GNU Linux-libre 4.14.262-gnu1
[releases.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  *
9  * Permission to use, copy, modify, and/or distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21
22
23 /**
24  * DOC: Wireless regulatory infrastructure
25  *
26  * The usual implementation is for a driver to read a device EEPROM to
27  * determine which regulatory domain it should be operating under, then
28  * looking up the allowable channels in a driver-local table and finally
29  * registering those channels in the wiphy structure.
30  *
31  * Another set of compliance enforcement is for drivers to use their
32  * own compliance limits which can be stored on the EEPROM. The host
33  * driver or firmware may ensure these are used.
34  *
35  * In addition to all this we provide an extra layer of regulatory
36  * conformance. For drivers which do not have any regulatory
37  * information CRDA provides the complete regulatory solution.
38  * For others it provides a community effort on further restrictions
39  * to enhance compliance.
40  *
41  * Note: When number of rules --> infinity we will not be able to
42  * index on alpha2 any more, instead we'll probably have to
43  * rely on some SHA1 checksum of the regdomain for example.
44  *
45  */
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #include <linux/kernel.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/list.h>
53 #include <linux/ctype.h>
54 #include <linux/nl80211.h>
55 #include <linux/platform_device.h>
56 #include <linux/moduleparam.h>
57 #include <net/cfg80211.h>
58 #include "core.h"
59 #include "reg.h"
60 #include "rdev-ops.h"
61 #include "regdb.h"
62 #include "nl80211.h"
63
64 /*
65  * Grace period we give before making sure all current interfaces reside on
66  * channels allowed by the current regulatory domain.
67  */
68 #define REG_ENFORCE_GRACE_MS 60000
69
70 /**
71  * enum reg_request_treatment - regulatory request treatment
72  *
73  * @REG_REQ_OK: continue processing the regulatory request
74  * @REG_REQ_IGNORE: ignore the regulatory request
75  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
76  *      be intersected with the current one.
77  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
78  *      regulatory settings, and no further processing is required.
79  */
80 enum reg_request_treatment {
81         REG_REQ_OK,
82         REG_REQ_IGNORE,
83         REG_REQ_INTERSECT,
84         REG_REQ_ALREADY_SET,
85 };
86
87 static struct regulatory_request core_request_world = {
88         .initiator = NL80211_REGDOM_SET_BY_CORE,
89         .alpha2[0] = '0',
90         .alpha2[1] = '0',
91         .intersect = false,
92         .processed = true,
93         .country_ie_env = ENVIRON_ANY,
94 };
95
96 /*
97  * Receipt of information from last regulatory request,
98  * protected by RTNL (and can be accessed with RCU protection)
99  */
100 static struct regulatory_request __rcu *last_request =
101         (void __force __rcu *)&core_request_world;
102
103 /* To trigger userspace events */
104 static struct platform_device *reg_pdev;
105
106 /*
107  * Central wireless core regulatory domains, we only need two,
108  * the current one and a world regulatory domain in case we have no
109  * information to give us an alpha2.
110  * (protected by RTNL, can be read under RCU)
111  */
112 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
113
114 /*
115  * Number of devices that registered to the core
116  * that support cellular base station regulatory hints
117  * (protected by RTNL)
118  */
119 static int reg_num_devs_support_basehint;
120
121 /*
122  * State variable indicating if the platform on which the devices
123  * are attached is operating in an indoor environment. The state variable
124  * is relevant for all registered devices.
125  */
126 static bool reg_is_indoor;
127 static spinlock_t reg_indoor_lock;
128
129 /* Used to track the userspace process controlling the indoor setting */
130 static u32 reg_is_indoor_portid;
131
132 static void restore_regulatory_settings(bool reset_user);
133
134 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
135 {
136         return rtnl_dereference(cfg80211_regdomain);
137 }
138
139 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
140 {
141         return rtnl_dereference(wiphy->regd);
142 }
143
144 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
145 {
146         switch (dfs_region) {
147         case NL80211_DFS_UNSET:
148                 return "unset";
149         case NL80211_DFS_FCC:
150                 return "FCC";
151         case NL80211_DFS_ETSI:
152                 return "ETSI";
153         case NL80211_DFS_JP:
154                 return "JP";
155         }
156         return "Unknown";
157 }
158
159 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
160 {
161         const struct ieee80211_regdomain *regd = NULL;
162         const struct ieee80211_regdomain *wiphy_regd = NULL;
163
164         regd = get_cfg80211_regdom();
165         if (!wiphy)
166                 goto out;
167
168         wiphy_regd = get_wiphy_regdom(wiphy);
169         if (!wiphy_regd)
170                 goto out;
171
172         if (wiphy_regd->dfs_region == regd->dfs_region)
173                 goto out;
174
175         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
176                  dev_name(&wiphy->dev),
177                  reg_dfs_region_str(wiphy_regd->dfs_region),
178                  reg_dfs_region_str(regd->dfs_region));
179
180 out:
181         return regd->dfs_region;
182 }
183
184 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
185 {
186         if (!r)
187                 return;
188         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
189 }
190
191 static struct regulatory_request *get_last_request(void)
192 {
193         return rcu_dereference_rtnl(last_request);
194 }
195
196 /* Used to queue up regulatory hints */
197 static LIST_HEAD(reg_requests_list);
198 static spinlock_t reg_requests_lock;
199
200 /* Used to queue up beacon hints for review */
201 static LIST_HEAD(reg_pending_beacons);
202 static spinlock_t reg_pending_beacons_lock;
203
204 /* Used to keep track of processed beacon hints */
205 static LIST_HEAD(reg_beacon_list);
206
207 struct reg_beacon {
208         struct list_head list;
209         struct ieee80211_channel chan;
210 };
211
212 static void reg_check_chans_work(struct work_struct *work);
213 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
214
215 static void reg_todo(struct work_struct *work);
216 static DECLARE_WORK(reg_work, reg_todo);
217
218 /* We keep a static world regulatory domain in case of the absence of CRDA */
219 static const struct ieee80211_regdomain world_regdom = {
220         .n_reg_rules = 8,
221         .alpha2 =  "00",
222         .reg_rules = {
223                 /* IEEE 802.11b/g, channels 1..11 */
224                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
225                 /* IEEE 802.11b/g, channels 12..13. */
226                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
227                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
228                 /* IEEE 802.11 channel 14 - Only JP enables
229                  * this and for 802.11b only */
230                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
231                         NL80211_RRF_NO_IR |
232                         NL80211_RRF_NO_OFDM),
233                 /* IEEE 802.11a, channel 36..48 */
234                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
235                         NL80211_RRF_NO_IR |
236                         NL80211_RRF_AUTO_BW),
237
238                 /* IEEE 802.11a, channel 52..64 - DFS required */
239                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
240                         NL80211_RRF_NO_IR |
241                         NL80211_RRF_AUTO_BW |
242                         NL80211_RRF_DFS),
243
244                 /* IEEE 802.11a, channel 100..144 - DFS required */
245                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
246                         NL80211_RRF_NO_IR |
247                         NL80211_RRF_DFS),
248
249                 /* IEEE 802.11a, channel 149..165 */
250                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
251                         NL80211_RRF_NO_IR),
252
253                 /* IEEE 802.11ad (60GHz), channels 1..3 */
254                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
255         }
256 };
257
258 /* protected by RTNL */
259 static const struct ieee80211_regdomain *cfg80211_world_regdom =
260         &world_regdom;
261
262 static char *ieee80211_regdom = "00";
263 static char user_alpha2[2];
264
265 module_param(ieee80211_regdom, charp, 0444);
266 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
267
268 static void reg_free_request(struct regulatory_request *request)
269 {
270         if (request == &core_request_world)
271                 return;
272
273         if (request != get_last_request())
274                 kfree(request);
275 }
276
277 static void reg_free_last_request(void)
278 {
279         struct regulatory_request *lr = get_last_request();
280
281         if (lr != &core_request_world && lr)
282                 kfree_rcu(lr, rcu_head);
283 }
284
285 static void reg_update_last_request(struct regulatory_request *request)
286 {
287         struct regulatory_request *lr;
288
289         lr = get_last_request();
290         if (lr == request)
291                 return;
292
293         reg_free_last_request();
294         rcu_assign_pointer(last_request, request);
295 }
296
297 static void reset_regdomains(bool full_reset,
298                              const struct ieee80211_regdomain *new_regdom)
299 {
300         const struct ieee80211_regdomain *r;
301
302         ASSERT_RTNL();
303
304         r = get_cfg80211_regdom();
305
306         /* avoid freeing static information or freeing something twice */
307         if (r == cfg80211_world_regdom)
308                 r = NULL;
309         if (cfg80211_world_regdom == &world_regdom)
310                 cfg80211_world_regdom = NULL;
311         if (r == &world_regdom)
312                 r = NULL;
313
314         rcu_free_regdom(r);
315         rcu_free_regdom(cfg80211_world_regdom);
316
317         cfg80211_world_regdom = &world_regdom;
318         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
319
320         if (!full_reset)
321                 return;
322
323         reg_update_last_request(&core_request_world);
324 }
325
326 /*
327  * Dynamic world regulatory domain requested by the wireless
328  * core upon initialization
329  */
330 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
331 {
332         struct regulatory_request *lr;
333
334         lr = get_last_request();
335
336         WARN_ON(!lr);
337
338         reset_regdomains(false, rd);
339
340         cfg80211_world_regdom = rd;
341 }
342
343 bool is_world_regdom(const char *alpha2)
344 {
345         if (!alpha2)
346                 return false;
347         return alpha2[0] == '0' && alpha2[1] == '0';
348 }
349
350 static bool is_alpha2_set(const char *alpha2)
351 {
352         if (!alpha2)
353                 return false;
354         return alpha2[0] && alpha2[1];
355 }
356
357 static bool is_unknown_alpha2(const char *alpha2)
358 {
359         if (!alpha2)
360                 return false;
361         /*
362          * Special case where regulatory domain was built by driver
363          * but a specific alpha2 cannot be determined
364          */
365         return alpha2[0] == '9' && alpha2[1] == '9';
366 }
367
368 static bool is_intersected_alpha2(const char *alpha2)
369 {
370         if (!alpha2)
371                 return false;
372         /*
373          * Special case where regulatory domain is the
374          * result of an intersection between two regulatory domain
375          * structures
376          */
377         return alpha2[0] == '9' && alpha2[1] == '8';
378 }
379
380 static bool is_an_alpha2(const char *alpha2)
381 {
382         if (!alpha2)
383                 return false;
384         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
385 }
386
387 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
388 {
389         if (!alpha2_x || !alpha2_y)
390                 return false;
391         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
392 }
393
394 static bool regdom_changes(const char *alpha2)
395 {
396         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
397
398         if (!r)
399                 return true;
400         return !alpha2_equal(r->alpha2, alpha2);
401 }
402
403 /*
404  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
405  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
406  * has ever been issued.
