GNU Linux-libre 5.10.217-gnu1
[releases.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144         return rcu_dereference_rtnl(wiphy->regd);
145 }
146
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149         switch (dfs_region) {
150         case NL80211_DFS_UNSET:
151                 return "unset";
152         case NL80211_DFS_FCC:
153                 return "FCC";
154         case NL80211_DFS_ETSI:
155                 return "ETSI";
156         case NL80211_DFS_JP:
157                 return "JP";
158         }
159         return "Unknown";
160 }
161
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164         const struct ieee80211_regdomain *regd = NULL;
165         const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167         regd = get_cfg80211_regdom();
168         if (!wiphy)
169                 goto out;
170
171         wiphy_regd = get_wiphy_regdom(wiphy);
172         if (!wiphy_regd)
173                 goto out;
174
175         if (wiphy_regd->dfs_region == regd->dfs_region)
176                 goto out;
177
178         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179                  dev_name(&wiphy->dev),
180                  reg_dfs_region_str(wiphy_regd->dfs_region),
181                  reg_dfs_region_str(regd->dfs_region));
182
183 out:
184         return regd->dfs_region;
185 }
186
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189         if (!r)
190                 return;
191         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
194 static struct regulatory_request *get_last_request(void)
195 {
196         return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211         struct list_head list;
212         struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223         .n_reg_rules = 8,
224         .alpha2 =  "00",
225         .reg_rules = {
226                 /* IEEE 802.11b/g, channels 1..11 */
227                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228                 /* IEEE 802.11b/g, channels 12..13. */
229                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231                 /* IEEE 802.11 channel 14 - Only JP enables
232                  * this and for 802.11b only */
233                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_NO_OFDM),
236                 /* IEEE 802.11a, channel 36..48 */
237                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240
241                 /* IEEE 802.11a, channel 52..64 - DFS required */
242                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW |
245                         NL80211_RRF_DFS),
246
247                 /* IEEE 802.11a, channel 100..144 - DFS required */
248                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR |
250                         NL80211_RRF_DFS),
251
252                 /* IEEE 802.11a, channel 149..165 */
253                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254                         NL80211_RRF_NO_IR),
255
256                 /* IEEE 802.11ad (60GHz), channels 1..3 */
257                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258         }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263         &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272 static void reg_free_request(struct regulatory_request *request)
273 {
274         if (request == &core_request_world)
275                 return;
276
277         if (request != get_last_request())
278                 kfree(request);
279 }
280
281 static void reg_free_last_request(void)
282 {
283         struct regulatory_request *lr = get_last_request();
284
285         if (lr != &core_request_world && lr)
286                 kfree_rcu(lr, rcu_head);
287 }
288
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291         struct regulatory_request *lr;
292
293         lr = get_last_request();
294         if (lr == request)
295                 return;
296
297         reg_free_last_request();
298         rcu_assign_pointer(last_request, request);
299 }
300
301 static void reset_regdomains(bool full_reset,
302                              const struct ieee80211_regdomain *new_regdom)
303 {
304         const struct ieee80211_regdomain *r;
305
306         ASSERT_RTNL();
307
308         r = get_cfg80211_regdom();
309
310         /* avoid freeing static information or freeing something twice */
311         if (r == cfg80211_world_regdom)
312                 r = NULL;
313         if (cfg80211_world_regdom == &world_regdom)
314                 cfg80211_world_regdom = NULL;
315         if (r == &world_regdom)
316                 r = NULL;
317
318         rcu_free_regdom(r);
319         rcu_free_regdom(cfg80211_world_regdom);
320
321         cfg80211_world_regdom = &world_regdom;
322         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324         if (!full_reset)
325                 return;
326
327         reg_update_last_request(&core_request_world);
328 }
329
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336         struct regulatory_request *lr;
337
338         lr = get_last_request();
339
340         WARN_ON(!lr);
341
342         reset_regdomains(false, rd);
343
344         cfg80211_world_regdom = rd;
345 }
346
347 bool is_world_regdom(const char *alpha2)
348 {
349         if (!alpha2)
350                 return false;
351         return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
354 static bool is_alpha2_set(const char *alpha2)
355 {
356         if (!alpha2)
357                 return false;
358         return alpha2[0] && alpha2[1];
359 }
360
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363         if (!alpha2)
364                 return false;
365         /*
366          * Special case where regulatory domain was built by driver
367          * but a specific alpha2 cannot be determined
368          */
369         return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374         if (!alpha2)
375                 return false;
376         /*
377          * Special case where regulatory domain is the
378          * result of an intersection between two regulatory domain
379          * structures
380          */
381         return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
384 static bool is_an_alpha2(const char *alpha2)
385 {
386         if (!alpha2)
387                 return false;
388         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393         if (!alpha2_x || !alpha2_y)
394                 return false;
395         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
398 static bool regdom_changes(const char *alpha2)
399 {
400         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402         if (!r)
403                 return true;
404         return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415                 return false;
416
417         /* This would indicate a mistake on the design */
418         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419                  "Unexpected user alpha2: %c%c\n",
420                  user_alpha2[0], user_alpha2[1]))
421                 return false;
422
423         return true;
424 }
425
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429         struct ieee80211_regdomain *regd;
430         unsigned int i;
431
432         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433                        GFP_KERNEL);
434         if (!regd)
435                 return ERR_PTR(-ENOMEM);
436
437         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439         for (i = 0; i < src_regd->n_reg_rules; i++)
440                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441                        sizeof(struct ieee80211_reg_rule));
442
443         return regd;
444 }
445
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448         ASSERT_RTNL();
449
450         if (!IS_ERR(cfg80211_user_regdom))
451                 kfree(cfg80211_user_regdom);
452         cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454
455 struct reg_regdb_apply_request {
456         struct list_head list;
457         const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465         struct reg_regdb_apply_request *request;
466
467         rtnl_lock();
468
469         mutex_lock(&reg_regdb_apply_mutex);
470         while (!list_empty(&reg_regdb_apply_list)) {
471                 request = list_first_entry(&reg_regdb_apply_list,
472                                            struct reg_regdb_apply_request,
473                                            list);
474                 list_del(&request->list);
475
476                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477                 kfree(request);
478         }
479         mutex_unlock(&reg_regdb_apply_mutex);
480
481         rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488         struct reg_regdb_apply_request *request;
489
490         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491         if (!request) {
492                 kfree(regdom);
493                 return -ENOMEM;
494         }
495
496         request->regdom = regdom;
497
498         mutex_lock(&reg_regdb_apply_mutex);
499         list_add_tail(&request->list, &reg_regdb_apply_list);
500         mutex_unlock(&reg_regdb_apply_mutex);
501
502         schedule_work(&reg_regdb_work);
503         return 0;
504 }
505
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA  */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509
510 static u32 reg_crda_timeouts;
511
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
515 static void crda_timeout_work(struct work_struct *work)
516 {
517         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518         rtnl_lock();
519         reg_crda_timeouts++;
520         restore_regulatory_settings(true, false);
521         rtnl_unlock();
522 }
523
524 static void cancel_crda_timeout(void)
525 {
526         cancel_delayed_work(&crda_timeout);
527 }
528
529 static void cancel_crda_timeout_sync(void)
530 {
531         cancel_delayed_work_sync(&crda_timeout);
532 }
533
534 static void reset_crda_timeouts(void)
535 {
536         reg_crda_timeouts = 0;
537 }
538
539 /*
540  * This lets us keep regulatory code which is updated on a regulatory
541  * basis in userspace.
542  */
543 static int call_crda(const char *alpha2)
544 {
545         char country[12];
546         char *env[] = { country, NULL };
547         int ret;
548
549         snprintf(country, sizeof(country), "COUNTRY=%c%c",
550                  alpha2[0], alpha2[1]);
551
552         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554                 return -EINVAL;
555         }
556
557         if (!is_world_regdom((char *) alpha2))
558                 pr_debug("Calling CRDA for country: %c%c\n",
559                          alpha2[0], alpha2[1]);
560         else
561                 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564         if (ret)
565                 return ret;
566
567         queue_delayed_work(system_power_efficient_wq,
568                            &crda_timeout, msecs_to_jiffies(3142));
569         return 0;
570 }
571 #else
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2)
576 {
577         return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583
584 struct fwdb_country {
585         u8 alpha2[2];
586         __be16 coll_ptr;
587         /* this struct cannot be extended */
588 } __packed __aligned(4);
589
590 struct fwdb_collection {
591         u8 len;
592         u8 n_rules;
593         u8 dfs_region;
594         /* no optional data yet */
595         /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597
598 enum fwdb_flags {
599         FWDB_FLAG_NO_OFDM       = BIT(0),
600         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
601         FWDB_FLAG_DFS           = BIT(2),
602         FWDB_FLAG_NO_IR         = BIT(3),
603         FWDB_FLAG_AUTO_BW       = BIT(4),
604 };
605
606 struct fwdb_wmm_ac {
607         u8 ecw;
608         u8 aifsn;
609         __be16 cot;
610 } __packed;
611
612 struct fwdb_wmm_rule {
613         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616
617 struct fwdb_rule {
618         u8 len;
619         u8 flags;
620         __be16 max_eirp;
621         __be32 start, end, max_bw;
622         /* start of optional data */
623         __be16 cac_timeout;
624         __be16 wmm_ptr;
625 } __packed __aligned(4);
626
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629
630 struct fwdb_header {
631         __be32 magic;
632         __be32 version;
633         struct fwdb_country country[];
634 } __packed __aligned(4);
635
636 static int ecw2cw(int ecw)
637 {
638         return (1 << ecw) - 1;
639 }
640
641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644         int i;
645
646         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649                 u8 aifsn = ac[i].aifsn;
650
651                 if (cw_min >= cw_max)
652                         return false;
653
654                 if (aifsn < 1)
655                         return false;
656         }
657
658         return true;
659 }
660
661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665         if ((u8 *)rule + sizeof(rule->len) > data + size)
666                 return false;
667
668         /* mandatory fields */
669         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670                 return false;
671         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673                 struct fwdb_wmm_rule *wmm;
674
675                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676                         return false;
677
678                 wmm = (void *)(data + wmm_ptr);
679
680                 if (!valid_wmm(wmm))
681                         return false;
682         }
683         return true;
684 }
685
686 static bool valid_country(const u8 *data, unsigned int size,
687                           const struct fwdb_country *country)
688 {
689         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690         struct fwdb_collection *coll = (void *)(data + ptr);
691         __be16 *rules_ptr;
692         unsigned int i;
693
694         /* make sure we can read len/n_rules */
695         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696                 return false;
697
698         /* make sure base struct and all rules fit */
699         if ((u8 *)coll + ALIGN(coll->len, 2) +
700             (coll->n_rules * 2) > data + size)
701                 return false;
702
703         /* mandatory fields must exist */
704         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705                 return false;
706
707         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709         for (i = 0; i < coll->n_rules; i++) {
710                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712                 if (!valid_rule(data, size, rule_ptr))
713                         return false;
714         }
715
716         return true;
717 }
718
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721
722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724         const u8 *end = p + buflen;
725         size_t plen;
726         key_ref_t key;
727
728         while (p < end) {
729                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730                  * than 256 bytes in size.
