GNU Linux-libre 4.19.207-gnu1
[releases.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user);
135
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138         return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143         return rcu_dereference_rtnl(wiphy->regd);
144 }
145
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148         switch (dfs_region) {
149         case NL80211_DFS_UNSET:
150                 return "unset";
151         case NL80211_DFS_FCC:
152                 return "FCC";
153         case NL80211_DFS_ETSI:
154                 return "ETSI";
155         case NL80211_DFS_JP:
156                 return "JP";
157         }
158         return "Unknown";
159 }
160
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163         const struct ieee80211_regdomain *regd = NULL;
164         const struct ieee80211_regdomain *wiphy_regd = NULL;
165
166         regd = get_cfg80211_regdom();
167         if (!wiphy)
168                 goto out;
169
170         wiphy_regd = get_wiphy_regdom(wiphy);
171         if (!wiphy_regd)
172                 goto out;
173
174         if (wiphy_regd->dfs_region == regd->dfs_region)
175                 goto out;
176
177         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178                  dev_name(&wiphy->dev),
179                  reg_dfs_region_str(wiphy_regd->dfs_region),
180                  reg_dfs_region_str(regd->dfs_region));
181
182 out:
183         return regd->dfs_region;
184 }
185
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188         if (!r)
189                 return;
190         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192
193 static struct regulatory_request *get_last_request(void)
194 {
195         return rcu_dereference_rtnl(last_request);
196 }
197
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208
209 struct reg_beacon {
210         struct list_head list;
211         struct ieee80211_channel chan;
212 };
213
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222         .n_reg_rules = 8,
223         .alpha2 =  "00",
224         .reg_rules = {
225                 /* IEEE 802.11b/g, channels 1..11 */
226                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227                 /* IEEE 802.11b/g, channels 12..13. */
228                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230                 /* IEEE 802.11 channel 14 - Only JP enables
231                  * this and for 802.11b only */
232                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233                         NL80211_RRF_NO_IR |
234                         NL80211_RRF_NO_OFDM),
235                 /* IEEE 802.11a, channel 36..48 */
236                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239
240                 /* IEEE 802.11a, channel 52..64 - DFS required */
241                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242                         NL80211_RRF_NO_IR |
243                         NL80211_RRF_AUTO_BW |
244                         NL80211_RRF_DFS),
245
246                 /* IEEE 802.11a, channel 100..144 - DFS required */
247                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248                         NL80211_RRF_NO_IR |
249                         NL80211_RRF_DFS),
250
251                 /* IEEE 802.11a, channel 149..165 */
252                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253                         NL80211_RRF_NO_IR),
254
255                 /* IEEE 802.11ad (60GHz), channels 1..3 */
256                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257         }
258 };
259
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262         &world_regdom;
263
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269
270 static void reg_free_request(struct regulatory_request *request)
271 {
272         if (request == &core_request_world)
273                 return;
274
275         if (request != get_last_request())
276                 kfree(request);
277 }
278
279 static void reg_free_last_request(void)
280 {
281         struct regulatory_request *lr = get_last_request();
282
283         if (lr != &core_request_world && lr)
284                 kfree_rcu(lr, rcu_head);
285 }
286
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289         struct regulatory_request *lr;
290
291         lr = get_last_request();
292         if (lr == request)
293                 return;
294
295         reg_free_last_request();
296         rcu_assign_pointer(last_request, request);
297 }
298
299 static void reset_regdomains(bool full_reset,
300                              const struct ieee80211_regdomain *new_regdom)
301 {
302         const struct ieee80211_regdomain *r;
303
304         ASSERT_RTNL();
305
306         r = get_cfg80211_regdom();
307
308         /* avoid freeing static information or freeing something twice */
309         if (r == cfg80211_world_regdom)
310                 r = NULL;
311         if (cfg80211_world_regdom == &world_regdom)
312                 cfg80211_world_regdom = NULL;
313         if (r == &world_regdom)
314                 r = NULL;
315
316         rcu_free_regdom(r);
317         rcu_free_regdom(cfg80211_world_regdom);
318
319         cfg80211_world_regdom = &world_regdom;
320         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321
322         if (!full_reset)
323                 return;
324
325         reg_update_last_request(&core_request_world);
326 }
327
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334         struct regulatory_request *lr;
335
336         lr = get_last_request();
337
338         WARN_ON(!lr);
339
340         reset_regdomains(false, rd);
341
342         cfg80211_world_regdom = rd;
343 }
344
345 bool is_world_regdom(const char *alpha2)
346 {
347         if (!alpha2)
348                 return false;
349         return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351
352 static bool is_alpha2_set(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         return alpha2[0] && alpha2[1];
357 }
358
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         /*
364          * Special case where regulatory domain was built by driver
365          * but a specific alpha2 cannot be determined
366          */
367         return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372         if (!alpha2)
373                 return false;
374         /*
375          * Special case where regulatory domain is the
376          * result of an intersection between two regulatory domain
377          * structures
378          */
379         return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381
382 static bool is_an_alpha2(const char *alpha2)
383 {
384         if (!alpha2)
385                 return false;
386         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391         if (!alpha2_x || !alpha2_y)
392                 return false;
393         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395
396 static bool regdom_changes(const char *alpha2)
397 {
398         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399
400         if (!r)
401                 return true;
402         return !alpha2_equal(r->alpha2, alpha2);
403 }
404
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413                 return false;
414
415         /* This would indicate a mistake on the design */
416         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417                  "Unexpected user alpha2: %c%c\n",
418                  user_alpha2[0], user_alpha2[1]))
419                 return false;
420
421         return true;
422 }
423
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427         struct ieee80211_regdomain *regd;
428         int size_of_regd;
429         unsigned int i;
430
431         size_of_regd =
432                 sizeof(struct ieee80211_regdomain) +
433                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434
435         regd = kzalloc(size_of_regd, GFP_KERNEL);
436         if (!regd)
437                 return ERR_PTR(-ENOMEM);
438
439         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440
441         for (i = 0; i < src_regd->n_reg_rules; i++)
442                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443                        sizeof(struct ieee80211_reg_rule));
444
445         return regd;
446 }
447
448 struct reg_regdb_apply_request {
449         struct list_head list;
450         const struct ieee80211_regdomain *regdom;
451 };
452
453 static LIST_HEAD(reg_regdb_apply_list);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex);
455
456 static void reg_regdb_apply(struct work_struct *work)
457 {
458         struct reg_regdb_apply_request *request;
459
460         rtnl_lock();
461
462         mutex_lock(&reg_regdb_apply_mutex);
463         while (!list_empty(&reg_regdb_apply_list)) {
464                 request = list_first_entry(&reg_regdb_apply_list,
465                                            struct reg_regdb_apply_request,
466                                            list);
467                 list_del(&request->list);
468
469                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470                 kfree(request);
471         }
472         mutex_unlock(&reg_regdb_apply_mutex);
473
474         rtnl_unlock();
475 }
476
477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478
479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480 {
481         struct reg_regdb_apply_request *request;
482
483         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484         if (!request) {
485                 kfree(regdom);
486                 return -ENOMEM;
487         }
488
489         request->regdom = regdom;
490
491         mutex_lock(&reg_regdb_apply_mutex);
492         list_add_tail(&request->list, &reg_regdb_apply_list);
493         mutex_unlock(&reg_regdb_apply_mutex);
494
495         schedule_work(&reg_regdb_work);
496         return 0;
497 }
498
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA  */
501 #define REG_MAX_CRDA_TIMEOUTS 10
502
503 static u32 reg_crda_timeouts;
504
505 static void crda_timeout_work(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507
508 static void crda_timeout_work(struct work_struct *work)
509 {
510         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511         rtnl_lock();
512         reg_crda_timeouts++;
513         restore_regulatory_settings(true);
514         rtnl_unlock();
515 }
516
517 static void cancel_crda_timeout(void)
518 {
519         cancel_delayed_work(&crda_timeout);
520 }
521
522 static void cancel_crda_timeout_sync(void)
523 {
524         cancel_delayed_work_sync(&crda_timeout);
525 }
526
527 static void reset_crda_timeouts(void)
528 {
529         reg_crda_timeouts = 0;
530 }
531
532 /*
533  * This lets us keep regulatory code which is updated on a regulatory
534  * basis in userspace.
535  */
536 static int call_crda(const char *alpha2)
537 {
538         char country[12];
539         char *env[] = { country, NULL };
540         int ret;
541
542         snprintf(country, sizeof(country), "COUNTRY=%c%c",
543                  alpha2[0], alpha2[1]);
544
545         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547                 return -EINVAL;
548         }
549
550         if (!is_world_regdom((char *) alpha2))
551                 pr_debug("Calling CRDA for country: %c%c\n",
552                          alpha2[0], alpha2[1]);
553         else
554                 pr_debug("Calling CRDA to update world regulatory domain\n");
555
556         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557         if (ret)
558                 return ret;
559
560         queue_delayed_work(system_power_efficient_wq,
561                            &crda_timeout, msecs_to_jiffies(3142));
562         return 0;
563 }
564 #else
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2)
569 {
570         return -ENODATA;
571 }
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header *regdb;
576
577 struct fwdb_country {
578         u8 alpha2[2];
579         __be16 coll_ptr;
580         /* this struct cannot be extended */
581 } __packed __aligned(4);
582
583 struct fwdb_collection {
584         u8 len;
585         u8 n_rules;
586         u8 dfs_region;
587         /* no optional data yet */
588         /* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed __aligned(4);
590
591 enum fwdb_flags {
592         FWDB_FLAG_NO_OFDM       = BIT(0),
593         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
594         FWDB_FLAG_DFS           = BIT(2),
595         FWDB_FLAG_NO_IR         = BIT(3),
596         FWDB_FLAG_AUTO_BW       = BIT(4),
597 };
598
599 struct fwdb_wmm_ac {
600         u8 ecw;
601         u8 aifsn;
602         __be16 cot;
603 } __packed;
604
605 struct fwdb_wmm_rule {
606         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608 } __packed;
609
610 struct fwdb_rule {
611         u8 len;
612         u8 flags;
613         __be16 max_eirp;
614         __be32 start, end, max_bw;
615         /* start of optional data */
616         __be16 cac_timeout;
617         __be16 wmm_ptr;
618 } __packed __aligned(4);
619
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
622
623 struct fwdb_header {
624         __be32 magic;
625         __be32 version;
626         struct fwdb_country country[];
627 } __packed __aligned(4);
628
629 static int ecw2cw(int ecw)
630 {
631         return (1 << ecw) - 1;
632 }
633
634 static bool valid_wmm(struct fwdb_wmm_rule *rule)
635 {
636         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637         int i;
638
639         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642                 u8 aifsn = ac[i].aifsn;
643
644                 if (cw_min >= cw_max)
645                         return false;
646
647                 if (aifsn < 1)
648                         return false;
649         }
650
651         return true;
652 }
653
654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
655 {
656         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
657
658         if ((u8 *)rule + sizeof(rule->len) > data + size)
659                 return false;
660
661         /* mandatory fields */
662         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663                 return false;
664         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666                 struct fwdb_wmm_rule *wmm;
667
668                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669                         return false;
670
671                 wmm = (void *)(data + wmm_ptr);
672
673                 if (!valid_wmm(wmm))
674                         return false;
675         }
676         return true;
677 }
678
679 static bool valid_country(const u8 *data, unsigned int size,
680                           const struct fwdb_country *country)
681 {
682         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683         struct fwdb_collection *coll = (void *)(data + ptr);
684         __be16 *rules_ptr;
685         unsigned int i;
686
687         /* make sure we can read len/n_rules */
688         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689                 return false;
690
691         /* make sure base struct and all rules fit */
692         if ((u8 *)coll + ALIGN(coll->len, 2) +
693             (coll->n_rules * 2) > data + size)
694                 return false;
695
696         /* mandatory fields must exist */
697         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698                 return false;
699
700         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
701
702         for (i = 0; i < coll->n_rules; i++) {
703                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
704
705                 if (!valid_rule(data, size, rule_ptr))
706                         return false;
707         }
708
709         return true;
710 }
711
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key *builtin_regdb_keys;
714
715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
716 {
717         const u8 *end = p + buflen;
718         size_t plen;
719         key_ref_t key;
720
721         while (p < end) {
722                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723                  * than 256 bytes in size.
