GNU Linux-libre 6.9.2-gnu
[releases.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2024 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
61
62 #include <net/cfg80211.h>
63 #include "core.h"
64 #include "reg.h"
65 #include "rdev-ops.h"
66 #include "nl80211.h"
67
68 /*
69  * Grace period we give before making sure all current interfaces reside on
70  * channels allowed by the current regulatory domain.
71  */
72 #define REG_ENFORCE_GRACE_MS 60000
73
74 /**
75  * enum reg_request_treatment - regulatory request treatment
76  *
77  * @REG_REQ_OK: continue processing the regulatory request
78  * @REG_REQ_IGNORE: ignore the regulatory request
79  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80  *      be intersected with the current one.
81  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82  *      regulatory settings, and no further processing is required.
83  */
84 enum reg_request_treatment {
85         REG_REQ_OK,
86         REG_REQ_IGNORE,
87         REG_REQ_INTERSECT,
88         REG_REQ_ALREADY_SET,
89 };
90
91 static struct regulatory_request core_request_world = {
92         .initiator = NL80211_REGDOM_SET_BY_CORE,
93         .alpha2[0] = '0',
94         .alpha2[1] = '0',
95         .intersect = false,
96         .processed = true,
97         .country_ie_env = ENVIRON_ANY,
98 };
99
100 /*
101  * Receipt of information from last regulatory request,
102  * protected by RTNL (and can be accessed with RCU protection)
103  */
104 static struct regulatory_request __rcu *last_request =
105         (void __force __rcu *)&core_request_world;
106
107 /* To trigger userspace events and load firmware */
108 static struct platform_device *reg_pdev;
109
110 /*
111  * Central wireless core regulatory domains, we only need two,
112  * the current one and a world regulatory domain in case we have no
113  * information to give us an alpha2.
114  * (protected by RTNL, can be read under RCU)
115  */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118 /*
119  * Number of devices that registered to the core
120  * that support cellular base station regulatory hints
121  * (protected by RTNL)
122  */
123 static int reg_num_devs_support_basehint;
124
125 /*
126  * State variable indicating if the platform on which the devices
127  * are attached is operating in an indoor environment. The state variable
128  * is relevant for all registered devices.
129  */
130 static bool reg_is_indoor;
131 static DEFINE_SPINLOCK(reg_indoor_lock);
132
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid;
135
136 static void restore_regulatory_settings(bool reset_user, bool cached);
137 static void print_regdomain(const struct ieee80211_regdomain *rd);
138 static void reg_process_hint(struct regulatory_request *reg_request);
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142         return rcu_dereference_rtnl(cfg80211_regdomain);
143 }
144
145 /*
146  * Returns the regulatory domain associated with the wiphy.
147  *
148  * Requires any of RTNL, wiphy mutex or RCU protection.
149  */
150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151 {
152         return rcu_dereference_check(wiphy->regd,
153                                      lockdep_is_held(&wiphy->mtx) ||
154                                      lockdep_rtnl_is_held());
155 }
156 EXPORT_SYMBOL(get_wiphy_regdom);
157
158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159 {
160         switch (dfs_region) {
161         case NL80211_DFS_UNSET:
162                 return "unset";
163         case NL80211_DFS_FCC:
164                 return "FCC";
165         case NL80211_DFS_ETSI:
166                 return "ETSI";
167         case NL80211_DFS_JP:
168                 return "JP";
169         }
170         return "Unknown";
171 }
172
173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174 {
175         const struct ieee80211_regdomain *regd = NULL;
176         const struct ieee80211_regdomain *wiphy_regd = NULL;
177         enum nl80211_dfs_regions dfs_region;
178
179         rcu_read_lock();
180         regd = get_cfg80211_regdom();
181         dfs_region = regd->dfs_region;
182
183         if (!wiphy)
184                 goto out;
185
186         wiphy_regd = get_wiphy_regdom(wiphy);
187         if (!wiphy_regd)
188                 goto out;
189
190         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191                 dfs_region = wiphy_regd->dfs_region;
192                 goto out;
193         }
194
195         if (wiphy_regd->dfs_region == regd->dfs_region)
196                 goto out;
197
198         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199                  dev_name(&wiphy->dev),
200                  reg_dfs_region_str(wiphy_regd->dfs_region),
201                  reg_dfs_region_str(regd->dfs_region));
202
203 out:
204         rcu_read_unlock();
205
206         return dfs_region;
207 }
208
209 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210 {
211         if (!r)
212                 return;
213         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 }
215
216 static struct regulatory_request *get_last_request(void)
217 {
218         return rcu_dereference_rtnl(last_request);
219 }
220
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list);
223 static DEFINE_SPINLOCK(reg_requests_lock);
224
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list);
231
232 struct reg_beacon {
233         struct list_head list;
234         struct ieee80211_channel chan;
235 };
236
237 static void reg_check_chans_work(struct work_struct *work);
238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239
240 static void reg_todo(struct work_struct *work);
241 static DECLARE_WORK(reg_work, reg_todo);
242
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom = {
245         .n_reg_rules = 8,
246         .alpha2 =  "00",
247         .reg_rules = {
248                 /* IEEE 802.11b/g, channels 1..11 */
249                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250                 /* IEEE 802.11b/g, channels 12..13. */
251                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
252                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253                 /* IEEE 802.11 channel 14 - Only JP enables
254                  * this and for 802.11b only */
255                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
256                         NL80211_RRF_NO_IR |
257                         NL80211_RRF_NO_OFDM),
258                 /* IEEE 802.11a, channel 36..48 */
259                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
260                         NL80211_RRF_NO_IR |
261                         NL80211_RRF_AUTO_BW),
262
263                 /* IEEE 802.11a, channel 52..64 - DFS required */
264                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
265                         NL80211_RRF_NO_IR |
266                         NL80211_RRF_AUTO_BW |
267                         NL80211_RRF_DFS),
268
269                 /* IEEE 802.11a, channel 100..144 - DFS required */
270                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
271                         NL80211_RRF_NO_IR |
272                         NL80211_RRF_DFS),
273
274                 /* IEEE 802.11a, channel 149..165 */
275                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
276                         NL80211_RRF_NO_IR),
277
278                 /* IEEE 802.11ad (60GHz), channels 1..3 */
279                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280         }
281 };
282
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285         &world_regdom;
286
287 static char *ieee80211_regdom = "00";
288 static char user_alpha2[2];
289 static const struct ieee80211_regdomain *cfg80211_user_regdom;
290
291 module_param(ieee80211_regdom, charp, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293
294 static void reg_free_request(struct regulatory_request *request)
295 {
296         if (request == &core_request_world)
297                 return;
298
299         if (request != get_last_request())
300                 kfree(request);
301 }
302
303 static void reg_free_last_request(void)
304 {
305         struct regulatory_request *lr = get_last_request();
306
307         if (lr != &core_request_world && lr)
308                 kfree_rcu(lr, rcu_head);
309 }
310
311 static void reg_update_last_request(struct regulatory_request *request)
312 {
313         struct regulatory_request *lr;
314
315         lr = get_last_request();
316         if (lr == request)
317                 return;
318
319         reg_free_last_request();
320         rcu_assign_pointer(last_request, request);
321 }
322
323 static void reset_regdomains(bool full_reset,
324                              const struct ieee80211_regdomain *new_regdom)
325 {
326         const struct ieee80211_regdomain *r;
327
328         ASSERT_RTNL();
329
330         r = get_cfg80211_regdom();
331
332         /* avoid freeing static information or freeing something twice */
333         if (r == cfg80211_world_regdom)
334                 r = NULL;
335         if (cfg80211_world_regdom == &world_regdom)
336                 cfg80211_world_regdom = NULL;
337         if (r == &world_regdom)
338                 r = NULL;
339
340         rcu_free_regdom(r);
341         rcu_free_regdom(cfg80211_world_regdom);
342
343         cfg80211_world_regdom = &world_regdom;
344         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345
346         if (!full_reset)
347                 return;
348
349         reg_update_last_request(&core_request_world);
350 }
351
352 /*
353  * Dynamic world regulatory domain requested by the wireless
354  * core upon initialization
355  */
356 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357 {
358         struct regulatory_request *lr;
359
360         lr = get_last_request();
361
362         WARN_ON(!lr);
363
364         reset_regdomains(false, rd);
365
366         cfg80211_world_regdom = rd;
367 }
368
369 bool is_world_regdom(const char *alpha2)
370 {
371         if (!alpha2)
372                 return false;
373         return alpha2[0] == '0' && alpha2[1] == '0';
374 }
375
376 static bool is_alpha2_set(const char *alpha2)
377 {
378         if (!alpha2)
379                 return false;
380         return alpha2[0] && alpha2[1];
381 }
382
383 static bool is_unknown_alpha2(const char *alpha2)
384 {
385         if (!alpha2)
386                 return false;
387         /*
388          * Special case where regulatory domain was built by driver
389          * but a specific alpha2 cannot be determined
390          */
391         return alpha2[0] == '9' && alpha2[1] == '9';
392 }
393
394 static bool is_intersected_alpha2(const char *alpha2)
395 {
396         if (!alpha2)
397                 return false;
398         /*
399          * Special case where regulatory domain is the
400          * result of an intersection between two regulatory domain
401          * structures
402          */
403         return alpha2[0] == '9' && alpha2[1] == '8';
404 }
405
406 static bool is_an_alpha2(const char *alpha2)
407 {
408         if (!alpha2)
409                 return false;
410         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
411 }
412
413 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
414 {
415         if (!alpha2_x || !alpha2_y)
416                 return false;
417         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
418 }
419
420 static bool regdom_changes(const char *alpha2)
421 {
422         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
423
424         if (!r)
425                 return true;
426         return !alpha2_equal(r->alpha2, alpha2);
427 }
428
429 /*
430  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
431  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
432  * has ever been issued.