407  */
408 static bool is_user_regdom_saved(void)
409 {
410         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
411                 return false;
412
413         /* This would indicate a mistake on the design */
414         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
415                  "Unexpected user alpha2: %c%c\n",
416                  user_alpha2[0], user_alpha2[1]))
417                 return false;
418
419         return true;
420 }
421
422 static const struct ieee80211_regdomain *
423 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
424 {
425         struct ieee80211_regdomain *regd;
426         int size_of_regd;
427         unsigned int i;
428
429         size_of_regd =
430                 sizeof(struct ieee80211_regdomain) +
431                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
432
433         regd = kzalloc(size_of_regd, GFP_KERNEL);
434         if (!regd)
435                 return ERR_PTR(-ENOMEM);
436
437         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439         for (i = 0; i < src_regd->n_reg_rules; i++)
440                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441                        sizeof(struct ieee80211_reg_rule));
442
443         return regd;
444 }
445
446 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
447 struct reg_regdb_apply_request {
448         struct list_head list;
449         const struct ieee80211_regdomain *regdom;
450 };
451
452 static LIST_HEAD(reg_regdb_apply_list);
453 static DEFINE_MUTEX(reg_regdb_apply_mutex);
454
455 static void reg_regdb_apply(struct work_struct *work)
456 {
457         struct reg_regdb_apply_request *request;
458
459         rtnl_lock();
460
461         mutex_lock(&reg_regdb_apply_mutex);
462         while (!list_empty(&reg_regdb_apply_list)) {
463                 request = list_first_entry(&reg_regdb_apply_list,
464                                            struct reg_regdb_apply_request,
465                                            list);
466                 list_del(&request->list);
467
468                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
469                 kfree(request);
470         }
471         mutex_unlock(&reg_regdb_apply_mutex);
472
473         rtnl_unlock();
474 }
475
476 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
477
478 static int reg_query_builtin(const char *alpha2)
479 {
480         const struct ieee80211_regdomain *regdom = NULL;
481         struct reg_regdb_apply_request *request;
482         unsigned int i;
483
484         for (i = 0; i < reg_regdb_size; i++) {
485                 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
486                         regdom = reg_regdb[i];
487                         break;
488                 }
489         }
490
491         if (!regdom)
492                 return -ENODATA;
493
494         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
495         if (!request)
496                 return -ENOMEM;
497
498         request->regdom = reg_copy_regd(regdom);
499         if (IS_ERR_OR_NULL(request->regdom)) {
500                 kfree(request);
501                 return -ENOMEM;
502         }
503
504         mutex_lock(&reg_regdb_apply_mutex);
505         list_add_tail(&request->list, &reg_regdb_apply_list);
506         mutex_unlock(&reg_regdb_apply_mutex);
507
508         schedule_work(&reg_regdb_work);
509
510         return 0;
511 }
512
513 /* Feel free to add any other sanity checks here */
514 static void reg_regdb_size_check(void)
515 {
516         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
517         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
518 }
519 #else
520 static inline void reg_regdb_size_check(void) {}
521 static inline int reg_query_builtin(const char *alpha2)
522 {
523         return -ENODATA;
524 }
525 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
526
527 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
528 /* Max number of consecutive attempts to communicate with CRDA  */
529 #define REG_MAX_CRDA_TIMEOUTS 10
530
531 static u32 reg_crda_timeouts;
532
533 static void crda_timeout_work(struct work_struct *work);
534 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
535
536 static void crda_timeout_work(struct work_struct *work)
537 {
538         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
539         rtnl_lock();
540         reg_crda_timeouts++;
541         restore_regulatory_settings(true);
542         rtnl_unlock();
543 }
544
545 static void cancel_crda_timeout(void)
546 {
547         cancel_delayed_work(&crda_timeout);
548 }
549
550 static void cancel_crda_timeout_sync(void)
551 {
552         cancel_delayed_work_sync(&crda_timeout);
553 }
554
555 static void reset_crda_timeouts(void)
556 {
557         reg_crda_timeouts = 0;
558 }
559
560 /*
561  * This lets us keep regulatory code which is updated on a regulatory
562  * basis in userspace.
563  */
564 static int call_crda(const char *alpha2)
565 {
566         char country[12];
567         char *env[] = { country, NULL };
568         int ret;
569
570         snprintf(country, sizeof(country), "COUNTRY=%c%c",
571                  alpha2[0], alpha2[1]);
572
573         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
574                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
575                 return -EINVAL;
576         }
577
578         if (!is_world_regdom((char *) alpha2))
579                 pr_debug("Calling CRDA for country: %c%c\n",
580                          alpha2[0], alpha2[1]);
581         else
582                 pr_debug("Calling CRDA to update world regulatory domain\n");
583
584         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
585         if (ret)
586                 return ret;
587
588         queue_delayed_work(system_power_efficient_wq,
589                            &crda_timeout, msecs_to_jiffies(3142));
590         return 0;
591 }
592 #else
593 static inline void cancel_crda_timeout(void) {}
594 static inline void cancel_crda_timeout_sync(void) {}
595 static inline void reset_crda_timeouts(void) {}
596 static inline int call_crda(const char *alpha2)
597 {
598         return -ENODATA;
599 }
600 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
601
602 static bool reg_query_database(struct regulatory_request *request)
603 {
604         /* query internal regulatory database (if it exists) */
605         if (reg_query_builtin(request->alpha2) == 0)
606                 return true;
607
608         if (call_crda(request->alpha2) == 0)
609                 return true;
610
611         return false;
612 }
613
614 bool reg_is_valid_request(const char *alpha2)
615 {
616         struct regulatory_request *lr = get_last_request();
617
618         if (!lr || lr->processed)
619                 return false;
620
621         return alpha2_equal(lr->alpha2, alpha2);
622 }
623
624 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
625 {
626         struct regulatory_request *lr = get_last_request();
627
628         /*
629          * Follow the driver's regulatory domain, if present, unless a country
630          * IE has been processed or a user wants to help complaince further
631          */
632         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
633             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
634             wiphy->regd)
635                 return get_wiphy_regdom(wiphy);
636
637         return get_cfg80211_regdom();
638 }
639
640 static unsigned int
641 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
642                                  const struct ieee80211_reg_rule *rule)
643 {
644         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
645         const struct ieee80211_freq_range *freq_range_tmp;
646         const struct ieee80211_reg_rule *tmp;
647         u32 start_freq, end_freq, idx, no;
648
649         for (idx = 0; idx < rd->n_reg_rules; idx++)
650                 if (rule == &rd->reg_rules[idx])
651                         break;
652
653         if (idx == rd->n_reg_rules)
654                 return 0;
655
656         /* get start_freq */
657         no = idx;
658
659         while (no) {
660                 tmp = &rd->reg_rules[--no];
661                 freq_range_tmp = &tmp->freq_range;
662
663                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
664                         break;
665
666                 freq_range = freq_range_tmp;
667         }
668
669         start_freq = freq_range->start_freq_khz;
670
671         /* get end_freq */
672         freq_range = &rule->freq_range;
673         no = idx;
674
675         while (no < rd->n_reg_rules - 1) {
676                 tmp = &rd->reg_rules[++no];
677                 freq_range_tmp = &tmp->freq_range;
678
679                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
680                         break;
681
682                 freq_range = freq_range_tmp;
683         }
684
685         end_freq = freq_range->end_freq_khz;
686
687         return end_freq - start_freq;
688 }
689
690 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
691                                    const struct ieee80211_reg_rule *rule)
692 {
693         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
694
695         if (rule->flags & NL80211_RRF_NO_160MHZ)
696                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
697         if (rule->flags & NL80211_RRF_NO_80MHZ)
698                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
699
700         /*
701          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
702          * are not allowed.
703          */
704         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
705             rule->flags & NL80211_RRF_NO_HT40PLUS)
706                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
707
708         return bw;
709 }
710
711 /* Sanity check on a regulatory rule */
712 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
713 {
714         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
715         u32 freq_diff;
716
717         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
718                 return false;
719
720         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
721                 return false;
722
723         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
724
725         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
726             freq_range->max_bandwidth_khz > freq_diff)
727                 return false;
728
729         return true;
730 }
731
732 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
733 {
734         const struct ieee80211_reg_rule *reg_rule = NULL;
735         unsigned int i;
736
737         if (!rd->n_reg_rules)
738                 return false;
739
740         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
741                 return false;
742
743         for (i = 0; i < rd->n_reg_rules; i++) {
744                 reg_rule = &rd->reg_rules[i];
745                 if (!is_valid_reg_rule(reg_rule))
746                         return false;
747         }
748
749         return true;
750 }
751
752 /**
753  * freq_in_rule_band - tells us if a frequency is in a frequency band
754  * @freq_range: frequency rule we want to query
755  * @freq_khz: frequency we are inquiring about
756  *
757  * This lets us know if a specific frequency rule is or is not relevant to
758  * a specific frequency's band. Bands are device specific and artificial
759  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
760  * however it is safe for now to assume that a frequency rule should not be
761  * part of a frequency's band if the start freq or end freq are off by more
762  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
763  * 60 GHz band.
764  * This resolution can be lowered and should be considered as we add
765  * regulatory rule support for other "bands".
766  **/
767 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
768                               u32 freq_khz)
769 {
770 #define ONE_GHZ_IN_KHZ  1000000
771         /*
772          * From 802.11ad: directional multi-gigabit (DMG):
773          * Pertaining to operation in a frequency band containing a channel
774          * with the Channel starting frequency above 45 GHz.
775          */
776         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
777                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
778         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
779                 return true;
780         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
781                 return true;
782         return false;
783 #undef ONE_GHZ_IN_KHZ
784 }
785
786 /*
787  * Later on we can perhaps use the more restrictive DFS
788  * region but we don't have information for that yet so
789  * for now simply disallow conflicts.
790  */
791 static enum nl80211_dfs_regions
792 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
793                          const enum nl80211_dfs_regions dfs_region2)
794 {
795         if (dfs_region1 != dfs_region2)
796                 return NL80211_DFS_UNSET;
797         return dfs_region1;
798 }
799
800 /*
801  * Helper for regdom_intersect(), this does the real
802  * mathematical intersection fun
803  */
804 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
805                                const struct ieee80211_regdomain *rd2,
806                                const struct ieee80211_reg_rule *rule1,
807                                const struct ieee80211_reg_rule *rule2,
808                                struct ieee80211_reg_rule *intersected_rule)
809 {
810         const struct ieee80211_freq_range *freq_range1, *freq_range2;
811         struct ieee80211_freq_range *freq_range;
812         const struct ieee80211_power_rule *power_rule1, *power_rule2;
813         struct ieee80211_power_rule *power_rule;
814         u32 freq_diff, max_bandwidth1, max_bandwidth2;
815
816         freq_range1 = &rule1->freq_range;
817         freq_range2 = &rule2->freq_range;
818         freq_range = &intersected_rule->freq_range;
819
820         power_rule1 = &rule1->power_rule;
821         power_rule2 = &rule2->power_rule;
822         power_rule = &intersected_rule->power_rule;
823
824         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
825                                          freq_range2->start_freq_khz);
826         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
827                                        freq_range2->end_freq_khz);
828
829         max_bandwidth1 = freq_range1->max_bandwidth_khz;
830         max_bandwidth2 = freq_range2->max_bandwidth_khz;
831
832         if (rule1->flags & NL80211_RRF_AUTO_BW)
833                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
834         if (rule2->flags & NL80211_RRF_AUTO_BW)
835                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
836
837         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
838
839         intersected_rule->flags = rule1->flags | rule2->flags;
840
841         /*
842          * In case NL80211_RRF_AUTO_BW requested for both rules
843          * set AUTO_BW in intersected rule also. Next we will
844          * calculate BW correctly in handle_channel function.
845          * In other case remove AUTO_BW flag while we calculate
846          * maximum bandwidth correctly and auto calculation is
847          * not required.
848          */
849         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
850             (rule2->flags & NL80211_RRF_AUTO_BW))
851                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
852         else
853                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
854
855         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
856         if (freq_range->max_bandwidth_khz > freq_diff)
857                 freq_range->max_bandwidth_khz = freq_diff;
858
859         power_rule->max_eirp = min(power_rule1->max_eirp,
860                 power_rule2->max_eirp);
861         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
862                 power_rule2->max_antenna_gain);
863
864         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
865                                            rule2->dfs_cac_ms);
866
867         if (!is_valid_reg_rule(intersected_rule))
868                 return -EINVAL;
869
870         return 0;
871 }
872
873 /* check whether old rule contains new rule */
874 static bool rule_contains(struct ieee80211_reg_rule *r1,
875                           struct ieee80211_reg_rule *r2)
876 {
877         /* for simplicity, currently consider only same flags */
878         if (r1->flags != r2->flags)
879                 return false;
880
881         /* verify r1 is more restrictive */
882         if ((r1->power_rule.max_antenna_gain >
883              r2->power_rule.max_antenna_gain) ||
884             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
885                 return false;
886
887         /* make sure r2's range is contained within r1 */
888         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
889             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
890                 return false;
891
892         /* and finally verify that r1.max_bw >= r2.max_bw */
893         if (r1->freq_range.max_bandwidth_khz <
894             r2->freq_range.max_bandwidth_khz)
895                 return false;
896
897         return true;
898 }
899
900 /* add or extend current rules. do nothing if rule is already contained */
901 static void add_rule(struct ieee80211_reg_rule *rule,
902                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
903 {
904         struct ieee80211_reg_rule *tmp_rule;
905         int i;
906
907         for (i = 0; i < *n_rules; i++) {
908                 tmp_rule = &reg_rules[i];
909                 /* rule is already contained - do nothing */
910                 if (rule_contains(tmp_rule, rule))
911                         return;
912
913                 /* extend rule if possible */
914                 if (rule_contains(rule, tmp_rule)) {
915                         memcpy(tmp_rule, rule, sizeof(*rule));
916                         return;
917                 }
918         }
919
920         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
921         (*n_rules)++;
922 }
923
924 /**
925  * regdom_intersect - do the intersection between two regulatory domains
926  * @rd1: first regulatory domain
927  * @rd2: second regulatory domain
928  *
929  * Use this function to get the intersection between two regulatory domains.