724                  */
725                 if (end - p < 4)
726                         goto dodgy_cert;
727                 if (p[0] != 0x30 &&
728                     p[1] != 0x82)
729                         goto dodgy_cert;
730                 plen = (p[2] << 8) | p[3];
731                 plen += 4;
732                 if (plen > end - p)
733                         goto dodgy_cert;
734
735                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736                                            "asymmetric", NULL, p, plen,
737                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738                                             KEY_USR_VIEW | KEY_USR_READ),
739                                            KEY_ALLOC_NOT_IN_QUOTA |
740                                            KEY_ALLOC_BUILT_IN |
741                                            KEY_ALLOC_BYPASS_RESTRICTION);
742                 if (IS_ERR(key)) {
743                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744                                PTR_ERR(key));
745                 } else {
746                         pr_notice("Loaded X.509 cert '%s'\n",
747                                   key_ref_to_ptr(key)->description);
748                         key_ref_put(key);
749                 }
750                 p += plen;
751         }
752
753         return;
754
755 dodgy_cert:
756         pr_err("Problem parsing in-kernel X.509 certificate list\n");
757 }
758
759 static int __init load_builtin_regdb_keys(void)
760 {
761         builtin_regdb_keys =
762                 keyring_alloc(".builtin_regdb_keys",
763                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767         if (IS_ERR(builtin_regdb_keys))
768                 return PTR_ERR(builtin_regdb_keys);
769
770         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
771
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774 #endif
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778 #endif
779
780         return 0;
781 }
782
783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
784 {
785         const struct firmware *sig;
786         bool result;
787
788         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789                 return false;
790
791         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792                                         builtin_regdb_keys,
793                                         VERIFYING_UNSPECIFIED_SIGNATURE,
794                                         NULL, NULL) == 0;
795
796         release_firmware(sig);
797
798         return result;
799 }
800
801 static void free_regdb_keyring(void)
802 {
803         key_put(builtin_regdb_keys);
804 }
805 #else
806 static int load_builtin_regdb_keys(void)
807 {
808         return 0;
809 }
810
811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812 {
813         return true;
814 }
815
816 static void free_regdb_keyring(void)
817 {
818 }
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
820
821 static bool valid_regdb(const u8 *data, unsigned int size)
822 {
823         const struct fwdb_header *hdr = (void *)data;
824         const struct fwdb_country *country;
825
826         if (size < sizeof(*hdr))
827                 return false;
828
829         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830                 return false;
831
832         if (hdr->version != cpu_to_be32(FWDB_VERSION))
833                 return false;
834
835         if (!regdb_has_valid_signature(data, size))
836                 return false;
837
838         country = &hdr->country[0];
839         while ((u8 *)(country + 1) <= data + size) {
840                 if (!country->coll_ptr)
841                         break;
842                 if (!valid_country(data, size, country))
843                         return false;
844                 country++;
845         }
846
847         return true;
848 }
849
850 static void set_wmm_rule(const struct fwdb_header *db,
851                          const struct fwdb_country *country,
852                          const struct fwdb_rule *rule,
853                          struct ieee80211_reg_rule *rrule)
854 {
855         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
856         struct fwdb_wmm_rule *wmm;
857         unsigned int i, wmm_ptr;
858
859         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
860         wmm = (void *)((u8 *)db + wmm_ptr);
861
862         if (!valid_wmm(wmm)) {
863                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
865                        country->alpha2[0], country->alpha2[1]);
866                 return;
867         }
868
869         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
870                 wmm_rule->client[i].cw_min =
871                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
872                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
873                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
874                 wmm_rule->client[i].cot =
875                         1000 * be16_to_cpu(wmm->client[i].cot);
876                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
877                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
878                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
879                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
880         }
881
882         rrule->has_wmm = true;
883 }
884
885 static int __regdb_query_wmm(const struct fwdb_header *db,
886                              const struct fwdb_country *country, int freq,
887                              struct ieee80211_reg_rule *rrule)
888 {
889         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
890         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
891         int i;
892
893         for (i = 0; i < coll->n_rules; i++) {
894                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
895                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
896                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
897
898                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
899                         continue;
900
901                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
902                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
903                         set_wmm_rule(db, country, rule, rrule);
904                         return 0;
905                 }
906         }
907
908         return -ENODATA;
909 }
910
911 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
912 {
913         const struct fwdb_header *hdr = regdb;
914         const struct fwdb_country *country;
915
916         if (!regdb)
917                 return -ENODATA;
918
919         if (IS_ERR(regdb))
920                 return PTR_ERR(regdb);
921
922         country = &hdr->country[0];
923         while (country->coll_ptr) {
924                 if (alpha2_equal(alpha2, country->alpha2))
925                         return __regdb_query_wmm(regdb, country, freq, rule);
926
927                 country++;
928         }
929
930         return -ENODATA;
931 }
932 EXPORT_SYMBOL(reg_query_regdb_wmm);
933
934 static int regdb_query_country(const struct fwdb_header *db,
935                                const struct fwdb_country *country)
936 {
937         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
938         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
939         struct ieee80211_regdomain *regdom;
940         unsigned int size_of_regd, i;
941
942         size_of_regd = sizeof(struct ieee80211_regdomain) +
943                 coll->n_rules * sizeof(struct ieee80211_reg_rule);
944
945         regdom = kzalloc(size_of_regd, GFP_KERNEL);
946         if (!regdom)
947                 return -ENOMEM;
948
949         regdom->n_reg_rules = coll->n_rules;
950         regdom->alpha2[0] = country->alpha2[0];
951         regdom->alpha2[1] = country->alpha2[1];
952         regdom->dfs_region = coll->dfs_region;
953
954         for (i = 0; i < regdom->n_reg_rules; i++) {
955                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
956                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
957                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
958                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
959
960                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
961                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
962                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
963
964                 rrule->power_rule.max_antenna_gain = 0;
965                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
966
967                 rrule->flags = 0;
968                 if (rule->flags & FWDB_FLAG_NO_OFDM)
969                         rrule->flags |= NL80211_RRF_NO_OFDM;
970                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
971                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
972                 if (rule->flags & FWDB_FLAG_DFS)
973                         rrule->flags |= NL80211_RRF_DFS;
974                 if (rule->flags & FWDB_FLAG_NO_IR)
975                         rrule->flags |= NL80211_RRF_NO_IR;
976                 if (rule->flags & FWDB_FLAG_AUTO_BW)
977                         rrule->flags |= NL80211_RRF_AUTO_BW;
978
979                 rrule->dfs_cac_ms = 0;
980
981                 /* handle optional data */
982                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
983                         rrule->dfs_cac_ms =
984                                 1000 * be16_to_cpu(rule->cac_timeout);
985                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
986                         set_wmm_rule(db, country, rule, rrule);
987         }
988
989         return reg_schedule_apply(regdom);
990 }
991
992 static int query_regdb(const char *alpha2)
993 {
994         const struct fwdb_header *hdr = regdb;
995         const struct fwdb_country *country;
996
997         ASSERT_RTNL();
998
999         if (IS_ERR(regdb))
1000                 return PTR_ERR(regdb);
1001
1002         country = &hdr->country[0];
1003         while (country->coll_ptr) {
1004                 if (alpha2_equal(alpha2, country->alpha2))
1005                         return regdb_query_country(regdb, country);
1006                 country++;
1007         }
1008
1009         return -ENODATA;
1010 }
1011
1012 static void regdb_fw_cb(const struct firmware *fw, void *context)
1013 {
1014         int set_error = 0;
1015         bool restore = true;
1016         void *db;
1017
1018         if (!fw) {
1019                 pr_info("failed to load regulatory.db\n");
1020                 set_error = -ENODATA;
1021         } else if (!valid_regdb(fw->data, fw->size)) {
1022                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023                 set_error = -EINVAL;
1024         }
1025
1026         rtnl_lock();
1027         if (WARN_ON(regdb && !IS_ERR(regdb))) {
1028                 /* just restore and free new db */
1029         } else if (set_error) {
1030                 regdb = ERR_PTR(set_error);
1031         } else if (fw) {
1032                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1033                 if (db) {
1034                         regdb = db;
1035                         restore = context && query_regdb(context);
1036                 } else {
1037                         restore = true;
1038                 }
1039         }
1040
1041         if (restore)
1042                 restore_regulatory_settings(true);
1043
1044         rtnl_unlock();
1045
1046         kfree(context);
1047
1048         release_firmware(fw);
1049 }
1050
1051 static int query_regdb_file(const char *alpha2)
1052 {
1053         ASSERT_RTNL();
1054
1055         if (regdb)
1056                 return query_regdb(alpha2);
1057
1058         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059         if (!alpha2)
1060                 return -ENOMEM;
1061
1062         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063                                        &reg_pdev->dev, GFP_KERNEL,
1064                                        (void *)alpha2, regdb_fw_cb);
1065 }
1066
1067 int reg_reload_regdb(void)
1068 {
1069         const struct firmware *fw;
1070         void *db;
1071         int err;
1072
1073         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1074         if (err)
1075                 return err;
1076
1077         if (!valid_regdb(fw->data, fw->size)) {
1078                 err = -ENODATA;
1079                 goto out;
1080         }
1081
1082         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1083         if (!db) {
1084                 err = -ENOMEM;
1085                 goto out;
1086         }
1087
1088         rtnl_lock();
1089         if (!IS_ERR_OR_NULL(regdb))
1090                 kfree(regdb);
1091         regdb = db;
1092         rtnl_unlock();
1093
1094  out:
1095         release_firmware(fw);
1096         return err;
1097 }
1098
1099 static bool reg_query_database(struct regulatory_request *request)
1100 {
1101         if (query_regdb_file(request->alpha2) == 0)
1102                 return true;
1103
1104         if (call_crda(request->alpha2) == 0)
1105                 return true;
1106
1107         return false;
1108 }
1109
1110 bool reg_is_valid_request(const char *alpha2)
1111 {
1112         struct regulatory_request *lr = get_last_request();
1113
1114         if (!lr || lr->processed)
1115                 return false;
1116
1117         return alpha2_equal(lr->alpha2, alpha2);
1118 }
1119
1120 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1121 {
1122         struct regulatory_request *lr = get_last_request();
1123
1124         /*
1125          * Follow the driver's regulatory domain, if present, unless a country
1126          * IE has been processed or a user wants to help complaince further
1127          */
1128         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1129             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1130             wiphy->regd)
1131                 return get_wiphy_regdom(wiphy);
1132
1133         return get_cfg80211_regdom();
1134 }
1135
1136 static unsigned int
1137 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1138                                  const struct ieee80211_reg_rule *rule)
1139 {
1140         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1141         const struct ieee80211_freq_range *freq_range_tmp;
1142         const struct ieee80211_reg_rule *tmp;
1143         u32 start_freq, end_freq, idx, no;
1144
1145         for (idx = 0; idx < rd->n_reg_rules; idx++)
1146                 if (rule == &rd->reg_rules[idx])
1147                         break;
1148
1149         if (idx == rd->n_reg_rules)
1150                 return 0;
1151
1152         /* get start_freq */
1153         no = idx;
1154
1155         while (no) {
1156                 tmp = &rd->reg_rules[--no];
1157                 freq_range_tmp = &tmp->freq_range;
1158
1159                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1160                         break;
1161
1162                 freq_range = freq_range_tmp;
1163         }
1164
1165         start_freq = freq_range->start_freq_khz;
1166
1167         /* get end_freq */
1168         freq_range = &rule->freq_range;
1169         no = idx;
1170
1171         while (no < rd->n_reg_rules - 1) {
1172                 tmp = &rd->reg_rules[++no];
1173                 freq_range_tmp = &tmp->freq_range;
1174
1175                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1176                         break;
1177
1178                 freq_range = freq_range_tmp;
1179         }
1180
1181         end_freq = freq_range->end_freq_khz;
1182
1183         return end_freq - start_freq;
1184 }
1185
1186 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1187                                    const struct ieee80211_reg_rule *rule)
1188 {
1189         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1190
1191         if (rule->flags & NL80211_RRF_NO_160MHZ)
1192                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1193         if (rule->flags & NL80211_RRF_NO_80MHZ)
1194                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1195
1196         /*
1197          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1198          * are not allowed.
1199          */
1200         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1201             rule->flags & NL80211_RRF_NO_HT40PLUS)
1202                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1203
1204         return bw;
1205 }
1206
1207 /* Sanity check on a regulatory rule */
1208 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1209 {
1210         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1211         u32 freq_diff;
1212
1213         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1214                 return false;
1215
1216         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1217                 return false;
1218
1219         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1220
1221         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1222             freq_range->max_bandwidth_khz > freq_diff)
1223                 return false;
1224
1225         return true;
1226 }
1227
1228 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1229 {
1230         const struct ieee80211_reg_rule *reg_rule = NULL;
1231         unsigned int i;
1232
1233         if (!rd->n_reg_rules)
1234                 return false;
1235
1236         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1237                 return false;
1238
1239         for (i = 0; i < rd->n_reg_rules; i++) {
1240                 reg_rule = &rd->reg_rules[i];
1241                 if (!is_valid_reg_rule(reg_rule))
1242                         return false;
1243         }
1244
1245         return true;
1246 }
1247
1248 /**
1249  * freq_in_rule_band - tells us if a frequency is in a frequency band
1250  * @freq_range: frequency rule we want to query
1251  * @freq_khz: frequency we are inquiring about
1252  *
1253  * This lets us know if a specific frequency rule is or is not relevant to
1254  * a specific frequency's band. Bands are device specific and artificial
1255  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1256  * however it is safe for now to assume that a frequency rule should not be
1257  * part of a frequency's band if the start freq or end freq are off by more
1258  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1259  * 60 GHz band.
1260  * This resolution can be lowered and should be considered as we add
1261  * regulatory rule support for other "bands".
1262  **/
1263 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1264                               u32 freq_khz)
1265 {
1266 #define ONE_GHZ_IN_KHZ  1000000
1267         /*
1268          * From 802.11ad: directional multi-gigabit (DMG):
1269          * Pertaining to operation in a frequency band containing a channel
1270          * with the Channel starting frequency above 45 GHz.
1271          */
1272         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1273                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1274         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1275                 return true;
1276         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1277                 return true;
1278         return false;
1279 #undef ONE_GHZ_IN_KHZ
1280 }
1281
1282 /*
1283  * Later on we can perhaps use the more restrictive DFS
1284  * region but we don't have information for that yet so
1285  * for now simply disallow conflicts.