433  */
434 static bool is_user_regdom_saved(void)
435 {
436         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
437                 return false;
438
439         /* This would indicate a mistake on the design */
440         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
441                  "Unexpected user alpha2: %c%c\n",
442                  user_alpha2[0], user_alpha2[1]))
443                 return false;
444
445         return true;
446 }
447
448 static const struct ieee80211_regdomain *
449 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
450 {
451         struct ieee80211_regdomain *regd;
452         unsigned int i;
453
454         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
455                        GFP_KERNEL);
456         if (!regd)
457                 return ERR_PTR(-ENOMEM);
458
459         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
460
461         for (i = 0; i < src_regd->n_reg_rules; i++)
462                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
463                        sizeof(struct ieee80211_reg_rule));
464
465         return regd;
466 }
467
468 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
469 {
470         ASSERT_RTNL();
471
472         if (!IS_ERR(cfg80211_user_regdom))
473                 kfree(cfg80211_user_regdom);
474         cfg80211_user_regdom = reg_copy_regd(rd);
475 }
476
477 struct reg_regdb_apply_request {
478         struct list_head list;
479         const struct ieee80211_regdomain *regdom;
480 };
481
482 static LIST_HEAD(reg_regdb_apply_list);
483 static DEFINE_MUTEX(reg_regdb_apply_mutex);
484
485 static void reg_regdb_apply(struct work_struct *work)
486 {
487         struct reg_regdb_apply_request *request;
488
489         rtnl_lock();
490
491         mutex_lock(&reg_regdb_apply_mutex);
492         while (!list_empty(&reg_regdb_apply_list)) {
493                 request = list_first_entry(&reg_regdb_apply_list,
494                                            struct reg_regdb_apply_request,
495                                            list);
496                 list_del(&request->list);
497
498                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
499                 kfree(request);
500         }
501         mutex_unlock(&reg_regdb_apply_mutex);
502
503         rtnl_unlock();
504 }
505
506 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
507
508 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
509 {
510         struct reg_regdb_apply_request *request;
511
512         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
513         if (!request) {
514                 kfree(regdom);
515                 return -ENOMEM;
516         }
517
518         request->regdom = regdom;
519
520         mutex_lock(&reg_regdb_apply_mutex);
521         list_add_tail(&request->list, &reg_regdb_apply_list);
522         mutex_unlock(&reg_regdb_apply_mutex);
523
524         schedule_work(&reg_regdb_work);
525         return 0;
526 }
527
528 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
529 /* Max number of consecutive attempts to communicate with CRDA  */
530 #define REG_MAX_CRDA_TIMEOUTS 10
531
532 static u32 reg_crda_timeouts;
533
534 static void crda_timeout_work(struct work_struct *work);
535 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
536
537 static void crda_timeout_work(struct work_struct *work)
538 {
539         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540         rtnl_lock();
541         reg_crda_timeouts++;
542         restore_regulatory_settings(true, false);
543         rtnl_unlock();
544 }
545
546 static void cancel_crda_timeout(void)
547 {
548         cancel_delayed_work(&crda_timeout);
549 }
550
551 static void cancel_crda_timeout_sync(void)
552 {
553         cancel_delayed_work_sync(&crda_timeout);
554 }
555
556 static void reset_crda_timeouts(void)
557 {
558         reg_crda_timeouts = 0;
559 }
560
561 /*
562  * This lets us keep regulatory code which is updated on a regulatory
563  * basis in userspace.
564  */
565 static int call_crda(const char *alpha2)
566 {
567         char country[12];
568         char *env[] = { country, NULL };
569         int ret;
570
571         snprintf(country, sizeof(country), "COUNTRY=%c%c",
572                  alpha2[0], alpha2[1]);
573
574         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
575                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
576                 return -EINVAL;
577         }
578
579         if (!is_world_regdom((char *) alpha2))
580                 pr_debug("Calling CRDA for country: %c%c\n",
581                          alpha2[0], alpha2[1]);
582         else
583                 pr_debug("Calling CRDA to update world regulatory domain\n");
584
585         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
586         if (ret)
587                 return ret;
588
589         queue_delayed_work(system_power_efficient_wq,
590                            &crda_timeout, msecs_to_jiffies(3142));
591         return 0;
592 }
593 #else
594 static inline void cancel_crda_timeout(void) {}
595 static inline void cancel_crda_timeout_sync(void) {}
596 static inline void reset_crda_timeouts(void) {}
597 static inline int call_crda(const char *alpha2)
598 {
599         return -ENODATA;
600 }
601 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
602
603 /* code to directly load a firmware database through request_firmware */
604 static const struct fwdb_header *regdb;
605
606 struct fwdb_country {
607         u8 alpha2[2];
608         __be16 coll_ptr;
609         /* this struct cannot be extended */
610 } __packed __aligned(4);
611
612 struct fwdb_collection {
613         u8 len;
614         u8 n_rules;
615         u8 dfs_region;
616         /* no optional data yet */
617         /* aligned to 2, then followed by __be16 array of rule pointers */
618 } __packed __aligned(4);
619
620 enum fwdb_flags {
621         FWDB_FLAG_NO_OFDM       = BIT(0),
622         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
623         FWDB_FLAG_DFS           = BIT(2),
624         FWDB_FLAG_NO_IR         = BIT(3),
625         FWDB_FLAG_AUTO_BW       = BIT(4),
626 };
627
628 struct fwdb_wmm_ac {
629         u8 ecw;
630         u8 aifsn;
631         __be16 cot;
632 } __packed;
633
634 struct fwdb_wmm_rule {
635         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
636         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
637 } __packed;
638
639 struct fwdb_rule {
640         u8 len;
641         u8 flags;
642         __be16 max_eirp;
643         __be32 start, end, max_bw;
644         /* start of optional data */
645         __be16 cac_timeout;
646         __be16 wmm_ptr;
647 } __packed __aligned(4);
648
649 #define FWDB_MAGIC 0x52474442
650 #define FWDB_VERSION 20
651
652 struct fwdb_header {
653         __be32 magic;
654         __be32 version;
655         struct fwdb_country country[];
656 } __packed __aligned(4);
657
658 static int ecw2cw(int ecw)
659 {
660         return (1 << ecw) - 1;
661 }
662
663 static bool valid_wmm(struct fwdb_wmm_rule *rule)
664 {
665         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
666         int i;
667
668         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
669                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
670                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
671                 u8 aifsn = ac[i].aifsn;
672
673                 if (cw_min >= cw_max)
674                         return false;
675
676                 if (aifsn < 1)
677                         return false;
678         }
679
680         return true;
681 }
682
683 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
684 {
685         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
686
687         if ((u8 *)rule + sizeof(rule->len) > data + size)
688                 return false;
689
690         /* mandatory fields */
691         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
692                 return false;
693         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
694                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
695                 struct fwdb_wmm_rule *wmm;
696
697                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
698                         return false;
699
700                 wmm = (void *)(data + wmm_ptr);
701
702                 if (!valid_wmm(wmm))
703                         return false;
704         }
705         return true;
706 }
707
708 static bool valid_country(const u8 *data, unsigned int size,
709                           const struct fwdb_country *country)
710 {
711         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
712         struct fwdb_collection *coll = (void *)(data + ptr);
713         __be16 *rules_ptr;
714         unsigned int i;
715
716         /* make sure we can read len/n_rules */
717         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
718                 return false;
719
720         /* make sure base struct and all rules fit */
721         if ((u8 *)coll + ALIGN(coll->len, 2) +
722             (coll->n_rules * 2) > data + size)
723                 return false;
724
725         /* mandatory fields must exist */
726         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
727                 return false;
728
729         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
730
731         for (i = 0; i < coll->n_rules; i++) {
732                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
733
734                 if (!valid_rule(data, size, rule_ptr))
735                         return false;
736         }
737
738         return true;
739 }
740
741 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
742 #include <keys/asymmetric-type.h>
743
744 static struct key *builtin_regdb_keys;
745
746 static int __init load_builtin_regdb_keys(void)
747 {
748         builtin_regdb_keys =
749                 keyring_alloc(".builtin_regdb_keys",
750                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
751                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
752                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