930  * Once completed we will mark the alpha2 for the rd as intersected, "98",
931  * as no one single alpha2 can represent this regulatory domain.
932  *
933  * Returns a pointer to the regulatory domain structure which will hold the
934  * resulting intersection of rules between rd1 and rd2. We will
935  * kzalloc() this structure for you.
936  */
937 static struct ieee80211_regdomain *
938 regdom_intersect(const struct ieee80211_regdomain *rd1,
939                  const struct ieee80211_regdomain *rd2)
940 {
941         int r, size_of_regd;
942         unsigned int x, y;
943         unsigned int num_rules = 0;
944         const struct ieee80211_reg_rule *rule1, *rule2;
945         struct ieee80211_reg_rule intersected_rule;
946         struct ieee80211_regdomain *rd;
947
948         if (!rd1 || !rd2)
949                 return NULL;
950
951         /*
952          * First we get a count of the rules we'll need, then we actually
953          * build them. This is to so we can malloc() and free() a
954          * regdomain once. The reason we use reg_rules_intersect() here
955          * is it will return -EINVAL if the rule computed makes no sense.
956          * All rules that do check out OK are valid.
957          */
958
959         for (x = 0; x < rd1->n_reg_rules; x++) {
960                 rule1 = &rd1->reg_rules[x];
961                 for (y = 0; y < rd2->n_reg_rules; y++) {
962                         rule2 = &rd2->reg_rules[y];
963                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
964                                                  &intersected_rule))
965                                 num_rules++;
966                 }
967         }
968
969         if (!num_rules)
970                 return NULL;
971
972         size_of_regd = sizeof(struct ieee80211_regdomain) +
973                        num_rules * sizeof(struct ieee80211_reg_rule);
974
975         rd = kzalloc(size_of_regd, GFP_KERNEL);
976         if (!rd)
977                 return NULL;
978
979         for (x = 0; x < rd1->n_reg_rules; x++) {
980                 rule1 = &rd1->reg_rules[x];
981                 for (y = 0; y < rd2->n_reg_rules; y++) {
982                         rule2 = &rd2->reg_rules[y];
983                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
984                                                 &intersected_rule);
985                         /*
986                          * No need to memset here the intersected rule here as
987                          * we're not using the stack anymore
988                          */
989                         if (r)
990                                 continue;
991
992                         add_rule(&intersected_rule, rd->reg_rules,
993                                  &rd->n_reg_rules);
994                 }
995         }
996
997         rd->alpha2[0] = '9';
998         rd->alpha2[1] = '8';
999         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1000                                                   rd2->dfs_region);
1001
1002         return rd;
1003 }
1004
1005 /*
1006  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1007  * want to just have the channel structure use these
1008  */
1009 static u32 map_regdom_flags(u32 rd_flags)
1010 {
1011         u32 channel_flags = 0;
1012         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1013                 channel_flags |= IEEE80211_CHAN_NO_IR;
1014         if (rd_flags & NL80211_RRF_DFS)
1015                 channel_flags |= IEEE80211_CHAN_RADAR;
1016         if (rd_flags & NL80211_RRF_NO_OFDM)
1017                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1018         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1019                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1020         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1021                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1022         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1023                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1024         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1025                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1026         if (rd_flags & NL80211_RRF_NO_80MHZ)
1027                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1028         if (rd_flags & NL80211_RRF_NO_160MHZ)
1029                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1030         return channel_flags;
1031 }
1032
1033 static const struct ieee80211_reg_rule *
1034 freq_reg_info_regd(u32 center_freq,
1035                    const struct ieee80211_regdomain *regd, u32 bw)
1036 {
1037         int i;
1038         bool band_rule_found = false;
1039         bool bw_fits = false;
1040
1041         if (!regd)
1042                 return ERR_PTR(-EINVAL);
1043
1044         for (i = 0; i < regd->n_reg_rules; i++) {
1045                 const struct ieee80211_reg_rule *rr;
1046                 const struct ieee80211_freq_range *fr = NULL;
1047
1048                 rr = &regd->reg_rules[i];
1049                 fr = &rr->freq_range;
1050
1051                 /*
1052                  * We only need to know if one frequency rule was
1053                  * was in center_freq's band, that's enough, so lets
1054                  * not overwrite it once found
1055                  */
1056                 if (!band_rule_found)
1057                         band_rule_found = freq_in_rule_band(fr, center_freq);
1058
1059                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1060
1061                 if (band_rule_found && bw_fits)
1062                         return rr;
1063         }
1064
1065         if (!band_rule_found)
1066                 return ERR_PTR(-ERANGE);
1067
1068         return ERR_PTR(-EINVAL);
1069 }
1070
1071 static const struct ieee80211_reg_rule *
1072 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1073 {
1074         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1075         const struct ieee80211_reg_rule *reg_rule = NULL;
1076         u32 bw;
1077
1078         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1079                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1080                 if (!IS_ERR(reg_rule))
1081                         return reg_rule;
1082         }
1083
1084         return reg_rule;
1085 }
1086
1087 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1088                                                u32 center_freq)
1089 {
1090         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1091 }
1092 EXPORT_SYMBOL(freq_reg_info);
1093
1094 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1095 {
1096         switch (initiator) {
1097         case NL80211_REGDOM_SET_BY_CORE:
1098                 return "core";
1099         case NL80211_REGDOM_SET_BY_USER:
1100                 return "user";
1101         case NL80211_REGDOM_SET_BY_DRIVER:
1102                 return "driver";
1103         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1104                 return "country IE";
1105         default:
1106                 WARN_ON(1);
1107                 return "bug";
1108         }
1109 }
1110 EXPORT_SYMBOL(reg_initiator_name);
1111
1112 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1113                                           const struct ieee80211_reg_rule *reg_rule,
1114                                           const struct ieee80211_channel *chan)
1115 {
1116         const struct ieee80211_freq_range *freq_range = NULL;
1117         u32 max_bandwidth_khz, bw_flags = 0;
1118
1119         freq_range = &reg_rule->freq_range;
1120
1121         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1122         /* Check if auto calculation requested */
1123         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1124                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1125
1126         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1127         if (!cfg80211_does_bw_fit_range(freq_range,
1128                                         MHZ_TO_KHZ(chan->center_freq),
1129                                         MHZ_TO_KHZ(10)))
1130                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1131         if (!cfg80211_does_bw_fit_range(freq_range,
1132                                         MHZ_TO_KHZ(chan->center_freq),
1133                                         MHZ_TO_KHZ(20)))
1134                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1135
1136         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1137                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1138         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1139                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1140         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1141                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1142         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1143                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1144         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1145                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1146         return bw_flags;
1147 }
1148
1149 /*
1150  * Note that right now we assume the desired channel bandwidth
1151  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1152  * per channel, the primary and the extension channel).
1153  */
1154 static void handle_channel(struct wiphy *wiphy,
1155                            enum nl80211_reg_initiator initiator,
1156                            struct ieee80211_channel *chan)
1157 {
1158         u32 flags, bw_flags = 0;
1159         const struct ieee80211_reg_rule *reg_rule = NULL;
1160         const struct ieee80211_power_rule *power_rule = NULL;
1161         struct wiphy *request_wiphy = NULL;
1162         struct regulatory_request *lr = get_last_request();
1163         const struct ieee80211_regdomain *regd;
1164
1165         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1166
1167         flags = chan->orig_flags;
1168
1169         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1170         if (IS_ERR(reg_rule)) {
1171                 /*
1172                  * We will disable all channels that do not match our
1173                  * received regulatory rule unless the hint is coming
1174                  * from a Country IE and the Country IE had no information
1175                  * about a band. The IEEE 802.11 spec allows for an AP
1176                  * to send only a subset of the regulatory rules allowed,
1177                  * so an AP in the US that only supports 2.4 GHz may only send
1178                  * a country IE with information for the 2.4 GHz band
1179                  * while 5 GHz is still supported.
1180                  */
1181                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1182                     PTR_ERR(reg_rule) == -ERANGE)
1183                         return;
1184
1185                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1186                     request_wiphy && request_wiphy == wiphy &&
1187                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1188                         pr_debug("Disabling freq %d MHz for good\n",
1189                                  chan->center_freq);
1190                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1191                         chan->flags = chan->orig_flags;
1192                 } else {
1193                         pr_debug("Disabling freq %d MHz\n",
1194                                  chan->center_freq);
1195                         chan->flags |= IEEE80211_CHAN_DISABLED;
1196                 }
1197                 return;
1198         }
1199
1200         regd = reg_get_regdomain(wiphy);
1201
1202         power_rule = &reg_rule->power_rule;
1203         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1204
1205         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1206             request_wiphy && request_wiphy == wiphy &&
1207             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1208                 /*
1209                  * This guarantees the driver's requested regulatory domain
1210                  * will always be used as a base for further regulatory
1211                  * settings
1212                  */
1213                 chan->flags = chan->orig_flags =
1214                         map_regdom_flags(reg_rule->flags) | bw_flags;
1215                 chan->max_antenna_gain = chan->orig_mag =
1216                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1217                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1218                         (int) MBM_TO_DBM(power_rule->max_eirp);
1219
1220                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1221                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1222                         if (reg_rule->dfs_cac_ms)
1223                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1224                 }
1225
1226                 return;
1227         }
1228
1229         chan->dfs_state = NL80211_DFS_USABLE;
1230         chan->dfs_state_entered = jiffies;
1231
1232         chan->beacon_found = false;
1233         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1234         chan->max_antenna_gain =
1235                 min_t(int, chan->orig_mag,
1236                       MBI_TO_DBI(power_rule->max_antenna_gain));
1237         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1238
1239         if (chan->flags & IEEE80211_CHAN_RADAR) {
1240                 if (reg_rule->dfs_cac_ms)
1241                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1242                 else
1243                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1244         }
1245
1246         if (chan->orig_mpwr) {
1247                 /*
1248                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1249                  * will always follow the passed country IE power settings.