1286  */
1287 static enum nl80211_dfs_regions
1288 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1289                          const enum nl80211_dfs_regions dfs_region2)
1290 {
1291         if (dfs_region1 != dfs_region2)
1292                 return NL80211_DFS_UNSET;
1293         return dfs_region1;
1294 }
1295
1296 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1297                                     const struct ieee80211_wmm_ac *wmm_ac2,
1298                                     struct ieee80211_wmm_ac *intersect)
1299 {
1300         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1301         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1302         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1303         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1304 }
1305
1306 /*
1307  * Helper for regdom_intersect(), this does the real
1308  * mathematical intersection fun
1309  */
1310 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1311                                const struct ieee80211_regdomain *rd2,
1312                                const struct ieee80211_reg_rule *rule1,
1313                                const struct ieee80211_reg_rule *rule2,
1314                                struct ieee80211_reg_rule *intersected_rule)
1315 {
1316         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1317         struct ieee80211_freq_range *freq_range;
1318         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1319         struct ieee80211_power_rule *power_rule;
1320         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1321         struct ieee80211_wmm_rule *wmm_rule;
1322         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1323
1324         freq_range1 = &rule1->freq_range;
1325         freq_range2 = &rule2->freq_range;
1326         freq_range = &intersected_rule->freq_range;
1327
1328         power_rule1 = &rule1->power_rule;
1329         power_rule2 = &rule2->power_rule;
1330         power_rule = &intersected_rule->power_rule;
1331
1332         wmm_rule1 = &rule1->wmm_rule;
1333         wmm_rule2 = &rule2->wmm_rule;
1334         wmm_rule = &intersected_rule->wmm_rule;
1335
1336         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1337                                          freq_range2->start_freq_khz);
1338         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1339                                        freq_range2->end_freq_khz);
1340
1341         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1342         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1343
1344         if (rule1->flags & NL80211_RRF_AUTO_BW)
1345                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1346         if (rule2->flags & NL80211_RRF_AUTO_BW)
1347                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1348
1349         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1350
1351         intersected_rule->flags = rule1->flags | rule2->flags;
1352
1353         /*
1354          * In case NL80211_RRF_AUTO_BW requested for both rules
1355          * set AUTO_BW in intersected rule also. Next we will
1356          * calculate BW correctly in handle_channel function.
1357          * In other case remove AUTO_BW flag while we calculate
1358          * maximum bandwidth correctly and auto calculation is
1359          * not required.
1360          */
1361         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1362             (rule2->flags & NL80211_RRF_AUTO_BW))
1363                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1364         else
1365                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1366
1367         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1368         if (freq_range->max_bandwidth_khz > freq_diff)
1369                 freq_range->max_bandwidth_khz = freq_diff;
1370
1371         power_rule->max_eirp = min(power_rule1->max_eirp,
1372                 power_rule2->max_eirp);
1373         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1374                 power_rule2->max_antenna_gain);
1375
1376         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1377                                            rule2->dfs_cac_ms);
1378
1379         if (rule1->has_wmm && rule2->has_wmm) {
1380                 u8 ac;
1381
1382                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1383                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1384                                                 &wmm_rule2->client[ac],
1385                                                 &wmm_rule->client[ac]);
1386                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1387                                                 &wmm_rule2->ap[ac],
1388                                                 &wmm_rule->ap[ac]);
1389                 }
1390
1391                 intersected_rule->has_wmm = true;
1392         } else if (rule1->has_wmm) {
1393                 *wmm_rule = *wmm_rule1;
1394                 intersected_rule->has_wmm = true;
1395         } else if (rule2->has_wmm) {
1396                 *wmm_rule = *wmm_rule2;
1397                 intersected_rule->has_wmm = true;
1398         } else {
1399                 intersected_rule->has_wmm = false;
1400         }
1401
1402         if (!is_valid_reg_rule(intersected_rule))
1403                 return -EINVAL;
1404
1405         return 0;
1406 }
1407
1408 /* check whether old rule contains new rule */
1409 static bool rule_contains(struct ieee80211_reg_rule *r1,
1410                           struct ieee80211_reg_rule *r2)
1411 {
1412         /* for simplicity, currently consider only same flags */
1413         if (r1->flags != r2->flags)
1414                 return false;
1415
1416         /* verify r1 is more restrictive */
1417         if ((r1->power_rule.max_antenna_gain >
1418              r2->power_rule.max_antenna_gain) ||
1419             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1420                 return false;
1421
1422         /* make sure r2's range is contained within r1 */
1423         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1424             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1425                 return false;
1426
1427         /* and finally verify that r1.max_bw >= r2.max_bw */
1428         if (r1->freq_range.max_bandwidth_khz <
1429             r2->freq_range.max_bandwidth_khz)
1430                 return false;
1431
1432         return true;
1433 }
1434
1435 /* add or extend current rules. do nothing if rule is already contained */
1436 static void add_rule(struct ieee80211_reg_rule *rule,
1437                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1438 {
1439         struct ieee80211_reg_rule *tmp_rule;
1440         int i;
1441
1442         for (i = 0; i < *n_rules; i++) {
1443                 tmp_rule = &reg_rules[i];
1444                 /* rule is already contained - do nothing */
1445                 if (rule_contains(tmp_rule, rule))
1446                         return;
1447
1448                 /* extend rule if possible */
1449                 if (rule_contains(rule, tmp_rule)) {
1450                         memcpy(tmp_rule, rule, sizeof(*rule));
1451                         return;
1452                 }
1453         }
1454
1455         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1456         (*n_rules)++;
1457 }
1458
1459 /**
1460  * regdom_intersect - do the intersection between two regulatory domains
1461  * @rd1: first regulatory domain
1462  * @rd2: second regulatory domain
1463  *
1464  * Use this function to get the intersection between two regulatory domains.
1465  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1466  * as no one single alpha2 can represent this regulatory domain.
1467  *
1468  * Returns a pointer to the regulatory domain structure which will hold the
1469  * resulting intersection of rules between rd1 and rd2. We will
1470  * kzalloc() this structure for you.
1471  */
1472 static struct ieee80211_regdomain *
1473 regdom_intersect(const struct ieee80211_regdomain *rd1,
1474                  const struct ieee80211_regdomain *rd2)
1475 {
1476         int r, size_of_regd;
1477         unsigned int x, y;
1478         unsigned int num_rules = 0;
1479         const struct ieee80211_reg_rule *rule1, *rule2;
1480         struct ieee80211_reg_rule intersected_rule;
1481         struct ieee80211_regdomain *rd;
1482
1483         if (!rd1 || !rd2)
1484                 return NULL;
1485
1486         /*
1487          * First we get a count of the rules we'll need, then we actually
1488          * build them. This is to so we can malloc() and free() a
1489          * regdomain once. The reason we use reg_rules_intersect() here
1490          * is it will return -EINVAL if the rule computed makes no sense.
1491          * All rules that do check out OK are valid.
1492          */
1493
1494         for (x = 0; x < rd1->n_reg_rules; x++) {
1495                 rule1 = &rd1->reg_rules[x];
1496                 for (y = 0; y < rd2->n_reg_rules; y++) {
1497                         rule2 = &rd2->reg_rules[y];
1498                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1499                                                  &intersected_rule))
1500                                 num_rules++;
1501                 }
1502         }
1503
1504         if (!num_rules)
1505                 return NULL;
1506
1507         size_of_regd = sizeof(struct ieee80211_regdomain) +
1508                        num_rules * sizeof(struct ieee80211_reg_rule);
1509
1510         rd = kzalloc(size_of_regd, GFP_KERNEL);
1511         if (!rd)
1512                 return NULL;
1513
1514         for (x = 0; x < rd1->n_reg_rules; x++) {
1515                 rule1 = &rd1->reg_rules[x];
1516                 for (y = 0; y < rd2->n_reg_rules; y++) {
1517                         rule2 = &rd2->reg_rules[y];
1518                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1519                                                 &intersected_rule);
1520                         /*
1521                          * No need to memset here the intersected rule here as
1522                          * we're not using the stack anymore
1523                          */
1524                         if (r)
1525                                 continue;
1526
1527                         add_rule(&intersected_rule, rd->reg_rules,
1528                                  &rd->n_reg_rules);
1529                 }
1530         }
1531
1532         rd->alpha2[0] = '9';
1533         rd->alpha2[1] = '8';
1534         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1535                                                   rd2->dfs_region);
1536
1537         return rd;
1538 }
1539
1540 /*
1541  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1542  * want to just have the channel structure use these
1543  */
1544 static u32 map_regdom_flags(u32 rd_flags)
1545 {
1546         u32 channel_flags = 0;
1547         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1548                 channel_flags |= IEEE80211_CHAN_NO_IR;
1549         if (rd_flags & NL80211_RRF_DFS)
1550                 channel_flags |= IEEE80211_CHAN_RADAR;
1551         if (rd_flags & NL80211_RRF_NO_OFDM)
1552                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1553         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1554                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1555         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1556                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1557         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1558                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1559         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1560                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1561         if (rd_flags & NL80211_RRF_NO_80MHZ)
1562                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1563         if (rd_flags & NL80211_RRF_NO_160MHZ)
1564                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1565         return channel_flags;
1566 }
1567
1568 static const struct ieee80211_reg_rule *
1569 freq_reg_info_regd(u32 center_freq,
1570                    const struct ieee80211_regdomain *regd, u32 bw)
1571 {
1572         int i;
1573         bool band_rule_found = false;
1574         bool bw_fits = false;
1575
1576         if (!regd)
1577                 return ERR_PTR(-EINVAL);
1578
1579         for (i = 0; i < regd->n_reg_rules; i++) {
1580                 const struct ieee80211_reg_rule *rr;
1581                 const struct ieee80211_freq_range *fr = NULL;
1582
1583                 rr = &regd->reg_rules[i];
1584                 fr = &rr->freq_range;
1585
1586                 /*
1587                  * We only need to know if one frequency rule was
1588                  * was in center_freq's band, that's enough, so lets
1589                  * not overwrite it once found
1590                  */
1591                 if (!band_rule_found)
1592                         band_rule_found = freq_in_rule_band(fr, center_freq);
1593
1594                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1595
1596                 if (band_rule_found && bw_fits)
1597                         return rr;
1598         }
1599
1600         if (!band_rule_found)
1601                 return ERR_PTR(-ERANGE);
1602
1603         return ERR_PTR(-EINVAL);
1604 }
1605
1606 static const struct ieee80211_reg_rule *
1607 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1608 {
1609         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1610         const struct ieee80211_reg_rule *reg_rule = NULL;
1611         u32 bw;
1612
1613         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1614                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1615                 if (!IS_ERR(reg_rule))
1616                         return reg_rule;
1617         }
1618
1619         return reg_rule;
1620 }
1621
1622 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1623                                                u32 center_freq)
1624 {
1625         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1626 }
1627 EXPORT_SYMBOL(freq_reg_info);
1628
1629 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1630 {
1631         switch (initiator) {
1632         case NL80211_REGDOM_SET_BY_CORE:
1633                 return "core";
1634         case NL80211_REGDOM_SET_BY_USER:
1635                 return "user";
1636         case NL80211_REGDOM_SET_BY_DRIVER:
1637                 return "driver";
1638         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1639                 return "country element";
1640         default:
1641                 WARN_ON(1);
1642                 return "bug";
1643         }
1644 }
1645 EXPORT_SYMBOL(reg_initiator_name);
1646
1647 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1648                                           const struct ieee80211_reg_rule *reg_rule,
1649                                           const struct ieee80211_channel *chan)
1650 {
1651         const struct ieee80211_freq_range *freq_range = NULL;
1652         u32 max_bandwidth_khz, bw_flags = 0;
1653
1654         freq_range = &reg_rule->freq_range;
1655
1656         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1657         /* Check if auto calculation requested */
1658         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1659                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1660
1661         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1662         if (!cfg80211_does_bw_fit_range(freq_range,
1663                                         MHZ_TO_KHZ(chan->center_freq),
1664                                         MHZ_TO_KHZ(10)))
1665                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1666         if (!cfg80211_does_bw_fit_range(freq_range,
1667                                         MHZ_TO_KHZ(chan->center_freq),
1668                                         MHZ_TO_KHZ(20)))
1669                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1670
1671         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1672                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1673         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1674                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1675         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1676                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1677         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1678                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1679         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1680                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1681         return bw_flags;
1682 }
1683
1684 /*
1685  * Note that right now we assume the desired channel bandwidth
1686  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1687  * per channel, the primary and the extension channel).
1688  */
1689 static void handle_channel(struct wiphy *wiphy,
1690                            enum nl80211_reg_initiator initiator,
1691                            struct ieee80211_channel *chan)
1692 {
1693         u32 flags, bw_flags = 0;
1694         const struct ieee80211_reg_rule *reg_rule = NULL;
1695         const struct ieee80211_power_rule *power_rule = NULL;
1696         struct wiphy *request_wiphy = NULL;
1697         struct regulatory_request *lr = get_last_request();
1698         const struct ieee80211_regdomain *regd;
1699
1700         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1701
1702         flags = chan->orig_flags;
1703
1704         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1705         if (IS_ERR(reg_rule)) {
1706                 /*
1707                  * We will disable all channels that do not match our
1708                  * received regulatory rule unless the hint is coming
1709                  * from a Country IE and the Country IE had no information
1710                  * about a band. The IEEE 802.11 spec allows for an AP
1711                  * to send only a subset of the regulatory rules allowed,
1712                  * so an AP in the US that only supports 2.4 GHz may only send
1713                  * a country IE with information for the 2.4 GHz band
1714                  * while 5 GHz is still supported.