753                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
754         if (IS_ERR(builtin_regdb_keys))
755                 return PTR_ERR(builtin_regdb_keys);
756
757         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
758
759 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
760         x509_load_certificate_list(shipped_regdb_certs,
761                                    shipped_regdb_certs_len,
762                                    builtin_regdb_keys);
763 #endif
764 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
765         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
766                 x509_load_certificate_list(extra_regdb_certs,
767                                            extra_regdb_certs_len,
768                                            builtin_regdb_keys);
769 #endif
770
771         return 0;
772 }
773
774 MODULE_FIRMWARE("regulatory.db.p7s");
775
776 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
777 {
778         const struct firmware *sig;
779         bool result;
780
781         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
782                 return false;
783
784         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
785                                         builtin_regdb_keys,
786                                         VERIFYING_UNSPECIFIED_SIGNATURE,
787                                         NULL, NULL) == 0;
788
789         release_firmware(sig);
790
791         return result;
792 }
793
794 static void free_regdb_keyring(void)
795 {
796         key_put(builtin_regdb_keys);
797 }
798 #else
799 static int load_builtin_regdb_keys(void)
800 {
801         return 0;
802 }
803
804 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
805 {
806         return true;
807 }
808
809 static void free_regdb_keyring(void)
810 {
811 }
812 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
813
814 static bool valid_regdb(const u8 *data, unsigned int size)
815 {
816         const struct fwdb_header *hdr = (void *)data;
817         const struct fwdb_country *country;
818
819         if (size < sizeof(*hdr))
820                 return false;
821
822         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
823                 return false;
824
825         if (hdr->version != cpu_to_be32(FWDB_VERSION))
826                 return false;
827
828         if (!regdb_has_valid_signature(data, size))
829                 return false;
830
831         country = &hdr->country[0];
832         while ((u8 *)(country + 1) <= data + size) {
833                 if (!country->coll_ptr)
834                         break;
835                 if (!valid_country(data, size, country))
836                         return false;
837                 country++;
838         }
839
840         return true;
841 }
842
843 static void set_wmm_rule(const struct fwdb_header *db,
844                          const struct fwdb_country *country,
845                          const struct fwdb_rule *rule,
846                          struct ieee80211_reg_rule *rrule)
847 {
848         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
849         struct fwdb_wmm_rule *wmm;
850         unsigned int i, wmm_ptr;
851
852         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
853         wmm = (void *)((u8 *)db + wmm_ptr);
854
855         if (!valid_wmm(wmm)) {
856                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
857                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
858                        country->alpha2[0], country->alpha2[1]);
859                 return;
860         }
861
862         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
863                 wmm_rule->client[i].cw_min =
864                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
865                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
866                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
867                 wmm_rule->client[i].cot =
868                         1000 * be16_to_cpu(wmm->client[i].cot);
869                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
870                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
871                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
872                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
873         }
874
875         rrule->has_wmm = true;
876 }
877
878 static int __regdb_query_wmm(const struct fwdb_header *db,
879                              const struct fwdb_country *country, int freq,
880                              struct ieee80211_reg_rule *rrule)
881 {
882         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
883         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
884         int i;
885
886         for (i = 0; i < coll->n_rules; i++) {
887                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
888                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
889                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
890
891                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
892                         continue;
893
894                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
895                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
896                         set_wmm_rule(db, country, rule, rrule);
897                         return 0;
898                 }
899         }
900
901         return -ENODATA;
902 }
903
904 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
905 {
906         const struct fwdb_header *hdr = regdb;
907         const struct fwdb_country *country;
908
909         if (!regdb)
910                 return -ENODATA;
911
912         if (IS_ERR(regdb))
913                 return PTR_ERR(regdb);
914
915         country = &hdr->country[0];
916         while (country->coll_ptr) {
917                 if (alpha2_equal(alpha2, country->alpha2))
918                         return __regdb_query_wmm(regdb, country, freq, rule);
919
920                 country++;
921         }
922
923         return -ENODATA;
924 }
925 EXPORT_SYMBOL(reg_query_regdb_wmm);
926
927 static int regdb_query_country(const struct fwdb_header *db,
928                                const struct fwdb_country *country)
929 {
930         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
931         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
932         struct ieee80211_regdomain *regdom;
933         unsigned int i;
934
935         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
936                          GFP_KERNEL);
937         if (!regdom)
938                 return -ENOMEM;
939
940         regdom->n_reg_rules = coll->n_rules;
941         regdom->alpha2[0] = country->alpha2[0];
942         regdom->alpha2[1] = country->alpha2[1];
943         regdom->dfs_region = coll->dfs_region;
944
945         for (i = 0; i < regdom->n_reg_rules; i++) {
946                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
947                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
948                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
949                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
950
951                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
952                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
953                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
954
955                 rrule->power_rule.max_antenna_gain = 0;
956                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
957
958                 rrule->flags = 0;
959                 if (rule->flags & FWDB_FLAG_NO_OFDM)
960                         rrule->flags |= NL80211_RRF_NO_OFDM;
961                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
962                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
963                 if (rule->flags & FWDB_FLAG_DFS)
964                         rrule->flags |= NL80211_RRF_DFS;
965                 if (rule->flags & FWDB_FLAG_NO_IR)
966                         rrule->flags |= NL80211_RRF_NO_IR;
967                 if (rule->flags & FWDB_FLAG_AUTO_BW)
968                         rrule->flags |= NL80211_RRF_AUTO_BW;
969
970                 rrule->dfs_cac_ms = 0;
971
972                 /* handle optional data */
973                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
974                         rrule->dfs_cac_ms =
975                                 1000 * be16_to_cpu(rule->cac_timeout);
976                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
977                         set_wmm_rule(db, country, rule, rrule);
978         }
979
980         return reg_schedule_apply(regdom);
981 }
982
983 static int query_regdb(const char *alpha2)
984 {
985         const struct fwdb_header *hdr = regdb;
986         const struct fwdb_country *country;
987
988         ASSERT_RTNL();
989
990         if (IS_ERR(regdb))
991                 return PTR_ERR(regdb);
992
993         country = &hdr->country[0];
994         while (country->coll_ptr) {
995                 if (alpha2_equal(alpha2, country->alpha2))
996                         return regdb_query_country(regdb, country);
997                 country++;
998         }
999
1000         return -ENODATA;
1001 }
1002
1003 static void regdb_fw_cb(const struct firmware *fw, void *context)
1004 {
1005         int set_error = 0;
1006         bool restore = true;
1007         void *db;
1008
1009         if (!fw) {
1010                 pr_info("failed to load regulatory.db\n");
1011                 set_error = -ENODATA;
1012         } else if (!valid_regdb(fw->data, fw->size)) {
1013                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1014                 set_error = -EINVAL;
1015         }
1016
1017         rtnl_lock();
1018         if (regdb && !IS_ERR(regdb)) {
1019                 /* negative case - a bug
1020                  * positive case - can happen due to race in case of multiple cb's in
1021                  * queue, due to usage of asynchronous callback
1022                  *
1023                  * Either case, just restore and free new db.