1250                  */
1251                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1252                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1253                         chan->max_power = chan->max_reg_power;
1254                 else
1255                         chan->max_power = min(chan->orig_mpwr,
1256                                               chan->max_reg_power);
1257         } else
1258                 chan->max_power = chan->max_reg_power;
1259 }
1260
1261 static void handle_band(struct wiphy *wiphy,
1262                         enum nl80211_reg_initiator initiator,
1263                         struct ieee80211_supported_band *sband)
1264 {
1265         unsigned int i;
1266
1267         if (!sband)
1268                 return;
1269
1270         for (i = 0; i < sband->n_channels; i++)
1271                 handle_channel(wiphy, initiator, &sband->channels[i]);
1272 }
1273
1274 static bool reg_request_cell_base(struct regulatory_request *request)
1275 {
1276         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1277                 return false;
1278         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1279 }
1280
1281 bool reg_last_request_cell_base(void)
1282 {
1283         return reg_request_cell_base(get_last_request());
1284 }
1285
1286 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1287 /* Core specific check */
1288 static enum reg_request_treatment
1289 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1290 {
1291         struct regulatory_request *lr = get_last_request();
1292
1293         if (!reg_num_devs_support_basehint)
1294                 return REG_REQ_IGNORE;
1295
1296         if (reg_request_cell_base(lr) &&
1297             !regdom_changes(pending_request->alpha2))
1298                 return REG_REQ_ALREADY_SET;
1299
1300         return REG_REQ_OK;
1301 }
1302
1303 /* Device specific check */
1304 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1305 {
1306         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1307 }
1308 #else
1309 static enum reg_request_treatment
1310 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1311 {
1312         return REG_REQ_IGNORE;
1313 }
1314
1315 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1316 {
1317         return true;
1318 }
1319 #endif
1320
1321 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1322 {
1323         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1324             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1325                 return true;
1326         return false;
1327 }
1328
1329 static bool ignore_reg_update(struct wiphy *wiphy,
1330                               enum nl80211_reg_initiator initiator)
1331 {
1332         struct regulatory_request *lr = get_last_request();
1333
1334         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1335                 return true;
1336
1337         if (!lr) {
1338                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1339                          reg_initiator_name(initiator));
1340                 return true;
1341         }
1342
1343         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1344             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1345                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1346                          reg_initiator_name(initiator));
1347                 return true;
1348         }
1349
1350         /*
1351          * wiphy->regd will be set once the device has its own
1352          * desired regulatory domain set
1353          */
1354         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1355             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1356             !is_world_regdom(lr->alpha2)) {
1357                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1358                          reg_initiator_name(initiator));
1359                 return true;
1360         }
1361
1362         if (reg_request_cell_base(lr))
1363                 return reg_dev_ignore_cell_hint(wiphy);
1364
1365         return false;
1366 }
1367
1368 static bool reg_is_world_roaming(struct wiphy *wiphy)
1369 {
1370         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1371         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1372         struct regulatory_request *lr = get_last_request();
1373
1374         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1375                 return true;
1376
1377         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1378             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1379                 return true;
1380
1381         return false;
1382 }
1383
1384 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1385                               struct reg_beacon *reg_beacon)
1386 {
1387         struct ieee80211_supported_band *sband;
1388         struct ieee80211_channel *chan;
1389         bool channel_changed = false;
1390         struct ieee80211_channel chan_before;
1391
1392         sband = wiphy->bands[reg_beacon->chan.band];
1393         chan = &sband->channels[chan_idx];
1394
1395         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1396                 return;
1397
1398         if (chan->beacon_found)
1399                 return;
1400
1401         chan->beacon_found = true;
1402
1403         if (!reg_is_world_roaming(wiphy))
1404                 return;
1405
1406         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1407                 return;
1408
1409         chan_before.center_freq = chan->center_freq;
1410         chan_before.flags = chan->flags;
1411
1412         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1413                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1414                 channel_changed = true;
1415         }
1416
1417         if (channel_changed)
1418                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1419 }
1420
1421 /*
1422  * Called when a scan on a wiphy finds a beacon on
1423  * new channel
1424  */
1425 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1426                                     struct reg_beacon *reg_beacon)
1427 {
1428         unsigned int i;
1429         struct ieee80211_supported_band *sband;
1430
1431         if (!wiphy->bands[reg_beacon->chan.band])
1432                 return;
1433
1434         sband = wiphy->bands[reg_beacon->chan.band];
1435
1436         for (i = 0; i < sband->n_channels; i++)
1437                 handle_reg_beacon(wiphy, i, reg_beacon);
1438 }
1439
1440 /*
1441  * Called upon reg changes or a new wiphy is added
1442  */
1443 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1444 {
1445         unsigned int i;
1446         struct ieee80211_supported_band *sband;
1447         struct reg_beacon *reg_beacon;
1448
1449         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1450                 if (!wiphy->bands[reg_beacon->chan.band])
1451                         continue;
1452                 sband = wiphy->bands[reg_beacon->chan.band];
1453                 for (i = 0; i < sband->n_channels; i++)
1454                         handle_reg_beacon(wiphy, i, reg_beacon);
1455         }
1456 }
1457
1458 /* Reap the advantages of previously found beacons */
1459 static void reg_process_beacons(struct wiphy *wiphy)
1460 {
1461         /*
1462          * Means we are just firing up cfg80211, so no beacons would
1463          * have been processed yet.
1464          */
1465         if (!last_request)
1466                 return;
1467         wiphy_update_beacon_reg(wiphy);
1468 }
1469
1470 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1471 {
1472         if (!chan)
1473                 return false;
1474         if (chan->flags & IEEE80211_CHAN_DISABLED)
1475                 return false;
1476         /* This would happen when regulatory rules disallow HT40 completely */
1477         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1478                 return false;
1479         return true;
1480 }
1481
1482 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1483                                          struct ieee80211_channel *channel)
1484 {
1485         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1486         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1487         const struct ieee80211_regdomain *regd;
1488         unsigned int i;
1489         u32 flags;
1490
1491         if (!is_ht40_allowed(channel)) {
1492                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1493                 return;
1494         }
1495
1496         /*
1497          * We need to ensure the extension channels exist to
1498          * be able to use HT40- or HT40+, this finds them (or not)
1499          */
1500         for (i = 0; i < sband->n_channels; i++) {
1501                 struct ieee80211_channel *c = &sband->channels[i];
1502
1503                 if (c->center_freq == (channel->center_freq - 20))
1504                         channel_before = c;
1505                 if (c->center_freq == (channel->center_freq + 20))
1506                         channel_after = c;
1507         }
1508
1509         flags = 0;
1510         regd = get_wiphy_regdom(wiphy);
1511         if (regd) {
1512                 const struct ieee80211_reg_rule *reg_rule =
1513                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
1514                                            regd, MHZ_TO_KHZ(20));
1515
1516                 if (!IS_ERR(reg_rule))
1517                         flags = reg_rule->flags;
1518         }
1519
1520         /*
1521          * Please note that this assumes target bandwidth is 20 MHz,
1522          * if that ever changes we also need to change the below logic
1523          * to include that as well.
1524          */
1525         if (!is_ht40_allowed(channel_before) ||
1526             flags & NL80211_RRF_NO_HT40MINUS)
1527                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1528         else
1529                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1530
1531         if (!is_ht40_allowed(channel_after) ||
1532             flags & NL80211_RRF_NO_HT40PLUS)
1533                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1534         else
1535                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1536 }
1537
1538 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1539                                       struct ieee80211_supported_band *sband)
1540 {
1541         unsigned int i;
1542
1543         if (!sband)
1544                 return;
1545
1546         for (i = 0; i < sband->n_channels; i++)
1547                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1548 }
1549
1550 static void reg_process_ht_flags(struct wiphy *wiphy)
1551 {
1552         enum nl80211_band band;
1553
1554         if (!wiphy)
1555                 return;
1556
1557         for (band = 0; band < NUM_NL80211_BANDS; band++)
1558                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1559 }
1560
1561 static void reg_call_notifier(struct wiphy *wiphy,
1562                               struct regulatory_request *request)
1563 {
1564         if (wiphy->reg_notifier)
1565                 wiphy->reg_notifier(wiphy, request);
1566 }
1567
1568 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1569 {
1570         struct cfg80211_chan_def chandef = {};
1571         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1572         enum nl80211_iftype iftype;
1573
1574         wdev_lock(wdev);
1575         iftype = wdev->iftype;
1576
1577         /* make sure the interface is active */
1578         if (!wdev->netdev || !netif_running(wdev->netdev))
1579                 goto wdev_inactive_unlock;
1580
1581         switch (iftype) {
1582         case NL80211_IFTYPE_AP:
1583         case NL80211_IFTYPE_P2P_GO:
1584                 if (!wdev->beacon_interval)
1585                         goto wdev_inactive_unlock;
1586                 chandef = wdev->chandef;
1587                 break;
1588         case NL80211_IFTYPE_ADHOC:
1589                 if (!wdev->ssid_len)
1590                         goto wdev_inactive_unlock;
1591                 chandef = wdev->chandef;
1592                 break;
1593         case NL80211_IFTYPE_STATION:
1594         case NL80211_IFTYPE_P2P_CLIENT:
1595                 if (!wdev->current_bss ||
1596                     !wdev->current_bss->pub.channel)
1597                         goto wdev_inactive_unlock;
1598
1599                 if (!rdev->ops->get_channel ||
1600                     rdev_get_channel(rdev, wdev, &chandef))
1601                         cfg80211_chandef_create(&chandef,
1602                                                 wdev->current_bss->pub.channel,
1603                                                 NL80211_CHAN_NO_HT);
1604                 break;
1605         case NL80211_IFTYPE_MONITOR:
1606         case NL80211_IFTYPE_AP_VLAN:
1607         case NL80211_IFTYPE_P2P_DEVICE:
1608                 /* no enforcement required */
1609                 break;
1610         default:
1611                 /* others not implemented for now */
1612                 WARN_ON(1);
1613                 break;
1614         }
1615
1616         wdev_unlock(wdev);
1617
1618         switch (iftype) {
1619         case NL80211_IFTYPE_AP:
1620         case NL80211_IFTYPE_P2P_GO:
1621         case NL80211_IFTYPE_ADHOC:
1622                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1623         case NL80211_IFTYPE_STATION:
1624         case NL80211_IFTYPE_P2P_CLIENT:
1625                 return cfg80211_chandef_usable(wiphy, &chandef,
1626                                                IEEE80211_CHAN_DISABLED);
1627         default:
1628                 break;
1629         }
1630
1631         return true;
1632
1633 wdev_inactive_unlock:
1634         wdev_unlock(wdev);
1635         return true;
1636 }
1637
1638 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1639 {
1640         struct wireless_dev *wdev;
1641         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1642
1643         ASSERT_RTNL();
1644
1645         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1646                 if (!reg_wdev_chan_valid(wiphy, wdev))
1647                         cfg80211_leave(rdev, wdev);
1648 }
1649
1650 static void reg_check_chans_work(struct work_struct *work)
1651 {
1652         struct cfg80211_registered_device *rdev;
1653
1654         pr_debug("Verifying active interfaces after reg change\n");
1655         rtnl_lock();
1656
1657         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1658                 if (!(rdev->wiphy.regulatory_flags &
1659                       REGULATORY_IGNORE_STALE_KICKOFF))
1660                         reg_leave_invalid_chans(&rdev->wiphy);
1661
1662         rtnl_unlock();
1663 }
1664
1665 static void reg_check_channels(void)
1666 {
1667         /*
1668          * Give usermode a chance to do something nicer (move to another
1669          * channel, orderly disconnection), before forcing a disconnection.
1670          */
1671         mod_delayed_work(system_power_efficient_wq,
1672                          &reg_check_chans,
1673                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1674 }
1675
1676 static void wiphy_update_regulatory(struct wiphy *wiphy,
1677                                     enum nl80211_reg_initiator initiator)
1678 {
1679         enum nl80211_band band;
1680         struct regulatory_request *lr = get_last_request();
1681
1682         if (ignore_reg_update(wiphy, initiator)) {
1683                 /*
1684                  * Regulatory updates set by CORE are ignored for custom
1685                  * regulatory cards. Let us notify the changes to the driver,
1686                  * as some drivers used this to restore its orig_* reg domain.
1687                  */
1688                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1689                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1690                         reg_call_notifier(wiphy, lr);
1691                 return;
1692         }
1693
1694         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1695
1696         for (band = 0; band < NUM_NL80211_BANDS; band++)
1697                 handle_band(wiphy, initiator, wiphy->bands[band]);
1698
1699         reg_process_beacons(wiphy);
1700         reg_process_ht_flags(wiphy);
1701         reg_call_notifier(wiphy, lr);
1702 }
1703
1704 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1705 {
1706         struct cfg80211_registered_device *rdev;
1707         struct wiphy *wiphy;
1708
1709         ASSERT_RTNL();
1710
1711         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1712                 wiphy = &rdev->wiphy;
1713                 wiphy_update_regulatory(wiphy, initiator);
1714         }
1715
1716         reg_check_channels();
1717 }
1718
1719 static void handle_channel_custom(struct wiphy *wiphy,
1720                                   struct ieee80211_channel *chan,
1721                                   const struct ieee80211_regdomain *regd,
1722                                   u32 min_bw)
1723 {
1724         u32 bw_flags = 0;
1725         const struct ieee80211_reg_rule *reg_rule = NULL;
1726         const struct ieee80211_power_rule *power_rule = NULL;
1727         u32 bw;
1728
1729         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1730                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1731                                               regd, bw);
1732                 if (!IS_ERR(reg_rule))
1733                         break;
1734         }
1735
1736         if (IS_ERR_OR_NULL(reg_rule)) {
1737                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1738                          chan->center_freq);
1739                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1740                         chan->flags |= IEEE80211_CHAN_DISABLED;
1741                 } else {
1742                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1743                         chan->flags = chan->orig_flags;
1744                 }
1745                 return;
1746         }
1747
1748         power_rule = &reg_rule->power_rule;
1749         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1750
1751         chan->dfs_state_entered = jiffies;
1752         chan->dfs_state = NL80211_DFS_USABLE;
1753
1754         chan->beacon_found = false;
1755
1756         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1757                 chan->flags = chan->orig_flags | bw_flags |
1758                               map_regdom_flags(reg_rule->flags);
1759         else
1760                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1761
1762         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1763         chan->max_reg_power = chan->max_power =
1764                 (int) MBM_TO_DBM(power_rule->max_eirp);
1765
1766         if (chan->flags & IEEE80211_CHAN_RADAR) {
1767                 if (reg_rule->dfs_cac_ms)
1768                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1769                 else
1770                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1771         }
1772
1773         chan->max_power = chan->max_reg_power;
1774 }
1775
1776 static void handle_band_custom(struct wiphy *wiphy,
1777                                struct ieee80211_supported_band *sband,
1778                                const struct ieee80211_regdomain *regd)
1779 {
1780         unsigned int i;
1781
1782         if (!sband)
1783                 return;
1784
1785         /*
1786          * We currently assume that you always want at least 20 MHz,
1787          * otherwise channel 12 might get enabled if this rule is
1788          * compatible to US, which permits 2402 - 2472 MHz.