731                  */
732                 if (end - p < 4)
733                         goto dodgy_cert;
734                 if (p[0] != 0x30 &&
735                     p[1] != 0x82)
736                         goto dodgy_cert;
737                 plen = (p[2] << 8) | p[3];
738                 plen += 4;
739                 if (plen > end - p)
740                         goto dodgy_cert;
741
742                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743                                            "asymmetric", NULL, p, plen,
744                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745                                             KEY_USR_VIEW | KEY_USR_READ),
746                                            KEY_ALLOC_NOT_IN_QUOTA |
747                                            KEY_ALLOC_BUILT_IN |
748                                            KEY_ALLOC_BYPASS_RESTRICTION);
749                 if (IS_ERR(key)) {
750                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751                                PTR_ERR(key));
752                 } else {
753                         pr_notice("Loaded X.509 cert '%s'\n",
754                                   key_ref_to_ptr(key)->description);
755                         key_ref_put(key);
756                 }
757                 p += plen;
758         }
759
760         return;
761
762 dodgy_cert:
763         pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765
766 static int __init load_builtin_regdb_keys(void)
767 {
768         builtin_regdb_keys =
769                 keyring_alloc(".builtin_regdb_keys",
770                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774         if (IS_ERR(builtin_regdb_keys))
775                 return PTR_ERR(builtin_regdb_keys);
776
777         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786
787         return 0;
788 }
789
790 MODULE_FIRMWARE("regulatory.db.p7s");
791
792 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
793 {
794         const struct firmware *sig;
795         bool result;
796
797         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
798                 return false;
799
800         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
801                                         builtin_regdb_keys,
802                                         VERIFYING_UNSPECIFIED_SIGNATURE,
803                                         NULL, NULL) == 0;
804
805         release_firmware(sig);
806
807         return result;
808 }
809
810 static void free_regdb_keyring(void)
811 {
812         key_put(builtin_regdb_keys);
813 }
814 #else
815 static int load_builtin_regdb_keys(void)
816 {
817         return 0;
818 }
819
820 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
821 {
822         return true;
823 }
824
825 static void free_regdb_keyring(void)
826 {
827 }
828 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
829
830 static bool valid_regdb(const u8 *data, unsigned int size)
831 {
832         const struct fwdb_header *hdr = (void *)data;
833         const struct fwdb_country *country;
834
835         if (size < sizeof(*hdr))
836                 return false;
837
838         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
839                 return false;
840
841         if (hdr->version != cpu_to_be32(FWDB_VERSION))
842                 return false;
843
844         if (!regdb_has_valid_signature(data, size))
845                 return false;
846
847         country = &hdr->country[0];
848         while ((u8 *)(country + 1) <= data + size) {
849                 if (!country->coll_ptr)
850                         break;
851                 if (!valid_country(data, size, country))
852                         return false;
853                 country++;
854         }
855
856         return true;
857 }
858
859 static void set_wmm_rule(const struct fwdb_header *db,
860                          const struct fwdb_country *country,
861                          const struct fwdb_rule *rule,
862                          struct ieee80211_reg_rule *rrule)
863 {
864         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
865         struct fwdb_wmm_rule *wmm;
866         unsigned int i, wmm_ptr;
867
868         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
869         wmm = (void *)((u8 *)db + wmm_ptr);
870
871         if (!valid_wmm(wmm)) {
872                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
873                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
874                        country->alpha2[0], country->alpha2[1]);
875                 return;
876         }
877
878         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
879                 wmm_rule->client[i].cw_min =
880                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
881                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
882                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
883                 wmm_rule->client[i].cot =
884                         1000 * be16_to_cpu(wmm->client[i].cot);
885                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
886                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
887                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
888                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
889         }
890
891         rrule->has_wmm = true;
892 }
893
894 static int __regdb_query_wmm(const struct fwdb_header *db,
895                              const struct fwdb_country *country, int freq,
896                              struct ieee80211_reg_rule *rrule)
897 {
898         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
899         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
900         int i;
901
902         for (i = 0; i < coll->n_rules; i++) {
903                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
904                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
905                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
906
907                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
908                         continue;
909
910                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
911                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
912                         set_wmm_rule(db, country, rule, rrule);
913                         return 0;
914                 }
915         }
916
917         return -ENODATA;
918 }
919
920 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
921 {
922         const struct fwdb_header *hdr = regdb;
923         const struct fwdb_country *country;
924
925         if (!regdb)
926                 return -ENODATA;
927
928         if (IS_ERR(regdb))
929                 return PTR_ERR(regdb);
930
931         country = &hdr->country[0];
932         while (country->coll_ptr) {
933                 if (alpha2_equal(alpha2, country->alpha2))
934                         return __regdb_query_wmm(regdb, country, freq, rule);
935
936                 country++;
937         }
938
939         return -ENODATA;
940 }
941 EXPORT_SYMBOL(reg_query_regdb_wmm);
942
943 static int regdb_query_country(const struct fwdb_header *db,
944                                const struct fwdb_country *country)
945 {
946         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
947         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
948         struct ieee80211_regdomain *regdom;
949         unsigned int i;
950
951         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
952                          GFP_KERNEL);
953         if (!regdom)
954                 return -ENOMEM;
955
956         regdom->n_reg_rules = coll->n_rules;
957         regdom->alpha2[0] = country->alpha2[0];
958         regdom->alpha2[1] = country->alpha2[1];
959         regdom->dfs_region = coll->dfs_region;
960
961         for (i = 0; i < regdom->n_reg_rules; i++) {
962                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
963                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
964                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
965                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
966
967                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
968                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
969                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
970
971                 rrule->power_rule.max_antenna_gain = 0;
972                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
973
974                 rrule->flags = 0;
975                 if (rule->flags & FWDB_FLAG_NO_OFDM)
976                         rrule->flags |= NL80211_RRF_NO_OFDM;
977                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
978                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
979                 if (rule->flags & FWDB_FLAG_DFS)
980                         rrule->flags |= NL80211_RRF_DFS;
981                 if (rule->flags & FWDB_FLAG_NO_IR)
982                         rrule->flags |= NL80211_RRF_NO_IR;
983                 if (rule->flags & FWDB_FLAG_AUTO_BW)
984                         rrule->flags |= NL80211_RRF_AUTO_BW;
985
986                 rrule->dfs_cac_ms = 0;
987
988                 /* handle optional data */
989                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
990                         rrule->dfs_cac_ms =
991                                 1000 * be16_to_cpu(rule->cac_timeout);
992                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
993                         set_wmm_rule(db, country, rule, rrule);
994         }
995
996         return reg_schedule_apply(regdom);
997 }
998
999 static int query_regdb(const char *alpha2)
1000 {
1001         const struct fwdb_header *hdr = regdb;
1002         const struct fwdb_country *country;
1003
1004         ASSERT_RTNL();
1005
1006         if (IS_ERR(regdb))
1007                 return PTR_ERR(regdb);
1008
1009         country = &hdr->country[0];
1010         while (country->coll_ptr) {
1011                 if (alpha2_equal(alpha2, country->alpha2))
1012                         return regdb_query_country(regdb, country);
1013                 country++;
1014         }
1015
1016         return -ENODATA;
1017 }
1018
1019 static void regdb_fw_cb(const struct firmware *fw, void *context)
1020 {
1021         int set_error = 0;
1022         bool restore = true;
1023         void *db;
1024
1025         if (!fw) {
1026                 pr_info("failed to load regulatory.db\n");
1027                 set_error = -ENODATA;
1028         } else if (!valid_regdb(fw->data, fw->size)) {
1029                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1030                 set_error = -EINVAL;
1031         }
1032
1033         rtnl_lock();
1034         if (regdb && !IS_ERR(regdb)) {
1035                 /* negative case - a bug
1036                  * positive case - can happen due to race in case of multiple cb's in
1037                  * queue, due to usage of asynchronous callback
1038                  *
1039                  * Either case, just restore and free new db.
1040                  */
1041         } else if (set_error) {
1042                 regdb = ERR_PTR(set_error);
1043         } else if (fw) {
1044                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1045                 if (db) {
1046                         regdb = db;
1047                         restore = context && query_regdb(context);
1048                 } else {
1049                         restore = true;
1050                 }
1051         }
1052
1053         if (restore)
1054                 restore_regulatory_settings(true, false);
1055
1056         rtnl_unlock();
1057
1058         kfree(context);
1059
1060         release_firmware(fw);
1061 }
1062
1063 MODULE_FIRMWARE("regulatory.db");
1064
1065 static int query_regdb_file(const char *alpha2)
1066 {
1067         int err;
1068
1069         ASSERT_RTNL();
1070
1071         if (regdb)
1072                 return query_regdb(alpha2);
1073
1074         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1075         if (!alpha2)
1076                 return -ENOMEM;
1077
1078         err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1079                                       &reg_pdev->dev, GFP_KERNEL,
1080                                       (void *)alpha2, regdb_fw_cb);
1081         if (err)
1082                 kfree(alpha2);
1083
1084         return err;
1085 }
1086
1087 int reg_reload_regdb(void)
1088 {
1089         const struct firmware *fw;
1090         void *db;
1091         int err;
1092
1093         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1094         if (err)
1095                 return err;
1096
1097         if (!valid_regdb(fw->data, fw->size)) {
1098                 err = -ENODATA;
1099                 goto out;
1100         }
1101
1102         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1103         if (!db) {
1104                 err = -ENOMEM;
1105                 goto out;
1106         }
1107
1108         rtnl_lock();
1109         if (!IS_ERR_OR_NULL(regdb))
1110                 kfree(regdb);
1111         regdb = db;
1112         rtnl_unlock();
1113
1114  out:
1115         release_firmware(fw);
1116         return err;
1117 }
1118
1119 static bool reg_query_database(struct regulatory_request *request)
1120 {
1121         if (query_regdb_file(request->alpha2) == 0)
1122                 return true;
1123
1124         if (call_crda(request->alpha2) == 0)
1125                 return true;
1126
1127         return false;
1128 }
1129
1130 bool reg_is_valid_request(const char *alpha2)
1131 {
1132         struct regulatory_request *lr = get_last_request();
1133
1134         if (!lr || lr->processed)
1135                 return false;
1136
1137         return alpha2_equal(lr->alpha2, alpha2);
1138 }
1139
1140 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1141 {
1142         struct regulatory_request *lr = get_last_request();
1143
1144         /*
1145          * Follow the driver's regulatory domain, if present, unless a country
1146          * IE has been processed or a user wants to help complaince further
1147          */
1148         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1149             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1150             wiphy->regd)
1151                 return get_wiphy_regdom(wiphy);
1152
1153         return get_cfg80211_regdom();
1154 }
1155
1156 static unsigned int
1157 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1158                                  const struct ieee80211_reg_rule *rule)
1159 {
1160         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1161         const struct ieee80211_freq_range *freq_range_tmp;
1162         const struct ieee80211_reg_rule *tmp;
1163         u32 start_freq, end_freq, idx, no;
1164
1165         for (idx = 0; idx < rd->n_reg_rules; idx++)
1166                 if (rule == &rd->reg_rules[idx])
1167                         break;
1168
1169         if (idx == rd->n_reg_rules)
1170                 return 0;
1171
1172         /* get start_freq */
1173         no = idx;
1174
1175         while (no) {
1176                 tmp = &rd->reg_rules[--no];
1177                 freq_range_tmp = &tmp->freq_range;
1178
1179                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1180                         break;
1181
1182                 freq_range = freq_range_tmp;
1183         }
1184
1185         start_freq = freq_range->start_freq_khz;
1186
1187         /* get end_freq */
1188         freq_range = &rule->freq_range;
1189         no = idx;
1190
1191         while (no < rd->n_reg_rules - 1) {
1192                 tmp = &rd->reg_rules[++no];
1193                 freq_range_tmp = &tmp->freq_range;
1194
1195                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1196                         break;
1197
1198                 freq_range = freq_range_tmp;
1199         }
1200
1201         end_freq = freq_range->end_freq_khz;
1202
1203         return end_freq - start_freq;
1204 }
1205
1206 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1207                                    const struct ieee80211_reg_rule *rule)
1208 {
1209         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1210
1211         if (rule->flags & NL80211_RRF_NO_160MHZ)
1212                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1213         if (rule->flags & NL80211_RRF_NO_80MHZ)
1214                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1215
1216         /*
1217          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1218          * are not allowed.
1219          */
1220         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1221             rule->flags & NL80211_RRF_NO_HT40PLUS)
1222                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1223
1224         return bw;
1225 }
1226
1227 /* Sanity check on a regulatory rule */
1228 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1229 {
1230         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1231         u32 freq_diff;
1232
1233         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1234                 return false;
1235
1236         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1237                 return false;
1238
1239         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1240
1241         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1242             freq_range->max_bandwidth_khz > freq_diff)
1243                 return false;
1244
1245         return true;
1246 }
1247
1248 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1249 {
1250         const struct ieee80211_reg_rule *reg_rule = NULL;
1251         unsigned int i;
1252
1253         if (!rd->n_reg_rules)
1254                 return false;
1255
1256         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1257                 return false;
1258
1259         for (i = 0; i < rd->n_reg_rules; i++) {
1260                 reg_rule = &rd->reg_rules[i];
1261                 if (!is_valid_reg_rule(reg_rule))
1262                         return false;
1263         }
1264
1265         return true;
1266 }
1267
1268 /**
1269  * freq_in_rule_band - tells us if a frequency is in a frequency band
1270  * @freq_range: frequency rule we want to query
1271  * @freq_khz: frequency we are inquiring about
1272  *
1273  * This lets us know if a specific frequency rule is or is not relevant to
1274  * a specific frequency's band. Bands are device specific and artificial
1275  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1276  * however it is safe for now to assume that a frequency rule should not be
1277  * part of a frequency's band if the start freq or end freq are off by more
1278  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1279  * 60 GHz band.
1280  * This resolution can be lowered and should be considered as we add
1281  * regulatory rule support for other "bands".
1282  **/
1283 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1284                               u32 freq_khz)
1285 {
1286 #define ONE_GHZ_IN_KHZ  1000000
1287         /*
1288          * From 802.11ad: directional multi-gigabit (DMG):
1289          * Pertaining to operation in a frequency band containing a channel
1290          * with the Channel starting frequency above 45 GHz.
1291          */
1292         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1293                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1294         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1295                 return true;
1296         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1297                 return true;
1298         return false;
1299 #undef ONE_GHZ_IN_KHZ
1300 }
1301
1302 /*
1303  * Later on we can perhaps use the more restrictive DFS
1304  * region but we don't have information for that yet so
1305  * for now simply disallow conflicts.
1306  */
1307 static enum nl80211_dfs_regions
1308 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1309                          const enum nl80211_dfs_regions dfs_region2)
1310 {
1311         if (dfs_region1 != dfs_region2)
1312                 return NL80211_DFS_UNSET;
1313         return dfs_region1;
1314 }
1315
1316 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1317                                     const struct ieee80211_wmm_ac *wmm_ac2,
1318                                     struct ieee80211_wmm_ac *intersect)
1319 {
1320         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1321         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1322         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1323         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1324 }
1325
1326 /*
1327  * Helper for regdom_intersect(), this does the real
1328  * mathematical intersection fun
1329  */
1330 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1331                                const struct ieee80211_regdomain *rd2,
1332                                const struct ieee80211_reg_rule *rule1,
1333                                const struct ieee80211_reg_rule *rule2,
1334                                struct ieee80211_reg_rule *intersected_rule)
1335 {
1336         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1337         struct ieee80211_freq_range *freq_range;
1338         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1339         struct ieee80211_power_rule *power_rule;
1340         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1341         struct ieee80211_wmm_rule *wmm_rule;
1342         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1343
1344         freq_range1 = &rule1->freq_range;
1345         freq_range2 = &rule2->freq_range;
1346         freq_range = &intersected_rule->freq_range;
1347
1348         power_rule1 = &rule1->power_rule;
1349         power_rule2 = &rule2->power_rule;
1350         power_rule = &intersected_rule->power_rule;
1351
1352         wmm_rule1 = &rule1->wmm_rule;
1353         wmm_rule2 = &rule2->wmm_rule;
1354         wmm_rule = &intersected_rule->wmm_rule;
1355
1356         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1357                                          freq_range2->start_freq_khz);
1358         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1359                                        freq_range2->end_freq_khz);
1360
1361         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1362         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1363
1364         if (rule1->flags & NL80211_RRF_AUTO_BW)
1365                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1366         if (rule2->flags & NL80211_RRF_AUTO_BW)
1367                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1368
1369         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1370
1371         intersected_rule->flags = rule1->flags | rule2->flags;
1372
1373         /*
1374          * In case NL80211_RRF_AUTO_BW requested for both rules
1375          * set AUTO_BW in intersected rule also. Next we will
1376          * calculate BW correctly in handle_channel function.
1377          * In other case remove AUTO_BW flag while we calculate
1378          * maximum bandwidth correctly and auto calculation is
1379          * not required.
