg_process_ht_flags(struct wiphy *wiphy)
2355 {
2356         enum nl80211_band band;
2357
2358         if (!wiphy)
2359                 return;
2360
2361         for (band = 0; band < NUM_NL80211_BANDS; band++)
2362                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2363 }
2364
2365 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2366 {
2367         struct cfg80211_chan_def chandef = {};
2368         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2369         enum nl80211_iftype iftype;
2370         bool ret;
2371         int link;
2372
2373         iftype = wdev->iftype;
2374
2375         /* make sure the interface is active */
2376         if (!wdev->netdev || !netif_running(wdev->netdev))
2377                 return true;
2378
2379         for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2380                 struct ieee80211_channel *chan;
2381
2382                 if (!wdev->valid_links && link > 0)
2383                         break;
2384                 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2385                         continue;
2386                 switch (iftype) {
2387                 case NL80211_IFTYPE_AP:
2388                 case NL80211_IFTYPE_P2P_GO:
2389                         if (!wdev->links[link].ap.beacon_interval)
2390                                 continue;
2391                         chandef = wdev->links[link].ap.chandef;
2392                         break;
2393                 case NL80211_IFTYPE_MESH_POINT:
2394                         if (!wdev->u.mesh.beacon_interval)
2395                                 continue;
2396                         chandef = wdev->u.mesh.chandef;
2397                         break;
2398                 case NL80211_IFTYPE_ADHOC:
2399                         if (!wdev->u.ibss.ssid_len)
2400                                 continue;
2401                         chandef = wdev->u.ibss.chandef;
2402                         break;
2403                 case NL80211_IFTYPE_STATION:
2404                 case NL80211_IFTYPE_P2P_CLIENT:
2405                         /* Maybe we could consider disabling that link only? */
2406                         if (!wdev->links[link].client.current_bss)
2407                                 continue;
2408
2409                         chan = wdev->links[link].client.current_bss->pub.channel;
2410                         if (!chan)
2411                                 continue;
2412
2413                         if (!rdev->ops->get_channel ||
2414                             rdev_get_channel(rdev, wdev, link, &chandef))
2415                                 cfg80211_chandef_create(&chandef, chan,
2416                                                         NL80211_CHAN_NO_HT);
2417                         break;
2418                 case NL80211_IFTYPE_MONITOR:
2419                 case NL80211_IFTYPE_AP_VLAN:
2420                 case NL80211_IFTYPE_P2P_DEVICE:
2421                         /* no enforcement required */
2422                         break;
2423                 case NL80211_IFTYPE_OCB:
2424                         if (!wdev->u.ocb.chandef.chan)
2425                                 continue;
2426                         chandef = wdev->u.ocb.chandef;
2427                         break;
2428                 case NL80211_IFTYPE_NAN:
2429                         /* we have no info, but NAN is also pretty universal */
2430                         continue;
2431                 default:
2432                         /* others not implemented for now */
2433                         WARN_ON_ONCE(1);
2434                         break;
2435                 }
2436
2437                 switch (iftype) {
2438                 case NL80211_IFTYPE_AP:
2439                 case NL80211_IFTYPE_P2P_GO:
2440                 case NL80211_IFTYPE_ADHOC:
2441                 case NL80211_IFTYPE_MESH_POINT:
2442                         ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2443                                                             iftype);
2444                         if (!ret)
2445                                 return ret;
2446                         break;
2447                 case NL80211_IFTYPE_STATION:
2448                 case NL80211_IFTYPE_P2P_CLIENT:
2449                         ret = cfg80211_chandef_usable(wiphy, &chandef,
2450                                                       IEEE80211_CHAN_DISABLED);
2451                         if (!ret)
2452                                 return ret;
2453                         break;
2454                 default:
2455                         break;
2456                 }
2457         }
2458
2459         return true;
2460 }
2461
2462 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2463 {
2464         struct wireless_dev *wdev;
2465         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2466
2467         wiphy_lock(wiphy);
2468         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2469                 if (!reg_wdev_chan_valid(wiphy, wdev))
2470                         cfg80211_leave(rdev, wdev);
2471         wiphy_unlock(wiphy);
2472 }
2473
2474 static void reg_check_chans_work(struct work_struct *work)
2475 {
2476         struct cfg80211_registered_device *rdev;
2477
2478         pr_debug("Verifying active interfaces after reg change\n");
2479         rtnl_lock();
2480
2481         for_each_rdev(rdev)
2482                 reg_leave_invalid_chans(&rdev->wiphy);
2483
2484         rtnl_unlock();
2485 }
2486
2487 void reg_check_channels(void)
2488 {
2489         /*
2490          * Give usermode a chance to do something nicer (move to another
2491          * channel, orderly disconnection), before forcing a disconnection.
2492          */
2493         mod_delayed_work(system_power_efficient_wq,
2494                          &reg_check_chans,
2495                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2496 }
2497
2498 static void wiphy_update_regulatory(struct wiphy *wiphy,
2499                                     enum nl80211_reg_initiator initiator)
2500 {
2501         enum nl80211_band band;
2502         struct regulatory_request *lr = get_last_request();
2503
2504         if (ignore_reg_update(wiphy, initiator)) {
2505                 /*
2506                  * Regulatory updates set by CORE are ignored for custom
2507                  * regulatory cards. Let us notify the changes to the driver,
2508                  * as some drivers used this to restore its orig_* reg domain.
2509                  */
2510                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2511                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2512                     !(wiphy->regulatory_flags &
2513                       REGULATORY_WIPHY_SELF_MANAGED))
2514                         reg_call_notifier(wiphy, lr);
2515                 return;
2516         }
2517
2518         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2519
2520         for (band = 0; band < NUM_NL80211_BANDS; band++)
2521                 handle_band(wiphy, initiator, wiphy->bands[band]);
2522
2523         reg_process_beacons(wiphy);
2524         reg_process_ht_flags(wiphy);
2525         reg_call_notifier(wiphy, lr);
2526 }
2527
2528 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2529 {
2530         struct cfg80211_registered_device *rdev;
2531         struct wiphy *wiphy;
2532
2533         ASSERT_RTNL();
2534
2535         for_each_rdev(rdev) {
2536                 wiphy = &rdev->wiphy;
2537                 wiphy_update_regulatory(wiphy, initiator);
2538         }
2539
2540         reg_check_channels();
2541 }
2542
2543 static void handle_channel_custom(struct wiphy *wiphy,
2544                                   struct ieee80211_channel *chan,
2545                                   const struct ieee80211_regdomain *regd,
2546                                   u32 min_bw)
2547 {
2548         u32 bw_flags = 0;
2549         const struct ieee80211_reg_rule *reg_rule = NULL;
2550         const struct ieee80211_power_rule *power_rule = NULL;
2551         u32 bw, center_freq_khz;
2552
2553         center_freq_khz = ieee80211_channel_to_khz(chan);
2554         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2555                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2556                 if (!IS_ERR(reg_rule))
2557                         break;
2558         }
2559
2560         if (IS_ERR_OR_NULL(reg_rule)) {
2561                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2562                          chan->center_freq, chan->freq_offset);
2563                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2564                         chan->flags |= IEEE80211_CHAN_DISABLED;
2565                 } else {
2566                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2567                         chan->flags = chan->orig_flags;
2568                 }
2569                 return;
2570         }
2571
2572         power_rule = &reg_rule->power_rule;
2573         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2574
2575         chan->dfs_state_entered = jiffies;
2576         chan->dfs_state = NL80211_DFS_USABLE;
2577
2578         chan->beacon_found = false;
2579
2580         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2581                 chan->flags = chan->orig_flags | bw_flags |
2582                               map_regdom_flags(reg_rule->flags);
2583         else
2584                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2585
2586         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2587         chan->max_reg_power = chan->max_power =
2588                 (int) MBM_TO_DBM(power_rule->max_eirp);
2589
2590         if (chan->flags & IEEE80211_CHAN_RADAR) {
2591                 if (reg_rule->dfs_cac_ms)
2592                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2593                 else
2594                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2595         }
2596
2597         if (chan->flags & IEEE80211_CHAN_PSD)
2598                 chan->psd = reg_rule->psd;
2599
2600         chan->max_power = chan->max_reg_power;
2601 }
2602
2603 static void handle_band_custom(struct wiphy *wiphy,
2604                                struct ieee80211_supported_band *sband,
2605                                const struct ieee80211_regdomain *regd)
2606 {
2607         unsigned int i;
2608
2609         if (!sband)
2610                 return;
2611
2612         /*
2613          * We currently assume that you always want at least 20 MHz,
2614          * otherwise channel 12 might get enabled if this rule is
2615          * compatible to US, which permits 2402 - 2472 MHz.