1715                  */
1716                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1717                     PTR_ERR(reg_rule) == -ERANGE)
1718                         return;
1719
1720                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1721                     request_wiphy && request_wiphy == wiphy &&
1722                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1723                         pr_debug("Disabling freq %d MHz for good\n",
1724                                  chan->center_freq);
1725                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1726                         chan->flags = chan->orig_flags;
1727                 } else {
1728                         pr_debug("Disabling freq %d MHz\n",
1729                                  chan->center_freq);
1730                         chan->flags |= IEEE80211_CHAN_DISABLED;
1731                 }
1732                 return;
1733         }
1734
1735         regd = reg_get_regdomain(wiphy);
1736
1737         power_rule = &reg_rule->power_rule;
1738         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1739
1740         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1741             request_wiphy && request_wiphy == wiphy &&
1742             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1743                 /*
1744                  * This guarantees the driver's requested regulatory domain
1745                  * will always be used as a base for further regulatory
1746                  * settings
1747                  */
1748                 chan->flags = chan->orig_flags =
1749                         map_regdom_flags(reg_rule->flags) | bw_flags;
1750                 chan->max_antenna_gain = chan->orig_mag =
1751                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1752                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1753                         (int) MBM_TO_DBM(power_rule->max_eirp);
1754
1755                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1756                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1757                         if (reg_rule->dfs_cac_ms)
1758                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1759                 }
1760
1761                 return;
1762         }
1763
1764         chan->dfs_state = NL80211_DFS_USABLE;
1765         chan->dfs_state_entered = jiffies;
1766
1767         chan->beacon_found = false;
1768         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1769         chan->max_antenna_gain =
1770                 min_t(int, chan->orig_mag,
1771                       MBI_TO_DBI(power_rule->max_antenna_gain));
1772         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1773
1774         if (chan->flags & IEEE80211_CHAN_RADAR) {
1775                 if (reg_rule->dfs_cac_ms)
1776                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1777                 else
1778                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1779         }
1780
1781         if (chan->orig_mpwr) {
1782                 /*
1783                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1784                  * will always follow the passed country IE power settings.
1785                  */
1786                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1787                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1788                         chan->max_power = chan->max_reg_power;
1789                 else
1790                         chan->max_power = min(chan->orig_mpwr,
1791                                               chan->max_reg_power);
1792         } else
1793                 chan->max_power = chan->max_reg_power;
1794 }
1795
1796 static void handle_band(struct wiphy *wiphy,
1797                         enum nl80211_reg_initiator initiator,
1798                         struct ieee80211_supported_band *sband)
1799 {
1800         unsigned int i;
1801
1802         if (!sband)
1803                 return;
1804
1805         for (i = 0; i < sband->n_channels; i++)
1806                 handle_channel(wiphy, initiator, &sband->channels[i]);
1807 }
1808
1809 static bool reg_request_cell_base(struct regulatory_request *request)
1810 {
1811         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1812                 return false;
1813         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1814 }
1815
1816 bool reg_last_request_cell_base(void)
1817 {
1818         return reg_request_cell_base(get_last_request());
1819 }
1820
1821 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1822 /* Core specific check */
1823 static enum reg_request_treatment
1824 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1825 {
1826         struct regulatory_request *lr = get_last_request();
1827
1828         if (!reg_num_devs_support_basehint)
1829                 return REG_REQ_IGNORE;
1830
1831         if (reg_request_cell_base(lr) &&
1832             !regdom_changes(pending_request->alpha2))
1833                 return REG_REQ_ALREADY_SET;
1834
1835         return REG_REQ_OK;
1836 }
1837
1838 /* Device specific check */
1839 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1840 {
1841         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1842 }
1843 #else
1844 static enum reg_request_treatment
1845 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1846 {
1847         return REG_REQ_IGNORE;
1848 }
1849
1850 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1851 {
1852         return true;
1853 }
1854 #endif
1855
1856 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1857 {
1858         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1859             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1860                 return true;
1861         return false;
1862 }
1863
1864 static bool ignore_reg_update(struct wiphy *wiphy,
1865                               enum nl80211_reg_initiator initiator)
1866 {
1867         struct regulatory_request *lr = get_last_request();
1868
1869         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1870                 return true;
1871
1872         if (!lr) {
1873                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1874                          reg_initiator_name(initiator));
1875                 return true;
1876         }
1877
1878         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1879             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1880                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1881                          reg_initiator_name(initiator));
1882                 return true;
1883         }
1884
1885         /*
1886          * wiphy->regd will be set once the device has its own
1887          * desired regulatory domain set
1888          */
1889         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1890             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1891             !is_world_regdom(lr->alpha2)) {
1892                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1893                          reg_initiator_name(initiator));
1894                 return true;
1895         }
1896
1897         if (reg_request_cell_base(lr))
1898                 return reg_dev_ignore_cell_hint(wiphy);
1899
1900         return false;
1901 }
1902
1903 static bool reg_is_world_roaming(struct wiphy *wiphy)
1904 {
1905         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1906         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1907         struct regulatory_request *lr = get_last_request();
1908
1909         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1910                 return true;
1911
1912         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1913             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1914                 return true;
1915
1916         return false;
1917 }
1918
1919 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1920                               struct reg_beacon *reg_beacon)
1921 {
1922         struct ieee80211_supported_band *sband;
1923         struct ieee80211_channel *chan;
1924         bool channel_changed = false;
1925         struct ieee80211_channel chan_before;
1926
1927         sband = wiphy->bands[reg_beacon->chan.band];
1928         chan = &sband->channels[chan_idx];
1929
1930         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1931                 return;
1932
1933         if (chan->beacon_found)
1934                 return;
1935
1936         chan->beacon_found = true;
1937
1938         if (!reg_is_world_roaming(wiphy))
1939                 return;
1940
1941         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1942                 return;
1943
1944         chan_before = *chan;
1945
1946         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1947                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1948                 channel_changed = true;
1949         }
1950
1951         if (channel_changed)
1952                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1953 }
1954
1955 /*
1956  * Called when a scan on a wiphy finds a beacon on
1957  * new channel
1958  */
1959 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1960                                     struct reg_beacon *reg_beacon)
1961 {
1962         unsigned int i;
1963         struct ieee80211_supported_band *sband;
1964
1965         if (!wiphy->bands[reg_beacon->chan.band])
1966                 return;
1967
1968         sband = wiphy->bands[reg_beacon->chan.band];
1969
1970         for (i = 0; i < sband->n_channels; i++)
1971                 handle_reg_beacon(wiphy, i, reg_beacon);
1972 }
1973
1974 /*
1975  * Called upon reg changes or a new wiphy is added
1976  */
1977 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1978 {
1979         unsigned int i;
1980         struct ieee80211_supported_band *sband;
1981         struct reg_beacon *reg_beacon;
1982
1983         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1984                 if (!wiphy->bands[reg_beacon->chan.band])
1985                         continue;
1986                 sband = wiphy->bands[reg_beacon->chan.band];
1987                 for (i = 0; i < sband->n_channels; i++)
1988                         handle_reg_beacon(wiphy, i, reg_beacon);
1989         }
1990 }
1991
1992 /* Reap the advantages of previously found beacons */
1993 static void reg_process_beacons(struct wiphy *wiphy)
1994 {
1995         /*
1996          * Means we are just firing up cfg80211, so no beacons would
1997          * have been processed yet.
1998          */
1999         if (!last_request)
2000                 return;
2001         wiphy_update_beacon_reg(wiphy);
2002 }
2003
2004 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2005 {
2006         if (!chan)
2007                 return false;
2008         if (chan->flags & IEEE80211_CHAN_DISABLED)
2009                 return false;
2010         /* This would happen when regulatory rules disallow HT40 completely */
2011         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2012                 return false;
2013         return true;
2014 }
2015
2016 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2017                                          struct ieee80211_channel *channel)
2018 {
2019         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2020         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2021         const struct ieee80211_regdomain *regd;
2022         unsigned int i;
2023         u32 flags;
2024
2025         if (!is_ht40_allowed(channel)) {
2026                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2027                 return;
2028         }
2029
2030         /*
2031          * We need to ensure the extension channels exist to
2032          * be able to use HT40- or HT40+, this finds them (or not)
2033          */
2034         for (i = 0; i < sband->n_channels; i++) {
2035                 struct ieee80211_channel *c = &sband->channels[i];
2036
2037                 if (c->center_freq == (channel->center_freq - 20))
2038                         channel_before = c;
2039                 if (c->center_freq == (channel->center_freq + 20))
2040                         channel_after = c;
2041         }
2042
2043         flags = 0;
2044         regd = get_wiphy_regdom(wiphy);
2045         if (regd) {
2046                 const struct ieee80211_reg_rule *reg_rule =
2047                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2048                                            regd, MHZ_TO_KHZ(20));
2049
2050                 if (!IS_ERR(reg_rule))
2051                         flags = reg_rule->flags;
2052         }
2053
2054         /*
2055          * Please note that this assumes target bandwidth is 20 MHz,
2056          * if that ever changes we also need to change the below logic
2057          * to include that as well.
2058          */
2059         if (!is_ht40_allowed(channel_before) ||
2060             flags & NL80211_RRF_NO_HT40MINUS)
2061                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2062         else
2063                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2064
2065         if (!is_ht40_allowed(channel_after) ||
2066             flags & NL80211_RRF_NO_HT40PLUS)
2067                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2068         else
2069                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2070 }
2071
2072 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2073                                       struct ieee80211_supported_band *sband)
2074 {
2075         unsigned int i;
2076
2077         if (!sband)
2078                 return;
2079
2080         for (i = 0; i < sband->n_channels; i++)
2081                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2082 }
2083
2084 static void reg_process_ht_flags(struct wiphy *wiphy)
2085 {
2086         enum nl80211_band band;
2087
2088         if (!wiphy)
2089                 return;
2090
2091         for (band = 0; band < NUM_NL80211_BANDS; band++)
2092                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2093 }
2094
2095 static void reg_call_notifier(struct wiphy *wiphy,
2096                               struct regulatory_request *request)
2097 {
2098         if (wiphy->reg_notifier)
2099                 wiphy->reg_notifier(wiphy, request);
2100 }
2101
2102 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2103 {
2104         struct cfg80211_chan_def chandef = {};
2105         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2106         enum nl80211_iftype iftype;
2107
2108         wdev_lock(wdev);
2109         iftype = wdev->iftype;
2110
2111         /* make sure the interface is active */
2112         if (!wdev->netdev || !netif_running(wdev->netdev))
2113                 goto wdev_inactive_unlock;
2114
2115         switch (iftype) {
2116         case NL80211_IFTYPE_AP:
2117         case NL80211_IFTYPE_P2P_GO:
2118                 if (!wdev->beacon_interval)
2119                         goto wdev_inactive_unlock;
2120                 chandef = wdev->chandef;
2121                 break;
2122         case NL80211_IFTYPE_ADHOC:
2123                 if (!wdev->ssid_len)
2124                         goto wdev_inactive_unlock;
2125                 chandef = wdev->chandef;
2126                 break;
2127         case NL80211_IFTYPE_STATION:
2128         case NL80211_IFTYPE_P2P_CLIENT:
2129                 if (!wdev->current_bss ||
2130                     !wdev->current_bss->pub.channel)
2131                         goto wdev_inactive_unlock;
2132
2133                 if (!rdev->ops->get_channel ||
2134                     rdev_get_channel(rdev, wdev, &chandef))
2135                         cfg80211_chandef_create(&chandef,
2136                                                 wdev->current_bss->pub.channel,
2137                                                 NL80211_CHAN_NO_HT);
2138                 break;
2139         case NL80211_IFTYPE_MONITOR:
2140         case NL80211_IFTYPE_AP_VLAN:
2141         case NL80211_IFTYPE_P2P_DEVICE:
2142                 /* no enforcement required */
2143                 break;
2144         default:
2145                 /* others not implemented for now */
2146                 WARN_ON(1);
2147                 break;
2148         }
2149
2150         wdev_unlock(wdev);
2151
2152         switch (iftype) {
2153         case NL80211_IFTYPE_AP:
2154         case NL80211_IFTYPE_P2P_GO:
2155         case NL80211_IFTYPE_ADHOC:
2156                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2157         case NL80211_IFTYPE_STATION:
2158         case NL80211_IFTYPE_P2P_CLIENT:
2159                 return cfg80211_chandef_usable(wiphy, &chandef,
2160                                                IEEE80211_CHAN_DISABLED);
2161         default:
2162                 break;
2163         }
2164
2165         return true;
2166
2167 wdev_inactive_unlock:
2168         wdev_unlock(wdev);
2169         return true;
2170 }
2171
2172 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2173 {
2174         struct wireless_dev *wdev;
2175         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2176
2177         ASSERT_RTNL();
2178
2179         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2180                 if (!reg_wdev_chan_valid(wiphy, wdev))
2181                         cfg80211_leave(rdev, wdev);
2182 }
2183
2184 static void reg_check_chans_work(struct work_struct *work)
2185 {
2186         struct cfg80211_registered_device *rdev;
2187
2188         pr_debug("Verifying active interfaces after reg change\n");
2189         rtnl_lock();
2190
2191         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2192                 if (!(rdev->wiphy.regulatory_flags &
2193                       REGULATORY_IGNORE_STALE_KICKOFF))
2194                         reg_leave_invalid_chans(&rdev->wiphy);
2195
2196         rtnl_unlock();
2197 }
2198
2199 static void reg_check_channels(void)
2200 {
2201         /*
2202          * Give usermode a chance to do something nicer (move to another
2203          * channel, orderly disconnection), before forcing a disconnection.