1380          */
1381         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1382             (rule2->flags & NL80211_RRF_AUTO_BW))
1383                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1384         else
1385                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1386
1387         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1388         if (freq_range->max_bandwidth_khz > freq_diff)
1389                 freq_range->max_bandwidth_khz = freq_diff;
1390
1391         power_rule->max_eirp = min(power_rule1->max_eirp,
1392                 power_rule2->max_eirp);
1393         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1394                 power_rule2->max_antenna_gain);
1395
1396         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1397                                            rule2->dfs_cac_ms);
1398
1399         if (rule1->has_wmm && rule2->has_wmm) {
1400                 u8 ac;
1401
1402                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1403                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1404                                                 &wmm_rule2->client[ac],
1405                                                 &wmm_rule->client[ac]);
1406                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1407                                                 &wmm_rule2->ap[ac],
1408                                                 &wmm_rule->ap[ac]);
1409                 }
1410
1411                 intersected_rule->has_wmm = true;
1412         } else if (rule1->has_wmm) {
1413                 *wmm_rule = *wmm_rule1;
1414                 intersected_rule->has_wmm = true;
1415         } else if (rule2->has_wmm) {
1416                 *wmm_rule = *wmm_rule2;
1417                 intersected_rule->has_wmm = true;
1418         } else {
1419                 intersected_rule->has_wmm = false;
1420         }
1421
1422         if (!is_valid_reg_rule(intersected_rule))
1423                 return -EINVAL;
1424
1425         return 0;
1426 }
1427
1428 /* check whether old rule contains new rule */
1429 static bool rule_contains(struct ieee80211_reg_rule *r1,
1430                           struct ieee80211_reg_rule *r2)
1431 {
1432         /* for simplicity, currently consider only same flags */
1433         if (r1->flags != r2->flags)
1434                 return false;
1435
1436         /* verify r1 is more restrictive */
1437         if ((r1->power_rule.max_antenna_gain >
1438              r2->power_rule.max_antenna_gain) ||
1439             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1440                 return false;
1441
1442         /* make sure r2's range is contained within r1 */
1443         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1444             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1445                 return false;
1446
1447         /* and finally verify that r1.max_bw >= r2.max_bw */
1448         if (r1->freq_range.max_bandwidth_khz <
1449             r2->freq_range.max_bandwidth_khz)
1450                 return false;
1451
1452         return true;
1453 }
1454
1455 /* add or extend current rules. do nothing if rule is already contained */
1456 static void add_rule(struct ieee80211_reg_rule *rule,
1457                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1458 {
1459         struct ieee80211_reg_rule *tmp_rule;
1460         int i;
1461
1462         for (i = 0; i < *n_rules; i++) {
1463                 tmp_rule = &reg_rules[i];
1464                 /* rule is already contained - do nothing */
1465                 if (rule_contains(tmp_rule, rule))
1466                         return;
1467
1468                 /* extend rule if possible */
1469                 if (rule_contains(rule, tmp_rule)) {
1470                         memcpy(tmp_rule, rule, sizeof(*rule));
1471                         return;
1472                 }
1473         }
1474
1475         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1476         (*n_rules)++;
1477 }
1478
1479 /**
1480  * regdom_intersect - do the intersection between two regulatory domains
1481  * @rd1: first regulatory domain
1482  * @rd2: second regulatory domain
1483  *
1484  * Use this function to get the intersection between two regulatory domains.
1485  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1486  * as no one single alpha2 can represent this regulatory domain.
1487  *
1488  * Returns a pointer to the regulatory domain structure which will hold the
1489  * resulting intersection of rules between rd1 and rd2. We will
1490  * kzalloc() this structure for you.
1491  */
1492 static struct ieee80211_regdomain *
1493 regdom_intersect(const struct ieee80211_regdomain *rd1,
1494                  const struct ieee80211_regdomain *rd2)
1495 {
1496         int r;
1497         unsigned int x, y;
1498         unsigned int num_rules = 0;
1499         const struct ieee80211_reg_rule *rule1, *rule2;
1500         struct ieee80211_reg_rule intersected_rule;
1501         struct ieee80211_regdomain *rd;
1502
1503         if (!rd1 || !rd2)
1504                 return NULL;
1505
1506         /*
1507          * First we get a count of the rules we'll need, then we actually
1508          * build them. This is to so we can malloc() and free() a
1509          * regdomain once. The reason we use reg_rules_intersect() here
1510          * is it will return -EINVAL if the rule computed makes no sense.
1511          * All rules that do check out OK are valid.
1512          */
1513
1514         for (x = 0; x < rd1->n_reg_rules; x++) {
1515                 rule1 = &rd1->reg_rules[x];
1516                 for (y = 0; y < rd2->n_reg_rules; y++) {
1517                         rule2 = &rd2->reg_rules[y];
1518                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1519                                                  &intersected_rule))
1520                                 num_rules++;
1521                 }
1522         }
1523
1524         if (!num_rules)
1525                 return NULL;
1526
1527         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1528         if (!rd)
1529                 return NULL;
1530
1531         for (x = 0; x < rd1->n_reg_rules; x++) {
1532                 rule1 = &rd1->reg_rules[x];
1533                 for (y = 0; y < rd2->n_reg_rules; y++) {
1534                         rule2 = &rd2->reg_rules[y];
1535                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1536                                                 &intersected_rule);
1537                         /*
1538                          * No need to memset here the intersected rule here as
1539                          * we're not using the stack anymore
1540                          */
1541                         if (r)
1542                                 continue;
1543
1544                         add_rule(&intersected_rule, rd->reg_rules,
1545                                  &rd->n_reg_rules);
1546                 }
1547         }
1548
1549         rd->alpha2[0] = '9';
1550         rd->alpha2[1] = '8';
1551         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1552                                                   rd2->dfs_region);
1553
1554         return rd;
1555 }
1556
1557 /*
1558  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1559  * want to just have the channel structure use these
1560  */
1561 static u32 map_regdom_flags(u32 rd_flags)
1562 {
1563         u32 channel_flags = 0;
1564         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1565                 channel_flags |= IEEE80211_CHAN_NO_IR;
1566         if (rd_flags & NL80211_RRF_DFS)
1567                 channel_flags |= IEEE80211_CHAN_RADAR;
1568         if (rd_flags & NL80211_RRF_NO_OFDM)
1569                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1570         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1571                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1572         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1573                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1574         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1575                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1576         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1577                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1578         if (rd_flags & NL80211_RRF_NO_80MHZ)
1579                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1580         if (rd_flags & NL80211_RRF_NO_160MHZ)
1581                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1582         if (rd_flags & NL80211_RRF_NO_HE)
1583                 channel_flags |= IEEE80211_CHAN_NO_HE;
1584         return channel_flags;
1585 }
1586
1587 static const struct ieee80211_reg_rule *
1588 freq_reg_info_regd(u32 center_freq,
1589                    const struct ieee80211_regdomain *regd, u32 bw)
1590 {
1591         int i;
1592         bool band_rule_found = false;
1593         bool bw_fits = false;
1594
1595         if (!regd)
1596                 return ERR_PTR(-EINVAL);
1597
1598         for (i = 0; i < regd->n_reg_rules; i++) {
1599                 const struct ieee80211_reg_rule *rr;
1600                 const struct ieee80211_freq_range *fr = NULL;
1601
1602                 rr = &regd->reg_rules[i];
1603                 fr = &rr->freq_range;
1604
1605                 /*
1606                  * We only need to know if one frequency rule was
1607                  * in center_freq's band, that's enough, so let's
1608                  * not overwrite it once found
1609                  */
1610                 if (!band_rule_found)
1611                         band_rule_found = freq_in_rule_band(fr, center_freq);
1612
1613                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1614
1615                 if (band_rule_found && bw_fits)
1616                         return rr;
1617         }
1618
1619         if (!band_rule_found)
1620                 return ERR_PTR(-ERANGE);
1621
1622         return ERR_PTR(-EINVAL);
1623 }
1624
1625 static const struct ieee80211_reg_rule *
1626 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1627 {
1628         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1629         const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1630         const struct ieee80211_reg_rule *reg_rule;
1631         int i = ARRAY_SIZE(bws) - 1;
1632         u32 bw;
1633
1634         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1635                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1636                 if (!IS_ERR(reg_rule))
1637                         return reg_rule;
1638         }
1639
1640         return reg_rule;
1641 }
1642
1643 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1644                                                u32 center_freq)
1645 {
1646         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1647
1648         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1649 }
1650 EXPORT_SYMBOL(freq_reg_info);
1651
1652 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1653 {
1654         switch (initiator) {
1655         case NL80211_REGDOM_SET_BY_CORE:
1656                 return "core";
1657         case NL80211_REGDOM_SET_BY_USER:
1658                 return "user";
1659         case NL80211_REGDOM_SET_BY_DRIVER:
1660                 return "driver";
1661         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1662                 return "country element";
1663         default:
1664                 WARN_ON(1);
1665                 return "bug";
1666         }
1667 }
1668 EXPORT_SYMBOL(reg_initiator_name);
1669
1670 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1671                                           const struct ieee80211_reg_rule *reg_rule,
1672                                           const struct ieee80211_channel *chan)
1673 {
1674         const struct ieee80211_freq_range *freq_range = NULL;
1675         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1676         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1677
1678         freq_range = &reg_rule->freq_range;
1679
1680         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1681         center_freq_khz = ieee80211_channel_to_khz(chan);
1682         /* Check if auto calculation requested */
1683         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1684                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1685
1686         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1687         if (!cfg80211_does_bw_fit_range(freq_range,
1688                                         center_freq_khz,
1689                                         MHZ_TO_KHZ(10)))
1690                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1691         if (!cfg80211_does_bw_fit_range(freq_range,
1692                                         center_freq_khz,
1693                                         MHZ_TO_KHZ(20)))
1694                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1695
1696         if (is_s1g) {
1697                 /* S1G is strict about non overlapping channels. We can
1698                  * calculate which bandwidth is allowed per channel by finding
1699                  * the largest bandwidth which cleanly divides the freq_range.
1700                  */
1701                 int edge_offset;
1702                 int ch_bw = max_bandwidth_khz;
1703
1704                 while (ch_bw) {
1705                         edge_offset = (center_freq_khz - ch_bw / 2) -
1706                                       freq_range->start_freq_khz;
1707                         if (edge_offset % ch_bw == 0) {
1708                                 switch (KHZ_TO_MHZ(ch_bw)) {
1709                                 case 1:
1710                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1711                                         break;
1712                                 case 2:
1713                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1714                                         break;
1715                                 case 4:
1716                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1717                                         break;
1718                                 case 8:
1719                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1720                                         break;
1721                                 case 16:
1722                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1723                                         break;
1724                                 default:
1725                                         /* If we got here, no bandwidths fit on
1726                                          * this frequency, ie. band edge.
1727                                          */
1728                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1729                                         break;
1730                                 }
1731                                 break;
1732                         }
1733                         ch_bw /= 2;
1734                 }
1735         } else {
1736                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1737                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1738                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1739                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1740                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1741                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1742                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1743                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1744                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1745                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1746         }
1747         return bw_flags;
1748 }
1749
1750 static void handle_channel_single_rule(struct wiphy *wiphy,
1751                                        enum nl80211_reg_initiator initiator,
1752                                        struct ieee80211_channel *chan,
1753                                        u32 flags,
1754                                        struct regulatory_request *lr,
1755                                        struct wiphy *request_wiphy,
1756                                        const struct ieee80211_reg_rule *reg_rule)
1757 {
1758         u32 bw_flags = 0;
1759         const struct ieee80211_power_rule *power_rule = NULL;
1760         const struct ieee80211_regdomain *regd;
1761
1762         regd = reg_get_regdomain(wiphy);
1763
1764         power_rule = &reg_rule->power_rule;
1765         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1766
1767         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1768             request_wiphy && request_wiphy == wiphy &&
1769             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1770                 /*
1771                  * This guarantees the driver's requested regulatory domain
1772                  * will always be used as a base for further regulatory
1773                  * settings
1774                  */
1775                 chan->flags = chan->orig_flags =
1776                         map_regdom_flags(reg_rule->flags) | bw_flags;
1777                 chan->max_antenna_gain = chan->orig_mag =
1778                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1779                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1780                         (int) MBM_TO_DBM(power_rule->max_eirp);
1781
1782                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1783                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1784                         if (reg_rule->dfs_cac_ms)
1785                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1786                 }
1787
1788                 return;
1789         }
1790
1791         chan->dfs_state = NL80211_DFS_USABLE;
1792         chan->dfs_state_entered = jiffies;
1793
1794         chan->beacon_found = false;
1795         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1796         chan->max_antenna_gain =
1797                 min_t(int, chan->orig_mag,
1798                       MBI_TO_DBI(power_rule->max_antenna_gain));
1799         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1800
1801         if (chan->flags & IEEE80211_CHAN_RADAR) {
1802                 if (reg_rule->dfs_cac_ms)
1803                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1804                 else
1805                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1806         }
1807
1808         if (chan->orig_mpwr) {
1809                 /*
1810                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1811                  * will always follow the passed country IE power settings.
1812                  */
1813                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1814                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1815                         chan->max_power = chan->max_reg_power;
1816                 else
1817                         chan->max_power = min(chan->orig_mpwr,
1818                                               chan->max_reg_power);
1819         } else
1820                 chan->max_power = chan->max_reg_power;
1821 }
1822
1823 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1824                                           enum nl80211_reg_initiator initiator,
1825                                           struct ieee80211_channel *chan,
1826                                           u32 flags,
1827                                           struct regulatory_request *lr,
1828                                           struct wiphy *request_wiphy,
1829                                           const struct ieee80211_reg_rule *rrule1,
1830                                           const struct ieee80211_reg_rule *rrule2,
1831                                           struct ieee80211_freq_range *comb_range)
1832 {
1833         u32 bw_flags1 = 0;
1834         u32 bw_flags2 = 0;
1835         const struct ieee80211_power_rule *power_rule1 = NULL;
1836         const struct ieee80211_power_rule *power_rule2 = NULL;
1837         const struct ieee80211_regdomain *regd;
1838
1839         regd = reg_get_regdomain(wiphy);
1840
1841         power_rule1 = &rrule1->power_rule;
1842         power_rule2 = &rrule2->power_rule;
1843         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1844         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1845
1846         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1847             request_wiphy && request_wiphy == wiphy &&
1848             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1849                 /* This guarantees the driver's requested regulatory domain
1850                  * will always be used as a base for further regulatory
1851                  * settings
1852                  */
1853                 chan->flags =
1854                         map_regdom_flags(rrule1->flags) |
1855                         map_regdom_flags(rrule2->flags) |
1856                         bw_flags1 |
1857                         bw_flags2;
1858                 chan->orig_flags = chan->flags;
1859                 chan->max_antenna_gain =
1860                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1861                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1862                 chan->orig_mag = chan->max_antenna_gain;
1863                 chan->max_reg_power =
1864                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1865                               MBM_TO_DBM(power_rule2->max_eirp));
1866                 chan->max_power = chan->max_reg_power;
1867                 chan->orig_mpwr = chan->max_reg_power;
1868
1869                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1870                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1871                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1872                                 chan->dfs_cac_ms = max_t(unsigned int,
1873                                                          rrule1->dfs_cac_ms,
1874                                                          rrule2->dfs_cac_ms);
1875                 }
1876
1877                 return;
1878         }
1879
1880         chan->dfs_state = NL80211_DFS_USABLE;
1881         chan->dfs_state_entered = jiffies;
1882
1883         chan->beacon_found = false;
1884         chan->flags = flags | bw_flags1 | bw_flags2 |
1885                       map_regdom_flags(rrule1->flags) |
1886                       map_regdom_flags(rrule2->flags);
1887
1888         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1889          * (otherwise no adj. rule case), recheck therefore
1890          */
1891         if (cfg80211_does_bw_fit_range(comb_range,
1892                                        ieee80211_channel_to_khz(chan),
1893                                        MHZ_TO_KHZ(10)))
1894                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1895         if (cfg80211_does_bw_fit_range(comb_range,
1896                                        ieee80211_channel_to_khz(chan),
1897                                        MHZ_TO_KHZ(20)))
1898                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1899
1900         chan->max_antenna_gain =
1901                 min_t(int, chan->orig_mag,
1902                       min_t(int,
1903                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1904                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1905         chan->max_reg_power = min_t(int,
1906                                     MBM_TO_DBM(power_rule1->max_eirp),
1907                                     MBM_TO_DBM(power_rule2->max_eirp));
1908
1909         if (chan->flags & IEEE80211_CHAN_RADAR) {
1910                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1911                         chan->dfs_cac_ms = max_t(unsigned int,
1912                                                  rrule1->dfs_cac_ms,
1913                                                  rrule2->dfs_cac_ms);
1914                 else
1915                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1916         }
1917
1918         if (chan->orig_mpwr) {
1919                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1920                  * will always follow the passed country IE power settings.