2616          */
2617         for (i = 0; i < sband->n_channels; i++)
2618                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2619                                       MHZ_TO_KHZ(20));
2620 }
2621
2622 /* Used by drivers prior to wiphy registration */
2623 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2624                                    const struct ieee80211_regdomain *regd)
2625 {
2626         const struct ieee80211_regdomain *new_regd, *tmp;
2627         enum nl80211_band band;
2628         unsigned int bands_set = 0;
2629
2630         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2631              "wiphy should have REGULATORY_CUSTOM_REG\n");
2632         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2633
2634         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2635                 if (!wiphy->bands[band])
2636                         continue;
2637                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2638                 bands_set++;
2639         }
2640
2641         /*
2642          * no point in calling this if it won't have any effect
2643          * on your device's supported bands.
2644          */
2645         WARN_ON(!bands_set);
2646         new_regd = reg_copy_regd(regd);
2647         if (IS_ERR(new_regd))
2648                 return;
2649
2650         rtnl_lock();
2651         wiphy_lock(wiphy);
2652
2653         tmp = get_wiphy_regdom(wiphy);
2654         rcu_assign_pointer(wiphy->regd, new_regd);
2655         rcu_free_regdom(tmp);
2656
2657         wiphy_unlock(wiphy);
2658         rtnl_unlock();
2659 }
2660 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2661
2662 static void reg_set_request_processed(void)
2663 {
2664         bool need_more_processing = false;
2665         struct regulatory_request *lr = get_last_request();
2666
2667         lr->processed = true;
2668
2669         spin_lock(&reg_requests_lock);
2670         if (!list_empty(&reg_requests_list))
2671                 need_more_processing = true;
2672         spin_unlock(&reg_requests_lock);
2673
2674         cancel_crda_timeout();
2675
2676         if (need_more_processing)
2677                 schedule_work(&reg_work);
2678 }
2679
2680 /**
2681  * reg_process_hint_core - process core regulatory requests
2682  * @core_request: a pending core regulatory request
2683  *
2684  * The wireless subsystem can use this function to process
2685  * a regulatory request issued by the regulatory core.
2686  *
2687  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2688  *      hint was processed or ignored
2689  */
2690 static enum reg_request_treatment
2691 reg_process_hint_core(struct regulatory_request *core_request)
2692 {
2693         if (reg_query_database(core_request)) {
2694                 core_request->intersect = false;
2695                 core_request->processed = false;
2696                 reg_update_last_request(core_request);
2697                 return REG_REQ_OK;
2698         }
2699
2700         return REG_REQ_IGNORE;
2701 }
2702
2703 static enum reg_request_treatment
2704 __reg_process_hint_user(struct regulatory_request *user_request)
2705 {
2706         struct regulatory_request *lr = get_last_request();
2707
2708         if (reg_request_cell_base(user_request))
2709                 return reg_ignore_cell_hint(user_request);
2710
2711         if (reg_request_cell_base(lr))
2712                 return REG_REQ_IGNORE;
2713
2714         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715                 return REG_REQ_INTERSECT;
2716         /*
2717          * If the user knows better the user should set the regdom
2718          * to their country before the IE is picked up
2719          */
2720         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721             lr->intersect)
2722                 return REG_REQ_IGNORE;
2723         /*
2724          * Process user requests only after previous user/driver/core
2725          * requests have been processed
2726          */
2727         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730             regdom_changes(lr->alpha2))
2731                 return REG_REQ_IGNORE;
2732
2733         if (!regdom_changes(user_request->alpha2))
2734                 return REG_REQ_ALREADY_SET;
2735
2736         return REG_REQ_OK;
2737 }
2738
2739 /**
2740  * reg_process_hint_user - process user regulatory requests
2741  * @user_request: a pending user regulatory request
2742  *
2743  * The wireless subsystem can use this function to process
2744  * a regulatory request initiated by userspace.
2745  *
2746  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2747  *      hint was processed or ignored
2748  */
2749 static enum reg_request_treatment
2750 reg_process_hint_user(struct regulatory_request *user_request)
2751 {
2752         enum reg_request_treatment treatment;
2753
2754         treatment = __reg_process_hint_user(user_request);
2755         if (treatment == REG_REQ_IGNORE ||
2756             treatment == REG_REQ_ALREADY_SET)
2757                 return REG_REQ_IGNORE;
2758
2759         user_request->intersect = treatment == REG_REQ_INTERSECT;
2760         user_request->processed = false;
2761
2762         if (reg_query_database(user_request)) {
2763                 reg_update_last_request(user_request);
2764                 user_alpha2[0] = user_request->alpha2[0];
2765                 user_alpha2[1] = user_request->alpha2[1];
2766                 return REG_REQ_OK;
2767         }
2768
2769         return REG_REQ_IGNORE;
2770 }
2771
2772 static enum reg_request_treatment
2773 __reg_process_hint_driver(struct regulatory_request *driver_request)
2774 {
2775         struct regulatory_request *lr = get_last_request();
2776
2777         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2778                 if (regdom_changes(driver_request->alpha2))
2779                         return REG_REQ_OK;
2780                 return REG_REQ_ALREADY_SET;
2781         }
2782
2783         /*
2784          * This would happen if you unplug and plug your card
2785          * back in or if you add a new device for which the previously
2786          * loaded card also agrees on the regulatory domain.
2787          */
2788         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2789             !regdom_changes(driver_request->alpha2))
2790                 return REG_REQ_ALREADY_SET;
2791
2792         return REG_REQ_INTERSECT;
2793 }
2794
2795 /**
2796  * reg_process_hint_driver - process driver regulatory requests
2797  * @wiphy: the wireless device for the regulatory request
2798  * @driver_request: a pending driver regulatory request
2799  *
2800  * The wireless subsystem can use this function to process
2801  * a regulatory request issued by an 802.11 driver.
2802  *
2803  * Returns: one of the different reg request treatment values.