1789          */
1790         for (i = 0; i < sband->n_channels; i++)
1791                 handle_channel_custom(wiphy, &sband->channels[i], regd,
1792                                       MHZ_TO_KHZ(20));
1793 }
1794
1795 /* Used by drivers prior to wiphy registration */
1796 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1797                                    const struct ieee80211_regdomain *regd)
1798 {
1799         enum nl80211_band band;
1800         unsigned int bands_set = 0;
1801
1802         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1803              "wiphy should have REGULATORY_CUSTOM_REG\n");
1804         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1805
1806         for (band = 0; band < NUM_NL80211_BANDS; band++) {
1807                 if (!wiphy->bands[band])
1808                         continue;
1809                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1810                 bands_set++;
1811         }
1812
1813         /*
1814          * no point in calling this if it won't have any effect
1815          * on your device's supported bands.
1816          */
1817         WARN_ON(!bands_set);
1818 }
1819 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1820
1821 static void reg_set_request_processed(void)
1822 {
1823         bool need_more_processing = false;
1824         struct regulatory_request *lr = get_last_request();
1825
1826         lr->processed = true;
1827
1828         spin_lock(&reg_requests_lock);
1829         if (!list_empty(&reg_requests_list))
1830                 need_more_processing = true;
1831         spin_unlock(&reg_requests_lock);
1832
1833         cancel_crda_timeout();
1834
1835         if (need_more_processing)
1836                 schedule_work(&reg_work);
1837 }
1838
1839 /**
1840  * reg_process_hint_core - process core regulatory requests
1841  * @pending_request: a pending core regulatory request
1842  *
1843  * The wireless subsystem can use this function to process
1844  * a regulatory request issued by the regulatory core.
1845  */
1846 static enum reg_request_treatment
1847 reg_process_hint_core(struct regulatory_request *core_request)
1848 {
1849         if (reg_query_database(core_request)) {
1850                 core_request->intersect = false;
1851                 core_request->processed = false;
1852                 reg_update_last_request(core_request);
1853                 return REG_REQ_OK;
1854         }
1855
1856         return REG_REQ_IGNORE;
1857 }
1858
1859 static enum reg_request_treatment
1860 __reg_process_hint_user(struct regulatory_request *user_request)
1861 {
1862         struct regulatory_request *lr = get_last_request();
1863
1864         if (reg_request_cell_base(user_request))
1865                 return reg_ignore_cell_hint(user_request);
1866
1867         if (reg_request_cell_base(lr))
1868                 return REG_REQ_IGNORE;
1869
1870         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1871                 return REG_REQ_INTERSECT;
1872         /*
1873          * If the user knows better the user should set the regdom
1874          * to their country before the IE is picked up
1875          */
1876         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1877             lr->intersect)
1878                 return REG_REQ_IGNORE;
1879         /*
1880          * Process user requests only after previous user/driver/core
1881          * requests have been processed
1882          */
1883         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1884              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1885              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1886             regdom_changes(lr->alpha2))
1887                 return REG_REQ_IGNORE;
1888
1889         if (!regdom_changes(user_request->alpha2))
1890                 return REG_REQ_ALREADY_SET;
1891
1892         return REG_REQ_OK;
1893 }
1894
1895 /**
1896  * reg_process_hint_user - process user regulatory requests
1897  * @user_request: a pending user regulatory request
1898  *
1899  * The wireless subsystem can use this function to process
1900  * a regulatory request initiated by userspace.
1901  */
1902 static enum reg_request_treatment
1903 reg_process_hint_user(struct regulatory_request *user_request)
1904 {
1905         enum reg_request_treatment treatment;
1906
1907         treatment = __reg_process_hint_user(user_request);
1908         if (treatment == REG_REQ_IGNORE ||
1909             treatment == REG_REQ_ALREADY_SET)
1910                 return REG_REQ_IGNORE;
1911
1912         user_request->intersect = treatment == REG_REQ_INTERSECT;
1913         user_request->processed = false;
1914
1915         if (reg_query_database(user_request)) {
1916                 reg_update_last_request(user_request);
1917                 user_alpha2[0] = user_request->alpha2[0];
1918                 user_alpha2[1] = user_request->alpha2[1];
1919                 return REG_REQ_OK;
1920         }
1921
1922         return REG_REQ_IGNORE;
1923 }
1924
1925 static enum reg_request_treatment
1926 __reg_process_hint_driver(struct regulatory_request *driver_request)
1927 {
1928         struct regulatory_request *lr = get_last_request();
1929
1930         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1931                 if (regdom_changes(driver_request->alpha2))
1932                         return REG_REQ_OK;
1933                 return REG_REQ_ALREADY_SET;
1934         }
1935
1936         /*
1937          * This would happen if you unplug and plug your card
1938          * back in or if you add a new device for which the previously
1939          * loaded card also agrees on the regulatory domain.
1940          */
1941         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1942             !regdom_changes(driver_request->alpha2))
1943                 return REG_REQ_ALREADY_SET;
1944
1945         return REG_REQ_INTERSECT;
1946 }
1947
1948 /**
1949  * reg_process_hint_driver - process driver regulatory requests
1950  * @driver_request: a pending driver regulatory request
1951  *
1952  * The wireless subsystem can use this function to process
1953  * a regulatory request issued by an 802.11 driver.
1954  *
1955  * Returns one of the different reg request treatment values.
1956  */
1957 static enum reg_request_treatment
1958 reg_process_hint_driver(struct wiphy *wiphy,
1959                         struct regulatory_request *driver_request)
1960 {
1961         const struct ieee80211_regdomain *regd, *tmp;
1962         enum reg_request_treatment treatment;
1963
1964         treatment = __reg_process_hint_driver(driver_request);
1965
1966         switch (treatment) {
1967         case REG_REQ_OK:
1968                 break;
1969         case REG_REQ_IGNORE:
1970                 return REG_REQ_IGNORE;
1971         case REG_REQ_INTERSECT:
1972         case REG_REQ_ALREADY_SET:
1973                 regd = reg_copy_regd(get_cfg80211_regdom());
1974                 if (IS_ERR(regd))
1975                         return REG_REQ_IGNORE;
1976
1977                 tmp = get_wiphy_regdom(wiphy);
1978                 rcu_assign_pointer(wiphy->regd, regd);
1979                 rcu_free_regdom(tmp);
1980         }
1981
1982
1983         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1984         driver_request->processed = false;
1985
1986         /*
1987          * Since CRDA will not be called in this case as we already
1988          * have applied the requested regulatory domain before we just
1989          * inform userspace we have processed the request
1990          */
1991         if (treatment == REG_REQ_ALREADY_SET) {
1992                 nl80211_send_reg_change_event(driver_request);
1993                 reg_update_last_request(driver_request);
1994                 reg_set_request_processed();
1995                 return REG_REQ_ALREADY_SET;
1996         }
1997
1998         if (reg_query_database(driver_request)) {
1999                 reg_update_last_request(driver_request);
2000                 return REG_REQ_OK;
2001         }
2002
2003         return REG_REQ_IGNORE;
2004 }
2005
2006 static enum reg_request_treatment
2007 __reg_process_hint_country_ie(struct wiphy *wiphy,
2008                               struct regulatory_request *country_ie_request)
2009 {
2010         struct wiphy *last_wiphy = NULL;
2011         struct regulatory_request *lr = get_last_request();
2012
2013         if (reg_request_cell_base(lr)) {
2014                 /* Trust a Cell base station over the AP's country IE */
2015                 if (regdom_changes(country_ie_request->alpha2))
2016                         return REG_REQ_IGNORE;
2017                 return REG_REQ_ALREADY_SET;
2018         } else {
2019                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2020                         return REG_REQ_IGNORE;
2021         }
2022
2023         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2024                 return -EINVAL;
2025
2026         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2027                 return REG_REQ_OK;
2028
2029         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2030
2031         if (last_wiphy != wiphy) {
2032                 /*
2033                  * Two cards with two APs claiming different
2034                  * Country IE alpha2s. We could
2035                  * intersect them, but that seems unlikely
2036                  * to be correct. Reject second one for now.
2037                  */
2038                 if (regdom_changes(country_ie_request->alpha2))
2039                         return REG_REQ_IGNORE;
2040                 return REG_REQ_ALREADY_SET;
2041         }
2042
2043         if (regdom_changes(country_ie_request->alpha2))
2044                 return REG_REQ_OK;
2045         return REG_REQ_ALREADY_SET;
2046 }
2047
2048 /**
2049  * reg_process_hint_country_ie - process regulatory requests from country IEs
2050  * @country_ie_request: a regulatory request from a country IE
2051  *
2052  * The wireless subsystem can use this function to process
2053  * a regulatory request issued by a country Information Element.
2054  *
2055  * Returns one of the different reg request treatment values.
2056  */
2057 static enum reg_request_treatment
2058 reg_process_hint_country_ie(struct wiphy *wiphy,
2059                             struct regulatory_request *country_ie_request)
2060 {
2061         enum reg_request_treatment treatment;
2062
2063         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2064
2065         switch (treatment) {
2066         case REG_REQ_OK:
2067                 break;
2068         case REG_REQ_IGNORE:
2069                 return REG_REQ_IGNORE;
2070         case REG_REQ_ALREADY_SET:
2071                 reg_free_request(country_ie_request);
2072                 return REG_REQ_ALREADY_SET;
2073         case REG_REQ_INTERSECT:
2074                 /*
2075                  * This doesn't happen yet, not sure we
2076                  * ever want to support it for this case.
2077                  */
2078                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2079                 return REG_REQ_IGNORE;
2080         }
2081
2082         country_ie_request->intersect = false;
2083         country_ie_request->processed = false;
2084
2085         if (reg_query_database(country_ie_request)) {
2086                 reg_update_last_request(country_ie_request);
2087                 return REG_REQ_OK;
2088         }
2089
2090         return REG_REQ_IGNORE;
2091 }
2092
2093 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2094 {
2095         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2096         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2097         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2098         bool dfs_domain_same;
2099
2100         rcu_read_lock();
2101
2102         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2103         wiphy1_regd = rcu_dereference(wiphy1->regd);
2104         if (!wiphy1_regd)
2105                 wiphy1_regd = cfg80211_regd;
2106
2107         wiphy2_regd = rcu_dereference(wiphy2->regd);
2108         if (!wiphy2_regd)
2109                 wiphy2_regd = cfg80211_regd;
2110
2111         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2112
2113         rcu_read_unlock();
2114
2115         return dfs_domain_same;
2116 }
2117
2118 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2119                                     struct ieee80211_channel *src_chan)
2120 {
2121         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2122             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2123                 return;
2124
2125         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2126             src_chan->flags & IEEE80211_CHAN_DISABLED)
2127                 return;
2128
2129         if (src_chan->center_freq == dst_chan->center_freq &&
2130             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2131                 dst_chan->dfs_state = src_chan->dfs_state;
2132                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2133         }
2134 }
2135
2136 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2137                                        struct wiphy *src_wiphy)
2138 {
2139         struct ieee80211_supported_band *src_sband, *dst_sband;
2140         struct ieee80211_channel *src_chan, *dst_chan;
2141         int i, j, band;
2142
2143         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2144                 return;
2145
2146         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2147                 dst_sband = dst_wiphy->bands[band];
2148                 src_sband = src_wiphy->bands[band];
2149                 if (!dst_sband || !src_sband)
2150                         continue;
2151
2152                 for (i = 0; i < dst_sband->n_channels; i++) {
2153                         dst_chan = &dst_sband->channels[i];
2154                         for (j = 0; j < src_sband->n_channels; j++) {
2155                                 src_chan = &src_sband->channels[j];
2156                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2157                         }
2158                 }
2159         }
2160 }
2161
2162 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2163 {
2164         struct cfg80211_registered_device *rdev;
2165
2166         ASSERT_RTNL();
2167
2168         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2169                 if (wiphy == &rdev->wiphy)
2170                         continue;
2171                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2172         }
2173 }
2174
2175 /* This processes *all* regulatory hints */
2176 static void reg_process_hint(struct regulatory_request *reg_request)
2177 {
2178         struct wiphy *wiphy = NULL;
2179         enum reg_request_treatment treatment;
2180         enum nl80211_reg_initiator initiator = reg_request->initiator;
2181
2182         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2183                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2184
2185         switch (initiator) {
2186         case NL80211_REGDOM_SET_BY_CORE:
2187                 treatment = reg_process_hint_core(reg_request);
2188                 break;
2189         case NL80211_REGDOM_SET_BY_USER:
2190                 treatment = reg_process_hint_user(reg_request);
2191                 break;
2192         case NL80211_REGDOM_SET_BY_DRIVER:
2193                 if (!wiphy)
2194                         goto out_free;
2195                 treatment = reg_process_hint_driver(wiphy, reg_request);
2196                 break;
2197         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2198                 if (!wiphy)
2199                         goto out_free;
2200                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2201                 break;
2202         default:
2203                 WARN(1, "invalid initiator %d\n", initiator);
2204                 goto out_free;
2205         }
2206
2207         if (treatment == REG_REQ_IGNORE)
2208                 goto out_free;
2209
2210         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2211              "unexpected treatment value %d\n", treatment);
2212
2213         /* This is required so that the orig_* parameters are saved.