1921                  */
1922                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1923                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1924                         chan->max_power = chan->max_reg_power;
1925                 else
1926                         chan->max_power = min(chan->orig_mpwr,
1927                                               chan->max_reg_power);
1928         } else {
1929                 chan->max_power = chan->max_reg_power;
1930         }
1931 }
1932
1933 /* Note that right now we assume the desired channel bandwidth
1934  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1935  * per channel, the primary and the extension channel).
1936  */
1937 static void handle_channel(struct wiphy *wiphy,
1938                            enum nl80211_reg_initiator initiator,
1939                            struct ieee80211_channel *chan)
1940 {
1941         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1942         struct regulatory_request *lr = get_last_request();
1943         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1944         const struct ieee80211_reg_rule *rrule = NULL;
1945         const struct ieee80211_reg_rule *rrule1 = NULL;
1946         const struct ieee80211_reg_rule *rrule2 = NULL;
1947
1948         u32 flags = chan->orig_flags;
1949
1950         rrule = freq_reg_info(wiphy, orig_chan_freq);
1951         if (IS_ERR(rrule)) {
1952                 /* check for adjacent match, therefore get rules for
1953                  * chan - 20 MHz and chan + 20 MHz and test
1954                  * if reg rules are adjacent
1955                  */
1956                 rrule1 = freq_reg_info(wiphy,
1957                                        orig_chan_freq - MHZ_TO_KHZ(20));
1958                 rrule2 = freq_reg_info(wiphy,
1959                                        orig_chan_freq + MHZ_TO_KHZ(20));
1960                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1961                         struct ieee80211_freq_range comb_range;
1962
1963                         if (rrule1->freq_range.end_freq_khz !=
1964                             rrule2->freq_range.start_freq_khz)
1965                                 goto disable_chan;
1966
1967                         comb_range.start_freq_khz =
1968                                 rrule1->freq_range.start_freq_khz;
1969                         comb_range.end_freq_khz =
1970                                 rrule2->freq_range.end_freq_khz;
1971                         comb_range.max_bandwidth_khz =
1972                                 min_t(u32,
1973                                       rrule1->freq_range.max_bandwidth_khz,
1974                                       rrule2->freq_range.max_bandwidth_khz);
1975
1976                         if (!cfg80211_does_bw_fit_range(&comb_range,
1977                                                         orig_chan_freq,
1978                                                         MHZ_TO_KHZ(20)))
1979                                 goto disable_chan;
1980
1981                         handle_channel_adjacent_rules(wiphy, initiator, chan,
1982                                                       flags, lr, request_wiphy,
1983                                                       rrule1, rrule2,
1984                                                       &comb_range);
1985                         return;
1986                 }
1987
1988 disable_chan:
1989                 /* We will disable all channels that do not match our
1990                  * received regulatory rule unless the hint is coming
1991                  * from a Country IE and the Country IE had no information
1992                  * about a band. The IEEE 802.11 spec allows for an AP
1993                  * to send only a subset of the regulatory rules allowed,
1994                  * so an AP in the US that only supports 2.4 GHz may only send
1995                  * a country IE with information for the 2.4 GHz band
1996                  * while 5 GHz is still supported.
1997                  */
1998                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1999                     PTR_ERR(rrule) == -ERANGE)
2000                         return;
2001
2002                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2003                     request_wiphy && request_wiphy == wiphy &&
2004                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2005                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2006                                  chan->center_freq, chan->freq_offset);
2007                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2008                         chan->flags = chan->orig_flags;
2009                 } else {
2010                         pr_debug("Disabling freq %d.%03d MHz\n",
2011                                  chan->center_freq, chan->freq_offset);
2012                         chan->flags |= IEEE80211_CHAN_DISABLED;
2013                 }
2014                 return;
2015         }
2016
2017         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2018                                    request_wiphy, rrule);
2019 }
2020
2021 static void handle_band(struct wiphy *wiphy,
2022                         enum nl80211_reg_initiator initiator,
2023                         struct ieee80211_supported_band *sband)
2024 {
2025         unsigned int i;
2026
2027         if (!sband)
2028                 return;
2029
2030         for (i = 0; i < sband->n_channels; i++)
2031                 handle_channel(wiphy, initiator, &sband->channels[i]);
2032 }
2033
2034 static bool reg_request_cell_base(struct regulatory_request *request)
2035 {
2036         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2037                 return false;
2038         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2039 }
2040
2041 bool reg_last_request_cell_base(void)
2042 {
2043         return reg_request_cell_base(get_last_request());
2044 }
2045
2046 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2047 /* Core specific check */
2048 static enum reg_request_treatment
2049 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2050 {
2051         struct regulatory_request *lr = get_last_request();
2052
2053         if (!reg_num_devs_support_basehint)
2054                 return REG_REQ_IGNORE;
2055
2056         if (reg_request_cell_base(lr) &&
2057             !regdom_changes(pending_request->alpha2))
2058                 return REG_REQ_ALREADY_SET;
2059
2060         return REG_REQ_OK;
2061 }
2062
2063 /* Device specific check */
2064 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2065 {
2066         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2067 }
2068 #else
2069 static enum reg_request_treatment
2070 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2071 {
2072         return REG_REQ_IGNORE;
2073 }
2074
2075 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2076 {
2077         return true;
2078 }
2079 #endif
2080
2081 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2082 {
2083         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2084             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2085                 return true;
2086         return false;
2087 }
2088
2089 static bool ignore_reg_update(struct wiphy *wiphy,
2090                               enum nl80211_reg_initiator initiator)
2091 {
2092         struct regulatory_request *lr = get_last_request();
2093
2094         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2095                 return true;
2096
2097         if (!lr) {
2098                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2099                          reg_initiator_name(initiator));
2100                 return true;
2101         }
2102
2103         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2104             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2105                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2106                          reg_initiator_name(initiator));
2107                 return true;
2108         }
2109
2110         /*
2111          * wiphy->regd will be set once the device has its own
2112          * desired regulatory domain set
2113          */
2114         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2115             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2116             !is_world_regdom(lr->alpha2)) {
2117                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2118                          reg_initiator_name(initiator));
2119                 return true;
2120         }
2121
2122         if (reg_request_cell_base(lr))
2123                 return reg_dev_ignore_cell_hint(wiphy);
2124
2125         return false;
2126 }
2127
2128 static bool reg_is_world_roaming(struct wiphy *wiphy)
2129 {
2130         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2131         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2132         struct regulatory_request *lr = get_last_request();
2133
2134         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2135                 return true;
2136
2137         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2138             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2139                 return true;
2140
2141         return false;
2142 }
2143
2144 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2145                               struct reg_beacon *reg_beacon)
2146 {
2147         struct ieee80211_supported_band *sband;
2148         struct ieee80211_channel *chan;
2149         bool channel_changed = false;
2150         struct ieee80211_channel chan_before;
2151
2152         sband = wiphy->bands[reg_beacon->chan.band];
2153         chan = &sband->channels[chan_idx];
2154
2155         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2156                 return;
2157
2158         if (chan->beacon_found)
2159                 return;
2160
2161         chan->beacon_found = true;
2162
2163         if (!reg_is_world_roaming(wiphy))
2164                 return;
2165
2166         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2167                 return;
2168
2169         chan_before = *chan;
2170
2171         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2172                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2173                 channel_changed = true;
2174         }
2175
2176         if (channel_changed)
2177                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2178 }
2179
2180 /*
2181  * Called when a scan on a wiphy finds a beacon on
2182  * new channel
2183  */
2184 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2185                                     struct reg_beacon *reg_beacon)
2186 {
2187         unsigned int i;
2188         struct ieee80211_supported_band *sband;
2189
2190         if (!wiphy->bands[reg_beacon->chan.band])
2191                 return;
2192
2193         sband = wiphy->bands[reg_beacon->chan.band];
2194
2195         for (i = 0; i < sband->n_channels; i++)
2196                 handle_reg_beacon(wiphy, i, reg_beacon);
2197 }
2198
2199 /*
2200  * Called upon reg changes or a new wiphy is added
2201  */
2202 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2203 {
2204         unsigned int i;
2205         struct ieee80211_supported_band *sband;
2206         struct reg_beacon *reg_beacon;
2207
2208         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2209                 if (!wiphy->bands[reg_beacon->chan.band])
2210                         continue;
2211                 sband = wiphy->bands[reg_beacon->chan.band];
2212                 for (i = 0; i < sband->n_channels; i++)
2213                         handle_reg_beacon(wiphy, i, reg_beacon);
2214         }
2215 }
2216
2217 /* Reap the advantages of previously found beacons */
2218 static void reg_process_beacons(struct wiphy *wiphy)
2219 {
2220         /*
2221          * Means we are just firing up cfg80211, so no beacons would
2222          * have been processed yet.
2223          */
2224         if (!last_request)
2225                 return;
2226         wiphy_update_beacon_reg(wiphy);
2227 }
2228
2229 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2230 {
2231         if (!chan)
2232                 return false;
2233         if (chan->flags & IEEE80211_CHAN_DISABLED)
2234                 return false;
2235         /* This would happen when regulatory rules disallow HT40 completely */
2236         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2237                 return false;
2238         return true;
2239 }
2240
2241 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2242                                          struct ieee80211_channel *channel)
2243 {
2244         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2245         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2246         const struct ieee80211_regdomain *regd;
2247         unsigned int i;
2248         u32 flags;
2249
2250         if (!is_ht40_allowed(channel)) {
2251                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2252                 return;
2253         }
2254
2255         /*
2256          * We need to ensure the extension channels exist to
2257          * be able to use HT40- or HT40+, this finds them (or not)
2258          */
2259         for (i = 0; i < sband->n_channels; i++) {
2260                 struct ieee80211_channel *c = &sband->channels[i];
2261
2262                 if (c->center_freq == (channel->center_freq - 20))
2263                         channel_before = c;
2264                 if (c->center_freq == (channel->center_freq + 20))
2265                         channel_after = c;
2266         }
2267
2268         flags = 0;
2269         regd = get_wiphy_regdom(wiphy);
2270         if (regd) {
2271                 const struct ieee80211_reg_rule *reg_rule =
2272                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2273                                            regd, MHZ_TO_KHZ(20));
2274
2275                 if (!IS_ERR(reg_rule))
2276                         flags = reg_rule->flags;
2277         }
2278
2279         /*
2280          * Please note that this assumes target bandwidth is 20 MHz,
2281          * if that ever changes we also need to change the below logic
2282          * to include that as well.
2283          */
2284         if (!is_ht40_allowed(channel_before) ||
2285             flags & NL80211_RRF_NO_HT40MINUS)
2286                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2287         else
2288                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2289
2290         if (!is_ht40_allowed(channel_after) ||
2291             flags & NL80211_RRF_NO_HT40PLUS)
2292                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2293         else
2294                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2295 }
2296
2297 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2298                                       struct ieee80211_supported_band *sband)
2299 {
2300         unsigned int i;
2301
2302         if (!sband)
2303                 return;
2304
2305         for (i = 0; i < sband->n_channels; i++)
2306                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2307 }
2308
2309 static void reg_process_ht_flags(struct wiphy *wiphy)
2310 {
2311         enum nl80211_band band;
2312
2313         if (!wiphy)
2314                 return;
2315
2316         for (band = 0; band < NUM_NL80211_BANDS; band++)
2317                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2318 }
2319
2320 static void reg_call_notifier(struct wiphy *wiphy,
2321                               struct regulatory_request *request)
2322 {
2323         if (wiphy->reg_notifier)
2324                 wiphy->reg_notifier(wiphy, request);
2325 }
2326
2327 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2328 {
2329         struct cfg80211_chan_def chandef = {};
2330         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2331         enum nl80211_iftype iftype;
2332
2333         wdev_lock(wdev);
2334         iftype = wdev->iftype;
2335
2336         /* make sure the interface is active */
2337         if (!wdev->netdev || !netif_running(wdev->netdev))
2338                 goto wdev_inactive_unlock;
2339
2340         switch (iftype) {
2341         case NL80211_IFTYPE_AP:
2342         case NL80211_IFTYPE_P2P_GO:
2343                 if (!wdev->beacon_interval)
2344                         goto wdev_inactive_unlock;
2345                 chandef = wdev->chandef;
2346                 break;
2347         case NL80211_IFTYPE_ADHOC:
2348                 if (!wdev->ssid_len)
2349                         goto wdev_inactive_unlock;
2350                 chandef = wdev->chandef;
2351                 break;
2352         case NL80211_IFTYPE_STATION:
2353         case NL80211_IFTYPE_P2P_CLIENT:
2354                 if (!wdev->current_bss ||
2355                     !wdev->current_bss->pub.channel)
2356                         goto wdev_inactive_unlock;
2357
2358                 if (!rdev->ops->get_channel ||
2359                     rdev_get_channel(rdev, wdev, &chandef))
2360                         cfg80211_chandef_create(&chandef,
2361                                                 wdev->current_bss->pub.channel,
2362                                                 NL80211_CHAN_NO_HT);
2363                 break;
2364         case NL80211_IFTYPE_MONITOR:
2365         case NL80211_IFTYPE_AP_VLAN:
2366         case NL80211_IFTYPE_P2P_DEVICE:
2367                 /* no enforcement required */
2368                 break;
2369         default:
2370                 /* others not implemented for now */
2371                 WARN_ON(1);
2372                 break;
2373         }
2374
2375         wdev_unlock(wdev);
2376
2377         switch (iftype) {
2378         case NL80211_IFTYPE_AP:
2379         case NL80211_IFTYPE_P2P_GO:
2380         case NL80211_IFTYPE_ADHOC:
2381                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2382         case NL80211_IFTYPE_STATION:
2383         case NL80211_IFTYPE_P2P_CLIENT:
2384                 return cfg80211_chandef_usable(wiphy, &chandef,
2385                                                IEEE80211_CHAN_DISABLED);
2386         default:
2387                 break;
2388         }
2389
2390         return true;
2391
2392 wdev_inactive_unlock:
2393         wdev_unlock(wdev);
2394         return true;
2395 }
2396
2397 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2398 {
2399         struct wireless_dev *wdev;
2400         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2401
2402         ASSERT_RTNL();
2403
2404         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2405                 if (!reg_wdev_chan_valid(wiphy, wdev))
2406                         cfg80211_leave(rdev, wdev);
2407 }
2408
2409 static void reg_check_chans_work(struct work_struct *work)
2410 {
2411         struct cfg80211_registered_device *rdev;
2412
2413         pr_debug("Verifying active interfaces after reg change\n");
2414         rtnl_lock();
2415
2416         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2417                 if (!(rdev->wiphy.regulatory_flags &
2418                       REGULATORY_IGNORE_STALE_KICKOFF))
2419                         reg_leave_invalid_chans(&rdev->wiphy);
2420
2421         rtnl_unlock();
2422 }
2423
2424 static void reg_check_channels(void)
2425 {
2426         /*
2427          * Give usermode a chance to do something nicer (move to another
2428          * channel, orderly disconnection), before forcing a disconnection.