2804  */
2805 static enum reg_request_treatment
2806 reg_process_hint_driver(struct wiphy *wiphy,
2807                         struct regulatory_request *driver_request)
2808 {
2809         const struct ieee80211_regdomain *regd, *tmp;
2810         enum reg_request_treatment treatment;
2811
2812         treatment = __reg_process_hint_driver(driver_request);
2813
2814         switch (treatment) {
2815         case REG_REQ_OK:
2816                 break;
2817         case REG_REQ_IGNORE:
2818                 return REG_REQ_IGNORE;
2819         case REG_REQ_INTERSECT:
2820         case REG_REQ_ALREADY_SET:
2821                 regd = reg_copy_regd(get_cfg80211_regdom());
2822                 if (IS_ERR(regd))
2823                         return REG_REQ_IGNORE;
2824
2825                 tmp = get_wiphy_regdom(wiphy);
2826                 ASSERT_RTNL();
2827                 wiphy_lock(wiphy);
2828                 rcu_assign_pointer(wiphy->regd, regd);
2829                 wiphy_unlock(wiphy);
2830                 rcu_free_regdom(tmp);
2831         }
2832
2833
2834         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2835         driver_request->processed = false;
2836
2837         /*
2838          * Since CRDA will not be called in this case as we already
2839          * have applied the requested regulatory domain before we just
2840          * inform userspace we have processed the request
2841          */
2842         if (treatment == REG_REQ_ALREADY_SET) {
2843                 nl80211_send_reg_change_event(driver_request);
2844                 reg_update_last_request(driver_request);
2845                 reg_set_request_processed();
2846                 return REG_REQ_ALREADY_SET;
2847         }
2848
2849         if (reg_query_database(driver_request)) {
2850                 reg_update_last_request(driver_request);
2851                 return REG_REQ_OK;
2852         }
2853
2854         return REG_REQ_IGNORE;
2855 }
2856
2857 static enum reg_request_treatment
2858 __reg_process_hint_country_ie(struct wiphy *wiphy,
2859                               struct regulatory_request *country_ie_request)
2860 {
2861         struct wiphy *last_wiphy = NULL;
2862         struct regulatory_request *lr = get_last_request();
2863
2864         if (reg_request_cell_base(lr)) {
2865                 /* Trust a Cell base station over the AP's country IE */
2866                 if (regdom_changes(country_ie_request->alpha2))
2867                         return REG_REQ_IGNORE;
2868                 return REG_REQ_ALREADY_SET;
2869         } else {
2870                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2871                         return REG_REQ_IGNORE;
2872         }
2873
2874         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2875                 return -EINVAL;
2876
2877         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2878                 return REG_REQ_OK;
2879
2880         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2881
2882         if (last_wiphy != wiphy) {
2883                 /*
2884                  * Two cards with two APs claiming different
2885                  * Country IE alpha2s. We could
2886                  * intersect them, but that seems unlikely
2887                  * to be correct. Reject second one for now.
2888                  */
2889                 if (regdom_changes(country_ie_request->alpha2))
2890                         return REG_REQ_IGNORE;
2891                 return REG_REQ_ALREADY_SET;
2892         }
2893
2894         if (regdom_changes(country_ie_request->alpha2))
2895                 return REG_REQ_OK;
2896         return REG_REQ_ALREADY_SET;
2897 }
2898
2899 /**
2900  * reg_process_hint_country_ie - process regulatory requests from country IEs
2901  * @wiphy: the wireless device for the regulatory request
2902  * @country_ie_request: a regulatory request from a country IE
2903  *
2904  * The wireless subsystem can use this function to process
2905  * a regulatory request issued by a country Information Element.
2906  *
2907  * Returns: one of the different reg request treatment values.
2908  */
2909 static enum reg_request_treatment
2910 reg_process_hint_country_ie(struct wiphy *wiphy,
2911                             struct regulatory_request *country_ie_request)
2912 {
2913         enum reg_request_treatment treatment;
2914
2915         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2916
2917         switch (treatment) {
2918         case REG_REQ_OK:
2919                 break;
2920         case REG_REQ_IGNORE:
2921                 return REG_REQ_IGNORE;
2922         case REG_REQ_ALREADY_SET:
2923                 reg_free_request(country_ie_request);
2924                 return REG_REQ_ALREADY_SET;
2925         case REG_REQ_INTERSECT:
2926                 /*
2927                  * This doesn't happen yet, not sure we
2928                  * ever want to support it for this case.
2929                  */
2930                 WARN_ONCE(1, "Unexpected intersection for country elements");
2931                 return REG_REQ_IGNORE;
2932         }
2933
2934         country_ie_request->intersect = false;
2935         country_ie_request->processed = false;
2936
2937         if (reg_query_database(country_ie_request)) {
2938                 reg_update_last_request(country_ie_request);
2939                 return REG_REQ_OK;
2940         }
2941
2942         return REG_REQ_IGNORE;
2943 }
2944
2945 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2946 {
2947         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2948         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2949         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2950         bool dfs_domain_same;
2951
2952         rcu_read_lock();
2953
2954         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2955         wiphy1_regd = rcu_dereference(wiphy1->regd);
2956         if (!wiphy1_regd)
2957                 wiphy1_regd = cfg80211_regd;
2958
2959         wiphy2_regd = rcu_dereference(wiphy2->regd);
2960         if (!wiphy2_regd)
2961                 wiphy2_regd = cfg80211_regd;
2962
2963         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2964
2965         rcu_read_unlock();
2966
2967         return dfs_domain_same;
2968 }
2969
2970 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2971                                     struct ieee80211_channel *src_chan)
2972 {
2973         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2974             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2975                 return;
2976
2977         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2978             src_chan->flags & IEEE80211_CHAN_DISABLED)
2979                 return;
2980
2981         if (src_chan->center_freq == dst_chan->center_freq &&
2982             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2983                 dst_chan->dfs_state = src_chan->dfs_state;
2984                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2985         }
2986 }
2987
2988 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2989                                        struct wiphy *src_wiphy)
2990 {
2991         struct ieee80211_supported_band *src_sband, *dst_sband;
2992         struct ieee80211_channel *src_chan, *dst_chan;
2993         int i, j, band;
2994
2995         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2996                 return;
2997
2998         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2999                 dst_sband = dst_wiphy->bands[band];
3000                 src_sband = src_wiphy->bands[band];
3001                 if (!dst_sband || !src_sband)
3002                         continue;
3003
3004                 for (i = 0; i < dst_sband->n_channels; i++) {
3005                         dst_chan = &dst_sband->channels[i];
3006                         for (j = 0; j < src_sband->n_channels; j++) {
3007                                 src_chan = &src_sband->channels[j];
3008                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
3009                         }
3010                 }
3011         }
3012 }
3013
3014 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3015 {
3016         struct cfg80211_registered_device *rdev;
3017
3018         ASSERT_RTNL();
3019
3020         for_each_rdev(rdev) {
3021                 if (wiphy == &rdev->wiphy)
3022                         continue;
3023                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3024         }
3025 }
3026
3027 /* This processes *all* regulatory hints */
3028 static void reg_process_hint(struct regulatory_request *reg_request)
3029 {
3030         struct wiphy *wiphy = NULL;
3031         enum reg_request_treatment treatment;
3032         enum nl80211_reg_initiator initiator = reg_request->initiator;
3033
3034         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3035                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3036
3037         switch (initiator) {
3038         case NL80211_REGDOM_SET_BY_CORE:
3039                 treatment = reg_process_hint_core(reg_request);
3040                 break;
3041         case NL80211_REGDOM_SET_BY_USER:
3042                 treatment = reg_process_hint_user(reg_request);
3043                 break;
3044         case NL80211_REGDOM_SET_BY_DRIVER:
3045                 if (!wiphy)
3046                         goto out_free;
3047                 treatment = reg_process_hint_driver(wiphy, reg_request);
3048                 break;
3049         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3050                 if (!wiphy)
3051                         goto out_free;
3052                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3053                 break;
3054         default:
3055                 WARN(1, "invalid initiator %d\n", initiator);
3056                 goto out_free;
3057         }
3058
3059         if (treatment == REG_REQ_IGNORE)
3060                 goto out_free;
3061
3062         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3063              "unexpected treatment value %d\n", treatment);
3064
3065         /* This is required so that the orig_* parameters are saved.
3066          * NOTE: treatment must be set for any case that reaches here!
3067          */
3068         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3069             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3070                 wiphy_update_regulatory(wiphy, initiator);
3071                 wiphy_all_share_dfs_chan_state(wiphy);
3072                 reg_check_channels();
3073         }
3074
3075         return;
3076
3077 out_free:
3078         reg_free_request(reg_request);
3079 }
3080
3081 static void notify_self_managed_wiphys(struct regulatory_request *request)
3082 {
3083         struct cfg80211_registered_device *rdev;
3084         struct wiphy *wiphy;
3085
3086         for_each_rdev(rdev) {
3087                 wiphy = &rdev->wiphy;
3088                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3089                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3090                         reg_call_notifier(wiphy, request);
3091         }
3092 }
3093
3094 /*
3095  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3096  * Regulatory hints come on a first come first serve basis and we
3097  * must process each one atomically.