2204          */
2205         mod_delayed_work(system_power_efficient_wq,
2206                          &reg_check_chans,
2207                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2208 }
2209
2210 static void wiphy_update_regulatory(struct wiphy *wiphy,
2211                                     enum nl80211_reg_initiator initiator)
2212 {
2213         enum nl80211_band band;
2214         struct regulatory_request *lr = get_last_request();
2215
2216         if (ignore_reg_update(wiphy, initiator)) {
2217                 /*
2218                  * Regulatory updates set by CORE are ignored for custom
2219                  * regulatory cards. Let us notify the changes to the driver,
2220                  * as some drivers used this to restore its orig_* reg domain.
2221                  */
2222                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2223                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2224                     !(wiphy->regulatory_flags &
2225                       REGULATORY_WIPHY_SELF_MANAGED))
2226                         reg_call_notifier(wiphy, lr);
2227                 return;
2228         }
2229
2230         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2231
2232         for (band = 0; band < NUM_NL80211_BANDS; band++)
2233                 handle_band(wiphy, initiator, wiphy->bands[band]);
2234
2235         reg_process_beacons(wiphy);
2236         reg_process_ht_flags(wiphy);
2237         reg_call_notifier(wiphy, lr);
2238 }
2239
2240 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2241 {
2242         struct cfg80211_registered_device *rdev;
2243         struct wiphy *wiphy;
2244
2245         ASSERT_RTNL();
2246
2247         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2248                 wiphy = &rdev->wiphy;
2249                 wiphy_update_regulatory(wiphy, initiator);
2250         }
2251
2252         reg_check_channels();
2253 }
2254
2255 static void handle_channel_custom(struct wiphy *wiphy,
2256                                   struct ieee80211_channel *chan,
2257                                   const struct ieee80211_regdomain *regd,
2258                                   u32 min_bw)
2259 {
2260         u32 bw_flags = 0;
2261         const struct ieee80211_reg_rule *reg_rule = NULL;
2262         const struct ieee80211_power_rule *power_rule = NULL;
2263         u32 bw;
2264
2265         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2266                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2267                                               regd, bw);
2268                 if (!IS_ERR(reg_rule))
2269                         break;
2270         }
2271
2272         if (IS_ERR_OR_NULL(reg_rule)) {
2273                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2274                          chan->center_freq);
2275                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2276                         chan->flags |= IEEE80211_CHAN_DISABLED;
2277                 } else {
2278                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2279                         chan->flags = chan->orig_flags;
2280                 }
2281                 return;
2282         }
2283
2284         power_rule = &reg_rule->power_rule;
2285         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2286
2287         chan->dfs_state_entered = jiffies;
2288         chan->dfs_state = NL80211_DFS_USABLE;
2289
2290         chan->beacon_found = false;
2291
2292         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2293                 chan->flags = chan->orig_flags | bw_flags |
2294                               map_regdom_flags(reg_rule->flags);
2295         else
2296                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2297
2298         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2299         chan->max_reg_power = chan->max_power =
2300                 (int) MBM_TO_DBM(power_rule->max_eirp);
2301
2302         if (chan->flags & IEEE80211_CHAN_RADAR) {
2303                 if (reg_rule->dfs_cac_ms)
2304                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2305                 else
2306                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2307         }
2308
2309         chan->max_power = chan->max_reg_power;
2310 }
2311
2312 static void handle_band_custom(struct wiphy *wiphy,
2313                                struct ieee80211_supported_band *sband,
2314                                const struct ieee80211_regdomain *regd)
2315 {
2316         unsigned int i;
2317
2318         if (!sband)
2319                 return;
2320
2321         /*
2322          * We currently assume that you always want at least 20 MHz,
2323          * otherwise channel 12 might get enabled if this rule is
2324          * compatible to US, which permits 2402 - 2472 MHz.
2325          */
2326         for (i = 0; i < sband->n_channels; i++)
2327                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2328                                       MHZ_TO_KHZ(20));
2329 }
2330
2331 /* Used by drivers prior to wiphy registration */
2332 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2333                                    const struct ieee80211_regdomain *regd)
2334 {
2335         enum nl80211_band band;
2336         unsigned int bands_set = 0;
2337
2338         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2339              "wiphy should have REGULATORY_CUSTOM_REG\n");
2340         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2341
2342         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2343                 if (!wiphy->bands[band])
2344                         continue;
2345                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2346                 bands_set++;
2347         }
2348
2349         /*
2350          * no point in calling this if it won't have any effect
2351          * on your device's supported bands.
2352          */
2353         WARN_ON(!bands_set);
2354 }
2355 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2356
2357 static void reg_set_request_processed(void)
2358 {
2359         bool need_more_processing = false;
2360         struct regulatory_request *lr = get_last_request();
2361
2362         lr->processed = true;
2363
2364         spin_lock(&reg_requests_lock);
2365         if (!list_empty(&reg_requests_list))
2366                 need_more_processing = true;
2367         spin_unlock(&reg_requests_lock);
2368
2369         cancel_crda_timeout();
2370
2371         if (need_more_processing)
2372                 schedule_work(&reg_work);
2373 }
2374
2375 /**
2376  * reg_process_hint_core - process core regulatory requests
2377  * @pending_request: a pending core regulatory request
2378  *
2379  * The wireless subsystem can use this function to process
2380  * a regulatory request issued by the regulatory core.
2381  */
2382 static enum reg_request_treatment
2383 reg_process_hint_core(struct regulatory_request *core_request)
2384 {
2385         if (reg_query_database(core_request)) {
2386                 core_request->intersect = false;
2387                 core_request->processed = false;
2388                 reg_update_last_request(core_request);
2389                 return REG_REQ_OK;
2390         }
2391
2392         return REG_REQ_IGNORE;
2393 }
2394
2395 static enum reg_request_treatment
2396 __reg_process_hint_user(struct regulatory_request *user_request)
2397 {
2398         struct regulatory_request *lr = get_last_request();
2399
2400         if (reg_request_cell_base(user_request))
2401                 return reg_ignore_cell_hint(user_request);
2402
2403         if (reg_request_cell_base(lr))
2404                 return REG_REQ_IGNORE;
2405
2406         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2407                 return REG_REQ_INTERSECT;
2408         /*
2409          * If the user knows better the user should set the regdom
2410          * to their country before the IE is picked up
2411          */
2412         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2413             lr->intersect)
2414                 return REG_REQ_IGNORE;
2415         /*
2416          * Process user requests only after previous user/driver/core
2417          * requests have been processed
2418          */
2419         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2420              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2421              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2422             regdom_changes(lr->alpha2))
2423                 return REG_REQ_IGNORE;
2424
2425         if (!regdom_changes(user_request->alpha2))
2426                 return REG_REQ_ALREADY_SET;
2427
2428         return REG_REQ_OK;
2429 }
2430
2431 /**
2432  * reg_process_hint_user - process user regulatory requests
2433  * @user_request: a pending user regulatory request
2434  *
2435  * The wireless subsystem can use this function to process
2436  * a regulatory request initiated by userspace.
2437  */
2438 static enum reg_request_treatment
2439 reg_process_hint_user(struct regulatory_request *user_request)
2440 {
2441         enum reg_request_treatment treatment;
2442
2443         treatment = __reg_process_hint_user(user_request);
2444         if (treatment == REG_REQ_IGNORE ||
2445             treatment == REG_REQ_ALREADY_SET)
2446                 return REG_REQ_IGNORE;
2447
2448         user_request->intersect = treatment == REG_REQ_INTERSECT;
2449         user_request->processed = false;
2450
2451         if (reg_query_database(user_request)) {
2452                 reg_update_last_request(user_request);
2453                 user_alpha2[0] = user_request->alpha2[0];
2454                 user_alpha2[1] = user_request->alpha2[1];
2455                 return REG_REQ_OK;
2456         }
2457
2458         return REG_REQ_IGNORE;
2459 }
2460
2461 static enum reg_request_treatment
2462 __reg_process_hint_driver(struct regulatory_request *driver_request)
2463 {
2464         struct regulatory_request *lr = get_last_request();
2465
2466         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2467                 if (regdom_changes(driver_request->alpha2))
2468                         return REG_REQ_OK;
2469                 return REG_REQ_ALREADY_SET;
2470         }
2471
2472         /*
2473          * This would happen if you unplug and plug your card
2474          * back in or if you add a new device for which the previously
2475          * loaded card also agrees on the regulatory domain.
2476          */
2477         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2478             !regdom_changes(driver_request->alpha2))
2479                 return REG_REQ_ALREADY_SET;
2480
2481         return REG_REQ_INTERSECT;
2482 }
2483
2484 /**
2485  * reg_process_hint_driver - process driver regulatory requests
2486  * @driver_request: a pending driver regulatory request
2487  *
2488  * The wireless subsystem can use this function to process
2489  * a regulatory request issued by an 802.11 driver.
2490  *
2491  * Returns one of the different reg request treatment values.
2492  */
2493 static enum reg_request_treatment
2494 reg_process_hint_driver(struct wiphy *wiphy,
2495                         struct regulatory_request *driver_request)
2496 {
2497         const struct ieee80211_regdomain *regd, *tmp;
2498         enum reg_request_treatment treatment;
2499
2500         treatment = __reg_process_hint_driver(driver_request);
2501
2502         switch (treatment) {
2503         case REG_REQ_OK:
2504                 break;
2505         case REG_REQ_IGNORE:
2506                 return REG_REQ_IGNORE;
2507         case REG_REQ_INTERSECT:
2508         case REG_REQ_ALREADY_SET:
2509                 regd = reg_copy_regd(get_cfg80211_regdom());
2510                 if (IS_ERR(regd))
2511                         return REG_REQ_IGNORE;
2512
2513                 tmp = get_wiphy_regdom(wiphy);
2514                 rcu_assign_pointer(wiphy->regd, regd);
2515                 rcu_free_regdom(tmp);
2516         }
2517
2518
2519         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2520         driver_request->processed = false;
2521
2522         /*
2523          * Since CRDA will not be called in this case as we already
2524          * have applied the requested regulatory domain before we just
2525          * inform userspace we have processed the request
2526          */
2527         if (treatment == REG_REQ_ALREADY_SET) {
2528                 nl80211_send_reg_change_event(driver_request);
2529                 reg_update_last_request(driver_request);
2530                 reg_set_request_processed();
2531                 return REG_REQ_ALREADY_SET;
2532         }
2533
2534         if (reg_query_database(driver_request)) {
2535                 reg_update_last_request(driver_request);
2536                 return REG_REQ_OK;
2537         }
2538
2539         return REG_REQ_IGNORE;
2540 }
2541
2542 static enum reg_request_treatment
2543 __reg_process_hint_country_ie(struct wiphy *wiphy,
2544                               struct regulatory_request *country_ie_request)
2545 {
2546         struct wiphy *last_wiphy = NULL;
2547         struct regulatory_request *lr = get_last_request();
2548
2549         if (reg_request_cell_base(lr)) {
2550                 /* Trust a Cell base station over the AP's country IE */
2551                 if (regdom_changes(country_ie_request->alpha2))
2552                         return REG_REQ_IGNORE;
2553                 return REG_REQ_ALREADY_SET;
2554         } else {
2555                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2556                         return REG_REQ_IGNORE;
2557         }
2558
2559         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2560                 return -EINVAL;
2561
2562         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2563                 return REG_REQ_OK;
2564
2565         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2566
2567         if (last_wiphy != wiphy) {
2568                 /*
2569                  * Two cards with two APs claiming different
2570                  * Country IE alpha2s. We could
2571                  * intersect them, but that seems unlikely
2572                  * to be correct. Reject second one for now.
2573                  */
2574                 if (regdom_changes(country_ie_request->alpha2))
2575                         return REG_REQ_IGNORE;
2576                 return REG_REQ_ALREADY_SET;
2577         }
2578
2579         if (regdom_changes(country_ie_request->alpha2))
2580                 return REG_REQ_OK;
2581         return REG_REQ_ALREADY_SET;
2582 }
2583
2584 /**
2585  * reg_process_hint_country_ie - process regulatory requests from country IEs
2586  * @country_ie_request: a regulatory request from a country IE
2587  *
2588  * The wireless subsystem can use this function to process
2589  * a regulatory request issued by a country Information Element.
2590  *
2591  * Returns one of the different reg request treatment values.
2592  */
2593 static enum reg_request_treatment
2594 reg_process_hint_country_ie(struct wiphy *wiphy,
2595                             struct regulatory_request *country_ie_request)
2596 {
2597         enum reg_request_treatment treatment;
2598
2599         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2600
2601         switch (treatment) {
2602         case REG_REQ_OK:
2603                 break;
2604         case REG_REQ_IGNORE:
2605                 return REG_REQ_IGNORE;
2606         case REG_REQ_ALREADY_SET:
2607                 reg_free_request(country_ie_request);
2608                 return REG_REQ_ALREADY_SET;
2609         case REG_REQ_INTERSECT:
2610                 /*
2611                  * This doesn't happen yet, not sure we
2612                  * ever want to support it for this case.