2429          */
2430         mod_delayed_work(system_power_efficient_wq,
2431                          &reg_check_chans,
2432                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2433 }
2434
2435 static void wiphy_update_regulatory(struct wiphy *wiphy,
2436                                     enum nl80211_reg_initiator initiator)
2437 {
2438         enum nl80211_band band;
2439         struct regulatory_request *lr = get_last_request();
2440
2441         if (ignore_reg_update(wiphy, initiator)) {
2442                 /*
2443                  * Regulatory updates set by CORE are ignored for custom
2444                  * regulatory cards. Let us notify the changes to the driver,
2445                  * as some drivers used this to restore its orig_* reg domain.
2446                  */
2447                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2448                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2449                     !(wiphy->regulatory_flags &
2450                       REGULATORY_WIPHY_SELF_MANAGED))
2451                         reg_call_notifier(wiphy, lr);
2452                 return;
2453         }
2454
2455         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2456
2457         for (band = 0; band < NUM_NL80211_BANDS; band++)
2458                 handle_band(wiphy, initiator, wiphy->bands[band]);
2459
2460         reg_process_beacons(wiphy);
2461         reg_process_ht_flags(wiphy);
2462         reg_call_notifier(wiphy, lr);
2463 }
2464
2465 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2466 {
2467         struct cfg80211_registered_device *rdev;
2468         struct wiphy *wiphy;
2469
2470         ASSERT_RTNL();
2471
2472         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2473                 wiphy = &rdev->wiphy;
2474                 wiphy_update_regulatory(wiphy, initiator);
2475         }
2476
2477         reg_check_channels();
2478 }
2479
2480 static void handle_channel_custom(struct wiphy *wiphy,
2481                                   struct ieee80211_channel *chan,
2482                                   const struct ieee80211_regdomain *regd,
2483                                   u32 min_bw)
2484 {
2485         u32 bw_flags = 0;
2486         const struct ieee80211_reg_rule *reg_rule = NULL;
2487         const struct ieee80211_power_rule *power_rule = NULL;
2488         u32 bw, center_freq_khz;
2489
2490         center_freq_khz = ieee80211_channel_to_khz(chan);
2491         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2492                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2493                 if (!IS_ERR(reg_rule))
2494                         break;
2495         }
2496
2497         if (IS_ERR_OR_NULL(reg_rule)) {
2498                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2499                          chan->center_freq, chan->freq_offset);
2500                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2501                         chan->flags |= IEEE80211_CHAN_DISABLED;
2502                 } else {
2503                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2504                         chan->flags = chan->orig_flags;
2505                 }
2506                 return;
2507         }
2508
2509         power_rule = &reg_rule->power_rule;
2510         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2511
2512         chan->dfs_state_entered = jiffies;
2513         chan->dfs_state = NL80211_DFS_USABLE;
2514
2515         chan->beacon_found = false;
2516
2517         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2518                 chan->flags = chan->orig_flags | bw_flags |
2519                               map_regdom_flags(reg_rule->flags);
2520         else
2521                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2522
2523         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2524         chan->max_reg_power = chan->max_power =
2525                 (int) MBM_TO_DBM(power_rule->max_eirp);
2526
2527         if (chan->flags & IEEE80211_CHAN_RADAR) {
2528                 if (reg_rule->dfs_cac_ms)
2529                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2530                 else
2531                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2532         }
2533
2534         chan->max_power = chan->max_reg_power;
2535 }
2536
2537 static void handle_band_custom(struct wiphy *wiphy,
2538                                struct ieee80211_supported_band *sband,
2539                                const struct ieee80211_regdomain *regd)
2540 {
2541         unsigned int i;
2542
2543         if (!sband)
2544                 return;
2545
2546         /*
2547          * We currently assume that you always want at least 20 MHz,
2548          * otherwise channel 12 might get enabled if this rule is
2549          * compatible to US, which permits 2402 - 2472 MHz.
2550          */
2551         for (i = 0; i < sband->n_channels; i++)
2552                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2553                                       MHZ_TO_KHZ(20));
2554 }
2555
2556 /* Used by drivers prior to wiphy registration */
2557 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2558                                    const struct ieee80211_regdomain *regd)
2559 {
2560         enum nl80211_band band;
2561         unsigned int bands_set = 0;
2562
2563         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2564              "wiphy should have REGULATORY_CUSTOM_REG\n");
2565         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2566
2567         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2568                 if (!wiphy->bands[band])
2569                         continue;
2570                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2571                 bands_set++;
2572         }
2573
2574         /*
2575          * no point in calling this if it won't have any effect
2576          * on your device's supported bands.
2577          */
2578         WARN_ON(!bands_set);
2579 }
2580 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2581
2582 static void reg_set_request_processed(void)
2583 {
2584         bool need_more_processing = false;
2585         struct regulatory_request *lr = get_last_request();
2586
2587         lr->processed = true;
2588
2589         spin_lock(&reg_requests_lock);
2590         if (!list_empty(&reg_requests_list))
2591                 need_more_processing = true;
2592         spin_unlock(&reg_requests_lock);
2593
2594         cancel_crda_timeout();
2595
2596         if (need_more_processing)
2597                 schedule_work(&reg_work);
2598 }
2599
2600 /**
2601  * reg_process_hint_core - process core regulatory requests
2602  * @core_request: a pending core regulatory request
2603  *
2604  * The wireless subsystem can use this function to process
2605  * a regulatory request issued by the regulatory core.
2606  */
2607 static enum reg_request_treatment
2608 reg_process_hint_core(struct regulatory_request *core_request)
2609 {
2610         if (reg_query_database(core_request)) {
2611                 core_request->intersect = false;
2612                 core_request->processed = false;
2613                 reg_update_last_request(core_request);
2614                 return REG_REQ_OK;
2615         }
2616
2617         return REG_REQ_IGNORE;
2618 }
2619
2620 static enum reg_request_treatment
2621 __reg_process_hint_user(struct regulatory_request *user_request)
2622 {
2623         struct regulatory_request *lr = get_last_request();
2624
2625         if (reg_request_cell_base(user_request))
2626                 return reg_ignore_cell_hint(user_request);
2627
2628         if (reg_request_cell_base(lr))
2629                 return REG_REQ_IGNORE;
2630
2631         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2632                 return REG_REQ_INTERSECT;
2633         /*
2634          * If the user knows better the user should set the regdom
2635          * to their country before the IE is picked up
2636          */
2637         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2638             lr->intersect)
2639                 return REG_REQ_IGNORE;
2640         /*
2641          * Process user requests only after previous user/driver/core
2642          * requests have been processed
2643          */
2644         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2645              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2646              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2647             regdom_changes(lr->alpha2))
2648                 return REG_REQ_IGNORE;
2649
2650         if (!regdom_changes(user_request->alpha2))
2651                 return REG_REQ_ALREADY_SET;
2652
2653         return REG_REQ_OK;
2654 }
2655
2656 /**
2657  * reg_process_hint_user - process user regulatory requests
2658  * @user_request: a pending user regulatory request
2659  *
2660  * The wireless subsystem can use this function to process
2661  * a regulatory request initiated by userspace.
2662  */
2663 static enum reg_request_treatment
2664 reg_process_hint_user(struct regulatory_request *user_request)
2665 {
2666         enum reg_request_treatment treatment;
2667
2668         treatment = __reg_process_hint_user(user_request);
2669         if (treatment == REG_REQ_IGNORE ||
2670             treatment == REG_REQ_ALREADY_SET)
2671                 return REG_REQ_IGNORE;
2672
2673         user_request->intersect = treatment == REG_REQ_INTERSECT;
2674         user_request->processed = false;
2675
2676         if (reg_query_database(user_request)) {
2677                 reg_update_last_request(user_request);
2678                 user_alpha2[0] = user_request->alpha2[0];
2679                 user_alpha2[1] = user_request->alpha2[1];
2680                 return REG_REQ_OK;
2681         }
2682
2683         return REG_REQ_IGNORE;
2684 }
2685
2686 static enum reg_request_treatment
2687 __reg_process_hint_driver(struct regulatory_request *driver_request)
2688 {
2689         struct regulatory_request *lr = get_last_request();
2690
2691         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2692                 if (regdom_changes(driver_request->alpha2))
2693                         return REG_REQ_OK;
2694                 return REG_REQ_ALREADY_SET;
2695         }
2696
2697         /*
2698          * This would happen if you unplug and plug your card
2699          * back in or if you add a new device for which the previously
2700          * loaded card also agrees on the regulatory domain.
2701          */
2702         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2703             !regdom_changes(driver_request->alpha2))
2704                 return REG_REQ_ALREADY_SET;
2705
2706         return REG_REQ_INTERSECT;
2707 }
2708
2709 /**
2710  * reg_process_hint_driver - process driver regulatory requests
2711  * @wiphy: the wireless device for the regulatory request
2712  * @driver_request: a pending driver regulatory request
2713  *
2714  * The wireless subsystem can use this function to process
2715  * a regulatory request issued by an 802.11 driver.
2716  *
2717  * Returns one of the different reg request treatment values.
2718  */
2719 static enum reg_request_treatment
2720 reg_process_hint_driver(struct wiphy *wiphy,
2721                         struct regulatory_request *driver_request)
2722 {
2723         const struct ieee80211_regdomain *regd, *tmp;
2724         enum reg_request_treatment treatment;
2725
2726         treatment = __reg_process_hint_driver(driver_request);
2727
2728         switch (treatment) {
2729         case REG_REQ_OK:
2730                 break;
2731         case REG_REQ_IGNORE:
2732                 return REG_REQ_IGNORE;
2733         case REG_REQ_INTERSECT:
2734         case REG_REQ_ALREADY_SET:
2735                 regd = reg_copy_regd(get_cfg80211_regdom());
2736                 if (IS_ERR(regd))
2737                         return REG_REQ_IGNORE;
2738
2739                 tmp = get_wiphy_regdom(wiphy);
2740                 rcu_assign_pointer(wiphy->regd, regd);
2741                 rcu_free_regdom(tmp);
2742         }
2743
2744
2745         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2746         driver_request->processed = false;
2747
2748         /*
2749          * Since CRDA will not be called in this case as we already
2750          * have applied the requested regulatory domain before we just
2751          * inform userspace we have processed the request
2752          */
2753         if (treatment == REG_REQ_ALREADY_SET) {
2754                 nl80211_send_reg_change_event(driver_request);
2755                 reg_update_last_request(driver_request);
2756                 reg_set_request_processed();
2757                 return REG_REQ_ALREADY_SET;
2758         }
2759
2760         if (reg_query_database(driver_request)) {
2761                 reg_update_last_request(driver_request);
2762                 return REG_REQ_OK;
2763         }
2764
2765         return REG_REQ_IGNORE;
2766 }
2767
2768 static enum reg_request_treatment
2769 __reg_process_hint_country_ie(struct wiphy *wiphy,
2770                               struct regulatory_request *country_ie_request)
2771 {
2772         struct wiphy *last_wiphy = NULL;
2773         struct regulatory_request *lr = get_last_request();
2774
2775         if (reg_request_cell_base(lr)) {
2776                 /* Trust a Cell base station over the AP's country IE */
2777                 if (regdom_changes(country_ie_request->alpha2))
2778                         return REG_REQ_IGNORE;
2779                 return REG_REQ_ALREADY_SET;
2780         } else {
2781                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2782                         return REG_REQ_IGNORE;
2783         }
2784
2785         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2786                 return -EINVAL;
2787
2788         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2789                 return REG_REQ_OK;
2790
2791         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2792
2793         if (last_wiphy != wiphy) {
2794                 /*
2795                  * Two cards with two APs claiming different
2796                  * Country IE alpha2s. We could
2797                  * intersect them, but that seems unlikely
2798                  * to be correct. Reject second one for now.
2799                  */
2800                 if (regdom_changes(country_ie_request->alpha2))
2801                         return REG_REQ_IGNORE;
2802                 return REG_REQ_ALREADY_SET;
2803         }
2804
2805         if (regdom_changes(country_ie_request->alpha2))
2806                 return REG_REQ_OK;
2807         return REG_REQ_ALREADY_SET;
2808 }
2809
2810 /**
2811  * reg_process_hint_country_ie - process regulatory requests from country IEs
2812  * @wiphy: the wireless device for the regulatory request
2813  * @country_ie_request: a regulatory request from a country IE
2814  *
2815  * The wireless subsystem can use this function to process
2816  * a regulatory request issued by a country Information Element.
2817  *
2818  * Returns one of the different reg request treatment values.