3098  */
3099 static void reg_process_pending_hints(void)
3100 {
3101         struct regulatory_request *reg_request, *lr;
3102
3103         lr = get_last_request();
3104
3105         /* When last_request->processed becomes true this will be rescheduled */
3106         if (lr && !lr->processed) {
3107                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3108                 return;
3109         }
3110
3111         spin_lock(&reg_requests_lock);
3112
3113         if (list_empty(&reg_requests_list)) {
3114                 spin_unlock(&reg_requests_lock);
3115                 return;
3116         }
3117
3118         reg_request = list_first_entry(&reg_requests_list,
3119                                        struct regulatory_request,
3120                                        list);
3121         list_del_init(&reg_request->list);
3122
3123         spin_unlock(&reg_requests_lock);
3124
3125         notify_self_managed_wiphys(reg_request);
3126
3127         reg_process_hint(reg_request);
3128
3129         lr = get_last_request();
3130
3131         spin_lock(&reg_requests_lock);
3132         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3133                 schedule_work(&reg_work);
3134         spin_unlock(&reg_requests_lock);
3135 }
3136
3137 /* Processes beacon hints -- this has nothing to do with country IEs */
3138 static void reg_process_pending_beacon_hints(void)
3139 {
3140         struct cfg80211_registered_device *rdev;
3141         struct reg_beacon *pending_beacon, *tmp;
3142
3143         /* This goes through the _pending_ beacon list */
3144         spin_lock_bh(&reg_pending_beacons_lock);
3145
3146         list_for_each_entry_safe(pending_beacon, tmp,
3147                                  &reg_pending_beacons, list) {
3148                 list_del_init(&pending_beacon->list);
3149
3150                 /* Applies the beacon hint to current wiphys */
3151                 for_each_rdev(rdev)
3152                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3153
3154                 /* Remembers the beacon hint for new wiphys or reg changes */
3155                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3156         }
3157
3158         spin_unlock_bh(&reg_pending_beacons_lock);
3159 }
3160
3161 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3162 {
3163         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3164         const struct ieee80211_regdomain *tmp;
3165         const struct ieee80211_regdomain *regd;
3166         enum nl80211_band band;
3167         struct regulatory_request request = {};
3168
3169         ASSERT_RTNL();
3170         lockdep_assert_wiphy(wiphy);
3171
3172         spin_lock(&reg_requests_lock);
3173         regd = rdev->requested_regd;
3174         rdev->requested_regd = NULL;
3175         spin_unlock(&reg_requests_lock);
3176
3177         if (!regd)
3178                 return;
3179
3180         tmp = get_wiphy_regdom(wiphy);
3181         rcu_assign_pointer(wiphy->regd, regd);
3182         rcu_free_regdom(tmp);
3183
3184         for (band = 0; band < NUM_NL80211_BANDS; band++)
3185                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3186
3187         reg_process_ht_flags(wiphy);
3188
3189         request.wiphy_idx = get_wiphy_idx(wiphy);
3190         request.alpha2[0] = regd->alpha2[0];
3191         request.alpha2[1] = regd->alpha2[1];
3192         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3193
3194         if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3195                 reg_call_notifier(wiphy, &request);
3196
3197         nl80211_send_wiphy_reg_change_event(&request);
3198 }
3199
3200 static void reg_process_self_managed_hints(void)
3201 {
3202         struct cfg80211_registered_device *rdev;
3203
3204         ASSERT_RTNL();
3205
3206         for_each_rdev(rdev) {
3207                 wiphy_lock(&rdev->wiphy);
3208                 reg_process_self_managed_hint(&rdev->wiphy);
3209                 wiphy_unlock(&rdev->wiphy);
3210         }
3211
3212         reg_check_channels();
3213 }
3214
3215 static void reg_todo(struct work_struct *work)
3216 {
3217         rtnl_lock();
3218         reg_process_pending_hints();
3219         reg_process_pending_beacon_hints();
3220         reg_process_self_managed_hints();
3221         rtnl_unlock();
3222 }
3223
3224 static void queue_regulatory_request(struct regulatory_request *request)
3225 {
3226         request->alpha2[0] = toupper(request->alpha2[0]);
3227         request->alpha2[1] = toupper(request->alpha2[1]);
3228
3229         spin_lock(&reg_requests_lock);
3230         list_add_tail(&request->list, &reg_requests_list);
3231         spin_unlock(&reg_requests_lock);
3232
3233         schedule_work(&reg_work);
3234 }
3235
3236 /*
3237  * Core regulatory hint -- happens during cfg80211_init()
3238  * and when we restore regulatory settings.
3239  */
3240 static int regulatory_hint_core(const char *alpha2)
3241 {
3242         struct regulatory_request *request;
3243
3244         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245         if (!request)
3246                 return -ENOMEM;
3247
3248         request->alpha2[0] = alpha2[0];
3249         request->alpha2[1] = alpha2[1];
3250         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3251         request->wiphy_idx = WIPHY_IDX_INVALID;
3252
3253         queue_regulatory_request(request);
3254
3255         return 0;
3256 }
3257
3258 /* User hints */
3259 int regulatory_hint_user(const char *alpha2,
3260                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3261 {
3262         struct regulatory_request *request;
3263
3264         if (WARN_ON(!alpha2))
3265                 return -EINVAL;
3266
3267         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3268                 return -EINVAL;
3269
3270         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3271         if (!request)
3272                 return -ENOMEM;
3273
3274         request->wiphy_idx = WIPHY_IDX_INVALID;
3275         request->alpha2[0] = alpha2[0];
3276         request->alpha2[1] = alpha2[1];
3277         request->initiator = NL80211_REGDOM_SET_BY_USER;
3278         request->user_reg_hint_type = user_reg_hint_type;
3279
3280         /* Allow calling CRDA again */
3281         reset_crda_timeouts();
3282
3283         queue_regulatory_request(request);
3284
3285         return 0;
3286 }
3287
3288 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3289 {
3290         spin_lock(&reg_indoor_lock);
3291
3292         /* It is possible that more than one user space process is trying to
3293          * configure the indoor setting. To handle such cases, clear the indoor
3294          * setting in case that some process does not think that the device
3295          * is operating in an indoor environment. In addition, if a user space
3296          * process indicates that it is controlling the indoor setting, save its
3297          * portid, i.e., make it the owner.
3298          */
3299         reg_is_indoor = is_indoor;
3300         if (reg_is_indoor) {
3301                 if (!reg_is_indoor_portid)
3302                         reg_is_indoor_portid = portid;
3303         } else {
3304                 reg_is_indoor_portid = 0;
3305         }
3306
3307         spin_unlock(&reg_indoor_lock);
3308
3309         if (!is_indoor)
3310                 reg_check_channels();
3311
3312         return 0;
3313 }
3314
3315 void regulatory_netlink_notify(u32 portid)
3316 {
3317         spin_lock(&reg_indoor_lock);
3318
3319         if (reg_is_indoor_portid != portid) {
3320                 spin_unlock(&reg_indoor_lock);
3321                 return;
3322         }
3323
3324         reg_is_indoor = false;
3325         reg_is_indoor_portid = 0;
3326
3327         spin_unlock(&reg_indoor_lock);
3328
3329         reg_check_channels();
3330 }
3331
3332 /* Driver hints */
3333 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3334 {
3335         struct regulatory_request *request;
3336
3337         if (WARN_ON(!alpha2 || !wiphy))
3338                 return -EINVAL;
3339
3340         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3341
3342         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3343         if (!request)
3344                 return -ENOMEM;
3345
3346         request->wiphy_idx = get_wiphy_idx(wiphy);
3347
3348         request->alpha2[0] = alpha2[0];
3349         request->alpha2[1] = alpha2[1];
3350         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3351
3352         /* Allow calling CRDA again */
3353         reset_crda_timeouts();
3354
3355         queue_regulatory_request(request);
3356
3357         return 0;
3358 }
3359 EXPORT_SYMBOL(regulatory_hint);
3360
3361 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3362                                 const u8 *country_ie, u8 country_ie_len)
3363 {
3364         char alpha2[2];
3365         enum environment_cap env = ENVIRON_ANY;
3366         struct regulatory_request *request = NULL, *lr;
3367
3368         /* IE len must be evenly divisible by 2 */
3369         if (country_ie_len & 0x01)
3370                 return;
3371
3372         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3373                 return;
3374
3375         request = kzalloc(sizeof(*request), GFP_KERNEL);
3376         if (!request)
3377                 return;
3378
3379         alpha2[0] = country_ie[0];
3380         alpha2[1] = country_ie[1];
3381
3382         if (country_ie[2] == 'I')
3383                 env = ENVIRON_INDOOR;
3384         else if (country_ie[2] == 'O')
3385                 env = ENVIRON_OUTDOOR;
3386
3387         rcu_read_lock();
3388         lr = get_last_request();
3389
3390         if (unlikely(!lr))
3391                 goto out;
3392
3393         /*
3394          * We will run this only upon a successful connection on cfg80211.