2613                  */
2614                 WARN_ONCE(1, "Unexpected intersection for country elements");
2615                 return REG_REQ_IGNORE;
2616         }
2617
2618         country_ie_request->intersect = false;
2619         country_ie_request->processed = false;
2620
2621         if (reg_query_database(country_ie_request)) {
2622                 reg_update_last_request(country_ie_request);
2623                 return REG_REQ_OK;
2624         }
2625
2626         return REG_REQ_IGNORE;
2627 }
2628
2629 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2630 {
2631         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2632         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2633         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2634         bool dfs_domain_same;
2635
2636         rcu_read_lock();
2637
2638         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2639         wiphy1_regd = rcu_dereference(wiphy1->regd);
2640         if (!wiphy1_regd)
2641                 wiphy1_regd = cfg80211_regd;
2642
2643         wiphy2_regd = rcu_dereference(wiphy2->regd);
2644         if (!wiphy2_regd)
2645                 wiphy2_regd = cfg80211_regd;
2646
2647         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2648
2649         rcu_read_unlock();
2650
2651         return dfs_domain_same;
2652 }
2653
2654 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2655                                     struct ieee80211_channel *src_chan)
2656 {
2657         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2658             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2659                 return;
2660
2661         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2662             src_chan->flags & IEEE80211_CHAN_DISABLED)
2663                 return;
2664
2665         if (src_chan->center_freq == dst_chan->center_freq &&
2666             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2667                 dst_chan->dfs_state = src_chan->dfs_state;
2668                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2669         }
2670 }
2671
2672 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2673                                        struct wiphy *src_wiphy)
2674 {
2675         struct ieee80211_supported_band *src_sband, *dst_sband;
2676         struct ieee80211_channel *src_chan, *dst_chan;
2677         int i, j, band;
2678
2679         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2680                 return;
2681
2682         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2683                 dst_sband = dst_wiphy->bands[band];
2684                 src_sband = src_wiphy->bands[band];
2685                 if (!dst_sband || !src_sband)
2686                         continue;
2687
2688                 for (i = 0; i < dst_sband->n_channels; i++) {
2689                         dst_chan = &dst_sband->channels[i];
2690                         for (j = 0; j < src_sband->n_channels; j++) {
2691                                 src_chan = &src_sband->channels[j];
2692                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2693                         }
2694                 }
2695         }
2696 }
2697
2698 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2699 {
2700         struct cfg80211_registered_device *rdev;
2701
2702         ASSERT_RTNL();
2703
2704         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2705                 if (wiphy == &rdev->wiphy)
2706                         continue;
2707                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2708         }
2709 }
2710
2711 /* This processes *all* regulatory hints */
2712 static void reg_process_hint(struct regulatory_request *reg_request)
2713 {
2714         struct wiphy *wiphy = NULL;
2715         enum reg_request_treatment treatment;
2716         enum nl80211_reg_initiator initiator = reg_request->initiator;
2717
2718         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2719                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2720
2721         switch (initiator) {
2722         case NL80211_REGDOM_SET_BY_CORE:
2723                 treatment = reg_process_hint_core(reg_request);
2724                 break;
2725         case NL80211_REGDOM_SET_BY_USER:
2726                 treatment = reg_process_hint_user(reg_request);
2727                 break;
2728         case NL80211_REGDOM_SET_BY_DRIVER:
2729                 if (!wiphy)
2730                         goto out_free;
2731                 treatment = reg_process_hint_driver(wiphy, reg_request);
2732                 break;
2733         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2734                 if (!wiphy)
2735                         goto out_free;
2736                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2737                 break;
2738         default:
2739                 WARN(1, "invalid initiator %d\n", initiator);
2740                 goto out_free;
2741         }
2742
2743         if (treatment == REG_REQ_IGNORE)
2744                 goto out_free;
2745
2746         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2747              "unexpected treatment value %d\n", treatment);
2748
2749         /* This is required so that the orig_* parameters are saved.
2750          * NOTE: treatment must be set for any case that reaches here!
2751          */
2752         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2753             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2754                 wiphy_update_regulatory(wiphy, initiator);
2755                 wiphy_all_share_dfs_chan_state(wiphy);
2756                 reg_check_channels();
2757         }
2758
2759         return;
2760
2761 out_free:
2762         reg_free_request(reg_request);
2763 }
2764
2765 static void notify_self_managed_wiphys(struct regulatory_request *request)
2766 {
2767         struct cfg80211_registered_device *rdev;
2768         struct wiphy *wiphy;
2769
2770         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2771                 wiphy = &rdev->wiphy;
2772                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2773                     request->initiator == NL80211_REGDOM_SET_BY_USER &&
2774                     request->user_reg_hint_type ==
2775                                 NL80211_USER_REG_HINT_CELL_BASE)
2776                         reg_call_notifier(wiphy, request);
2777         }
2778 }
2779
2780 /*
2781  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2782  * Regulatory hints come on a first come first serve basis and we
2783  * must process each one atomically.
2784  */
2785 static void reg_process_pending_hints(void)
2786 {
2787         struct regulatory_request *reg_request, *lr;
2788
2789         lr = get_last_request();
2790
2791         /* When last_request->processed becomes true this will be rescheduled */
2792         if (lr && !lr->processed) {
2793                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2794                 return;
2795         }
2796
2797         spin_lock(&reg_requests_lock);
2798
2799         if (list_empty(&reg_requests_list)) {
2800                 spin_unlock(&reg_requests_lock);
2801                 return;
2802         }
2803
2804         reg_request = list_first_entry(&reg_requests_list,
2805                                        struct regulatory_request,
2806                                        list);
2807         list_del_init(&reg_request->list);
2808
2809         spin_unlock(&reg_requests_lock);
2810
2811         notify_self_managed_wiphys(reg_request);
2812
2813         reg_process_hint(reg_request);
2814
2815         lr = get_last_request();
2816
2817         spin_lock(&reg_requests_lock);
2818         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2819                 schedule_work(&reg_work);
2820         spin_unlock(&reg_requests_lock);
2821 }
2822
2823 /* Processes beacon hints -- this has nothing to do with country IEs */
2824 static void reg_process_pending_beacon_hints(void)
2825 {
2826         struct cfg80211_registered_device *rdev;
2827         struct reg_beacon *pending_beacon, *tmp;
2828
2829         /* This goes through the _pending_ beacon list */
2830         spin_lock_bh(&reg_pending_beacons_lock);
2831
2832         list_for_each_entry_safe(pending_beacon, tmp,
2833                                  &reg_pending_beacons, list) {
2834                 list_del_init(&pending_beacon->list);
2835
2836                 /* Applies the beacon hint to current wiphys */
2837                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2838                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2839
2840                 /* Remembers the beacon hint for new wiphys or reg changes */
2841                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2842         }
2843
2844         spin_unlock_bh(&reg_pending_beacons_lock);
2845 }
2846
2847 static void reg_process_self_managed_hints(void)
2848 {
2849         struct cfg80211_registered_device *rdev;
2850         struct wiphy *wiphy;
2851         const struct ieee80211_regdomain *tmp;
2852         const struct ieee80211_regdomain *regd;
2853         enum nl80211_band band;
2854         struct regulatory_request request = {};
2855
2856         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2857                 wiphy = &rdev->wiphy;
2858
2859                 spin_lock(&reg_requests_lock);
2860                 regd = rdev->requested_regd;
2861                 rdev->requested_regd = NULL;
2862                 spin_unlock(&reg_requests_lock);
2863
2864                 if (regd == NULL)
2865                         continue;
2866
2867                 tmp = get_wiphy_regdom(wiphy);
2868                 rcu_assign_pointer(wiphy->regd, regd);
2869                 rcu_free_regdom(tmp);
2870
2871                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2872                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2873
2874                 reg_process_ht_flags(wiphy);
2875
2876                 request.wiphy_idx = get_wiphy_idx(wiphy);
2877                 request.alpha2[0] = regd->alpha2[0];
2878                 request.alpha2[1] = regd->alpha2[1];
2879                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2880
2881                 nl80211_send_wiphy_reg_change_event(&request);
2882         }
2883
2884         reg_check_channels();
2885 }
2886
2887 static void reg_todo(struct work_struct *work)
2888 {
2889         rtnl_lock();
2890         reg_process_pending_hints();
2891         reg_process_pending_beacon_hints();
2892         reg_process_self_managed_hints();
2893         rtnl_unlock();
2894 }
2895
2896 static void queue_regulatory_request(struct regulatory_request *request)
2897 {
2898         request->alpha2[0] = toupper(request->alpha2[0]);
2899         request->alpha2[1] = toupper(request->alpha2[1]);
2900
2901         spin_lock(&reg_requests_lock);
2902         list_add_tail(&request->list, &reg_requests_list);
2903         spin_unlock(&reg_requests_lock);
2904
2905         schedule_work(&reg_work);
2906 }
2907
2908 /*
2909  * Core regulatory hint -- happens during cfg80211_init()
2910  * and when we restore regulatory settings.
2911  */
2912 static int regulatory_hint_core(const char *alpha2)
2913 {
2914         struct regulatory_request *request;
2915
2916         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2917         if (!request)
2918                 return -ENOMEM;
2919
2920         request->alpha2[0] = alpha2[0];
2921         request->alpha2[1] = alpha2[1];
2922         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2923         request->wiphy_idx = WIPHY_IDX_INVALID;
2924
2925         queue_regulatory_request(request);
2926
2927         return 0;
2928 }
2929
2930 /* User hints */
2931 int regulatory_hint_user(const char *alpha2,
2932                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2933 {
2934         struct regulatory_request *request;
2935
2936         if (WARN_ON(!alpha2))
2937                 return -EINVAL;
2938
2939         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
2940                 return -EINVAL;
2941
2942         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2943         if (!request)
2944                 return -ENOMEM;
2945
2946         request->wiphy_idx = WIPHY_IDX_INVALID;
2947         request->alpha2[0] = alpha2[0];
2948         request->alpha2[1] = alpha2[1];
2949         request->initiator = NL80211_REGDOM_SET_BY_USER;
2950         request->user_reg_hint_type = user_reg_hint_type;
2951
2952         /* Allow calling CRDA again */
2953         reset_crda_timeouts();
2954
2955         queue_regulatory_request(request);
2956
2957         return 0;
2958 }
2959
2960 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2961 {
2962         spin_lock(&reg_indoor_lock);
2963
2964         /* It is possible that more than one user space process is trying to
2965          * configure the indoor setting. To handle such cases, clear the indoor
2966          * setting in case that some process does not think that the device
2967          * is operating in an indoor environment. In addition, if a user space
2968          * process indicates that it is controlling the indoor setting, save its
2969          * portid, i.e., make it the owner.
2970          */
2971         reg_is_indoor = is_indoor;
2972         if (reg_is_indoor) {
2973                 if (!reg_is_indoor_portid)
2974                         reg_is_indoor_portid = portid;
2975         } else {
2976                 reg_is_indoor_portid = 0;
2977         }
2978
2979         spin_unlock(&reg_indoor_lock);
2980
2981         if (!is_indoor)
2982                 reg_check_channels();
2983
2984         return 0;
2985 }
2986
2987 void regulatory_netlink_notify(u32 portid)
2988 {
2989         spin_lock(&reg_indoor_lock);
2990
2991         if (reg_is_indoor_portid != portid) {
2992                 spin_unlock(&reg_indoor_lock);
2993                 return;
2994         }
2995
2996         reg_is_indoor = false;
2997         reg_is_indoor_portid = 0;
2998
2999         spin_unlock(&reg_indoor_lock);
3000
3001         reg_check_channels();
3002 }
3003
3004 /* Driver hints */
3005 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3006 {
3007         struct regulatory_request *request;
3008
3009         if (WARN_ON(!alpha2 || !wiphy))
3010                 return -EINVAL;
3011
3012         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3013
3014         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3015         if (!request)
3016                 return -ENOMEM;
3017
3018         request->wiphy_idx = get_wiphy_idx(wiphy);
3019
3020         request->alpha2[0] = alpha2[0];
3021         request->alpha2[1] = alpha2[1];
3022         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3023
3024         /* Allow calling CRDA again */
3025         reset_crda_timeouts();
3026
3027         queue_regulatory_request(request);
3028
3029         return 0;
3030 }
3031 EXPORT_SYMBOL(regulatory_hint);
3032
3033 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3034                                 const u8 *country_ie, u8 country_ie_len)
3035 {
3036         char alpha2[2];
3037         enum environment_cap env = ENVIRON_ANY;
3038         struct regulatory_request *request = NULL, *lr;
3039
3040         /* IE len must be evenly divisible by 2 */
3041         if (country_ie_len & 0x01)
3042                 return;
3043
3044         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3045                 return;
3046
3047         request = kzalloc(sizeof(*request), GFP_KERNEL);
3048         if (!request)
3049                 return;
3050
3051         alpha2[0] = country_ie[0];
3052         alpha2[1] = country_ie[1];
3053
3054         if (country_ie[2] == 'I')
3055                 env = ENVIRON_INDOOR;
3056         else if (country_ie[2] == 'O')
3057                 env = ENVIRON_OUTDOOR;
3058
3059         rcu_read_lock();
3060         lr = get_last_request();
3061
3062         if (unlikely(!lr))
3063                 goto out;
3064
3065         /*
3066          * We will run this only upon a successful connection on cfg80211.
3067          * We leave conflict resolution to the workqueue, where can hold
3068          * the RTNL.
3069          */
3070         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3071             lr->wiphy_idx != WIPHY_IDX_INVALID)
3072                 goto out;
3073
3074         request->wiphy_idx = get_wiphy_idx(wiphy);
3075         request->alpha2[0] = alpha2[0];
3076         request->alpha2[1] = alpha2[1];
3077         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3078         request->country_ie_env = env;
3079
3080         /* Allow calling CRDA again */
3081         reset_crda_timeouts();
3082
3083         queue_regulatory_request(request);
3084         request = NULL;
3085 out:
3086         kfree(request);
3087         rcu_read_unlock();
3088 }
3089
3090 static void restore_alpha2(char *alpha2, bool reset_user)
3091 {
3092         /* indicates there is no alpha2 to consider for restoration */
3093         alpha2[0] = '9';
3094         alpha2[1] = '7';
3095
3096         /* The user setting has precedence over the module parameter */
3097         if (is_user_regdom_saved()) {
3098                 /* Unless we're asked to ignore it and reset it */
3099                 if (reset_user) {
3100                         pr_debug("Restoring regulatory settings including user preference\n");
3101                         user_alpha2[0] = '9';
3102                         user_alpha2[1] = '7';
3103
3104                         /*
3105                          * If we're ignoring user settings, we still need to
3106                          * check the module parameter to ensure we put things
3107                          * back as they were for a full restore.