2819  */
2820 static enum reg_request_treatment
2821 reg_process_hint_country_ie(struct wiphy *wiphy,
2822                             struct regulatory_request *country_ie_request)
2823 {
2824         enum reg_request_treatment treatment;
2825
2826         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2827
2828         switch (treatment) {
2829         case REG_REQ_OK:
2830                 break;
2831         case REG_REQ_IGNORE:
2832                 return REG_REQ_IGNORE;
2833         case REG_REQ_ALREADY_SET:
2834                 reg_free_request(country_ie_request);
2835                 return REG_REQ_ALREADY_SET;
2836         case REG_REQ_INTERSECT:
2837                 /*
2838                  * This doesn't happen yet, not sure we
2839                  * ever want to support it for this case.
2840                  */
2841                 WARN_ONCE(1, "Unexpected intersection for country elements");
2842                 return REG_REQ_IGNORE;
2843         }
2844
2845         country_ie_request->intersect = false;
2846         country_ie_request->processed = false;
2847
2848         if (reg_query_database(country_ie_request)) {
2849                 reg_update_last_request(country_ie_request);
2850                 return REG_REQ_OK;
2851         }
2852
2853         return REG_REQ_IGNORE;
2854 }
2855
2856 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2857 {
2858         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2859         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2860         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2861         bool dfs_domain_same;
2862
2863         rcu_read_lock();
2864
2865         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2866         wiphy1_regd = rcu_dereference(wiphy1->regd);
2867         if (!wiphy1_regd)
2868                 wiphy1_regd = cfg80211_regd;
2869
2870         wiphy2_regd = rcu_dereference(wiphy2->regd);
2871         if (!wiphy2_regd)
2872                 wiphy2_regd = cfg80211_regd;
2873
2874         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2875
2876         rcu_read_unlock();
2877
2878         return dfs_domain_same;
2879 }
2880
2881 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2882                                     struct ieee80211_channel *src_chan)
2883 {
2884         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2885             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2886                 return;
2887
2888         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2889             src_chan->flags & IEEE80211_CHAN_DISABLED)
2890                 return;
2891
2892         if (src_chan->center_freq == dst_chan->center_freq &&
2893             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2894                 dst_chan->dfs_state = src_chan->dfs_state;
2895                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2896         }
2897 }
2898
2899 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2900                                        struct wiphy *src_wiphy)
2901 {
2902         struct ieee80211_supported_band *src_sband, *dst_sband;
2903         struct ieee80211_channel *src_chan, *dst_chan;
2904         int i, j, band;
2905
2906         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2907                 return;
2908
2909         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2910                 dst_sband = dst_wiphy->bands[band];
2911                 src_sband = src_wiphy->bands[band];
2912                 if (!dst_sband || !src_sband)
2913                         continue;
2914
2915                 for (i = 0; i < dst_sband->n_channels; i++) {
2916                         dst_chan = &dst_sband->channels[i];
2917                         for (j = 0; j < src_sband->n_channels; j++) {
2918                                 src_chan = &src_sband->channels[j];
2919                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2920                         }
2921                 }
2922         }
2923 }
2924
2925 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2926 {
2927         struct cfg80211_registered_device *rdev;
2928
2929         ASSERT_RTNL();
2930
2931         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2932                 if (wiphy == &rdev->wiphy)
2933                         continue;
2934                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2935         }
2936 }
2937
2938 /* This processes *all* regulatory hints */
2939 static void reg_process_hint(struct regulatory_request *reg_request)
2940 {
2941         struct wiphy *wiphy = NULL;
2942         enum reg_request_treatment treatment;
2943         enum nl80211_reg_initiator initiator = reg_request->initiator;
2944
2945         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2946                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2947
2948         switch (initiator) {
2949         case NL80211_REGDOM_SET_BY_CORE:
2950                 treatment = reg_process_hint_core(reg_request);
2951                 break;
2952         case NL80211_REGDOM_SET_BY_USER:
2953                 treatment = reg_process_hint_user(reg_request);
2954                 break;
2955         case NL80211_REGDOM_SET_BY_DRIVER:
2956                 if (!wiphy)
2957                         goto out_free;
2958                 treatment = reg_process_hint_driver(wiphy, reg_request);
2959                 break;
2960         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2961                 if (!wiphy)
2962                         goto out_free;
2963                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2964                 break;
2965         default:
2966                 WARN(1, "invalid initiator %d\n", initiator);
2967                 goto out_free;
2968         }
2969
2970         if (treatment == REG_REQ_IGNORE)
2971                 goto out_free;
2972
2973         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2974              "unexpected treatment value %d\n", treatment);
2975
2976         /* This is required so that the orig_* parameters are saved.
2977          * NOTE: treatment must be set for any case that reaches here!
2978          */
2979         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2980             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2981                 wiphy_update_regulatory(wiphy, initiator);
2982                 wiphy_all_share_dfs_chan_state(wiphy);
2983                 reg_check_channels();
2984         }
2985
2986         return;
2987
2988 out_free:
2989         reg_free_request(reg_request);
2990 }
2991
2992 static void notify_self_managed_wiphys(struct regulatory_request *request)
2993 {
2994         struct cfg80211_registered_device *rdev;
2995         struct wiphy *wiphy;
2996
2997         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2998                 wiphy = &rdev->wiphy;
2999                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3000                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3001                         reg_call_notifier(wiphy, request);
3002         }
3003 }
3004
3005 /*
3006  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3007  * Regulatory hints come on a first come first serve basis and we
3008  * must process each one atomically.
3009  */
3010 static void reg_process_pending_hints(void)
3011 {
3012         struct regulatory_request *reg_request, *lr;
3013
3014         lr = get_last_request();
3015
3016         /* When last_request->processed becomes true this will be rescheduled */
3017         if (lr && !lr->processed) {
3018                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3019                 return;
3020         }
3021
3022         spin_lock(&reg_requests_lock);
3023
3024         if (list_empty(&reg_requests_list)) {
3025                 spin_unlock(&reg_requests_lock);
3026                 return;
3027         }
3028
3029         reg_request = list_first_entry(&reg_requests_list,
3030                                        struct regulatory_request,
3031                                        list);
3032         list_del_init(&reg_request->list);
3033
3034         spin_unlock(&reg_requests_lock);
3035
3036         notify_self_managed_wiphys(reg_request);
3037
3038         reg_process_hint(reg_request);
3039
3040         lr = get_last_request();
3041
3042         spin_lock(&reg_requests_lock);
3043         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3044                 schedule_work(&reg_work);
3045         spin_unlock(&reg_requests_lock);
3046 }
3047
3048 /* Processes beacon hints -- this has nothing to do with country IEs */
3049 static void reg_process_pending_beacon_hints(void)
3050 {
3051         struct cfg80211_registered_device *rdev;
3052         struct reg_beacon *pending_beacon, *tmp;
3053
3054         /* This goes through the _pending_ beacon list */
3055         spin_lock_bh(&reg_pending_beacons_lock);
3056
3057         list_for_each_entry_safe(pending_beacon, tmp,
3058                                  &reg_pending_beacons, list) {
3059                 list_del_init(&pending_beacon->list);
3060
3061                 /* Applies the beacon hint to current wiphys */
3062                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3063                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3064
3065                 /* Remembers the beacon hint for new wiphys or reg changes */
3066                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3067         }
3068
3069         spin_unlock_bh(&reg_pending_beacons_lock);
3070 }
3071
3072 static void reg_process_self_managed_hints(void)
3073 {
3074         struct cfg80211_registered_device *rdev;
3075         struct wiphy *wiphy;
3076         const struct ieee80211_regdomain *tmp;
3077         const struct ieee80211_regdomain *regd;
3078         enum nl80211_band band;
3079         struct regulatory_request request = {};
3080
3081         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3082                 wiphy = &rdev->wiphy;
3083
3084                 spin_lock(&reg_requests_lock);
3085                 regd = rdev->requested_regd;
3086                 rdev->requested_regd = NULL;
3087                 spin_unlock(&reg_requests_lock);
3088
3089                 if (regd == NULL)
3090                         continue;
3091
3092                 tmp = get_wiphy_regdom(wiphy);
3093                 rcu_assign_pointer(wiphy->regd, regd);
3094                 rcu_free_regdom(tmp);
3095
3096                 for (band = 0; band < NUM_NL80211_BANDS; band++)
3097                         handle_band_custom(wiphy, wiphy->bands[band], regd);
3098
3099                 reg_process_ht_flags(wiphy);
3100
3101                 request.wiphy_idx = get_wiphy_idx(wiphy);
3102                 request.alpha2[0] = regd->alpha2[0];
3103                 request.alpha2[1] = regd->alpha2[1];
3104                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3105
3106                 nl80211_send_wiphy_reg_change_event(&request);
3107         }
3108
3109         reg_check_channels();
3110 }
3111
3112 static void reg_todo(struct work_struct *work)
3113 {
3114         rtnl_lock();
3115         reg_process_pending_hints();
3116         reg_process_pending_beacon_hints();
3117         reg_process_self_managed_hints();
3118         rtnl_unlock();
3119 }
3120
3121 static void queue_regulatory_request(struct regulatory_request *request)
3122 {
3123         request->alpha2[0] = toupper(request->alpha2[0]);
3124         request->alpha2[1] = toupper(request->alpha2[1]);
3125
3126         spin_lock(&reg_requests_lock);
3127         list_add_tail(&request->list, &reg_requests_list);
3128         spin_unlock(&reg_requests_lock);
3129
3130         schedule_work(&reg_work);
3131 }
3132
3133 /*
3134  * Core regulatory hint -- happens during cfg80211_init()
3135  * and when we restore regulatory settings.
3136  */
3137 static int regulatory_hint_core(const char *alpha2)
3138 {
3139         struct regulatory_request *request;
3140
3141         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3142         if (!request)
3143                 return -ENOMEM;
3144
3145         request->alpha2[0] = alpha2[0];
3146         request->alpha2[1] = alpha2[1];
3147         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3148         request->wiphy_idx = WIPHY_IDX_INVALID;
3149
3150         queue_regulatory_request(request);
3151
3152         return 0;
3153 }
3154
3155 /* User hints */
3156 int regulatory_hint_user(const char *alpha2,
3157                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3158 {
3159         struct regulatory_request *request;
3160
3161         if (WARN_ON(!alpha2))
3162                 return -EINVAL;
3163
3164         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3165                 return -EINVAL;
3166
3167         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3168         if (!request)
3169                 return -ENOMEM;
3170
3171         request->wiphy_idx = WIPHY_IDX_INVALID;
3172         request->alpha2[0] = alpha2[0];
3173         request->alpha2[1] = alpha2[1];
3174         request->initiator = NL80211_REGDOM_SET_BY_USER;
3175         request->user_reg_hint_type = user_reg_hint_type;
3176
3177         /* Allow calling CRDA again */
3178         reset_crda_timeouts();
3179
3180         queue_regulatory_request(request);
3181
3182         return 0;
3183 }
3184
3185 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3186 {
3187         spin_lock(&reg_indoor_lock);
3188
3189         /* It is possible that more than one user space process is trying to
3190          * configure the indoor setting. To handle such cases, clear the indoor
3191          * setting in case that some process does not think that the device
3192          * is operating in an indoor environment. In addition, if a user space
3193          * process indicates that it is controlling the indoor setting, save its
3194          * portid, i.e., make it the owner.
3195          */
3196         reg_is_indoor = is_indoor;
3197         if (reg_is_indoor) {
3198                 if (!reg_is_indoor_portid)
3199                         reg_is_indoor_portid = portid;
3200         } else {
3201                 reg_is_indoor_portid = 0;
3202         }
3203
3204         spin_unlock(&reg_indoor_lock);
3205
3206         if (!is_indoor)
3207                 reg_check_channels();
3208
3209         return 0;
3210 }
3211
3212 void regulatory_netlink_notify(u32 portid)
3213 {
3214         spin_lock(&reg_indoor_lock);
3215
3216         if (reg_is_indoor_portid != portid) {
3217                 spin_unlock(&reg_indoor_lock);
3218                 return;
3219         }
3220
3221         reg_is_indoor = false;
3222         reg_is_indoor_portid = 0;
3223
3224         spin_unlock(&reg_indoor_lock);
3225
3226         reg_check_channels();
3227 }
3228
3229 /* Driver hints */
3230 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3231 {
3232         struct regulatory_request *request;
3233
3234         if (WARN_ON(!alpha2 || !wiphy))
3235                 return -EINVAL;
3236
3237         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3238
3239         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3240         if (!request)
3241                 return -ENOMEM;
3242
3243         request->wiphy_idx = get_wiphy_idx(wiphy);
3244
3245         request->alpha2[0] = alpha2[0];
3246         request->alpha2[1] = alpha2[1];
3247         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3248
3249         /* Allow calling CRDA again */
3250         reset_crda_timeouts();
3251
3252         queue_regulatory_request(request);
3253
3254         return 0;
3255 }
3256 EXPORT_SYMBOL(regulatory_hint);
3257
3258 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3259                                 const u8 *country_ie, u8 country_ie_len)
3260 {
3261         char alpha2[2];
3262         enum environment_cap env = ENVIRON_ANY;
3263         struct regulatory_request *request = NULL, *lr;
3264
3265         /* IE len must be evenly divisible by 2 */
3266         if (country_ie_len & 0x01)
3267                 return;
3268
3269         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3270                 return;
3271
3272         request = kzalloc(sizeof(*request), GFP_KERNEL);
3273         if (!request)
3274                 return;
3275
3276         alpha2[0] = country_ie[0];
3277         alpha2[1] = country_ie[1];
3278
3279         if (country_ie[2] == 'I')
3280                 env = ENVIRON_INDOOR;
3281         else if (country_ie[2] == 'O')
3282                 env = ENVIRON_OUTDOOR;
3283
3284         rcu_read_lock();
3285         lr = get_last_request();
3286
3287         if (unlikely(!lr))
3288                 goto out;
3289
3290         /*
3291          * We will run this only upon a successful connection on cfg80211.
3292          * We leave conflict resolution to the workqueue, where can hold
3293          * the RTNL.