2214          * NOTE: treatment must be set for any case that reaches here!
2215          */
2216         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2217             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2218                 wiphy_update_regulatory(wiphy, initiator);
2219                 wiphy_all_share_dfs_chan_state(wiphy);
2220                 reg_check_channels();
2221         }
2222
2223         return;
2224
2225 out_free:
2226         reg_free_request(reg_request);
2227 }
2228
2229 static bool reg_only_self_managed_wiphys(void)
2230 {
2231         struct cfg80211_registered_device *rdev;
2232         struct wiphy *wiphy;
2233         bool self_managed_found = false;
2234
2235         ASSERT_RTNL();
2236
2237         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2238                 wiphy = &rdev->wiphy;
2239                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2240                         self_managed_found = true;
2241                 else
2242                         return false;
2243         }
2244
2245         /* make sure at least one self-managed wiphy exists */
2246         return self_managed_found;
2247 }
2248
2249 /*
2250  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2251  * Regulatory hints come on a first come first serve basis and we
2252  * must process each one atomically.
2253  */
2254 static void reg_process_pending_hints(void)
2255 {
2256         struct regulatory_request *reg_request, *lr;
2257
2258         lr = get_last_request();
2259
2260         /* When last_request->processed becomes true this will be rescheduled */
2261         if (lr && !lr->processed) {
2262                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2263                 return;
2264         }
2265
2266         spin_lock(&reg_requests_lock);
2267
2268         if (list_empty(&reg_requests_list)) {
2269                 spin_unlock(&reg_requests_lock);
2270                 return;
2271         }
2272
2273         reg_request = list_first_entry(&reg_requests_list,
2274                                        struct regulatory_request,
2275                                        list);
2276         list_del_init(&reg_request->list);
2277
2278         spin_unlock(&reg_requests_lock);
2279
2280         if (reg_only_self_managed_wiphys()) {
2281                 reg_free_request(reg_request);
2282                 return;
2283         }
2284
2285         reg_process_hint(reg_request);
2286
2287         lr = get_last_request();
2288
2289         spin_lock(&reg_requests_lock);
2290         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2291                 schedule_work(&reg_work);
2292         spin_unlock(&reg_requests_lock);
2293 }
2294
2295 /* Processes beacon hints -- this has nothing to do with country IEs */
2296 static void reg_process_pending_beacon_hints(void)
2297 {
2298         struct cfg80211_registered_device *rdev;
2299         struct reg_beacon *pending_beacon, *tmp;
2300
2301         /* This goes through the _pending_ beacon list */
2302         spin_lock_bh(&reg_pending_beacons_lock);
2303
2304         list_for_each_entry_safe(pending_beacon, tmp,
2305                                  &reg_pending_beacons, list) {
2306                 list_del_init(&pending_beacon->list);
2307
2308                 /* Applies the beacon hint to current wiphys */
2309                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2310                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2311
2312                 /* Remembers the beacon hint for new wiphys or reg changes */
2313                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2314         }
2315
2316         spin_unlock_bh(&reg_pending_beacons_lock);
2317 }
2318
2319 static void reg_process_self_managed_hints(void)
2320 {
2321         struct cfg80211_registered_device *rdev;
2322         struct wiphy *wiphy;
2323         const struct ieee80211_regdomain *tmp;
2324         const struct ieee80211_regdomain *regd;
2325         enum nl80211_band band;
2326         struct regulatory_request request = {};
2327
2328         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2329                 wiphy = &rdev->wiphy;
2330
2331                 spin_lock(&reg_requests_lock);
2332                 regd = rdev->requested_regd;
2333                 rdev->requested_regd = NULL;
2334                 spin_unlock(&reg_requests_lock);
2335
2336                 if (regd == NULL)
2337                         continue;
2338
2339                 tmp = get_wiphy_regdom(wiphy);
2340                 rcu_assign_pointer(wiphy->regd, regd);
2341                 rcu_free_regdom(tmp);
2342
2343                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2344                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2345
2346                 reg_process_ht_flags(wiphy);
2347
2348                 request.wiphy_idx = get_wiphy_idx(wiphy);
2349                 request.alpha2[0] = regd->alpha2[0];
2350                 request.alpha2[1] = regd->alpha2[1];
2351                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2352
2353                 nl80211_send_wiphy_reg_change_event(&request);
2354         }
2355
2356         reg_check_channels();
2357 }
2358
2359 static void reg_todo(struct work_struct *work)
2360 {
2361         rtnl_lock();
2362         reg_process_pending_hints();
2363         reg_process_pending_beacon_hints();
2364         reg_process_self_managed_hints();
2365         rtnl_unlock();
2366 }
2367
2368 static void queue_regulatory_request(struct regulatory_request *request)
2369 {
2370         request->alpha2[0] = toupper(request->alpha2[0]);
2371         request->alpha2[1] = toupper(request->alpha2[1]);
2372
2373         spin_lock(&reg_requests_lock);
2374         list_add_tail(&request->list, &reg_requests_list);
2375         spin_unlock(&reg_requests_lock);
2376
2377         schedule_work(&reg_work);
2378 }
2379
2380 /*
2381  * Core regulatory hint -- happens during cfg80211_init()
2382  * and when we restore regulatory settings.
2383  */
2384 static int regulatory_hint_core(const char *alpha2)
2385 {
2386         struct regulatory_request *request;
2387
2388         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2389         if (!request)
2390                 return -ENOMEM;
2391
2392         request->alpha2[0] = alpha2[0];
2393         request->alpha2[1] = alpha2[1];
2394         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2395         request->wiphy_idx = WIPHY_IDX_INVALID;
2396
2397         queue_regulatory_request(request);
2398
2399         return 0;
2400 }
2401
2402 /* User hints */
2403 int regulatory_hint_user(const char *alpha2,
2404                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2405 {
2406         struct regulatory_request *request;
2407
2408         if (WARN_ON(!alpha2))
2409                 return -EINVAL;
2410
2411         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
2412                 return -EINVAL;
2413
2414         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2415         if (!request)
2416                 return -ENOMEM;
2417
2418         request->wiphy_idx = WIPHY_IDX_INVALID;
2419         request->alpha2[0] = alpha2[0];
2420         request->alpha2[1] = alpha2[1];
2421         request->initiator = NL80211_REGDOM_SET_BY_USER;
2422         request->user_reg_hint_type = user_reg_hint_type;
2423
2424         /* Allow calling CRDA again */
2425         reset_crda_timeouts();
2426
2427         queue_regulatory_request(request);
2428
2429         return 0;
2430 }
2431
2432 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2433 {
2434         spin_lock(&reg_indoor_lock);
2435
2436         /* It is possible that more than one user space process is trying to
2437          * configure the indoor setting. To handle such cases, clear the indoor
2438          * setting in case that some process does not think that the device
2439          * is operating in an indoor environment. In addition, if a user space
2440          * process indicates that it is controlling the indoor setting, save its
2441          * portid, i.e., make it the owner.
2442          */
2443         reg_is_indoor = is_indoor;
2444         if (reg_is_indoor) {
2445                 if (!reg_is_indoor_portid)
2446                         reg_is_indoor_portid = portid;
2447         } else {
2448                 reg_is_indoor_portid = 0;
2449         }
2450
2451         spin_unlock(&reg_indoor_lock);
2452
2453         if (!is_indoor)
2454                 reg_check_channels();
2455
2456         return 0;
2457 }
2458
2459 void regulatory_netlink_notify(u32 portid)
2460 {
2461         spin_lock(&reg_indoor_lock);
2462
2463         if (reg_is_indoor_portid != portid) {
2464                 spin_unlock(&reg_indoor_lock);
2465                 return;
2466         }
2467
2468         reg_is_indoor = false;
2469         reg_is_indoor_portid = 0;
2470
2471         spin_unlock(&reg_indoor_lock);
2472
2473         reg_check_channels();
2474 }
2475
2476 /* Driver hints */
2477 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2478 {
2479         struct regulatory_request *request;
2480
2481         if (WARN_ON(!alpha2 || !wiphy))
2482                 return -EINVAL;
2483
2484         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2485
2486         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2487         if (!request)
2488                 return -ENOMEM;
2489
2490         request->wiphy_idx = get_wiphy_idx(wiphy);
2491
2492         request->alpha2[0] = alpha2[0];
2493         request->alpha2[1] = alpha2[1];
2494         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2495
2496         /* Allow calling CRDA again */
2497         reset_crda_timeouts();
2498
2499         queue_regulatory_request(request);
2500
2501         return 0;
2502 }
2503 EXPORT_SYMBOL(regulatory_hint);
2504
2505 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2506                                 const u8 *country_ie, u8 country_ie_len)
2507 {
2508         char alpha2[2];
2509         enum environment_cap env = ENVIRON_ANY;
2510         struct regulatory_request *request = NULL, *lr;
2511
2512         /* IE len must be evenly divisible by 2 */
2513         if (country_ie_len & 0x01)
2514                 return;
2515
2516         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2517                 return;
2518
2519         request = kzalloc(sizeof(*request), GFP_KERNEL);
2520         if (!request)
2521                 return;
2522
2523         alpha2[0] = country_ie[0];
2524         alpha2[1] = country_ie[1];
2525
2526         if (country_ie[2] == 'I')
2527                 env = ENVIRON_INDOOR;
2528         else if (country_ie[2] == 'O')
2529                 env = ENVIRON_OUTDOOR;
2530
2531         rcu_read_lock();
2532         lr = get_last_request();
2533
2534         if (unlikely(!lr))
2535                 goto out;
2536
2537         /*
2538          * We will run this only upon a successful connection on cfg80211.
2539          * We leave conflict resolution to the workqueue, where can hold
2540          * the RTNL.
2541          */
2542         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2543             lr->wiphy_idx != WIPHY_IDX_INVALID)
2544                 goto out;
2545
2546         request->wiphy_idx = get_wiphy_idx(wiphy);
2547         request->alpha2[0] = alpha2[0];
2548         request->alpha2[1] = alpha2[1];
2549         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2550         request->country_ie_env = env;
2551
2552         /* Allow calling CRDA again */
2553         reset_crda_timeouts();
2554
2555         queue_regulatory_request(request);
2556         request = NULL;
2557 out:
2558         kfree(request);
2559         rcu_read_unlock();
2560 }
2561
2562 static void restore_alpha2(char *alpha2, bool reset_user)
2563 {
2564         /* indicates there is no alpha2 to consider for restoration */
2565         alpha2[0] = '9';
2566         alpha2[1] = '7';
2567
2568         /* The user setting has precedence over the module parameter */
2569         if (is_user_regdom_saved()) {
2570                 /* Unless we're asked to ignore it and reset it */
2571                 if (reset_user) {
2572                         pr_debug("Restoring regulatory settings including user preference\n");
2573                         user_alpha2[0] = '9';
2574                         user_alpha2[1] = '7';
2575
2576                         /*
2577                          * If we're ignoring user settings, we still need to
2578                          * check the module parameter to ensure we put things
2579                          * back as they were for a full restore.