3108                          */
3109                         if (!is_world_regdom(ieee80211_regdom)) {
3110                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3111                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3112                                 alpha2[0] = ieee80211_regdom[0];
3113                                 alpha2[1] = ieee80211_regdom[1];
3114                         }
3115                 } else {
3116                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3117                                  user_alpha2[0], user_alpha2[1]);
3118                         alpha2[0] = user_alpha2[0];
3119                         alpha2[1] = user_alpha2[1];
3120                 }
3121         } else if (!is_world_regdom(ieee80211_regdom)) {
3122                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3123                          ieee80211_regdom[0], ieee80211_regdom[1]);
3124                 alpha2[0] = ieee80211_regdom[0];
3125                 alpha2[1] = ieee80211_regdom[1];
3126         } else
3127                 pr_debug("Restoring regulatory settings\n");
3128 }
3129
3130 static void restore_custom_reg_settings(struct wiphy *wiphy)
3131 {
3132         struct ieee80211_supported_band *sband;
3133         enum nl80211_band band;
3134         struct ieee80211_channel *chan;
3135         int i;
3136
3137         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3138                 sband = wiphy->bands[band];
3139                 if (!sband)
3140                         continue;
3141                 for (i = 0; i < sband->n_channels; i++) {
3142                         chan = &sband->channels[i];
3143                         chan->flags = chan->orig_flags;
3144                         chan->max_antenna_gain = chan->orig_mag;
3145                         chan->max_power = chan->orig_mpwr;
3146                         chan->beacon_found = false;
3147                 }
3148         }
3149 }
3150
3151 /*
3152  * Restoring regulatory settings involves ingoring any
3153  * possibly stale country IE information and user regulatory
3154  * settings if so desired, this includes any beacon hints
3155  * learned as we could have traveled outside to another country
3156  * after disconnection. To restore regulatory settings we do
3157  * exactly what we did at bootup:
3158  *
3159  *   - send a core regulatory hint
3160  *   - send a user regulatory hint if applicable
3161  *
3162  * Device drivers that send a regulatory hint for a specific country
3163  * keep their own regulatory domain on wiphy->regd so that does does
3164  * not need to be remembered.
3165  */
3166 static void restore_regulatory_settings(bool reset_user)
3167 {
3168         char alpha2[2];
3169         char world_alpha2[2];
3170         struct reg_beacon *reg_beacon, *btmp;
3171         LIST_HEAD(tmp_reg_req_list);
3172         struct cfg80211_registered_device *rdev;
3173
3174         ASSERT_RTNL();
3175
3176         /*
3177          * Clear the indoor setting in case that it is not controlled by user
3178          * space, as otherwise there is no guarantee that the device is still
3179          * operating in an indoor environment.
3180          */
3181         spin_lock(&reg_indoor_lock);
3182         if (reg_is_indoor && !reg_is_indoor_portid) {
3183                 reg_is_indoor = false;
3184                 reg_check_channels();
3185         }
3186         spin_unlock(&reg_indoor_lock);
3187
3188         reset_regdomains(true, &world_regdom);
3189         restore_alpha2(alpha2, reset_user);
3190
3191         /*
3192          * If there's any pending requests we simply
3193          * stash them to a temporary pending queue and
3194          * add then after we've restored regulatory
3195          * settings.
3196          */
3197         spin_lock(&reg_requests_lock);
3198         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3199         spin_unlock(&reg_requests_lock);
3200
3201         /* Clear beacon hints */
3202         spin_lock_bh(&reg_pending_beacons_lock);
3203         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3204                 list_del(&reg_beacon->list);
3205                 kfree(reg_beacon);
3206         }
3207         spin_unlock_bh(&reg_pending_beacons_lock);
3208
3209         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3210                 list_del(&reg_beacon->list);
3211                 kfree(reg_beacon);
3212         }
3213
3214         /* First restore to the basic regulatory settings */
3215         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3216         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3217
3218         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3219                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3220                         continue;
3221                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3222                         restore_custom_reg_settings(&rdev->wiphy);
3223         }
3224
3225         regulatory_hint_core(world_alpha2);
3226
3227         /*
3228          * This restores the ieee80211_regdom module parameter
3229          * preference or the last user requested regulatory
3230          * settings, user regulatory settings takes precedence.
3231          */
3232         if (is_an_alpha2(alpha2))
3233                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3234
3235         spin_lock(&reg_requests_lock);
3236         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3237         spin_unlock(&reg_requests_lock);
3238
3239         pr_debug("Kicking the queue\n");
3240
3241         schedule_work(&reg_work);
3242 }
3243
3244 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3245 {
3246         struct cfg80211_registered_device *rdev;
3247         struct wireless_dev *wdev;
3248
3249         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3250                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3251                         wdev_lock(wdev);
3252                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3253                                 wdev_unlock(wdev);
3254                                 return false;
3255                         }
3256                         wdev_unlock(wdev);
3257                 }
3258         }
3259
3260         return true;
3261 }
3262
3263 void regulatory_hint_disconnect(void)
3264 {
3265         /* Restore of regulatory settings is not required when wiphy(s)
3266          * ignore IE from connected access point but clearance of beacon hints
3267          * is required when wiphy(s) supports beacon hints.
3268          */
3269         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3270                 struct reg_beacon *reg_beacon, *btmp;
3271
3272                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3273                         return;
3274
3275                 spin_lock_bh(&reg_pending_beacons_lock);
3276                 list_for_each_entry_safe(reg_beacon, btmp,
3277                                          &reg_pending_beacons, list) {
3278                         list_del(&reg_beacon->list);
3279                         kfree(reg_beacon);
3280                 }
3281                 spin_unlock_bh(&reg_pending_beacons_lock);
3282
3283                 list_for_each_entry_safe(reg_beacon, btmp,
3284                                          &reg_beacon_list, list) {
3285                         list_del(&reg_beacon->list);
3286                         kfree(reg_beacon);
3287                 }
3288
3289                 return;
3290         }
3291
3292         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3293         restore_regulatory_settings(false);
3294 }
3295
3296 static bool freq_is_chan_12_13_14(u16 freq)
3297 {
3298         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3299             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3300             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3301                 return true;
3302         return false;
3303 }
3304
3305 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3306 {
3307         struct reg_beacon *pending_beacon;
3308
3309         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3310                 if (beacon_chan->center_freq ==
3311                     pending_beacon->chan.center_freq)
3312                         return true;
3313         return false;
3314 }
3315
3316 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3317                                  struct ieee80211_channel *beacon_chan,
3318                                  gfp_t gfp)
3319 {
3320         struct reg_beacon *reg_beacon;
3321         bool processing;
3322
3323         if (beacon_chan->beacon_found ||
3324             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3325             (beacon_chan->band == NL80211_BAND_2GHZ &&
3326              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3327                 return 0;
3328
3329         spin_lock_bh(&reg_pending_beacons_lock);
3330         processing = pending_reg_beacon(beacon_chan);
3331         spin_unlock_bh(&reg_pending_beacons_lock);
3332
3333         if (processing)
3334                 return 0;
3335
3336         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3337         if (!reg_beacon)
3338                 return -ENOMEM;
3339
3340         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3341                  beacon_chan->center_freq,
3342                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3343                  wiphy_name(wiphy));
3344
3345         memcpy(&reg_beacon->chan, beacon_chan,
3346                sizeof(struct ieee80211_channel));
3347
3348         /*
3349          * Since we can be called from BH or and non-BH context
3350          * we must use spin_lock_bh()
3351          */
3352         spin_lock_bh(&reg_pending_beacons_lock);
3353         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3354         spin_unlock_bh(&reg_pending_beacons_lock);
3355
3356         schedule_work(&reg_work);
3357
3358         return 0;
3359 }
3360
3361 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3362 {
3363         unsigned int i;
3364         const struct ieee80211_reg_rule *reg_rule = NULL;
3365         const struct ieee80211_freq_range *freq_range = NULL;
3366         const struct ieee80211_power_rule *power_rule = NULL;
3367         char bw[32], cac_time[32];
3368
3369         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3370
3371         for (i = 0; i < rd->n_reg_rules; i++) {
3372                 reg_rule = &rd->reg_rules[i];
3373                 freq_range = &reg_rule->freq_range;
3374                 power_rule = &reg_rule->power_rule;
3375
3376                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3377                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3378                                  freq_range->max_bandwidth_khz,
3379                                  reg_get_max_bandwidth(rd, reg_rule));
3380                 else
3381                         snprintf(bw, sizeof(bw), "%d KHz",
3382                                  freq_range->max_bandwidth_khz);
3383
3384                 if (reg_rule->flags & NL80211_RRF_DFS)
3385                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3386                                   reg_rule->dfs_cac_ms/1000);
3387                 else
3388                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3389
3390
3391                 /*
3392                  * There may not be documentation for max antenna gain
3393                  * in certain regions
3394                  */
3395                 if (power_rule->max_antenna_gain)
3396                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3397                                 freq_range->start_freq_khz,
3398                                 freq_range->end_freq_khz,
3399                                 bw,
3400                                 power_rule->max_antenna_gain,
3401                                 power_rule->max_eirp,
3402                                 cac_time);
3403                 else
3404                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3405                                 freq_range->start_freq_khz,
3406                                 freq_range->end_freq_khz,
3407                                 bw,
3408                                 power_rule->max_eirp,
3409                                 cac_time);
3410         }
3411 }
3412
3413 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3414 {
3415         switch (dfs_region) {
3416         case NL80211_DFS_UNSET:
3417         case NL80211_DFS_FCC:
3418         case NL80211_DFS_ETSI:
3419         case NL80211_DFS_JP:
3420                 return true;
3421         default:
3422                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3423                 return false;
3424         }
3425 }
3426
3427 static void print_regdomain(const struct ieee80211_regdomain *rd)
3428 {
3429         struct regulatory_request *lr = get_last_request();
3430
3431         if (is_intersected_alpha2(rd->alpha2)) {
3432                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3433                         struct cfg80211_registered_device *rdev;
3434                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3435                         if (rdev) {
3436                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3437                                         rdev->country_ie_alpha2[0],
3438                                         rdev->country_ie_alpha2[1]);
3439                         } else
3440                                 pr_debug("Current regulatory domain intersected:\n");
3441                 } else
3442                         pr_debug("Current regulatory domain intersected:\n");
3443         } else if (is_world_regdom(rd->alpha2)) {
3444                 pr_debug("World regulatory domain updated:\n");
3445         } else {
3446                 if (is_unknown_alpha2(rd->alpha2))
3447                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3448                 else {
3449                         if (reg_request_cell_base(lr))
3450                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3451                                         rd->alpha2[0], rd->alpha2[1]);
3452                         else
3453                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3454                                         rd->alpha2[0], rd->alpha2[1]);
3455                 }
3456         }
3457
3458         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3459         print_rd_rules(rd);
3460 }
3461
3462 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3463 {
3464         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3465         print_rd_rules(rd);
3466 }
3467
3468 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3469 {
3470         if (!is_world_regdom(rd->alpha2))
3471                 return -EINVAL;
3472         update_world_regdomain(rd);
3473         return 0;
3474 }
3475
3476 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3477                            struct regulatory_request *user_request)
3478 {
3479         const struct ieee80211_regdomain *intersected_rd = NULL;
3480
3481         if (!regdom_changes(rd->alpha2))
3482                 return -EALREADY;
3483
3484         if (!is_valid_rd(rd)) {
3485                 pr_err("Invalid regulatory domain detected: %c%c\n",
3486                        rd->alpha2[0], rd->alpha2[1]);
3487                 print_regdomain_info(rd);
3488                 return -EINVAL;
3489         }
3490
3491         if (!user_request->intersect) {
3492                 reset_regdomains(false, rd);
3493                 return 0;
3494         }
3495
3496         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3497         if (!intersected_rd)
3498                 return -EINVAL;
3499
3500         kfree(rd);
3501         rd = NULL;
3502         reset_regdomains(false, intersected_rd);
3503
3504         return 0;
3505 }
3506
3507 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3508                              struct regulatory_request *driver_request)
3509 {
3510         const struct ieee80211_regdomain *regd;
3511         const struct ieee80211_regdomain *intersected_rd = NULL;
3512         const struct ieee80211_regdomain *tmp;
3513         struct wiphy *request_wiphy;
3514
3515         if (is_world_regdom(rd->alpha2))
3516                 return -EINVAL;
3517
3518         if (!regdom_changes(rd->alpha2))
3519                 return -EALREADY;
3520
3521         if (!is_valid_rd(rd)) {
3522                 pr_err("Invalid regulatory domain detected: %c%c\n",
3523                        rd->alpha2[0], rd->alpha2[1]);
3524                 print_regdomain_info(rd);
3525                 return -EINVAL;
3526         }
3527
3528         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3529         if (!request_wiphy)
3530                 return -ENODEV;
3531
3532         if (!driver_request->intersect) {
3533                 if (request_wiphy->regd)
3534                         return -EALREADY;
3535
3536                 regd = reg_copy_regd(rd);
3537                 if (IS_ERR(regd))
3538                         return PTR_ERR(regd);
3539
3540                 rcu_assign_pointer(request_wiphy->regd, regd);
3541                 reset_regdomains(false, rd);
3542                 return 0;
3543         }
3544
3545         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3546         if (!intersected_rd)
3547                 return -EINVAL;
3548
3549         /*
3550          * We can trash what CRDA provided now.