3294          */
3295         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3296             lr->wiphy_idx != WIPHY_IDX_INVALID)
3297                 goto out;
3298
3299         request->wiphy_idx = get_wiphy_idx(wiphy);
3300         request->alpha2[0] = alpha2[0];
3301         request->alpha2[1] = alpha2[1];
3302         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3303         request->country_ie_env = env;
3304
3305         /* Allow calling CRDA again */
3306         reset_crda_timeouts();
3307
3308         queue_regulatory_request(request);
3309         request = NULL;
3310 out:
3311         kfree(request);
3312         rcu_read_unlock();
3313 }
3314
3315 static void restore_alpha2(char *alpha2, bool reset_user)
3316 {
3317         /* indicates there is no alpha2 to consider for restoration */
3318         alpha2[0] = '9';
3319         alpha2[1] = '7';
3320
3321         /* The user setting has precedence over the module parameter */
3322         if (is_user_regdom_saved()) {
3323                 /* Unless we're asked to ignore it and reset it */
3324                 if (reset_user) {
3325                         pr_debug("Restoring regulatory settings including user preference\n");
3326                         user_alpha2[0] = '9';
3327                         user_alpha2[1] = '7';
3328
3329                         /*
3330                          * If we're ignoring user settings, we still need to
3331                          * check the module parameter to ensure we put things
3332                          * back as they were for a full restore.
3333                          */
3334                         if (!is_world_regdom(ieee80211_regdom)) {
3335                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3336                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3337                                 alpha2[0] = ieee80211_regdom[0];
3338                                 alpha2[1] = ieee80211_regdom[1];
3339                         }
3340                 } else {
3341                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3342                                  user_alpha2[0], user_alpha2[1]);
3343                         alpha2[0] = user_alpha2[0];
3344                         alpha2[1] = user_alpha2[1];
3345                 }
3346         } else if (!is_world_regdom(ieee80211_regdom)) {
3347                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3348                          ieee80211_regdom[0], ieee80211_regdom[1]);
3349                 alpha2[0] = ieee80211_regdom[0];
3350                 alpha2[1] = ieee80211_regdom[1];
3351         } else
3352                 pr_debug("Restoring regulatory settings\n");
3353 }
3354
3355 static void restore_custom_reg_settings(struct wiphy *wiphy)
3356 {
3357         struct ieee80211_supported_band *sband;
3358         enum nl80211_band band;
3359         struct ieee80211_channel *chan;
3360         int i;
3361
3362         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3363                 sband = wiphy->bands[band];
3364                 if (!sband)
3365                         continue;
3366                 for (i = 0; i < sband->n_channels; i++) {
3367                         chan = &sband->channels[i];
3368                         chan->flags = chan->orig_flags;
3369                         chan->max_antenna_gain = chan->orig_mag;
3370                         chan->max_power = chan->orig_mpwr;
3371                         chan->beacon_found = false;
3372                 }
3373         }
3374 }
3375
3376 /*
3377  * Restoring regulatory settings involves ingoring any
3378  * possibly stale country IE information and user regulatory
3379  * settings if so desired, this includes any beacon hints
3380  * learned as we could have traveled outside to another country
3381  * after disconnection. To restore regulatory settings we do
3382  * exactly what we did at bootup:
3383  *
3384  *   - send a core regulatory hint
3385  *   - send a user regulatory hint if applicable
3386  *
3387  * Device drivers that send a regulatory hint for a specific country
3388  * keep their own regulatory domain on wiphy->regd so that does
3389  * not need to be remembered.
3390  */
3391 static void restore_regulatory_settings(bool reset_user, bool cached)
3392 {
3393         char alpha2[2];
3394         char world_alpha2[2];
3395         struct reg_beacon *reg_beacon, *btmp;
3396         LIST_HEAD(tmp_reg_req_list);
3397         struct cfg80211_registered_device *rdev;
3398
3399         ASSERT_RTNL();
3400
3401         /*
3402          * Clear the indoor setting in case that it is not controlled by user
3403          * space, as otherwise there is no guarantee that the device is still
3404          * operating in an indoor environment.
3405          */
3406         spin_lock(&reg_indoor_lock);
3407         if (reg_is_indoor && !reg_is_indoor_portid) {
3408                 reg_is_indoor = false;
3409                 reg_check_channels();
3410         }
3411         spin_unlock(&reg_indoor_lock);
3412
3413         reset_regdomains(true, &world_regdom);
3414         restore_alpha2(alpha2, reset_user);
3415
3416         /*
3417          * If there's any pending requests we simply
3418          * stash them to a temporary pending queue and
3419          * add then after we've restored regulatory
3420          * settings.
3421          */
3422         spin_lock(&reg_requests_lock);
3423         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3424         spin_unlock(&reg_requests_lock);
3425
3426         /* Clear beacon hints */
3427         spin_lock_bh(&reg_pending_beacons_lock);
3428         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3429                 list_del(&reg_beacon->list);
3430                 kfree(reg_beacon);
3431         }
3432         spin_unlock_bh(&reg_pending_beacons_lock);
3433
3434         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3435                 list_del(&reg_beacon->list);
3436                 kfree(reg_beacon);
3437         }
3438
3439         /* First restore to the basic regulatory settings */
3440         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3441         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3442
3443         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3444                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3445                         continue;
3446                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3447                         restore_custom_reg_settings(&rdev->wiphy);
3448         }
3449
3450         if (cached && (!is_an_alpha2(alpha2) ||
3451                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3452                 reset_regdomains(false, cfg80211_world_regdom);
3453                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3454                 print_regdomain(get_cfg80211_regdom());
3455                 nl80211_send_reg_change_event(&core_request_world);
3456                 reg_set_request_processed();
3457
3458                 if (is_an_alpha2(alpha2) &&
3459                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3460                         struct regulatory_request *ureq;
3461
3462                         spin_lock(&reg_requests_lock);
3463                         ureq = list_last_entry(&reg_requests_list,
3464                                                struct regulatory_request,
3465                                                list);
3466                         list_del(&ureq->list);
3467                         spin_unlock(&reg_requests_lock);
3468
3469                         notify_self_managed_wiphys(ureq);
3470                         reg_update_last_request(ureq);
3471                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3472                                    REGD_SOURCE_CACHED);
3473                 }
3474         } else {
3475                 regulatory_hint_core(world_alpha2);
3476
3477                 /*
3478                  * This restores the ieee80211_regdom module parameter
3479                  * preference or the last user requested regulatory
3480                  * settings, user regulatory settings takes precedence.
3481                  */
3482                 if (is_an_alpha2(alpha2))
3483                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3484         }
3485
3486         spin_lock(&reg_requests_lock);
3487         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3488         spin_unlock(&reg_requests_lock);
3489
3490         pr_debug("Kicking the queue\n");
3491
3492         schedule_work(&reg_work);
3493 }
3494
3495 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3496 {
3497         struct cfg80211_registered_device *rdev;
3498         struct wireless_dev *wdev;
3499
3500         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3501                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3502                         wdev_lock(wdev);
3503                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3504                                 wdev_unlock(wdev);
3505                                 return false;
3506                         }
3507                         wdev_unlock(wdev);
3508                 }
3509         }
3510
3511         return true;
3512 }
3513
3514 void regulatory_hint_disconnect(void)
3515 {
3516         /* Restore of regulatory settings is not required when wiphy(s)
3517          * ignore IE from connected access point but clearance of beacon hints
3518          * is required when wiphy(s) supports beacon hints.
3519          */
3520         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3521                 struct reg_beacon *reg_beacon, *btmp;
3522
3523                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3524                         return;
3525
3526                 spin_lock_bh(&reg_pending_beacons_lock);
3527                 list_for_each_entry_safe(reg_beacon, btmp,
3528                                          &reg_pending_beacons, list) {
3529                         list_del(&reg_beacon->list);
3530                         kfree(reg_beacon);
3531                 }
3532                 spin_unlock_bh(&reg_pending_beacons_lock);
3533
3534                 list_for_each_entry_safe(reg_beacon, btmp,
3535                                          &reg_beacon_list, list) {
3536                         list_del(&reg_beacon->list);
3537                         kfree(reg_beacon);
3538                 }
3539
3540                 return;
3541         }
3542
3543         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3544         restore_regulatory_settings(false, true);
3545 }
3546
3547 static bool freq_is_chan_12_13_14(u32 freq)
3548 {
3549         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3550             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3551             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3552                 return true;
3553         return false;
3554 }
3555
3556 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3557 {
3558         struct reg_beacon *pending_beacon;
3559
3560         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3561                 if (ieee80211_channel_equal(beacon_chan,
3562                                             &pending_beacon->chan))
3563                         return true;
3564         return false;
3565 }
3566
3567 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3568                                  struct ieee80211_channel *beacon_chan,
3569                                  gfp_t gfp)
3570 {
3571         struct reg_beacon *reg_beacon;
3572         bool processing;
3573
3574         if (beacon_chan->beacon_found ||
3575             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3576             (beacon_chan->band == NL80211_BAND_2GHZ &&
3577              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3578                 return 0;
3579
3580         spin_lock_bh(&reg_pending_beacons_lock);
3581         processing = pending_reg_beacon(beacon_chan);
3582         spin_unlock_bh(&reg_pending_beacons_lock);
3583
3584         if (processing)
3585                 return 0;
3586
3587         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3588         if (!reg_beacon)
3589                 return -ENOMEM;
3590
3591         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3592                  beacon_chan->center_freq, beacon_chan->freq_offset,
3593                  ieee80211_freq_khz_to_channel(
3594                          ieee80211_channel_to_khz(beacon_chan)),
3595                  wiphy_name(wiphy));
3596
3597         memcpy(&reg_beacon->chan, beacon_chan,
3598                sizeof(struct ieee80211_channel));
3599
3600         /*
3601          * Since we can be called from BH or and non-BH context
3602          * we must use spin_lock_bh()
3603          */
3604         spin_lock_bh(&reg_pending_beacons_lock);
3605         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3606         spin_unlock_bh(&reg_pending_beacons_lock);
3607
3608         schedule_work(&reg_work);
3609
3610         return 0;
3611 }
3612
3613 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3614 {
3615         unsigned int i;
3616         const struct ieee80211_reg_rule *reg_rule = NULL;
3617         const struct ieee80211_freq_range *freq_range = NULL;
3618         const struct ieee80211_power_rule *power_rule = NULL;
3619         char bw[32], cac_time[32];
3620
3621         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3622
3623         for (i = 0; i < rd->n_reg_rules; i++) {
3624                 reg_rule = &rd->reg_rules[i];
3625                 freq_range = &reg_rule->freq_range;
3626                 power_rule = &reg_rule->power_rule;
3627
3628                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3629                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3630                                  freq_range->max_bandwidth_khz,
3631                                  reg_get_max_bandwidth(rd, reg_rule));
3632                 else
3633                         snprintf(bw, sizeof(bw), "%d KHz",
3634                                  freq_range->max_bandwidth_khz);
3635
3636                 if (reg_rule->flags & NL80211_RRF_DFS)
3637                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3638                                   reg_rule->dfs_cac_ms/1000);
3639                 else
3640                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3641
3642
3643                 /*
3644                  * There may not be documentation for max antenna gain
3645                  * in certain regions
3646                  */
3647                 if (power_rule->max_antenna_gain)
3648                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3649                                 freq_range->start_freq_khz,
3650                                 freq_range->end_freq_khz,
3651                                 bw,
3652                                 power_rule->max_antenna_gain,
3653                                 power_rule->max_eirp,
3654                                 cac_time);
3655                 else
3656                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3657                                 freq_range->start_freq_khz,
3658                                 freq_range->end_freq_khz,
3659                                 bw,
3660                                 power_rule->max_eirp,
3661                                 cac_time);
3662         }
3663 }
3664
3665 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3666 {
3667         switch (dfs_region) {
3668         case NL80211_DFS_UNSET:
3669         case NL80211_DFS_FCC:
3670         case NL80211_DFS_ETSI:
3671         case NL80211_DFS_JP:
3672                 return true;
3673         default:
3674                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3675                 return false;
3676         }
3677 }
3678
3679 static void print_regdomain(const struct ieee80211_regdomain *rd)
3680 {
3681         struct regulatory_request *lr = get_last_request();
3682
3683         if (is_intersected_alpha2(rd->alpha2)) {
3684                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3685                         struct cfg80211_registered_device *rdev;
3686                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3687                         if (rdev) {
3688                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3689                                         rdev->country_ie_alpha2[0],
3690                                         rdev->country_ie_alpha2[1]);
3691                         } else
3692                                 pr_debug("Current regulatory domain intersected:\n");
3693                 } else
3694                         pr_debug("Current regulatory domain intersected:\n");
3695         } else if (is_world_regdom(rd->alpha2)) {
3696                 pr_debug("World regulatory domain updated:\n");
3697         } else {
3698                 if (is_unknown_alpha2(rd->alpha2))
3699                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3700                 else {
3701                         if (reg_request_cell_base(lr))
3702                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3703                                         rd->alpha2[0], rd->alpha2[1]);
3704                         else
3705                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3706                                         rd->alpha2[0], rd->alpha2[1]);
3707                 }
3708         }
3709
3710         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3711         print_rd_rules(rd);
3712 }
3713
3714 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3715 {
3716         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3717         print_rd_rules(rd);
3718 }
3719
3720 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3721 {
3722         if (!is_world_regdom(rd->alpha2))
3723                 return -EINVAL;
3724         update_world_regdomain(rd);
3725         return 0;
3726 }
3727
3728 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3729                            struct regulatory_request *user_request)
3730 {
3731         const struct ieee80211_regdomain *intersected_rd = NULL;
3732
3733         if (!regdom_changes(rd->alpha2))
3734                 return -EALREADY;
3735
3736         if (!is_valid_rd(rd)) {
3737                 pr_err("Invalid regulatory domain detected: %c%c\n",
3738                        rd->alpha2[0], rd->alpha2[1]);
3739                 print_regdomain_info(rd);
3740                 return -EINVAL;
3741         }
3742
3743         if (!user_request->intersect) {
3744                 reset_regdomains(false, rd);
3745                 return 0;
3746         }
3747
3748         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3749         if (!intersected_rd)
3750                 return -EINVAL;
3751
3752         kfree(rd);
3753         rd = NULL;
3754         reset_regdomains(false, intersected_rd);
3755
3756         return 0;
3757 }
3758
3759 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3760                              struct regulatory_request *driver_request)
3761 {
3762         const struct ieee80211_regdomain *regd;
3763         const struct ieee80211_regdomain *intersected_rd = NULL;
3764         const struct ieee80211_regdomain *tmp;
3765         struct wiphy *request_wiphy;
3766
3767         if (is_world_regdom(rd->alpha2))
3768                 return -EINVAL;
3769
3770         if (!regdom_changes(rd->alpha2))
3771                 return -EALREADY;
3772
3773         if (!is_valid_rd(rd)) {
3774                 pr_err("Invalid regulatory domain detected: %c%c\n",
3775                        rd->alpha2[0], rd->alpha2[1]);
3776                 print_regdomain_info(rd);
3777                 return -EINVAL;
3778         }
3779
3780         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3781         if (!request_wiphy)
3782                 return -ENODEV;
3783
3784         if (!driver_request->intersect) {
3785                 if (request_wiphy->regd)
3786                         return -EALREADY;
3787
3788                 regd = reg_copy_regd(rd);
3789                 if (IS_ERR(regd))
3790                         return PTR_ERR(regd);
3791
3792                 rcu_assign_pointer(request_wiphy->regd, regd);
3793                 reset_regdomains(false, rd);
3794                 return 0;
3795         }
3796
3797         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3798         if (!intersected_rd)
3799                 return -EINVAL;
3800
3801         /*
3802          * We can trash what CRDA provided now.