1024                  */
1025         } else if (set_error) {
1026                 regdb = ERR_PTR(set_error);
1027         } else if (fw) {
1028                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1029                 if (db) {
1030                         regdb = db;
1031                         restore = context && query_regdb(context);
1032                 } else {
1033                         restore = true;
1034                 }
1035         }
1036
1037         if (restore)
1038                 restore_regulatory_settings(true, false);
1039
1040         rtnl_unlock();
1041
1042         kfree(context);
1043
1044         release_firmware(fw);
1045 }
1046
1047 MODULE_FIRMWARE("regulatory.db");
1048
1049 static int query_regdb_file(const char *alpha2)
1050 {
1051         int err;
1052
1053         ASSERT_RTNL();
1054
1055         if (regdb)
1056                 return query_regdb(alpha2);
1057
1058         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059         if (!alpha2)
1060                 return -ENOMEM;
1061
1062         err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063                                       &reg_pdev->dev, GFP_KERNEL,
1064                                       (void *)alpha2, regdb_fw_cb);
1065         if (err)
1066                 kfree(alpha2);
1067
1068         return err;
1069 }
1070
1071 int reg_reload_regdb(void)
1072 {
1073         const struct firmware *fw;
1074         void *db;
1075         int err;
1076         const struct ieee80211_regdomain *current_regdomain;
1077         struct regulatory_request *request;
1078
1079         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1080         if (err)
1081                 return err;
1082
1083         if (!valid_regdb(fw->data, fw->size)) {
1084                 err = -ENODATA;
1085                 goto out;
1086         }
1087
1088         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1089         if (!db) {
1090                 err = -ENOMEM;
1091                 goto out;
1092         }
1093
1094         rtnl_lock();
1095         if (!IS_ERR_OR_NULL(regdb))
1096                 kfree(regdb);
1097         regdb = db;
1098
1099         /* reset regulatory domain */
1100         current_regdomain = get_cfg80211_regdom();
1101
1102         request = kzalloc(sizeof(*request), GFP_KERNEL);
1103         if (!request) {
1104                 err = -ENOMEM;
1105                 goto out_unlock;
1106         }
1107
1108         request->wiphy_idx = WIPHY_IDX_INVALID;
1109         request->alpha2[0] = current_regdomain->alpha2[0];
1110         request->alpha2[1] = current_regdomain->alpha2[1];
1111         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1112         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1113
1114         reg_process_hint(request);
1115
1116 out_unlock:
1117         rtnl_unlock();
1118  out:
1119         release_firmware(fw);
1120         return err;
1121 }
1122
1123 static bool reg_query_database(struct regulatory_request *request)
1124 {
1125         if (query_regdb_file(request->alpha2) == 0)
1126                 return true;
1127
1128         if (call_crda(request->alpha2) == 0)
1129                 return true;
1130
1131         return false;
1132 }
1133
1134 bool reg_is_valid_request(const char *alpha2)
1135 {
1136         struct regulatory_request *lr = get_last_request();
1137
1138         if (!lr || lr->processed)
1139                 return false;
1140
1141         return alpha2_equal(lr->alpha2, alpha2);
1142 }
1143
1144 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1145 {
1146         struct regulatory_request *lr = get_last_request();
1147
1148         /*
1149          * Follow the driver's regulatory domain, if present, unless a country
1150          * IE has been processed or a user wants to help complaince further
1151          */
1152         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1153             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1154             wiphy->regd)
1155                 return get_wiphy_regdom(wiphy);
1156
1157         return get_cfg80211_regdom();
1158 }
1159
1160 static unsigned int
1161 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1162                                  const struct ieee80211_reg_rule *rule)
1163 {
1164         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1165         const struct ieee80211_freq_range *freq_range_tmp;
1166         const struct ieee80211_reg_rule *tmp;
1167         u32 start_freq, end_freq, idx, no;
1168
1169         for (idx = 0; idx < rd->n_reg_rules; idx++)
1170                 if (rule == &rd->reg_rules[idx])
1171                         break;
1172
1173         if (idx == rd->n_reg_rules)
1174                 return 0;
1175
1176         /* get start_freq */
1177         no = idx;
1178
1179         while (no) {
1180                 tmp = &rd->reg_rules[--no];
1181                 freq_range_tmp = &tmp->freq_range;
1182
1183                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1184                         break;
1185
1186                 freq_range = freq_range_tmp;
1187         }
1188
1189         start_freq = freq_range->start_freq_khz;
1190
1191         /* get end_freq */
1192         freq_range = &rule->freq_range;
1193         no = idx;
1194
1195         while (no < rd->n_reg_rules - 1) {
1196                 tmp = &rd->reg_rules[++no];
1197                 freq_range_tmp = &tmp->freq_range;
1198
1199                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1200                         break;
1201
1202                 freq_range = freq_range_tmp;
1203         }
1204
1205         end_freq = freq_range->end_freq_khz;
1206
1207         return end_freq - start_freq;
1208 }
1209
1210 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1211                                    const struct ieee80211_reg_rule *rule)
1212 {
1213         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1214
1215         if (rule->flags & NL80211_RRF_NO_320MHZ)
1216                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1217         if (rule->flags & NL80211_RRF_NO_160MHZ)
1218                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1219         if (rule->flags & NL80211_RRF_NO_80MHZ)
1220                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1221
1222         /*
1223          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1224          * are not allowed.
1225          */
1226         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1227             rule->flags & NL80211_RRF_NO_HT40PLUS)
1228                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1229
1230         return bw;
1231 }
1232
1233 /* Sanity check on a regulatory rule */
1234 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1235 {
1236         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1237         u32 freq_diff;
1238
1239         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1240                 return false;
1241
1242         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1243                 return false;
1244
1245         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1246
1247         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1248             freq_range->max_bandwidth_khz > freq_diff)
1249                 return false;
1250
1251         return true;
1252 }
1253
1254 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1255 {
1256         const struct ieee80211_reg_rule *reg_rule = NULL;
1257         unsigned int i;
1258
1259         if (!rd->n_reg_rules)
1260                 return false;
1261
1262         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1263                 return false;
1264
1265         for (i = 0; i < rd->n_reg_rules; i++) {
1266                 reg_rule = &rd->reg_rules[i];
1267                 if (!is_valid_reg_rule(reg_rule))
1268                         return false;
1269         }
1270
1271         return true;
1272 }
1273
1274 /**
1275  * freq_in_rule_band - tells us if a frequency is in a frequency band
1276  * @freq_range: frequency rule we want to query
1277  * @freq_khz: frequency we are inquiring about
1278  *
1279  * This lets us know if a specific frequency rule is or is not relevant to
1280  * a specific frequency's band. Bands are device specific and artificial
1281  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1282  * however it is safe for now to assume that a frequency rule should not be
1283  * part of a frequency's band if the start freq or end freq are off by more
1284  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1285  * 60 GHz band.
1286  * This resolution can be lowered and should be considered as we add
1287  * regulatory rule support for other "bands".
1288  *
1289  * Returns: whether or not the frequency is in the range
1290  */
1291 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1292                               u32 freq_khz)
1293 {
1294         /*
1295          * From 802.11ad: directional multi-gigabit (DMG):
1296          * Pertaining to operation in a frequency band containing a channel
1297          * with the Channel starting frequency above 45 GHz.
1298          */
1299         u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1300         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301                 return true;
1302         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303                 return true;
1304         return false;
1305 }
1306
1307 /*
1308  * Later on we can perhaps use the more restrictive DFS
1309  * region but we don't have information for that yet so
1310  * for now simply disallow conflicts.