3551          * However if a driver requested this specific regulatory
3552          * domain we keep it for its private use
3553          */
3554         tmp = get_wiphy_regdom(request_wiphy);
3555         rcu_assign_pointer(request_wiphy->regd, rd);
3556         rcu_free_regdom(tmp);
3557
3558         rd = NULL;
3559
3560         reset_regdomains(false, intersected_rd);
3561
3562         return 0;
3563 }
3564
3565 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3566                                  struct regulatory_request *country_ie_request)
3567 {
3568         struct wiphy *request_wiphy;
3569
3570         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3571             !is_unknown_alpha2(rd->alpha2))
3572                 return -EINVAL;
3573
3574         /*
3575          * Lets only bother proceeding on the same alpha2 if the current
3576          * rd is non static (it means CRDA was present and was used last)
3577          * and the pending request came in from a country IE
3578          */
3579
3580         if (!is_valid_rd(rd)) {
3581                 pr_err("Invalid regulatory domain detected: %c%c\n",
3582                        rd->alpha2[0], rd->alpha2[1]);
3583                 print_regdomain_info(rd);
3584                 return -EINVAL;
3585         }
3586
3587         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3588         if (!request_wiphy)
3589                 return -ENODEV;
3590
3591         if (country_ie_request->intersect)
3592                 return -EINVAL;
3593
3594         reset_regdomains(false, rd);
3595         return 0;
3596 }
3597
3598 /*
3599  * Use this call to set the current regulatory domain. Conflicts with
3600  * multiple drivers can be ironed out later. Caller must've already
3601  * kmalloc'd the rd structure.
3602  */
3603 int set_regdom(const struct ieee80211_regdomain *rd,
3604                enum ieee80211_regd_source regd_src)
3605 {
3606         struct regulatory_request *lr;
3607         bool user_reset = false;
3608         int r;
3609
3610         if (!reg_is_valid_request(rd->alpha2)) {
3611                 kfree(rd);
3612                 return -EINVAL;
3613         }
3614
3615         if (regd_src == REGD_SOURCE_CRDA)
3616                 reset_crda_timeouts();
3617
3618         lr = get_last_request();
3619
3620         /* Note that this doesn't update the wiphys, this is done below */
3621         switch (lr->initiator) {
3622         case NL80211_REGDOM_SET_BY_CORE:
3623                 r = reg_set_rd_core(rd);
3624                 break;
3625         case NL80211_REGDOM_SET_BY_USER:
3626                 r = reg_set_rd_user(rd, lr);
3627                 user_reset = true;
3628                 break;
3629         case NL80211_REGDOM_SET_BY_DRIVER:
3630                 r = reg_set_rd_driver(rd, lr);
3631                 break;
3632         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3633                 r = reg_set_rd_country_ie(rd, lr);
3634                 break;
3635         default:
3636                 WARN(1, "invalid initiator %d\n", lr->initiator);
3637                 kfree(rd);
3638                 return -EINVAL;
3639         }
3640
3641         if (r) {
3642                 switch (r) {
3643                 case -EALREADY:
3644                         reg_set_request_processed();
3645                         break;
3646                 default:
3647                         /* Back to world regulatory in case of errors */
3648                         restore_regulatory_settings(user_reset);
3649                 }
3650
3651                 kfree(rd);
3652                 return r;
3653         }
3654
3655         /* This would make this whole thing pointless */
3656         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3657                 return -EINVAL;
3658
3659         /* update all wiphys now with the new established regulatory domain */
3660         update_all_wiphy_regulatory(lr->initiator);
3661
3662         print_regdomain(get_cfg80211_regdom());
3663
3664         nl80211_send_reg_change_event(lr);
3665
3666         reg_set_request_processed();
3667
3668         return 0;
3669 }
3670
3671 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3672                                        struct ieee80211_regdomain *rd)
3673 {
3674         const struct ieee80211_regdomain *regd;
3675         const struct ieee80211_regdomain *prev_regd;
3676         struct cfg80211_registered_device *rdev;
3677
3678         if (WARN_ON(!wiphy || !rd))
3679                 return -EINVAL;
3680
3681         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3682                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3683                 return -EPERM;
3684
3685         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3686                 print_regdomain_info(rd);
3687                 return -EINVAL;
3688         }
3689
3690         regd = reg_copy_regd(rd);
3691         if (IS_ERR(regd))
3692                 return PTR_ERR(regd);
3693
3694         rdev = wiphy_to_rdev(wiphy);
3695
3696         spin_lock(&reg_requests_lock);
3697         prev_regd = rdev->requested_regd;
3698         rdev->requested_regd = regd;
3699         spin_unlock(&reg_requests_lock);
3700
3701         kfree(prev_regd);
3702         return 0;
3703 }
3704
3705 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3706                               struct ieee80211_regdomain *rd)
3707 {
3708         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3709
3710         if (ret)
3711                 return ret;
3712
3713         schedule_work(&reg_work);
3714         return 0;
3715 }
3716 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3717
3718 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3719                                         struct ieee80211_regdomain *rd)
3720 {
3721         int ret;
3722
3723         ASSERT_RTNL();
3724
3725         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3726         if (ret)
3727                 return ret;
3728
3729         /* process the request immediately */
3730         reg_process_self_managed_hints();
3731         return 0;
3732 }
3733 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3734
3735 void wiphy_regulatory_register(struct wiphy *wiphy)
3736 {
3737         struct regulatory_request *lr = get_last_request();
3738
3739         /* self-managed devices ignore beacon hints and country IE */
3740         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3741                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3742                                            REGULATORY_COUNTRY_IE_IGNORE;
3743
3744                 /*
3745                  * The last request may have been received before this
3746                  * registration call. Call the driver notifier if
3747                  * initiator is USER and user type is CELL_BASE.
3748                  */
3749                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3750                     lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3751                         reg_call_notifier(wiphy, lr);
3752         }
3753
3754         if (!reg_dev_ignore_cell_hint(wiphy))
3755                 reg_num_devs_support_basehint++;
3756
3757         wiphy_update_regulatory(wiphy, lr->initiator);
3758         wiphy_all_share_dfs_chan_state(wiphy);
3759 }
3760
3761 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3762 {
3763         struct wiphy *request_wiphy = NULL;
3764         struct regulatory_request *lr;
3765
3766         lr = get_last_request();
3767
3768         if (!reg_dev_ignore_cell_hint(wiphy))
3769                 reg_num_devs_support_basehint--;
3770
3771         rcu_free_regdom(get_wiphy_regdom(wiphy));
3772         RCU_INIT_POINTER(wiphy->regd, NULL);
3773
3774         if (lr)
3775                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3776
3777         if (!request_wiphy || request_wiphy != wiphy)
3778                 return;
3779
3780         lr->wiphy_idx = WIPHY_IDX_INVALID;
3781         lr->country_ie_env = ENVIRON_ANY;
3782 }
3783
3784 /*
3785  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3786  * UNII band definitions
3787  */
3788 int cfg80211_get_unii(int freq)
3789 {
3790         /* UNII-1 */
3791         if (freq >= 5150 && freq <= 5250)
3792                 return 0;
3793
3794         /* UNII-2A */
3795         if (freq > 5250 && freq <= 5350)
3796                 return 1;
3797
3798         /* UNII-2B */
3799         if (freq > 5350 && freq <= 5470)
3800                 return 2;
3801
3802         /* UNII-2C */
3803         if (freq > 5470 && freq <= 5725)
3804                 return 3;
3805
3806         /* UNII-3 */
3807         if (freq > 5725 && freq <= 5825)
3808                 return 4;
3809
3810         return -EINVAL;
3811 }
3812
3813 bool regulatory_indoor_allowed(void)
3814 {
3815         return reg_is_indoor;
3816 }
3817
3818 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3819 {
3820         const struct ieee80211_regdomain *regd = NULL;
3821         const struct ieee80211_regdomain *wiphy_regd = NULL;
3822         bool pre_cac_allowed = false;
3823
3824         rcu_read_lock();
3825
3826         regd = rcu_dereference(cfg80211_regdomain);
3827         wiphy_regd = rcu_dereference(wiphy->regd);
3828         if (!wiphy_regd) {
3829                 if (regd->dfs_region == NL80211_DFS_ETSI)
3830                         pre_cac_allowed = true;
3831
3832                 rcu_read_unlock();
3833
3834                 return pre_cac_allowed;
3835         }
3836
3837         if (regd->dfs_region == wiphy_regd->dfs_region &&
3838             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3839                 pre_cac_allowed = true;
3840
3841         rcu_read_unlock();
3842
3843         return pre_cac_allowed;
3844 }
3845
3846 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3847 {
3848         struct wireless_dev *wdev;
3849         /* If we finished CAC or received radar, we should end any
3850          * CAC running on the same channels.
3851          * the check !cfg80211_chandef_dfs_usable contain 2 options:
3852          * either all channels are available - those the CAC_FINISHED
3853          * event has effected another wdev state, or there is a channel
3854          * in unavailable state in wdev chandef - those the RADAR_DETECTED
3855          * event has effected another wdev state.
3856          * In both cases we should end the CAC on the wdev.
3857          */
3858         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3859                 if (wdev->cac_started &&
3860                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3861                         rdev_end_cac(rdev, wdev->netdev);
3862         }
3863 }
3864
3865 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3866                                     struct cfg80211_chan_def *chandef,
3867                                     enum nl80211_dfs_state dfs_state,
3868                                     enum nl80211_radar_event event)
3869 {
3870         struct cfg80211_registered_device *rdev;
3871
3872         ASSERT_RTNL();
3873
3874         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3875                 return;
3876
3877         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3878                 if (wiphy == &rdev->wiphy)
3879                         continue;
3880
3881                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3882                         continue;
3883
3884                 if (!ieee80211_get_channel(&rdev->wiphy,
3885                                            chandef->chan->center_freq))
3886                         continue;
3887
3888                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3889
3890                 if (event == NL80211_RADAR_DETECTED ||
3891                     event == NL80211_RADAR_CAC_FINISHED) {
3892                         cfg80211_sched_dfs_chan_update(rdev);
3893                         cfg80211_check_and_end_cac(rdev);
3894                 }
3895
3896                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3897         }
3898 }
3899
3900 static int __init regulatory_init_db(void)
3901 {
3902         int err;
3903
3904         /*
3905          * It's possible that - due to other bugs/issues - cfg80211
3906          * never called regulatory_init() below, or that it failed;
3907          * in that case, don't try to do any further work here as
3908          * it's doomed to lead to crashes.
3909          */
3910         if (IS_ERR_OR_NULL(reg_pdev))
3911                 return -EINVAL;
3912
3913         err = load_builtin_regdb_keys();
3914         if (err)
3915                 return err;
3916
3917         /* We always try to get an update for the static regdomain */
3918         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3919         if (err) {
3920                 if (err == -ENOMEM) {
3921                         platform_device_unregister(reg_pdev);
3922                         return err;
3923                 }
3924                 /*
3925                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3926                  * memory which is handled and propagated appropriately above
3927                  * but it can also fail during a netlink_broadcast() or during
3928                  * early boot for call_usermodehelper(). For now treat these
3929                  * errors as non-fatal.
3930                  */
3931                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3932         }
3933
3934         /*
3935          * Finally, if the user set the module parameter treat it
3936          * as a user hint.
3937          */
3938         if (!is_world_regdom(ieee80211_regdom))
3939                 regulatory_hint_user(ieee80211_regdom,
3940                                      NL80211_USER_REG_HINT_USER);
3941
3942         return 0;
3943 }
3944 #ifndef MODULE
3945 late_initcall(regulatory_init_db);
3946 #endif
3947
3948 int __init regulatory_init(void)
3949 {
3950         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3951         if (IS_ERR(reg_pdev))
3952                 return PTR_ERR(reg_pdev);
3953
3954         spin_lock_init(&reg_requests_lock);
3955         spin_lock_init(&reg_pending_beacons_lock);
3956         spin_lock_init(&reg_indoor_lock);
3957
3958         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3959
3960         user_alpha2[0] = '9';
3961         user_alpha2[1] = '7';
3962
3963 #ifdef MODULE
3964         return regulatory_init_db();
3965 #else
3966         return 0;
3967 #endif
3968 }
3969
3970 void regulatory_exit(void)
3971 {
3972         struct regulatory_request *reg_request, *tmp;
3973         struct reg_beacon *reg_beacon, *btmp;
3974
3975         cancel_work_sync(&reg_work);
3976         cancel_crda_timeout_sync();
3977         cancel_delayed_work_sync(&reg_check_chans);
3978
3979         /* Lock to suppress warnings */
3980         rtnl_lock();
3981         reset_regdomains(true, NULL);
3982         rtnl_unlock();
3983
3984         dev_set_uevent_suppress(&reg_pdev->dev, true);
3985
3986         platform_device_unregister(reg_pdev);
3987
3988         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3989                 list_del(&reg_beacon->list);
3990                 kfree(reg_beacon);
3991         }
3992
3993         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3994                 list_del(&reg_beacon->list);
3995                 kfree(reg_beacon);
3996         }
3997
3998         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3999                 list_del(&reg_request->list);
4000                 kfree(reg_request);
4001         }
4002
4003         if (!IS_ERR_OR_NULL(regdb))
4004                 kfree(regdb);
4005
4006         free_regdb_keyring();
4007 }