3395          * We leave conflict resolution to the workqueue, where can hold
3396          * the RTNL.
3397          */
3398         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3399             lr->wiphy_idx != WIPHY_IDX_INVALID)
3400                 goto out;
3401
3402         request->wiphy_idx = get_wiphy_idx(wiphy);
3403         request->alpha2[0] = alpha2[0];
3404         request->alpha2[1] = alpha2[1];
3405         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3406         request->country_ie_env = env;
3407
3408         /* Allow calling CRDA again */
3409         reset_crda_timeouts();
3410
3411         queue_regulatory_request(request);
3412         request = NULL;
3413 out:
3414         kfree(request);
3415         rcu_read_unlock();
3416 }
3417
3418 static void restore_alpha2(char *alpha2, bool reset_user)
3419 {
3420         /* indicates there is no alpha2 to consider for restoration */
3421         alpha2[0] = '9';
3422         alpha2[1] = '7';
3423
3424         /* The user setting has precedence over the module parameter */
3425         if (is_user_regdom_saved()) {
3426                 /* Unless we're asked to ignore it and reset it */
3427                 if (reset_user) {
3428                         pr_debug("Restoring regulatory settings including user preference\n");
3429                         user_alpha2[0] = '9';
3430                         user_alpha2[1] = '7';
3431
3432                         /*
3433                          * If we're ignoring user settings, we still need to
3434                          * check the module parameter to ensure we put things
3435                          * back as they were for a full restore.
3436                          */
3437                         if (!is_world_regdom(ieee80211_regdom)) {
3438                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3439                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3440                                 alpha2[0] = ieee80211_regdom[0];
3441                                 alpha2[1] = ieee80211_regdom[1];
3442                         }
3443                 } else {
3444                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3445                                  user_alpha2[0], user_alpha2[1]);
3446                         alpha2[0] = user_alpha2[0];
3447                         alpha2[1] = user_alpha2[1];
3448                 }
3449         } else if (!is_world_regdom(ieee80211_regdom)) {
3450                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3451                          ieee80211_regdom[0], ieee80211_regdom[1]);
3452                 alpha2[0] = ieee80211_regdom[0];
3453                 alpha2[1] = ieee80211_regdom[1];
3454         } else
3455                 pr_debug("Restoring regulatory settings\n");
3456 }
3457
3458 static void restore_custom_reg_settings(struct wiphy *wiphy)
3459 {
3460         struct ieee80211_supported_band *sband;
3461         enum nl80211_band band;
3462         struct ieee80211_channel *chan;
3463         int i;
3464
3465         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3466                 sband = wiphy->bands[band];
3467                 if (!sband)
3468                         continue;
3469                 for (i = 0; i < sband->n_channels; i++) {
3470                         chan = &sband->channels[i];
3471                         chan->flags = chan->orig_flags;
3472                         chan->max_antenna_gain = chan->orig_mag;
3473                         chan->max_power = chan->orig_mpwr;
3474                         chan->beacon_found = false;
3475                 }
3476         }
3477 }
3478
3479 /*
3480  * Restoring regulatory settings involves ignoring any
3481  * possibly stale country IE information and user regulatory
3482  * settings if so desired, this includes any beacon hints
3483  * learned as we could have traveled outside to another country
3484  * after disconnection. To restore regulatory settings we do
3485  * exactly what we did at bootup:
3486  *
3487  *   - send a core regulatory hint
3488  *   - send a user regulatory hint if applicable
3489  *
3490  * Device drivers that send a regulatory hint for a specific country
3491  * keep their own regulatory domain on wiphy->regd so that does
3492  * not need to be remembered.
3493  */
3494 static void restore_regulatory_settings(bool reset_user, bool cached)
3495 {
3496         char alpha2[2];
3497         char world_alpha2[2];
3498         struct reg_beacon *reg_beacon, *btmp;
3499         LIST_HEAD(tmp_reg_req_list);
3500         struct cfg80211_registered_device *rdev;
3501
3502         ASSERT_RTNL();
3503
3504         /*
3505          * Clear the indoor setting in case that it is not controlled by user
3506          * space, as otherwise there is no guarantee that the device is still
3507          * operating in an indoor environment.
3508          */
3509         spin_lock(&reg_indoor_lock);
3510         if (reg_is_indoor && !reg_is_indoor_portid) {
3511                 reg_is_indoor = false;
3512                 reg_check_channels();
3513         }
3514         spin_unlock(&reg_indoor_lock);
3515
3516         reset_regdomains(true, &world_regdom);
3517         restore_alpha2(alpha2, reset_user);
3518
3519         /*
3520          * If there's any pending requests we simply
3521          * stash them to a temporary pending queue and
3522          * add then after we've restored regulatory
3523          * settings.
3524          */
3525         spin_lock(&reg_requests_lock);
3526         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3527         spin_unlock(&reg_requests_lock);
3528
3529         /* Clear beacon hints */
3530         spin_lock_bh(&reg_pending_beacons_lock);
3531         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3532                 list_del(&reg_beacon->list);
3533                 kfree(reg_beacon);
3534         }
3535         spin_unlock_bh(&reg_pending_beacons_lock);
3536
3537         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3538                 list_del(&reg_beacon->list);
3539                 kfree(reg_beacon);
3540         }
3541
3542         /* First restore to the basic regulatory settings */
3543         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3544         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3545
3546         for_each_rdev(rdev) {
3547                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3548                         continue;
3549                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3550                         restore_custom_reg_settings(&rdev->wiphy);
3551         }
3552
3553         if (cached && (!is_an_alpha2(alpha2) ||
3554                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3555                 reset_regdomains(false, cfg80211_world_regdom);
3556                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3557                 print_regdomain(get_cfg80211_regdom());
3558                 nl80211_send_reg_change_event(&core_request_world);
3559                 reg_set_request_processed();
3560
3561                 if (is_an_alpha2(alpha2) &&
3562                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3563                         struct regulatory_request *ureq;
3564
3565                         spin_lock(&reg_requests_lock);
3566                         ureq = list_last_entry(&reg_requests_list,
3567                                                struct regulatory_request,
3568                                                list);
3569                         list_del(&ureq->list);
3570                         spin_unlock(&reg_requests_lock);
3571
3572                         notify_self_managed_wiphys(ureq);
3573                         reg_update_last_request(ureq);
3574                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3575                                    REGD_SOURCE_CACHED);
3576                 }
3577         } else {
3578                 regulatory_hint_core(world_alpha2);
3579
3580                 /*
3581                  * This restores the ieee80211_regdom module parameter
3582                  * preference or the last user requested regulatory
3583                  * settings, user regulatory settings takes precedence.