1311  */
1312 static enum nl80211_dfs_regions
1313 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1314                          const enum nl80211_dfs_regions dfs_region2)
1315 {
1316         if (dfs_region1 != dfs_region2)
1317                 return NL80211_DFS_UNSET;
1318         return dfs_region1;
1319 }
1320
1321 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1322                                     const struct ieee80211_wmm_ac *wmm_ac2,
1323                                     struct ieee80211_wmm_ac *intersect)
1324 {
1325         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1326         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1327         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1328         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1329 }
1330
1331 /*
1332  * Helper for regdom_intersect(), this does the real
1333  * mathematical intersection fun
1334  */
1335 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1336                                const struct ieee80211_regdomain *rd2,
1337                                const struct ieee80211_reg_rule *rule1,
1338                                const struct ieee80211_reg_rule *rule2,
1339                                struct ieee80211_reg_rule *intersected_rule)
1340 {
1341         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1342         struct ieee80211_freq_range *freq_range;
1343         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1344         struct ieee80211_power_rule *power_rule;
1345         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1346         struct ieee80211_wmm_rule *wmm_rule;
1347         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1348
1349         freq_range1 = &rule1->freq_range;
1350         freq_range2 = &rule2->freq_range;
1351         freq_range = &intersected_rule->freq_range;
1352
1353         power_rule1 = &rule1->power_rule;
1354         power_rule2 = &rule2->power_rule;
1355         power_rule = &intersected_rule->power_rule;
1356
1357         wmm_rule1 = &rule1->wmm_rule;
1358         wmm_rule2 = &rule2->wmm_rule;
1359         wmm_rule = &intersected_rule->wmm_rule;
1360
1361         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1362                                          freq_range2->start_freq_khz);
1363         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1364                                        freq_range2->end_freq_khz);
1365
1366         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1367         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1368
1369         if (rule1->flags & NL80211_RRF_AUTO_BW)
1370                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1371         if (rule2->flags & NL80211_RRF_AUTO_BW)
1372                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1373
1374         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1375
1376         intersected_rule->flags = rule1->flags | rule2->flags;
1377
1378         /*
1379          * In case NL80211_RRF_AUTO_BW requested for both rules
1380          * set AUTO_BW in intersected rule also. Next we will
1381          * calculate BW correctly in handle_channel function.
1382          * In other case remove AUTO_BW flag while we calculate
1383          * maximum bandwidth correctly and auto calculation is
1384          * not required.
1385          */
1386         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1387             (rule2->flags & NL80211_RRF_AUTO_BW))
1388                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1389         else
1390                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1391
1392         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1393         if (freq_range->max_bandwidth_khz > freq_diff)
1394                 freq_range->max_bandwidth_khz = freq_diff;
1395
1396         power_rule->max_eirp = min(power_rule1->max_eirp,
1397                 power_rule2->max_eirp);
1398         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1399                 power_rule2->max_antenna_gain);
1400
1401         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1402                                            rule2->dfs_cac_ms);
1403
1404         if (rule1->has_wmm && rule2->has_wmm) {
1405                 u8 ac;
1406
1407                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1408                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1409                                                 &wmm_rule2->client[ac],
1410                                                 &wmm_rule->client[ac]);
1411                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1412                                                 &wmm_rule2->ap[ac],
1413                                                 &wmm_rule->ap[ac]);
1414                 }
1415
1416                 intersected_rule->has_wmm = true;
1417         } else if (rule1->has_wmm) {
1418                 *wmm_rule = *wmm_rule1;
1419                 intersected_rule->has_wmm = true;
1420         } else if (rule2->has_wmm) {
1421                 *wmm_rule = *wmm_rule2;
1422                 intersected_rule->has_wmm = true;
1423         } else {
1424                 intersected_rule->has_wmm = false;
1425         }
1426
1427         if (!is_valid_reg_rule(intersected_rule))
1428                 return -EINVAL;
1429
1430         return 0;
1431 }
1432
1433 /* check whether old rule contains new rule */
1434 static bool rule_contains(struct ieee80211_reg_rule *r1,
1435                           struct ieee80211_reg_rule *r2)
1436 {
1437         /* for simplicity, currently consider only same flags */
1438         if (r1->flags != r2->flags)
1439                 return false;
1440
1441         /* verify r1 is more restrictive */
1442         if ((r1->power_rule.max_antenna_gain >
1443              r2->power_rule.max_antenna_gain) ||
1444             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1445                 return false;
1446
1447         /* make sure r2's range is contained within r1 */
1448         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1449             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1450                 return false;
1451
1452         /* and finally verify that r1.max_bw >= r2.max_bw */
1453         if (r1->freq_range.max_bandwidth_khz <
1454             r2->freq_range.max_bandwidth_khz)
1455                 return false;
1456
1457         return true;
1458 }
1459
1460 /* add or extend current rules. do nothing if rule is already contained */
1461 static void add_rule(struct ieee80211_reg_rule *rule,
1462                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1463 {
1464         struct ieee80211_reg_rule *tmp_rule;
1465         int i;
1466
1467         for (i = 0; i < *n_rules; i++) {
1468                 tmp_rule = &reg_rules[i];
1469                 /* rule is already contained - do nothing */
1470                 if (rule_contains(tmp_rule, rule))
1471                         return;
1472
1473                 /* extend rule if possible */
1474                 if (rule_contains(rule, tmp_rule)) {
1475                         memcpy(tmp_rule, rule, sizeof(*rule));
1476                         return;
1477                 }
1478         }
1479
1480         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1481         (*n_rules)++;
1482 }
1483
1484 /**
1485  * regdom_intersect - do the intersection between two regulatory domains
1486  * @rd1: first regulatory domain
1487  * @rd2: second regulatory domain
1488  *
1489  * Use this function to get the intersection between two regulatory domains.
1490  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1491  * as no one single alpha2 can represent this regulatory domain.
1492  *
1493  * Returns a pointer to the regulatory domain structure which will hold the
1494  * resulting intersection of rules between rd1 and rd2. We will
1495  * kzalloc() this structure for you.
1496  *
1497  * Returns: the intersected regdomain
1498  */
1499 static struct ieee80211_regdomain *
1500 regdom_intersect(const struct ieee80211_regdomain *rd1,
1501                  const struct ieee80211_regdomain *rd2)
1502 {
1503         int r;
1504         unsigned int x, y;
1505         unsigned int num_rules = 0;
1506         const struct ieee80211_reg_rule *rule1, *rule2;
1507         struct ieee80211_reg_rule intersected_rule;
1508         struct ieee80211_regdomain *rd;
1509
1510         if (!rd1 || !rd2)
1511                 return NULL;
1512
1513         /*
1514          * First we get a count of the rules we'll need, then we actually
1515          * build them. This is to so we can malloc() and free() a
1516          * regdomain once. The reason we use reg_rules_intersect() here
1517          * is it will return -EINVAL if the rule computed makes no sense.
1518          * All rules that do check out OK are valid.