2580                          */
2581                         if (!is_world_regdom(ieee80211_regdom)) {
2582                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2583                                          ieee80211_regdom[0], ieee80211_regdom[1]);
2584                                 alpha2[0] = ieee80211_regdom[0];
2585                                 alpha2[1] = ieee80211_regdom[1];
2586                         }
2587                 } else {
2588                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2589                                  user_alpha2[0], user_alpha2[1]);
2590                         alpha2[0] = user_alpha2[0];
2591                         alpha2[1] = user_alpha2[1];
2592                 }
2593         } else if (!is_world_regdom(ieee80211_regdom)) {
2594                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2595                          ieee80211_regdom[0], ieee80211_regdom[1]);
2596                 alpha2[0] = ieee80211_regdom[0];
2597                 alpha2[1] = ieee80211_regdom[1];
2598         } else
2599                 pr_debug("Restoring regulatory settings\n");
2600 }
2601
2602 static void restore_custom_reg_settings(struct wiphy *wiphy)
2603 {
2604         struct ieee80211_supported_band *sband;
2605         enum nl80211_band band;
2606         struct ieee80211_channel *chan;
2607         int i;
2608
2609         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2610                 sband = wiphy->bands[band];
2611                 if (!sband)
2612                         continue;
2613                 for (i = 0; i < sband->n_channels; i++) {
2614                         chan = &sband->channels[i];
2615                         chan->flags = chan->orig_flags;
2616                         chan->max_antenna_gain = chan->orig_mag;
2617                         chan->max_power = chan->orig_mpwr;
2618                         chan->beacon_found = false;
2619                 }
2620         }
2621 }
2622
2623 /*
2624  * Restoring regulatory settings involves ingoring any
2625  * possibly stale country IE information and user regulatory
2626  * settings if so desired, this includes any beacon hints
2627  * learned as we could have traveled outside to another country
2628  * after disconnection. To restore regulatory settings we do
2629  * exactly what we did at bootup:
2630  *
2631  *   - send a core regulatory hint
2632  *   - send a user regulatory hint if applicable
2633  *
2634  * Device drivers that send a regulatory hint for a specific country
2635  * keep their own regulatory domain on wiphy->regd so that does does
2636  * not need to be remembered.
2637  */
2638 static void restore_regulatory_settings(bool reset_user)
2639 {
2640         char alpha2[2];
2641         char world_alpha2[2];
2642         struct reg_beacon *reg_beacon, *btmp;
2643         LIST_HEAD(tmp_reg_req_list);
2644         struct cfg80211_registered_device *rdev;
2645
2646         ASSERT_RTNL();
2647
2648         /*
2649          * Clear the indoor setting in case that it is not controlled by user
2650          * space, as otherwise there is no guarantee that the device is still
2651          * operating in an indoor environment.
2652          */
2653         spin_lock(&reg_indoor_lock);
2654         if (reg_is_indoor && !reg_is_indoor_portid) {
2655                 reg_is_indoor = false;
2656                 reg_check_channels();
2657         }
2658         spin_unlock(&reg_indoor_lock);
2659
2660         reset_regdomains(true, &world_regdom);
2661         restore_alpha2(alpha2, reset_user);
2662
2663         /*
2664          * If there's any pending requests we simply
2665          * stash them to a temporary pending queue and
2666          * add then after we've restored regulatory
2667          * settings.
2668          */
2669         spin_lock(&reg_requests_lock);
2670         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2671         spin_unlock(&reg_requests_lock);
2672
2673         /* Clear beacon hints */
2674         spin_lock_bh(&reg_pending_beacons_lock);
2675         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2676                 list_del(&reg_beacon->list);
2677                 kfree(reg_beacon);
2678         }
2679         spin_unlock_bh(&reg_pending_beacons_lock);
2680
2681         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2682                 list_del(&reg_beacon->list);
2683                 kfree(reg_beacon);
2684         }
2685
2686         /* First restore to the basic regulatory settings */
2687         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2688         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2689
2690         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2691                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2692                         continue;
2693                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2694                         restore_custom_reg_settings(&rdev->wiphy);
2695         }
2696
2697         regulatory_hint_core(world_alpha2);
2698
2699         /*
2700          * This restores the ieee80211_regdom module parameter
2701          * preference or the last user requested regulatory
2702          * settings, user regulatory settings takes precedence.
2703          */
2704         if (is_an_alpha2(alpha2))
2705                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2706
2707         spin_lock(&reg_requests_lock);
2708         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2709         spin_unlock(&reg_requests_lock);
2710
2711         pr_debug("Kicking the queue\n");
2712
2713         schedule_work(&reg_work);
2714 }
2715
2716 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
2717 {
2718         struct cfg80211_registered_device *rdev;
2719         struct wireless_dev *wdev;
2720
2721         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2722                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
2723                         wdev_lock(wdev);
2724                         if (!(wdev->wiphy->regulatory_flags & flag)) {
2725                                 wdev_unlock(wdev);
2726                                 return false;
2727                         }
2728                         wdev_unlock(wdev);
2729                 }
2730         }
2731
2732         return true;
2733 }
2734
2735 void regulatory_hint_disconnect(void)
2736 {
2737         /* Restore of regulatory settings is not required when wiphy(s)
2738          * ignore IE from connected access point but clearance of beacon hints
2739          * is required when wiphy(s) supports beacon hints.
2740          */
2741         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
2742                 struct reg_beacon *reg_beacon, *btmp;
2743
2744                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
2745                         return;
2746
2747                 spin_lock_bh(&reg_pending_beacons_lock);
2748                 list_for_each_entry_safe(reg_beacon, btmp,
2749                                          &reg_pending_beacons, list) {
2750                         list_del(&reg_beacon->list);
2751                         kfree(reg_beacon);
2752                 }
2753                 spin_unlock_bh(&reg_pending_beacons_lock);
2754
2755                 list_for_each_entry_safe(reg_beacon, btmp,
2756                                          &reg_beacon_list, list) {
2757                         list_del(&reg_beacon->list);
2758                         kfree(reg_beacon);
2759                 }
2760
2761                 return;
2762         }
2763
2764         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2765         restore_regulatory_settings(false);
2766 }
2767
2768 static bool freq_is_chan_12_13_14(u16 freq)
2769 {
2770         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2771             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2772             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2773                 return true;
2774         return false;
2775 }
2776
2777 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2778 {
2779         struct reg_beacon *pending_beacon;
2780
2781         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2782                 if (beacon_chan->center_freq ==
2783                     pending_beacon->chan.center_freq)
2784                         return true;
2785         return false;
2786 }
2787
2788 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2789                                  struct ieee80211_channel *beacon_chan,
2790                                  gfp_t gfp)
2791 {
2792         struct reg_beacon *reg_beacon;
2793         bool processing;
2794
2795         if (beacon_chan->beacon_found ||
2796             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2797             (beacon_chan->band == NL80211_BAND_2GHZ &&
2798              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2799                 return 0;
2800
2801         spin_lock_bh(&reg_pending_beacons_lock);
2802         processing = pending_reg_beacon(beacon_chan);
2803         spin_unlock_bh(&reg_pending_beacons_lock);
2804
2805         if (processing)
2806                 return 0;
2807
2808         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2809         if (!reg_beacon)
2810                 return -ENOMEM;
2811
2812         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2813                  beacon_chan->center_freq,
2814                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
2815                  wiphy_name(wiphy));
2816
2817         memcpy(&reg_beacon->chan, beacon_chan,
2818                sizeof(struct ieee80211_channel));
2819
2820         /*
2821          * Since we can be called from BH or and non-BH context
2822          * we must use spin_lock_bh()
2823          */
2824         spin_lock_bh(&reg_pending_beacons_lock);
2825         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2826         spin_unlock_bh(&reg_pending_beacons_lock);
2827
2828         schedule_work(&reg_work);
2829
2830         return 0;
2831 }
2832
2833 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2834 {
2835         unsigned int i;
2836         const struct ieee80211_reg_rule *reg_rule = NULL;
2837         const struct ieee80211_freq_range *freq_range = NULL;
2838         const struct ieee80211_power_rule *power_rule = NULL;
2839         char bw[32], cac_time[32];
2840
2841         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2842
2843         for (i = 0; i < rd->n_reg_rules; i++) {
2844                 reg_rule = &rd->reg_rules[i];
2845                 freq_range = &reg_rule->freq_range;
2846                 power_rule = &reg_rule->power_rule;
2847
2848                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2849                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
2850                                  freq_range->max_bandwidth_khz,
2851                                  reg_get_max_bandwidth(rd, reg_rule));
2852                 else
2853                         snprintf(bw, sizeof(bw), "%d KHz",
2854                                  freq_range->max_bandwidth_khz);
2855
2856                 if (reg_rule->flags & NL80211_RRF_DFS)
2857                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2858                                   reg_rule->dfs_cac_ms/1000);
2859                 else
2860                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2861
2862
2863                 /*
2864                  * There may not be documentation for max antenna gain
2865                  * in certain regions
2866                  */
2867                 if (power_rule->max_antenna_gain)
2868                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2869                                 freq_range->start_freq_khz,
2870                                 freq_range->end_freq_khz,
2871                                 bw,
2872                                 power_rule->max_antenna_gain,
2873                                 power_rule->max_eirp,
2874                                 cac_time);
2875                 else
2876                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2877                                 freq_range->start_freq_khz,
2878                                 freq_range->end_freq_khz,
2879                                 bw,
2880                                 power_rule->max_eirp,
2881                                 cac_time);
2882         }
2883 }
2884
2885 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2886 {
2887         switch (dfs_region) {
2888         case NL80211_DFS_UNSET:
2889         case NL80211_DFS_FCC:
2890         case NL80211_DFS_ETSI:
2891         case NL80211_DFS_JP:
2892                 return true;
2893         default:
2894                 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2895                 return false;
2896         }
2897 }
2898
2899 static void print_regdomain(const struct ieee80211_regdomain *rd)
2900 {
2901         struct regulatory_request *lr = get_last_request();
2902
2903         if (is_intersected_alpha2(rd->alpha2)) {
2904                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2905                         struct cfg80211_registered_device *rdev;
2906                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2907                         if (rdev) {
2908                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2909                                         rdev->country_ie_alpha2[0],
2910                                         rdev->country_ie_alpha2[1]);
2911                         } else
2912                                 pr_debug("Current regulatory domain intersected:\n");
2913                 } else
2914                         pr_debug("Current regulatory domain intersected:\n");
2915         } else if (is_world_regdom(rd->alpha2)) {
2916                 pr_debug("World regulatory domain updated:\n");
2917         } else {
2918                 if (is_unknown_alpha2(rd->alpha2))
2919                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2920                 else {
2921                         if (reg_request_cell_base(lr))
2922                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2923                                         rd->alpha2[0], rd->alpha2[1]);
2924                         else
2925                                 pr_debug("Regulatory domain changed to country: %c%c\n",
2926                                         rd->alpha2[0], rd->alpha2[1]);
2927                 }
2928         }
2929
2930         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2931         print_rd_rules(rd);
2932 }
2933
2934 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2935 {
2936         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2937         print_rd_rules(rd);
2938 }
2939
2940 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2941 {
2942         if (!is_world_regdom(rd->alpha2))
2943                 return -EINVAL;
2944         update_world_regdomain(rd);
2945         return 0;
2946 }
2947
2948 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2949                            struct regulatory_request *user_request)
2950 {
2951         const struct ieee80211_regdomain *intersected_rd = NULL;
2952
2953         if (!regdom_changes(rd->alpha2))
2954                 return -EALREADY;
2955
2956         if (!is_valid_rd(rd)) {
2957                 pr_err("Invalid regulatory domain detected: %c%c\n",
2958                        rd->alpha2[0], rd->alpha2[1]);
2959                 print_regdomain_info(rd);
2960                 return -EINVAL;
2961         }
2962
2963         if (!user_request->intersect) {
2964                 reset_regdomains(false, rd);
2965                 return 0;
2966         }
2967
2968         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2969         if (!intersected_rd)
2970                 return -EINVAL;
2971
2972         kfree(rd);
2973         rd = NULL;
2974         reset_regdomains(false, intersected_rd);
2975
2976         return 0;
2977 }
2978
2979 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2980                              struct regulatory_request *driver_request)
2981 {
2982         const struct ieee80211_regdomain *regd;
2983         const struct ieee80211_regdomain *intersected_rd = NULL;
2984         const struct ieee80211_regdomain *tmp;
2985         struct wiphy *request_wiphy;
2986
2987         if (is_world_regdom(rd->alpha2))
2988                 return -EINVAL;
2989
2990         if (!regdom_changes(rd->alpha2))
2991                 return -EALREADY;
2992
2993         if (!is_valid_rd(rd)) {
2994                 pr_err("Invalid regulatory domain detected: %c%c\n",
2995                        rd->alpha2[0], rd->alpha2[1]);
2996                 print_regdomain_info(rd);
2997                 return -EINVAL;
2998         }
2999
3000         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3001         if (!request_wiphy)
3002                 return -ENODEV;
3003
3004         if (!driver_request->intersect) {
3005                 if (request_wiphy->regd)
3006                         return -EALREADY;
3007
3008                 regd = reg_copy_regd(rd);
3009                 if (IS_ERR(regd))
3010                         return PTR_ERR(regd);
3011
3012                 rcu_assign_pointer(request_wiphy->regd, regd);
3013                 reset_regdomains(false, rd);
3014                 return 0;
3015         }
3016
3017         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3018         if (!intersected_rd)
3019                 return -EINVAL;
3020
3021         /*
3022          * We can trash what CRDA provided now.