3584                  */
3585                 if (is_an_alpha2(alpha2))
3586                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3587         }
3588
3589         spin_lock(&reg_requests_lock);
3590         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3591         spin_unlock(&reg_requests_lock);
3592
3593         pr_debug("Kicking the queue\n");
3594
3595         schedule_work(&reg_work);
3596 }
3597
3598 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3599 {
3600         struct cfg80211_registered_device *rdev;
3601         struct wireless_dev *wdev;
3602
3603         for_each_rdev(rdev) {
3604                 wiphy_lock(&rdev->wiphy);
3605                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3606                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3607                                 wiphy_unlock(&rdev->wiphy);
3608                                 return false;
3609                         }
3610                 }
3611                 wiphy_unlock(&rdev->wiphy);
3612         }
3613
3614         return true;
3615 }
3616
3617 void regulatory_hint_disconnect(void)
3618 {
3619         /* Restore of regulatory settings is not required when wiphy(s)
3620          * ignore IE from connected access point but clearance of beacon hints
3621          * is required when wiphy(s) supports beacon hints.
3622          */
3623         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3624                 struct reg_beacon *reg_beacon, *btmp;
3625
3626                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3627                         return;
3628
3629                 spin_lock_bh(&reg_pending_beacons_lock);
3630                 list_for_each_entry_safe(reg_beacon, btmp,
3631                                          &reg_pending_beacons, list) {
3632                         list_del(&reg_beacon->list);
3633                         kfree(reg_beacon);
3634                 }
3635                 spin_unlock_bh(&reg_pending_beacons_lock);
3636
3637                 list_for_each_entry_safe(reg_beacon, btmp,
3638                                          &reg_beacon_list, list) {
3639                         list_del(&reg_beacon->list);
3640                         kfree(reg_beacon);
3641                 }
3642
3643                 return;
3644         }
3645
3646         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3647         restore_regulatory_settings(false, true);
3648 }
3649
3650 static bool freq_is_chan_12_13_14(u32 freq)
3651 {
3652         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3653             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3654             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3655                 return true;
3656         return false;
3657 }
3658
3659 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3660 {
3661         struct reg_beacon *pending_beacon;
3662
3663         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3664                 if (ieee80211_channel_equal(beacon_chan,
3665                                             &pending_beacon->chan))
3666                         return true;
3667         return false;
3668 }
3669
3670 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3671                                  struct ieee80211_channel *beacon_chan,
3672                                  gfp_t gfp)
3673 {
3674         struct reg_beacon *reg_beacon;
3675         bool processing;
3676
3677         if (beacon_chan->beacon_found ||
3678             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3679             (beacon_chan->band == NL80211_BAND_2GHZ &&
3680              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3681                 return 0;
3682
3683         spin_lock_bh(&reg_pending_beacons_lock);
3684         processing = pending_reg_beacon(beacon_chan);
3685         spin_unlock_bh(&reg_pending_beacons_lock);
3686
3687         if (processing)
3688                 return 0;
3689
3690         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3691         if (!reg_beacon)
3692                 return -ENOMEM;
3693
3694         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3695                  beacon_chan->center_freq, beacon_chan->freq_offset,
3696                  ieee80211_freq_khz_to_channel(
3697                          ieee80211_channel_to_khz(beacon_chan)),
3698                  wiphy_name(wiphy));
3699
3700         memcpy(&reg_beacon->chan, beacon_chan,
3701                sizeof(struct ieee80211_channel));
3702
3703         /*
3704          * Since we can be called from BH or and non-BH context
3705          * we must use spin_lock_bh()
3706          */
3707         spin_lock_bh(&reg_pending_beacons_lock);
3708         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3709         spin_unlock_bh(&reg_pending_beacons_lock);
3710
3711         schedule_work(&reg_work);
3712
3713         return 0;
3714 }
3715
3716 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3717 {
3718         unsigned int i;
3719         const struct ieee80211_reg_rule *reg_rule = NULL;
3720         const struct ieee80211_freq_range *freq_range = NULL;
3721         const struct ieee80211_power_rule *power_rule = NULL;
3722         char bw[32], cac_time[32];
3723
3724         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3725
3726         for (i = 0; i < rd->n_reg_rules; i++) {
3727                 reg_rule = &rd->reg_rules[i];
3728                 freq_range = &reg_rule->freq_range;
3729                 power_rule = &reg_rule->power_rule;
3730
3731                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3732                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3733                                  freq_range->max_bandwidth_khz,
3734                                  reg_get_max_bandwidth(rd, reg_rule));
3735                 else
3736                         snprintf(bw, sizeof(bw), "%d KHz",
3737                                  freq_range->max_bandwidth_khz);
3738
3739                 if (reg_rule->flags & NL80211_RRF_DFS)
3740                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3741                                   reg_rule->dfs_cac_ms/1000);
3742                 else
3743                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3744
3745
3746                 /*
3747                  * There may not be documentation for max antenna gain
3748                  * in certain regions
3749                  */
3750                 if (power_rule->max_antenna_gain)
3751                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3752                                 freq_range->start_freq_khz,
3753                                 freq_range->end_freq_khz,
3754                                 bw,
3755                                 power_rule->max_antenna_gain,
3756                                 power_rule->max_eirp,
3757                                 cac_time);
3758                 else
3759                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3760                                 freq_range->start_freq_khz,
3761                                 freq_range->end_freq_khz,
3762                                 bw,
3763                                 power_rule->max_eirp,
3764                                 cac_time);
3765         }
3766 }
3767
3768 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3769 {
3770         switch (dfs_region) {
3771         case NL80211_DFS_UNSET:
3772         case NL80211_DFS_FCC:
3773         case NL80211_DFS_ETSI:
3774         case NL80211_DFS_JP:
3775                 return true;
3776         default:
3777                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3778                 return false;
3779         }
3780 }
3781
3782 static void print_regdomain(const struct ieee80211_regdomain *rd)
3783 {
3784         struct regulatory_request *lr = get_last_request();
3785
3786         if (is_intersected_alpha2(rd->alpha2)) {
3787                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3788                         struct cfg80211_registered_device *rdev;
3789                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3790                         if (rdev) {
3791                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3792                                         rdev->country_ie_alpha2[0],
3793                                         rdev->country_ie_alpha2[1]);
3794                         } else
3795                                 pr_debug("Current regulatory domain intersected:\n");
3796                 } else
3797                         pr_debug("Current regulatory domain intersected:\n");
3798         } else if (is_world_regdom(rd->alpha2)) {
3799                 pr_debug("World regulatory domain updated:\n");
3800         } else {
3801                 if (is_unknown_alpha2(rd->alpha2))
3802                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3803                 else {
3804                         if (reg_request_cell_base(lr))
3805                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3806                                         rd->alpha2[0], rd->alpha2[1]);
3807                         else
3808                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3809                                         rd->alpha2[0], rd->alpha2[1]);
3810                 }
3811         }
3812
3813         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3814         print_rd_rules(rd);
3815 }
3816
3817 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3818 {
3819         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3820         print_rd_rules(rd);
3821 }
3822
3823 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3824 {
3825         if (!is_world_regdom(rd->alpha2))
3826                 return -EINVAL;
3827         update_world_regdomain(rd);
3828         return 0;
3829 }
3830
3831 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3832                            struct regulatory_request *user_request)
3833 {
3834         const struct ieee80211_regdomain *intersected_rd = NULL;
3835
3836         if (!regdom_changes(rd->alpha2))
3837                 return -EALREADY;
3838
3839         if (!is_valid_rd(rd)) {
3840                 pr_err("Invalid regulatory domain detected: %c%c\n",
3841                        rd->alpha2[0], rd->alpha2[1]);
3842                 print_regdomain_info(rd);
3843                 return -EINVAL;
3844         }
3845
3846         if (!user_request->intersect) {
3847                 reset_regdomains(false, rd);
3848                 return 0;
3849         }
3850
3851         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3852         if (!intersected_rd)
3853                 return -EINVAL;
3854
3855         kfree(rd);
3856         rd = NULL;
3857         reset_regdomains(false, intersected_rd);
3858
3859         return 0;
3860 }
3861
3862 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3863                              struct regulatory_request *driver_request)
3864 {
3865         const struct ieee80211_regdomain *regd;
3866         const struct ieee80211_regdomain *intersected_rd = NULL;
3867         const struct ieee80211_regdomain *tmp = NULL;
3868         struct wiphy *request_wiphy;
3869
3870         if (is_world_regdom(rd->alpha2))
3871                 return -EINVAL;
3872
3873         if (!regdom_changes(rd->alpha2))
3874                 return -EALREADY;
3875
3876         if (!is_valid_rd(rd)) {
3877                 pr_err("Invalid regulatory domain detected: %c%c\n",
3878                        rd->alpha2[0], rd->alpha2[1]);
3879                 print_regdomain_info(rd);
3880                 return -EINVAL;
3881         }
3882
3883         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3884         if (!request_wiphy)
3885                 return -ENODEV;
3886
3887         if (!driver_request->intersect) {
3888                 ASSERT_RTNL();
3889                 wiphy_lock(request_wiphy);
3890                 if (request_wiphy->regd)
3891                         tmp = get_wiphy_regdom(request_wiphy);
3892
3893                 regd = reg_copy_regd(rd);
3894                 if (IS_ERR(regd)) {
3895                         wiphy_unlock(request_wiphy);
3896                         return PTR_ERR(regd);
3897                 }
3898
3899                 rcu_assign_pointer(request_wiphy->regd, regd);
3900                 rcu_free_regdom(tmp);
3901                 wiphy_unlock(request_wiphy);
3902                 reset_regdomains(false, rd);
3903                 return 0;
3904         }
3905
3906         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3907         if (!intersected_rd)
3908                 return -EINVAL;
3909
3910         /*
3911          * We can trash what CRDA provided now.