1519          */
1520
1521         for (x = 0; x < rd1->n_reg_rules; x++) {
1522                 rule1 = &rd1->reg_rules[x];
1523                 for (y = 0; y < rd2->n_reg_rules; y++) {
1524                         rule2 = &rd2->reg_rules[y];
1525                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1526                                                  &intersected_rule))
1527                                 num_rules++;
1528                 }
1529         }
1530
1531         if (!num_rules)
1532                 return NULL;
1533
1534         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1535         if (!rd)
1536                 return NULL;
1537
1538         for (x = 0; x < rd1->n_reg_rules; x++) {
1539                 rule1 = &rd1->reg_rules[x];
1540                 for (y = 0; y < rd2->n_reg_rules; y++) {
1541                         rule2 = &rd2->reg_rules[y];
1542                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1543                                                 &intersected_rule);
1544                         /*
1545                          * No need to memset here the intersected rule here as
1546                          * we're not using the stack anymore
1547                          */
1548                         if (r)
1549                                 continue;
1550
1551                         add_rule(&intersected_rule, rd->reg_rules,
1552                                  &rd->n_reg_rules);
1553                 }
1554         }
1555
1556         rd->alpha2[0] = '9';
1557         rd->alpha2[1] = '8';
1558         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1559                                                   rd2->dfs_region);
1560
1561         return rd;
1562 }
1563
1564 /*
1565  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1566  * want to just have the channel structure use these
1567  */
1568 static u32 map_regdom_flags(u32 rd_flags)
1569 {
1570         u32 channel_flags = 0;
1571         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1572                 channel_flags |= IEEE80211_CHAN_NO_IR;
1573         if (rd_flags & NL80211_RRF_DFS)
1574                 channel_flags |= IEEE80211_CHAN_RADAR;
1575         if (rd_flags & NL80211_RRF_NO_OFDM)
1576                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1577         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1578                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1579         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1580                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1581         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1582                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1583         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1584                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1585         if (rd_flags & NL80211_RRF_NO_80MHZ)
1586                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1587         if (rd_flags & NL80211_RRF_NO_160MHZ)
1588                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1589         if (rd_flags & NL80211_RRF_NO_HE)
1590                 channel_flags |= IEEE80211_CHAN_NO_HE;
1591         if (rd_flags & NL80211_RRF_NO_320MHZ)
1592                 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1593         if (rd_flags & NL80211_RRF_NO_EHT)
1594                 channel_flags |= IEEE80211_CHAN_NO_EHT;
1595         if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1596                 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1597         if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1598                 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1599         if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1600                 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1601         if (rd_flags & NL80211_RRF_PSD)
1602                 channel_flags |= IEEE80211_CHAN_PSD;
1603         return channel_flags;
1604 }
1605
1606 static const struct ieee80211_reg_rule *
1607 freq_reg_info_regd(u32 center_freq,
1608                    const struct ieee80211_regdomain *regd, u32 bw)
1609 {
1610         int i;
1611         bool band_rule_found = false;
1612         bool bw_fits = false;
1613
1614         if (!regd)
1615                 return ERR_PTR(-EINVAL);
1616
1617         for (i = 0; i < regd->n_reg_rules; i++) {
1618                 const struct ieee80211_reg_rule *rr;
1619                 const struct ieee80211_freq_range *fr = NULL;
1620
1621                 rr = &regd->reg_rules[i];
1622                 fr = &rr->freq_range;
1623
1624                 /*
1625                  * We only need to know if one frequency rule was
1626                  * in center_freq's band, that's enough, so let's
1627                  * not overwrite it once found
1628                  */
1629                 if (!band_rule_found)
1630                         band_rule_found = freq_in_rule_band(fr, center_freq);
1631
1632                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1633
1634                 if (band_rule_found && bw_fits)
1635                         return rr;
1636         }
1637
1638         if (!band_rule_found)
1639                 return ERR_PTR(-ERANGE);
1640
1641         return ERR_PTR(-EINVAL);
1642 }
1643
1644 static const struct ieee80211_reg_rule *
1645 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1646 {
1647         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1648         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1649         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1650         int i = ARRAY_SIZE(bws) - 1;
1651         u32 bw;
1652
1653         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1654                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1655                 if (!IS_ERR(reg_rule))
1656                         return reg_rule;
1657         }
1658
1659         return reg_rule;
1660 }
1661
1662 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1663                                                u32 center_freq)
1664 {
1665         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1666
1667         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1668 }
1669 EXPORT_SYMBOL(freq_reg_info);
1670
1671 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1672 {
1673         switch (initiator) {
1674         case NL80211_REGDOM_SET_BY_CORE:
1675                 return "core";
1676         case NL80211_REGDOM_SET_BY_USER:
1677                 return "user";
1678         case NL80211_REGDOM_SET_BY_DRIVER:
1679                 return "driver";
1680         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1681                 return "country element";
1682         default:
1683                 WARN_ON(1);
1684                 return "bug";
1685         }
1686 }
1687 EXPORT_SYMBOL(reg_initiator_name);
1688
1689 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1690                                           const struct ieee80211_reg_rule *reg_rule,
1691                                           const struct ieee80211_channel *chan)
1692 {
1693         const struct ieee80211_freq_range *freq_range = NULL;
1694         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1695         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1696
1697         freq_range = &reg_rule->freq_range;
1698
1699         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1700         center_freq_khz = ieee80211_channel_to_khz(chan);
1701         /* Check if auto calculation requested */
1702         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1703                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1704
1705         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1706         if (!cfg80211_does_bw_fit_range(freq_range,
1707                                         center_freq_khz,
1708                                         MHZ_TO_KHZ(10)))
1709                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1710         if (!cfg80211_does_bw_fit_range(freq_range,
1711                                         center_freq_khz,
1712                                         MHZ_TO_KHZ(20)))
1713                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1714
1715         if (is_s1g) {
1716                 /* S1G is strict about non overlapping channels. We can
1717                  * calculate which bandwidth is allowed per channel by finding
1718                  * the largest bandwidth which cleanly divides the freq_range.
1719                  */
1720                 int edge_offset;
1721                 int ch_bw = max_bandwidth_khz;
1722
1723                 while (ch_bw) {
1724                         edge_offset = (center_freq_khz - ch_bw / 2) -
1725                                       freq_range->start_freq_khz;
1726                         if (edge_offset % ch_bw == 0) {
1727                                 switch (KHZ_TO_MHZ(ch_bw)) {
1728                                 case 1:
1729                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1730                                         break;
1731                                 case 2:
1732                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1733                                         break;
1734                                 case 4:
1735                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1736                                         break;
1737                                 case 8:
1738                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1739                                         break;
1740                                 case 16:
1741                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1742                                         break;
1743                                 default:
1744                                         /* If we got here, no bandwidths fit on
1745                                          * this frequency, ie. band edge.
1746                                          */
1747                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1748                                         break;
1749                                 }
1750                                 break;
1751                         }
1752                         ch_bw /= 2;
1753                 }
1754         } else {
1755                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1756                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1757                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1758                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1759                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1760                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1761                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1762                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1763                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1764                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1765                 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1766                         bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1767         }
1768         return bw_flags;
1769 }
1770
1771 static void handle_channel_single_rule(struct wiphy *wiphy,
1772                                        enum nl80211_reg_initiator initiator,
1773                                        struct ieee80211_channel *chan,
1774                                        u32 flags,
1775                                        struct regulatory_request *lr,
1776                                        struct wiphy *request_wiphy,
1777                                        const struct ieee80211_reg_rule *reg_rule)
1778 {
1779         u32 bw_flags = 0;
1780         const struct ieee80211_power_rule *power_rule = NULL;
1781         const struct ieee80211_regdomain *regd;
1782
1783         regd = reg_get_regdomain(wiphy);
1784
1785         power_rule = &reg_rule->power_rule;
1786         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1787
1788         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1789             request_wiphy && request_wiphy == wiphy &&
1790             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1791                 /*
1792                  * This guarantees the driver's requested regulatory domain
1793                  * will always be used as a base for further regulatory
1794                  * settings
1795                  */
1796                 chan->flags = chan->orig_flags =
1797                         map_regdom_flags(reg_rule->flags) | bw_flags;
1798                 chan->max_antenna_gain = chan->orig_mag =
1799                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1800                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1801                         (int) MBM_TO_DBM(power_rule->max_eirp);
1802
1803                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1804                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1805                         if (reg_rule->dfs_cac_ms)
1806                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1807                 }
1808
1809                 if (chan->flags & IEEE80211_CHAN_PSD)
1810                         chan->psd = reg_rule->psd;
1811
1812                 return;
1813         }
1814
1815         chan->dfs_state = NL80211_DFS_USABLE;
1816         chan->dfs_state_entered = jiffies;
1817
1818         chan->beacon_found = false;
1819         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1820         chan->max_antenna_gain =
1821                 min_t(int, chan->orig_mag,
1822                       MBI_TO_DBI(power_rule->max_antenna_gain));
1823         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1824
1825         if (chan->flags & IEEE80211_CHAN_RADAR) {
1826                 if (reg_rule->dfs_cac_ms)
1827                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1828                 else
1829                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830         }
1831
1832         if (chan->flags & IEEE80211_CHAN_PSD)
1833                 chan->psd = reg_rule->psd;
1834
1835         if (chan->orig_mpwr) {
1836                 /*
1837                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1838                  * will always follow the passed country IE power settings.