3023          * However if a driver requested this specific regulatory
3024          * domain we keep it for its private use
3025          */
3026         tmp = get_wiphy_regdom(request_wiphy);
3027         rcu_assign_pointer(request_wiphy->regd, rd);
3028         rcu_free_regdom(tmp);
3029
3030         rd = NULL;
3031
3032         reset_regdomains(false, intersected_rd);
3033
3034         return 0;
3035 }
3036
3037 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3038                                  struct regulatory_request *country_ie_request)
3039 {
3040         struct wiphy *request_wiphy;
3041
3042         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3043             !is_unknown_alpha2(rd->alpha2))
3044                 return -EINVAL;
3045
3046         /*
3047          * Lets only bother proceeding on the same alpha2 if the current
3048          * rd is non static (it means CRDA was present and was used last)
3049          * and the pending request came in from a country IE
3050          */
3051
3052         if (!is_valid_rd(rd)) {
3053                 pr_err("Invalid regulatory domain detected: %c%c\n",
3054                        rd->alpha2[0], rd->alpha2[1]);
3055                 print_regdomain_info(rd);
3056                 return -EINVAL;
3057         }
3058
3059         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3060         if (!request_wiphy)
3061                 return -ENODEV;
3062
3063         if (country_ie_request->intersect)
3064                 return -EINVAL;
3065
3066         reset_regdomains(false, rd);
3067         return 0;
3068 }
3069
3070 /*
3071  * Use this call to set the current regulatory domain. Conflicts with
3072  * multiple drivers can be ironed out later. Caller must've already
3073  * kmalloc'd the rd structure.
3074  */
3075 int set_regdom(const struct ieee80211_regdomain *rd,
3076                enum ieee80211_regd_source regd_src)
3077 {
3078         struct regulatory_request *lr;
3079         bool user_reset = false;
3080         int r;
3081
3082         if (!reg_is_valid_request(rd->alpha2)) {
3083                 kfree(rd);
3084                 return -EINVAL;
3085         }
3086
3087         if (regd_src == REGD_SOURCE_CRDA)
3088                 reset_crda_timeouts();
3089
3090         lr = get_last_request();
3091
3092         /* Note that this doesn't update the wiphys, this is done below */
3093         switch (lr->initiator) {
3094         case NL80211_REGDOM_SET_BY_CORE:
3095                 r = reg_set_rd_core(rd);
3096                 break;
3097         case NL80211_REGDOM_SET_BY_USER:
3098                 r = reg_set_rd_user(rd, lr);
3099                 user_reset = true;
3100                 break;
3101         case NL80211_REGDOM_SET_BY_DRIVER:
3102                 r = reg_set_rd_driver(rd, lr);
3103                 break;
3104         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3105                 r = reg_set_rd_country_ie(rd, lr);
3106                 break;
3107         default:
3108                 WARN(1, "invalid initiator %d\n", lr->initiator);
3109                 kfree(rd);
3110                 return -EINVAL;
3111         }
3112
3113         if (r) {
3114                 switch (r) {
3115                 case -EALREADY:
3116                         reg_set_request_processed();
3117                         break;
3118                 default:
3119                         /* Back to world regulatory in case of errors */
3120                         restore_regulatory_settings(user_reset);
3121                 }
3122
3123                 kfree(rd);
3124                 return r;
3125         }
3126
3127         /* This would make this whole thing pointless */
3128         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3129                 return -EINVAL;
3130
3131         /* update all wiphys now with the new established regulatory domain */
3132         update_all_wiphy_regulatory(lr->initiator);
3133
3134         print_regdomain(get_cfg80211_regdom());
3135
3136         nl80211_send_reg_change_event(lr);
3137
3138         reg_set_request_processed();
3139
3140         return 0;
3141 }
3142
3143 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3144                                        struct ieee80211_regdomain *rd)
3145 {
3146         const struct ieee80211_regdomain *regd;
3147         const struct ieee80211_regdomain *prev_regd;
3148         struct cfg80211_registered_device *rdev;
3149
3150         if (WARN_ON(!wiphy || !rd))
3151                 return -EINVAL;
3152
3153         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3154                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3155                 return -EPERM;
3156
3157         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3158                 print_regdomain_info(rd);
3159                 return -EINVAL;
3160         }
3161
3162         regd = reg_copy_regd(rd);
3163         if (IS_ERR(regd))
3164                 return PTR_ERR(regd);
3165
3166         rdev = wiphy_to_rdev(wiphy);
3167
3168         spin_lock(&reg_requests_lock);
3169         prev_regd = rdev->requested_regd;
3170         rdev->requested_regd = regd;
3171         spin_unlock(&reg_requests_lock);
3172
3173         kfree(prev_regd);
3174         return 0;
3175 }
3176
3177 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3178                               struct ieee80211_regdomain *rd)
3179 {
3180         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3181
3182         if (ret)
3183                 return ret;
3184
3185         schedule_work(&reg_work);
3186         return 0;
3187 }
3188 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3189
3190 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3191                                         struct ieee80211_regdomain *rd)
3192 {
3193         int ret;
3194
3195         ASSERT_RTNL();
3196
3197         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3198         if (ret)
3199                 return ret;
3200
3201         /* process the request immediately */
3202         reg_process_self_managed_hints();
3203         return 0;
3204 }
3205 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3206
3207 void wiphy_regulatory_register(struct wiphy *wiphy)
3208 {
3209         struct regulatory_request *lr;
3210
3211         /* self-managed devices ignore external hints */
3212         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3213                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3214                                            REGULATORY_COUNTRY_IE_IGNORE;
3215
3216         if (!reg_dev_ignore_cell_hint(wiphy))
3217                 reg_num_devs_support_basehint++;
3218
3219         lr = get_last_request();
3220         wiphy_update_regulatory(wiphy, lr->initiator);
3221         wiphy_all_share_dfs_chan_state(wiphy);
3222 }
3223
3224 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3225 {
3226         struct wiphy *request_wiphy = NULL;
3227         struct regulatory_request *lr;
3228
3229         lr = get_last_request();
3230
3231         if (!reg_dev_ignore_cell_hint(wiphy))
3232                 reg_num_devs_support_basehint--;
3233
3234         rcu_free_regdom(get_wiphy_regdom(wiphy));
3235         RCU_INIT_POINTER(wiphy->regd, NULL);
3236
3237         if (lr)
3238                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3239
3240         if (!request_wiphy || request_wiphy != wiphy)
3241                 return;
3242
3243         lr->wiphy_idx = WIPHY_IDX_INVALID;
3244         lr->country_ie_env = ENVIRON_ANY;
3245 }
3246
3247 /*
3248  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3249  * UNII band definitions
3250  */
3251 int cfg80211_get_unii(int freq)
3252 {
3253         /* UNII-1 */
3254         if (freq >= 5150 && freq <= 5250)
3255                 return 0;
3256
3257         /* UNII-2A */
3258         if (freq > 5250 && freq <= 5350)
3259                 return 1;
3260
3261         /* UNII-2B */
3262         if (freq > 5350 && freq <= 5470)
3263                 return 2;
3264
3265         /* UNII-2C */
3266         if (freq > 5470 && freq <= 5725)
3267                 return 3;
3268
3269         /* UNII-3 */
3270         if (freq > 5725 && freq <= 5825)
3271                 return 4;
3272
3273         return -EINVAL;
3274 }
3275
3276 bool regulatory_indoor_allowed(void)
3277 {
3278         return reg_is_indoor;
3279 }
3280
3281 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3282 {
3283         const struct ieee80211_regdomain *regd = NULL;
3284         const struct ieee80211_regdomain *wiphy_regd = NULL;
3285         bool pre_cac_allowed = false;
3286
3287         rcu_read_lock();
3288
3289         regd = rcu_dereference(cfg80211_regdomain);
3290         wiphy_regd = rcu_dereference(wiphy->regd);
3291         if (!wiphy_regd) {
3292                 if (regd->dfs_region == NL80211_DFS_ETSI)
3293                         pre_cac_allowed = true;
3294
3295                 rcu_read_unlock();
3296
3297                 return pre_cac_allowed;
3298         }
3299
3300         if (regd->dfs_region == wiphy_regd->dfs_region &&
3301             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3302                 pre_cac_allowed = true;
3303
3304         rcu_read_unlock();
3305
3306         return pre_cac_allowed;
3307 }
3308
3309 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3310 {
3311         struct wireless_dev *wdev;
3312         /* If we finished CAC or received radar, we should end any
3313          * CAC running on the same channels.
3314          * the check !cfg80211_chandef_dfs_usable contain 2 options:
3315          * either all channels are available - those the CAC_FINISHED
3316          * event has effected another wdev state, or there is a channel
3317          * in unavailable state in wdev chandef - those the RADAR_DETECTED
3318          * event has effected another wdev state.
3319          * In both cases we should end the CAC on the wdev.
3320          */
3321         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3322                 if (wdev->cac_started &&
3323                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3324                         rdev_end_cac(rdev, wdev->netdev);
3325         }
3326 }
3327
3328 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3329                                     struct cfg80211_chan_def *chandef,
3330                                     enum nl80211_dfs_state dfs_state,
3331                                     enum nl80211_radar_event event)
3332 {
3333         struct cfg80211_registered_device *rdev;
3334
3335         ASSERT_RTNL();
3336
3337         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3338                 return;
3339
3340         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3341                 if (wiphy == &rdev->wiphy)
3342                         continue;
3343
3344                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3345                         continue;
3346
3347                 if (!ieee80211_get_channel(&rdev->wiphy,
3348                                            chandef->chan->center_freq))
3349                         continue;
3350
3351                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3352
3353                 if (event == NL80211_RADAR_DETECTED ||
3354                     event == NL80211_RADAR_CAC_FINISHED) {
3355                         cfg80211_sched_dfs_chan_update(rdev);
3356                         cfg80211_check_and_end_cac(rdev);
3357                 }
3358
3359                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3360         }
3361 }
3362
3363 int __init regulatory_init(void)
3364 {
3365         int err = 0;
3366
3367         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3368         if (IS_ERR(reg_pdev))
3369                 return PTR_ERR(reg_pdev);
3370
3371         spin_lock_init(&reg_requests_lock);
3372         spin_lock_init(&reg_pending_beacons_lock);
3373         spin_lock_init(&reg_indoor_lock);
3374
3375         reg_regdb_size_check();
3376
3377         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3378
3379         user_alpha2[0] = '9';
3380         user_alpha2[1] = '7';
3381
3382         /* We always try to get an update for the static regdomain */
3383         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3384         if (err) {
3385                 if (err == -ENOMEM) {
3386                         platform_device_unregister(reg_pdev);
3387                         return err;
3388                 }
3389                 /*
3390                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3391                  * memory which is handled and propagated appropriately above
3392                  * but it can also fail during a netlink_broadcast() or during
3393                  * early boot for call_usermodehelper(). For now treat these
3394                  * errors as non-fatal.
3395                  */
3396                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3397         }
3398
3399         /*
3400          * Finally, if the user set the module parameter treat it
3401          * as a user hint.
3402          */
3403         if (!is_world_regdom(ieee80211_regdom))
3404                 regulatory_hint_user(ieee80211_regdom,
3405                                      NL80211_USER_REG_HINT_USER);
3406
3407         return 0;
3408 }
3409
3410 void regulatory_exit(void)
3411 {
3412         struct regulatory_request *reg_request, *tmp;
3413         struct reg_beacon *reg_beacon, *btmp;
3414
3415         cancel_work_sync(&reg_work);
3416         cancel_crda_timeout_sync();
3417         cancel_delayed_work_sync(&reg_check_chans);
3418
3419         /* Lock to suppress warnings */
3420         rtnl_lock();
3421         reset_regdomains(true, NULL);
3422         rtnl_unlock();
3423
3424         dev_set_uevent_suppress(&reg_pdev->dev, true);
3425
3426         platform_device_unregister(reg_pdev);
3427
3428         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3429                 list_del(&reg_beacon->list);
3430                 kfree(reg_beacon);
3431         }
3432
3433         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3434                 list_del(&reg_beacon->list);
3435                 kfree(reg_beacon);
3436         }
3437
3438         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3439                 list_del(&reg_request->list);
3440                 kfree(reg_request);
3441         }
3442 }