3912          * However if a driver requested this specific regulatory
3913          * domain we keep it for its private use
3914          */
3915         tmp = get_wiphy_regdom(request_wiphy);
3916         rcu_assign_pointer(request_wiphy->regd, rd);
3917         rcu_free_regdom(tmp);
3918
3919         rd = NULL;
3920
3921         reset_regdomains(false, intersected_rd);
3922
3923         return 0;
3924 }
3925
3926 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3927                                  struct regulatory_request *country_ie_request)
3928 {
3929         struct wiphy *request_wiphy;
3930
3931         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3932             !is_unknown_alpha2(rd->alpha2))
3933                 return -EINVAL;
3934
3935         /*
3936          * Lets only bother proceeding on the same alpha2 if the current
3937          * rd is non static (it means CRDA was present and was used last)
3938          * and the pending request came in from a country IE
3939          */
3940
3941         if (!is_valid_rd(rd)) {
3942                 pr_err("Invalid regulatory domain detected: %c%c\n",
3943                        rd->alpha2[0], rd->alpha2[1]);
3944                 print_regdomain_info(rd);
3945                 return -EINVAL;
3946         }
3947
3948         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3949         if (!request_wiphy)
3950                 return -ENODEV;
3951
3952         if (country_ie_request->intersect)
3953                 return -EINVAL;
3954
3955         reset_regdomains(false, rd);
3956         return 0;
3957 }
3958
3959 /*
3960  * Use this call to set the current regulatory domain. Conflicts with
3961  * multiple drivers can be ironed out later. Caller must've already
3962  * kmalloc'd the rd structure.
3963  */
3964 int set_regdom(const struct ieee80211_regdomain *rd,
3965                enum ieee80211_regd_source regd_src)
3966 {
3967         struct regulatory_request *lr;
3968         bool user_reset = false;
3969         int r;
3970
3971         if (IS_ERR_OR_NULL(rd))
3972                 return -ENODATA;
3973
3974         if (!reg_is_valid_request(rd->alpha2)) {
3975                 kfree(rd);
3976                 return -EINVAL;
3977         }
3978
3979         if (regd_src == REGD_SOURCE_CRDA)
3980                 reset_crda_timeouts();
3981
3982         lr = get_last_request();
3983
3984         /* Note that this doesn't update the wiphys, this is done below */
3985         switch (lr->initiator) {
3986         case NL80211_REGDOM_SET_BY_CORE:
3987                 r = reg_set_rd_core(rd);
3988                 break;
3989         case NL80211_REGDOM_SET_BY_USER:
3990                 cfg80211_save_user_regdom(rd);
3991                 r = reg_set_rd_user(rd, lr);
3992                 user_reset = true;
3993                 break;
3994         case NL80211_REGDOM_SET_BY_DRIVER:
3995                 r = reg_set_rd_driver(rd, lr);
3996                 break;
3997         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3998                 r = reg_set_rd_country_ie(rd, lr);
3999                 break;
4000         default:
4001                 WARN(1, "invalid initiator %d\n", lr->initiator);
4002                 kfree(rd);
4003                 return -EINVAL;
4004         }
4005
4006         if (r) {
4007                 switch (r) {
4008                 case -EALREADY:
4009                         reg_set_request_processed();
4010                         break;
4011                 default:
4012                         /* Back to world regulatory in case of errors */
4013                         restore_regulatory_settings(user_reset, false);
4014                 }
4015
4016                 kfree(rd);
4017                 return r;
4018         }
4019
4020         /* This would make this whole thing pointless */
4021         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4022                 return -EINVAL;
4023
4024         /* update all wiphys now with the new established regulatory domain */
4025         update_all_wiphy_regulatory(lr->initiator);
4026
4027         print_regdomain(get_cfg80211_regdom());
4028
4029         nl80211_send_reg_change_event(lr);
4030
4031         reg_set_request_processed();
4032
4033         return 0;
4034 }
4035
4036 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4037                                        struct ieee80211_regdomain *rd)
4038 {
4039         const struct ieee80211_regdomain *regd;
4040         const struct ieee80211_regdomain *prev_regd;
4041         struct cfg80211_registered_device *rdev;
4042
4043         if (WARN_ON(!wiphy || !rd))
4044                 return -EINVAL;
4045
4046         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4047                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4048                 return -EPERM;
4049
4050         if (WARN(!is_valid_rd(rd),
4051                  "Invalid regulatory domain detected: %c%c\n",
4052                  rd->alpha2[0], rd->alpha2[1])) {
4053                 print_regdomain_info(rd);
4054                 return -EINVAL;
4055         }
4056
4057         regd = reg_copy_regd(rd);
4058         if (IS_ERR(regd))
4059                 return PTR_ERR(regd);
4060
4061         rdev = wiphy_to_rdev(wiphy);
4062
4063         spin_lock(&reg_requests_lock);
4064         prev_regd = rdev->requested_regd;
4065         rdev->requested_regd = regd;
4066         spin_unlock(&reg_requests_lock);
4067
4068         kfree(prev_regd);
4069         return 0;
4070 }
4071
4072 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4073                               struct ieee80211_regdomain *rd)
4074 {
4075         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4076
4077         if (ret)
4078                 return ret;
4079
4080         schedule_work(&reg_work);
4081         return 0;
4082 }
4083 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4084
4085 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4086                                    struct ieee80211_regdomain *rd)
4087 {
4088         int ret;
4089
4090         ASSERT_RTNL();
4091
4092         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4093         if (ret)
4094                 return ret;
4095
4096         /* process the request immediately */
4097         reg_process_self_managed_hint(wiphy);
4098         reg_check_channels();
4099         return 0;
4100 }
4101 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4102
4103 void wiphy_regulatory_register(struct wiphy *wiphy)
4104 {
4105         struct regulatory_request *lr = get_last_request();
4106
4107         /* self-managed devices ignore beacon hints and country IE */
4108         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4109                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4110                                            REGULATORY_COUNTRY_IE_IGNORE;
4111
4112                 /*
4113                  * The last request may have been received before this
4114                  * registration call. Call the driver notifier if
4115                  * initiator is USER.