1839                  */
1840                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1841                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1842                         chan->max_power = chan->max_reg_power;
1843                 else
1844                         chan->max_power = min(chan->orig_mpwr,
1845                                               chan->max_reg_power);
1846         } else
1847                 chan->max_power = chan->max_reg_power;
1848 }
1849
1850 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1851                                           enum nl80211_reg_initiator initiator,
1852                                           struct ieee80211_channel *chan,
1853                                           u32 flags,
1854                                           struct regulatory_request *lr,
1855                                           struct wiphy *request_wiphy,
1856                                           const struct ieee80211_reg_rule *rrule1,
1857                                           const struct ieee80211_reg_rule *rrule2,
1858                                           struct ieee80211_freq_range *comb_range)
1859 {
1860         u32 bw_flags1 = 0;
1861         u32 bw_flags2 = 0;
1862         const struct ieee80211_power_rule *power_rule1 = NULL;
1863         const struct ieee80211_power_rule *power_rule2 = NULL;
1864         const struct ieee80211_regdomain *regd;
1865
1866         regd = reg_get_regdomain(wiphy);
1867
1868         power_rule1 = &rrule1->power_rule;
1869         power_rule2 = &rrule2->power_rule;
1870         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1871         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1872
1873         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1874             request_wiphy && request_wiphy == wiphy &&
1875             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1876                 /* This guarantees the driver's requested regulatory domain
1877                  * will always be used as a base for further regulatory
1878                  * settings
1879                  */
1880                 chan->flags =
1881                         map_regdom_flags(rrule1->flags) |
1882                         map_regdom_flags(rrule2->flags) |
1883                         bw_flags1 |
1884                         bw_flags2;
1885                 chan->orig_flags = chan->flags;
1886                 chan->max_antenna_gain =
1887                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1888                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1889                 chan->orig_mag = chan->max_antenna_gain;
1890                 chan->max_reg_power =
1891                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1892                               MBM_TO_DBM(power_rule2->max_eirp));
1893                 chan->max_power = chan->max_reg_power;
1894                 chan->orig_mpwr = chan->max_reg_power;
1895
1896                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1897                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1898                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1899                                 chan->dfs_cac_ms = max_t(unsigned int,
1900                                                          rrule1->dfs_cac_ms,
1901                                                          rrule2->dfs_cac_ms);
1902                 }
1903
1904                 if ((rrule1->flags & NL80211_RRF_PSD) &&
1905                     (rrule2->flags & NL80211_RRF_PSD))
1906                         chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1907                 else
1908                         chan->flags &= ~NL80211_RRF_PSD;
1909
1910                 return;
1911         }
1912
1913         chan->dfs_state = NL80211_DFS_USABLE;
1914         chan->dfs_state_entered = jiffies;
1915
1916         chan->beacon_found = false;
1917         chan->flags = flags | bw_flags1 | bw_flags2 |
1918                       map_regdom_flags(rrule1->flags) |
1919                       map_regdom_flags(rrule2->flags);
1920
1921         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1922          * (otherwise no adj. rule case), recheck therefore
1923          */
1924         if (cfg80211_does_bw_fit_range(comb_range,
1925                                        ieee80211_channel_to_khz(chan),
1926                                        MHZ_TO_KHZ(10)))
1927                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1928         if (cfg80211_does_bw_fit_range(comb_range,
1929                                        ieee80211_channel_to_khz(chan),
1930                                        MHZ_TO_KHZ(20)))
1931                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1932
1933         chan->max_antenna_gain =
1934                 min_t(int, chan->orig_mag,
1935                       min_t(int,
1936                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1937                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1938         chan->max_reg_power = min_t(int,
1939                                     MBM_TO_DBM(power_rule1->max_eirp),
1940                                     MBM_TO_DBM(power_rule2->max_eirp));
1941
1942         if (chan->flags & IEEE80211_CHAN_RADAR) {
1943                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1944                         chan->dfs_cac_ms = max_t(unsigned int,
1945                                                  rrule1->dfs_cac_ms,
1946                                                  rrule2->dfs_cac_ms);
1947                 else
1948                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1949         }
1950
1951         if (chan->orig_mpwr) {
1952                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1953                  * will always follow the passed country IE power settings.
1954                  */
1955                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1956                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1957                         chan->max_power = chan->max_reg_power;
1958                 else
1959                         chan->max_power = min(chan->orig_mpwr,
1960                                               chan->max_reg_power);
1961         } else {
1962                 chan->max_power = chan->max_reg_power;
1963         }
1964 }
1965
1966 /* Note that right now we assume the desired channel bandwidth
1967  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1968  * per channel, the primary and the extension channel).
1969  */
1970 static void handle_channel(struct wiphy *wiphy,
1971                            enum nl80211_reg_initiator initiator,
1972                            struct ieee80211_channel *chan)
1973 {
1974         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1975         struct regulatory_request *lr = get_last_request();
1976         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1977         const struct ieee80211_reg_rule *rrule = NULL;
1978         const struct ieee80211_reg_rule *rrule1 = NULL;
1979         const struct ieee80211_reg_rule *rrule2 = NULL;
1980
1981         u32 flags = chan->orig_flags;
1982
1983         rrule = freq_reg_info(wiphy, orig_chan_freq);
1984         if (IS_ERR(rrule)) {
1985                 /* check for adjacent match, therefore get rules for
1986                  * chan - 20 MHz and chan + 20 MHz and test
1987                  * if reg rules are adjacent
1988                  */
1989                 rrule1 = freq_reg_info(wiphy,
1990                                        orig_chan_freq - MHZ_TO_KHZ(20));
1991                 rrule2 = freq_reg_info(wiphy,
1992                                        orig_chan_freq + MHZ_TO_KHZ(20));
1993                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1994                         struct ieee80211_freq_range comb_range;
1995
1996                         if (rrule1->freq_range.end_freq_khz !=
1997                             rrule2->freq_range.start_freq_khz)
1998                                 goto disable_chan;
1999
2000                         comb_range.start_freq_khz =
2001                                 rrule1->freq_range.start_freq_khz;
2002                         comb_range.end_freq_khz =
2003                                 rrule2->freq_range.end_freq_khz;
2004                         comb_range.max_bandwidth_khz =
2005                                 min_t(u32,
2006                                       rrule1->freq_range.max_bandwidth_khz,
2007                                       rrule2->freq_range.max_bandwidth_khz);
2008
2009                         if (!cfg80211_does_bw_fit_range(&comb_range,
2010                                                         orig_chan_freq,
2011                                                         MHZ_TO_KHZ(20)))
2012                                 goto disable_chan;
2013
2014                         handle_channel_adjacent_rules(wiphy, initiator, chan,
2015                                                       flags, lr, request_wiphy,
2016                                                       rrule1, rrule2,
2017                                                       &comb_range);
2018                         return;
2019                 }
2020
2021 disable_chan:
2022                 /* We will disable all channels that do not match our
2023                  * received regulatory rule unless the hint is coming
2024                  * from a Country IE and the Country IE had no information
2025                  * about a band. The IEEE 802.11 spec allows for an AP
2026                  * to send only a subset of the regulatory rules allowed,
2027                  * so an AP in the US that only supports 2.4 GHz may only send
2028                  * a country IE with information for the 2.4 GHz band
2029                  * while 5 GHz is still supported.
2030                  */
2031                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2032                     PTR_ERR(rrule) == -ERANGE)
2033                         return;
2034
2035                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2036                     request_wiphy && request_wiphy == wiphy &&
2037                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2038                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2039                                  chan->center_freq, chan->freq_offset);
2040                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2041                         chan->flags = chan->orig_flags;
2042                 } else {
2043                         pr_debug("Disabling freq %d.%03d MHz\n",
2044                                  chan->center_freq, chan->freq_offset);
2045                         chan->flags |= IEEE80211_CHAN_DISABLED;
2046                 }
2047                 return;
2048         }
2049
2050         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2051                                    request_wiphy, rrule);
2052 }
2053
2054 static void handle_band(struct wiphy *wiphy,
2055                         enum nl80211_reg_initiator initiator,
2056                         struct ieee80211_supported_band *sband)
2057 {
2058         unsigned int i;
2059
2060         if (!sband)
2061                 return;
2062
2063         for (i = 0; i < sband->n_channels; i++)
2064                 handle_channel(wiphy, initiator, &sband->channels[i]);
2065 }
2066
2067 static bool reg_request_cell_base(struct regulatory_request *request)
2068 {
2069         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2070                 return false;
2071         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2072 }
2073
2074 bool reg_last_request_cell_base(void)
2075 {
2076         return reg_request_cell_base(get_last_request());
2077 }
2078
2079 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2080 /* Core specific check */
2081 static enum reg_request_treatment
2082 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2083 {
2084         struct regulatory_request *lr = get_last_request();
2085
2086         if (!reg_num_devs_support_basehint)
2087                 return REG_REQ_IGNORE;
2088
2089         if (reg_request_cell_base(lr) &&
2090             !regdom_changes(pending_request->alpha2))
2091                 return REG_REQ_ALREADY_SET;