3803          * However if a driver requested this specific regulatory
3804          * domain we keep it for its private use
3805          */
3806         tmp = get_wiphy_regdom(request_wiphy);
3807         rcu_assign_pointer(request_wiphy->regd, rd);
3808         rcu_free_regdom(tmp);
3809
3810         rd = NULL;
3811
3812         reset_regdomains(false, intersected_rd);
3813
3814         return 0;
3815 }
3816
3817 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3818                                  struct regulatory_request *country_ie_request)
3819 {
3820         struct wiphy *request_wiphy;
3821
3822         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3823             !is_unknown_alpha2(rd->alpha2))
3824                 return -EINVAL;
3825
3826         /*
3827          * Lets only bother proceeding on the same alpha2 if the current
3828          * rd is non static (it means CRDA was present and was used last)
3829          * and the pending request came in from a country IE
3830          */
3831
3832         if (!is_valid_rd(rd)) {
3833                 pr_err("Invalid regulatory domain detected: %c%c\n",
3834                        rd->alpha2[0], rd->alpha2[1]);
3835                 print_regdomain_info(rd);
3836                 return -EINVAL;
3837         }
3838
3839         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3840         if (!request_wiphy)
3841                 return -ENODEV;
3842
3843         if (country_ie_request->intersect)
3844                 return -EINVAL;
3845
3846         reset_regdomains(false, rd);
3847         return 0;
3848 }
3849
3850 /*
3851  * Use this call to set the current regulatory domain. Conflicts with
3852  * multiple drivers can be ironed out later. Caller must've already
3853  * kmalloc'd the rd structure.
3854  */
3855 int set_regdom(const struct ieee80211_regdomain *rd,
3856                enum ieee80211_regd_source regd_src)
3857 {
3858         struct regulatory_request *lr;
3859         bool user_reset = false;
3860         int r;
3861
3862         if (IS_ERR_OR_NULL(rd))
3863                 return -ENODATA;
3864
3865         if (!reg_is_valid_request(rd->alpha2)) {
3866                 kfree(rd);
3867                 return -EINVAL;
3868         }
3869
3870         if (regd_src == REGD_SOURCE_CRDA)
3871                 reset_crda_timeouts();
3872
3873         lr = get_last_request();
3874
3875         /* Note that this doesn't update the wiphys, this is done below */
3876         switch (lr->initiator) {
3877         case NL80211_REGDOM_SET_BY_CORE:
3878                 r = reg_set_rd_core(rd);
3879                 break;
3880         case NL80211_REGDOM_SET_BY_USER:
3881                 cfg80211_save_user_regdom(rd);
3882                 r = reg_set_rd_user(rd, lr);
3883                 user_reset = true;
3884                 break;
3885         case NL80211_REGDOM_SET_BY_DRIVER:
3886                 r = reg_set_rd_driver(rd, lr);
3887                 break;
3888         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3889                 r = reg_set_rd_country_ie(rd, lr);
3890                 break;
3891         default:
3892                 WARN(1, "invalid initiator %d\n", lr->initiator);
3893                 kfree(rd);
3894                 return -EINVAL;
3895         }
3896
3897         if (r) {
3898                 switch (r) {
3899                 case -EALREADY:
3900                         reg_set_request_processed();
3901                         break;
3902                 default:
3903                         /* Back to world regulatory in case of errors */
3904                         restore_regulatory_settings(user_reset, false);
3905                 }
3906
3907                 kfree(rd);
3908                 return r;
3909         }
3910
3911         /* This would make this whole thing pointless */
3912         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3913                 return -EINVAL;
3914
3915         /* update all wiphys now with the new established regulatory domain */
3916         update_all_wiphy_regulatory(lr->initiator);
3917
3918         print_regdomain(get_cfg80211_regdom());
3919
3920         nl80211_send_reg_change_event(lr);
3921
3922         reg_set_request_processed();
3923
3924         return 0;
3925 }
3926
3927 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3928                                        struct ieee80211_regdomain *rd)
3929 {
3930         const struct ieee80211_regdomain *regd;
3931         const struct ieee80211_regdomain *prev_regd;
3932         struct cfg80211_registered_device *rdev;
3933
3934         if (WARN_ON(!wiphy || !rd))
3935                 return -EINVAL;
3936
3937         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3938                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3939                 return -EPERM;
3940
3941         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3942                 print_regdomain_info(rd);
3943                 return -EINVAL;
3944         }
3945
3946         regd = reg_copy_regd(rd);
3947         if (IS_ERR(regd))
3948                 return PTR_ERR(regd);
3949
3950         rdev = wiphy_to_rdev(wiphy);
3951
3952         spin_lock(&reg_requests_lock);
3953         prev_regd = rdev->requested_regd;
3954         rdev->requested_regd = regd;
3955         spin_unlock(&reg_requests_lock);
3956
3957         kfree(prev_regd);
3958         return 0;
3959 }
3960
3961 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3962                               struct ieee80211_regdomain *rd)
3963 {
3964         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3965
3966         if (ret)
3967                 return ret;
3968
3969         schedule_work(&reg_work);
3970         return 0;
3971 }
3972 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3973
3974 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3975                                         struct ieee80211_regdomain *rd)
3976 {
3977         int ret;
3978
3979         ASSERT_RTNL();
3980
3981         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3982         if (ret)
3983                 return ret;
3984
3985         /* process the request immediately */
3986         reg_process_self_managed_hints();
3987         return 0;
3988 }
3989 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3990
3991 void wiphy_regulatory_register(struct wiphy *wiphy)
3992 {
3993         struct regulatory_request *lr = get_last_request();
3994
3995         /* self-managed devices ignore beacon hints and country IE */
3996         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3997                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3998                                            REGULATORY_COUNTRY_IE_IGNORE;
3999
4000                 /*
4001                  * The last request may have been received before this
4002                  * registration call. Call the driver notifier if
4003                  * initiator is USER.
4004                  */
4005                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4006                         reg_call_notifier(wiphy, lr);
4007         }
4008
4009         if (!reg_dev_ignore_cell_hint(wiphy))
4010                 reg_num_devs_support_basehint++;
4011
4012         wiphy_update_regulatory(wiphy, lr->initiator);
4013         wiphy_all_share_dfs_chan_state(wiphy);
4014         reg_process_self_managed_hints();
4015 }
4016
4017 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4018 {
4019         struct wiphy *request_wiphy = NULL;
4020         struct regulatory_request *lr;
4021
4022         lr = get_last_request();
4023
4024         if (!reg_dev_ignore_cell_hint(wiphy))
4025                 reg_num_devs_support_basehint--;
4026
4027         rcu_free_regdom(get_wiphy_regdom(wiphy));
4028         RCU_INIT_POINTER(wiphy->regd, NULL);
4029
4030         if (lr)
4031                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4032
4033         if (!request_wiphy || request_wiphy != wiphy)
4034                 return;
4035
4036         lr->wiphy_idx = WIPHY_IDX_INVALID;
4037         lr->country_ie_env = ENVIRON_ANY;
4038 }
4039
4040 /*
4041  * See FCC notices for UNII band definitions
4042  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4043  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4044  */
4045 int cfg80211_get_unii(int freq)
4046 {
4047         /* UNII-1 */
4048         if (freq >= 5150 && freq <= 5250)
4049                 return 0;
4050
4051         /* UNII-2A */
4052         if (freq > 5250 && freq <= 5350)
4053                 return 1;
4054
4055         /* UNII-2B */
4056         if (freq > 5350 && freq <= 5470)
4057                 return 2;
4058
4059         /* UNII-2C */
4060         if (freq > 5470 && freq <= 5725)
4061                 return 3;
4062
4063         /* UNII-3 */
4064         if (freq > 5725 && freq <= 5825)
4065                 return 4;
4066
4067         /* UNII-5 */
4068         if (freq > 5925 && freq <= 6425)
4069                 return 5;
4070
4071         /* UNII-6 */
4072         if (freq > 6425 && freq <= 6525)
4073                 return 6;
4074
4075         /* UNII-7 */
4076         if (freq > 6525 && freq <= 6875)
4077                 return 7;
4078
4079         /* UNII-8 */
4080         if (freq > 6875 && freq <= 7125)
4081                 return 8;
4082
4083         return -EINVAL;
4084 }
4085
4086 bool regulatory_indoor_allowed(void)
4087 {
4088         return reg_is_indoor;
4089 }
4090
4091 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4092 {
4093         const struct ieee80211_regdomain *regd = NULL;
4094         const struct ieee80211_regdomain *wiphy_regd = NULL;
4095         bool pre_cac_allowed = false;
4096
4097         rcu_read_lock();
4098
4099         regd = rcu_dereference(cfg80211_regdomain);
4100         wiphy_regd = rcu_dereference(wiphy->regd);
4101         if (!wiphy_regd) {
4102                 if (regd->dfs_region == NL80211_DFS_ETSI)
4103                         pre_cac_allowed = true;
4104
4105                 rcu_read_unlock();
4106
4107                 return pre_cac_allowed;
4108         }
4109
4110         if (regd->dfs_region == wiphy_regd->dfs_region &&
4111             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4112                 pre_cac_allowed = true;
4113
4114         rcu_read_unlock();
4115
4116         return pre_cac_allowed;
4117 }
4118 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4119
4120 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4121 {
4122         struct wireless_dev *wdev;
4123         /* If we finished CAC or received radar, we should end any
4124          * CAC running on the same channels.
4125          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4126          * either all channels are available - those the CAC_FINISHED
4127          * event has effected another wdev state, or there is a channel
4128          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4129          * event has effected another wdev state.
4130          * In both cases we should end the CAC on the wdev.
4131          */
4132         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4133                 if (wdev->cac_started &&
4134                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4135                         rdev_end_cac(rdev, wdev->netdev);
4136         }
4137 }
4138
4139 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4140                                     struct cfg80211_chan_def *chandef,
4141                                     enum nl80211_dfs_state dfs_state,
4142                                     enum nl80211_radar_event event)
4143 {
4144         struct cfg80211_registered_device *rdev;
4145
4146         ASSERT_RTNL();
4147
4148         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4149                 return;
4150
4151         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4152                 if (wiphy == &rdev->wiphy)
4153                         continue;
4154
4155                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4156                         continue;
4157
4158                 if (!ieee80211_get_channel(&rdev->wiphy,
4159                                            chandef->chan->center_freq))
4160                         continue;
4161
4162                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4163
4164                 if (event == NL80211_RADAR_DETECTED ||
4165                     event == NL80211_RADAR_CAC_FINISHED) {
4166                         cfg80211_sched_dfs_chan_update(rdev);
4167                         cfg80211_check_and_end_cac(rdev);
4168                 }
4169
4170                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4171         }
4172 }
4173
4174 static int __init regulatory_init_db(void)
4175 {
4176         int err;
4177
4178         /*
4179          * It's possible that - due to other bugs/issues - cfg80211
4180          * never called regulatory_init() below, or that it failed;
4181          * in that case, don't try to do any further work here as
4182          * it's doomed to lead to crashes.
4183          */
4184         if (IS_ERR_OR_NULL(reg_pdev))
4185                 return -EINVAL;
4186
4187         err = load_builtin_regdb_keys();
4188         if (err) {
4189                 platform_device_unregister(reg_pdev);
4190                 return err;
4191         }
4192
4193         /* We always try to get an update for the static regdomain */
4194         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4195         if (err) {
4196                 if (err == -ENOMEM) {
4197                         platform_device_unregister(reg_pdev);
4198                         return err;
4199                 }
4200                 /*
4201                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4202                  * memory which is handled and propagated appropriately above
4203                  * but it can also fail during a netlink_broadcast() or during
4204                  * early boot for call_usermodehelper(). For now treat these
4205                  * errors as non-fatal.
4206                  */
4207                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4208         }
4209
4210         /*
4211          * Finally, if the user set the module parameter treat it
4212          * as a user hint.
4213          */
4214         if (!is_world_regdom(ieee80211_regdom))
4215                 regulatory_hint_user(ieee80211_regdom,
4216                                      NL80211_USER_REG_HINT_USER);
4217
4218         return 0;
4219 }
4220 #ifndef MODULE
4221 late_initcall(regulatory_init_db);
4222 #endif
4223
4224 int __init regulatory_init(void)
4225 {
4226         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4227         if (IS_ERR(reg_pdev))
4228                 return PTR_ERR(reg_pdev);
4229
4230         spin_lock_init(&reg_requests_lock);
4231         spin_lock_init(&reg_pending_beacons_lock);
4232         spin_lock_init(&reg_indoor_lock);
4233
4234         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4235
4236         user_alpha2[0] = '9';
4237         user_alpha2[1] = '7';
4238
4239 #ifdef MODULE
4240         return regulatory_init_db();
4241 #else
4242         return 0;
4243 #endif
4244 }
4245
4246 void regulatory_exit(void)
4247 {
4248         struct regulatory_request *reg_request, *tmp;
4249         struct reg_beacon *reg_beacon, *btmp;
4250
4251         cancel_work_sync(&reg_work);
4252         cancel_crda_timeout_sync();
4253         cancel_delayed_work_sync(&reg_check_chans);
4254
4255         /* Lock to suppress warnings */
4256         rtnl_lock();
4257         reset_regdomains(true, NULL);
4258         rtnl_unlock();
4259
4260         dev_set_uevent_suppress(&reg_pdev->dev, true);
4261
4262         platform_device_unregister(reg_pdev);
4263
4264         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4265                 list_del(&reg_beacon->list);
4266                 kfree(reg_beacon);
4267         }
4268
4269         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4270                 list_del(&reg_beacon->list);
4271                 kfree(reg_beacon);
4272         }
4273
4274         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4275                 list_del(&reg_request->list);
4276                 kfree(reg_request);
4277         }
4278
4279         if (!IS_ERR_OR_NULL(regdb))
4280                 kfree(regdb);
4281         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4282                 kfree(cfg80211_user_regdom);
4283
4284         free_regdb_keyring();
4285 }