4116                  */
4117                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4118                         reg_call_notifier(wiphy, lr);
4119         }
4120
4121         if (!reg_dev_ignore_cell_hint(wiphy))
4122                 reg_num_devs_support_basehint++;
4123
4124         wiphy_update_regulatory(wiphy, lr->initiator);
4125         wiphy_all_share_dfs_chan_state(wiphy);
4126         reg_process_self_managed_hints();
4127 }
4128
4129 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4130 {
4131         struct wiphy *request_wiphy = NULL;
4132         struct regulatory_request *lr;
4133
4134         lr = get_last_request();
4135
4136         if (!reg_dev_ignore_cell_hint(wiphy))
4137                 reg_num_devs_support_basehint--;
4138
4139         rcu_free_regdom(get_wiphy_regdom(wiphy));
4140         RCU_INIT_POINTER(wiphy->regd, NULL);
4141
4142         if (lr)
4143                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4144
4145         if (!request_wiphy || request_wiphy != wiphy)
4146                 return;
4147
4148         lr->wiphy_idx = WIPHY_IDX_INVALID;
4149         lr->country_ie_env = ENVIRON_ANY;
4150 }
4151
4152 /*
4153  * See FCC notices for UNII band definitions
4154  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4155  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4156  */
4157 int cfg80211_get_unii(int freq)
4158 {
4159         /* UNII-1 */
4160         if (freq >= 5150 && freq <= 5250)
4161                 return 0;
4162
4163         /* UNII-2A */
4164         if (freq > 5250 && freq <= 5350)
4165                 return 1;
4166
4167         /* UNII-2B */
4168         if (freq > 5350 && freq <= 5470)
4169                 return 2;
4170
4171         /* UNII-2C */
4172         if (freq > 5470 && freq <= 5725)
4173                 return 3;
4174
4175         /* UNII-3 */
4176         if (freq > 5725 && freq <= 5825)
4177                 return 4;
4178
4179         /* UNII-5 */
4180         if (freq > 5925 && freq <= 6425)
4181                 return 5;
4182
4183         /* UNII-6 */
4184         if (freq > 6425 && freq <= 6525)
4185                 return 6;
4186
4187         /* UNII-7 */
4188         if (freq > 6525 && freq <= 6875)
4189                 return 7;
4190
4191         /* UNII-8 */
4192         if (freq > 6875 && freq <= 7125)
4193                 return 8;
4194
4195         return -EINVAL;
4196 }
4197
4198 bool regulatory_indoor_allowed(void)
4199 {
4200         return reg_is_indoor;
4201 }
4202
4203 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4204 {
4205         const struct ieee80211_regdomain *regd = NULL;
4206         const struct ieee80211_regdomain *wiphy_regd = NULL;
4207         bool pre_cac_allowed = false;
4208
4209         rcu_read_lock();
4210
4211         regd = rcu_dereference(cfg80211_regdomain);
4212         wiphy_regd = rcu_dereference(wiphy->regd);
4213         if (!wiphy_regd) {
4214                 if (regd->dfs_region == NL80211_DFS_ETSI)
4215                         pre_cac_allowed = true;
4216
4217                 rcu_read_unlock();
4218
4219                 return pre_cac_allowed;
4220         }
4221
4222         if (regd->dfs_region == wiphy_regd->dfs_region &&
4223             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4224                 pre_cac_allowed = true;
4225
4226         rcu_read_unlock();
4227
4228         return pre_cac_allowed;
4229 }
4230 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4231
4232 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4233 {
4234         struct wireless_dev *wdev;
4235         /* If we finished CAC or received radar, we should end any
4236          * CAC running on the same channels.
4237          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4238          * either all channels are available - those the CAC_FINISHED
4239          * event has effected another wdev state, or there is a channel
4240          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4241          * event has effected another wdev state.
4242          * In both cases we should end the CAC on the wdev.
4243          */
4244         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4245                 struct cfg80211_chan_def *chandef;
4246
4247                 if (!wdev->cac_started)
4248                         continue;
4249
4250                 /* FIXME: radar detection is tied to link 0 for now */
4251                 chandef = wdev_chandef(wdev, 0);
4252                 if (!chandef)
4253                         continue;
4254
4255                 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4256                         rdev_end_cac(rdev, wdev->netdev);
4257         }
4258 }
4259
4260 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261                                     struct cfg80211_chan_def *chandef,
4262                                     enum nl80211_dfs_state dfs_state,
4263                                     enum nl80211_radar_event event)
4264 {
4265         struct cfg80211_registered_device *rdev;
4266
4267         ASSERT_RTNL();
4268
4269         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270                 return;
4271
4272         for_each_rdev(rdev) {
4273                 if (wiphy == &rdev->wiphy)
4274                         continue;
4275
4276                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277                         continue;
4278
4279                 if (!ieee80211_get_channel(&rdev->wiphy,
4280                                            chandef->chan->center_freq))
4281                         continue;
4282
4283                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284
4285                 if (event == NL80211_RADAR_DETECTED ||
4286                     event == NL80211_RADAR_CAC_FINISHED) {
4287                         cfg80211_sched_dfs_chan_update(rdev);
4288                         cfg80211_check_and_end_cac(rdev);
4289                 }
4290
4291                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292         }
4293 }
4294
4295 static int __init regulatory_init_db(void)
4296 {
4297         int err;
4298
4299         /*
4300          * It's possible that - due to other bugs/issues - cfg80211
4301          * never called regulatory_init() below, or that it failed;
4302          * in that case, don't try to do any further work here as
4303          * it's doomed to lead to crashes.
4304          */
4305         if (IS_ERR_OR_NULL(reg_pdev))
4306                 return -EINVAL;
4307
4308         err = load_builtin_regdb_keys();
4309         if (err) {
4310                 platform_device_unregister(reg_pdev);
4311                 return err;
4312         }
4313
4314         /* We always try to get an update for the static regdomain */
4315         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316         if (err) {
4317                 if (err == -ENOMEM) {
4318                         platform_device_unregister(reg_pdev);
4319                         return err;
4320                 }
4321                 /*
4322                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4323                  * memory which is handled and propagated appropriately above
4324                  * but it can also fail during a netlink_broadcast() or during
4325                  * early boot for call_usermodehelper(). For now treat these
4326                  * errors as non-fatal.
4327                  */
4328                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329         }
4330
4331         /*
4332          * Finally, if the user set the module parameter treat it
4333          * as a user hint.
4334          */
4335         if (!is_world_regdom(ieee80211_regdom))
4336                 regulatory_hint_user(ieee80211_regdom,
4337                                      NL80211_USER_REG_HINT_USER);
4338
4339         return 0;
4340 }
4341 #ifndef MODULE
4342 late_initcall(regulatory_init_db);
4343 #endif
4344
4345 int __init regulatory_init(void)
4346 {
4347         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348         if (IS_ERR(reg_pdev))
4349                 return PTR_ERR(reg_pdev);
4350
4351         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352
4353         user_alpha2[0] = '9';
4354         user_alpha2[1] = '7';
4355
4356 #ifdef MODULE
4357         return regulatory_init_db();
4358 #else
4359         return 0;
4360 #endif
4361 }
4362
4363 void regulatory_exit(void)
4364 {
4365         struct regulatory_request *reg_request, *tmp;
4366         struct reg_beacon *reg_beacon, *btmp;
4367
4368         cancel_work_sync(&reg_work);
4369         cancel_crda_timeout_sync();
4370         cancel_delayed_work_sync(&reg_check_chans);
4371
4372         /* Lock to suppress warnings */
4373         rtnl_lock();
4374         reset_regdomains(true, NULL);
4375         rtnl_unlock();
4376
4377         dev_set_uevent_suppress(&reg_pdev->dev, true);
4378
4379         platform_device_unregister(reg_pdev);
4380
4381         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4382                 list_del(&reg_beacon->list);
4383                 kfree(reg_beacon);
4384         }
4385
4386         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4387                 list_del(&reg_beacon->list);
4388                 kfree(reg_beacon);
4389         }
4390
4391         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4392                 list_del(&reg_request->list);
4393                 kfree(reg_request);
4394         }
4395
4396         if (!IS_ERR_OR_NULL(regdb))
4397                 kfree(regdb);
4398         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399                 kfree(cfg80211_user_regdom);
4400
4401         free_regdb_keyring();
4402 }