2092
2093         return REG_REQ_OK;
2094 }
2095
2096 /* Device specific check */
2097 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2098 {
2099         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2100 }
2101 #else
2102 static enum reg_request_treatment
2103 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2104 {
2105         return REG_REQ_IGNORE;
2106 }
2107
2108 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2109 {
2110         return true;
2111 }
2112 #endif
2113
2114 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2115 {
2116         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2117             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2118                 return true;
2119         return false;
2120 }
2121
2122 static bool ignore_reg_update(struct wiphy *wiphy,
2123                               enum nl80211_reg_initiator initiator)
2124 {
2125         struct regulatory_request *lr = get_last_request();
2126
2127         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2128                 return true;
2129
2130         if (!lr) {
2131                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2132                          reg_initiator_name(initiator));
2133                 return true;
2134         }
2135
2136         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2137             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2138                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2139                          reg_initiator_name(initiator));
2140                 return true;
2141         }
2142
2143         /*
2144          * wiphy->regd will be set once the device has its own
2145          * desired regulatory domain set
2146          */
2147         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2148             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2149             !is_world_regdom(lr->alpha2)) {
2150                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2151                          reg_initiator_name(initiator));
2152                 return true;
2153         }
2154
2155         if (reg_request_cell_base(lr))
2156                 return reg_dev_ignore_cell_hint(wiphy);
2157
2158         return false;
2159 }
2160
2161 static bool reg_is_world_roaming(struct wiphy *wiphy)
2162 {
2163         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2164         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2165         struct regulatory_request *lr = get_last_request();
2166
2167         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2168                 return true;
2169
2170         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2171             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2172                 return true;
2173
2174         return false;
2175 }
2176
2177 static void reg_call_notifier(struct wiphy *wiphy,
2178                               struct regulatory_request *request)
2179 {
2180         if (wiphy->reg_notifier)
2181                 wiphy->reg_notifier(wiphy, request);
2182 }
2183
2184 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185                               struct reg_beacon *reg_beacon)
2186 {
2187         struct ieee80211_supported_band *sband;
2188         struct ieee80211_channel *chan;
2189         bool channel_changed = false;
2190         struct ieee80211_channel chan_before;
2191         struct regulatory_request *lr = get_last_request();
2192
2193         sband = wiphy->bands[reg_beacon->chan.band];
2194         chan = &sband->channels[chan_idx];
2195
2196         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2197                 return;
2198
2199         if (chan->beacon_found)
2200                 return;
2201
2202         chan->beacon_found = true;
2203
2204         if (!reg_is_world_roaming(wiphy))
2205                 return;
2206
2207         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2208                 return;
2209
2210         chan_before = *chan;
2211
2212         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2213                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2214                 channel_changed = true;
2215         }
2216
2217         if (channel_changed) {
2218                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2219                 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2220                         reg_call_notifier(wiphy, lr);
2221         }
2222 }
2223
2224 /*
2225  * Called when a scan on a wiphy finds a beacon on
2226  * new channel
2227  */
2228 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2229                                     struct reg_beacon *reg_beacon)
2230 {
2231         unsigned int i;
2232         struct ieee80211_supported_band *sband;
2233
2234         if (!wiphy->bands[reg_beacon->chan.band])
2235                 return;
2236
2237         sband = wiphy->bands[reg_beacon->chan.band];
2238
2239         for (i = 0; i < sband->n_channels; i++)
2240                 handle_reg_beacon(wiphy, i, reg_beacon);
2241 }
2242
2243 /*
2244  * Called upon reg changes or a new wiphy is added
2245  */
2246 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2247 {
2248         unsigned int i;
2249         struct ieee80211_supported_band *sband;
2250         struct reg_beacon *reg_beacon;
2251
2252         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2253                 if (!wiphy->bands[reg_beacon->chan.band])
2254                         continue;
2255                 sband = wiphy->bands[reg_beacon->chan.band];
2256                 for (i = 0; i < sband->n_channels; i++)
2257                         handle_reg_beacon(wiphy, i, reg_beacon);
2258         }
2259 }
2260
2261 /* Reap the advantages of previously found beacons */
2262 static void reg_process_beacons(struct wiphy *wiphy)
2263 {
2264         /*
2265          * Means we are just firing up cfg80211, so no beacons would
2266          * have been processed yet.
2267          */
2268         if (!last_request)
2269                 return;
2270         wiphy_update_beacon_reg(wiphy);
2271 }
2272
2273 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2274 {
2275         if (!chan)
2276                 return false;
2277         if (chan->flags & IEEE80211_CHAN_DISABLED)
2278                 return false;
2279         /* This would happen when regulatory rules disallow HT40 completely */
2280         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2281                 return false;
2282         return true;
2283 }
2284
2285 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2286                                          struct ieee80211_channel *channel)
2287 {
2288         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2289         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2290         const struct ieee80211_regdomain *regd;
2291         unsigned int i;
2292         u32 flags;
2293
2294         if (!is_ht40_allowed(channel)) {
2295                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2296                 return;
2297         }
2298
2299         /*
2300          * We need to ensure the extension channels exist to
2301          * be able to use HT40- or HT40+, this finds them (or not)
2302          */
2303         for (i = 0; i < sband->n_channels; i++) {
2304                 struct ieee80211_channel *c = &sband->channels[i];
2305
2306                 if (c->center_freq == (channel->center_freq - 20))
2307                         channel_before = c;
2308                 if (c->center_freq == (channel->center_freq + 20))
2309                         channel_after = c;
2310         }
2311
2312         flags = 0;
2313         regd = get_wiphy_regdom(wiphy);
2314         if (regd) {
2315                 const struct ieee80211_reg_rule *reg_rule =
2316                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2317                                            regd, MHZ_TO_KHZ(20));
2318
2319                 if (!IS_ERR(reg_rule))
2320                         flags = reg_rule->flags;
2321         }
2322
2323         /*
2324          * Please note that this assumes target bandwidth is 20 MHz,
2325          * if that ever changes we also need to change the below logic
2326          * to include that as well.
2327          */
2328         if (!is_ht40_allowed(channel_before) ||
2329             flags & NL80211_RRF_NO_HT40MINUS)
2330                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2331         else
2332                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2333
2334         if (!is_ht40_allowed(channel_after) ||
2335             flags & NL80211_RRF_NO_HT40PLUS)
2336                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2337         else
2338                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2339 }
2340
2341 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2342                                       struct ieee80211_supported_band *sband)
2343 {
2344         unsigned int i;
2345
2346         if (!sband)
2347                 return;
2348
2349         for (i = 0; i < sband->n_channels; i++)
2350                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2351 }
2352
2353 static void reg_process_ht_flags(struct wiphy *wiphy)
2354 {
2355         enum nl80211_band band;
2356
2357         if (!wiphy)
2358                 return;
2359
2360         for (band = 0; band < NUM_NL80211_BANDS; band++)
2361                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2362 }
2363
2364 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2365 {
2366         struct cfg80211_chan_def chandef = {};
2367         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2368         enum nl80211_iftype iftype;
2369         bool ret;
2370         int link;
2371
2372         iftype = wdev->iftype;
2373
2374         /* make sure the interface is active */
2375         if (!wdev->netdev || !netif_running(wdev->netdev))
2376                 return true;
2377
2378         for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2379                 struct ieee80211_channel *chan;
2380
2381                 if (!wdev->valid_links && link > 0)
2382                         break;
2383                 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2384                         continue;
2385                 switch (iftype) {
2386                 case NL80211_IFTYPE_AP:
2387                 case NL80211_IFTYPE_P2P_GO:
2388                         if (!wdev->links[link].ap.beacon_interval)
2389                                 continue;
2390                         chandef = wdev->links[link].ap.chandef;
2391                         break;
2392                 case NL80211_IFTYPE_MESH_POINT:
2393                         if (!wdev->u.mesh.beacon_interval)
2394                                 continue;
2395                         chandef = wdev->u.mesh.chandef;
2396                         break;
2397                 case NL80211_IFTYPE_ADHOC:
2398                         if (!wdev->u.ibss.ssid_len)
2399                                 continue;
2400                         chandef = wdev->u.ibss.chandef;
2401                         break;
2402                 case NL80211_IFTYPE_STATION:
2403                 case NL80211_IFTYPE_P2P_CLIENT:
2404                         /* Maybe we could consider disabling that link only? */
2405                         if (!wdev->links[link].client.current_bss)
2406                                 continue;
2407
2408                         chan = wdev->links[link].client.current_bss->pub.channel;
2409                         if (!chan)
2410                                 continue;
2411
2412                         if (!rdev->ops->get_channel ||
2413                             rdev_get_channel(rdev, wdev, link, &chandef))
2414                                 cfg80211_chandef_create(&chandef, chan,
2415                                                         NL80211_CHAN_NO_HT);
2416                         break;
2417                 case NL80211_IFTYPE_MONITOR:
2418                 case NL80211_IFTYPE_AP_VLAN:
2419                 case NL80211_IFTYPE_P2P_DEVICE:
2420                         /* no enforcement required */
2421                         break;
2422                 case NL80211_IFTYPE_OCB:
2423                         if (!wdev->u.ocb.chandef.chan)
2424                                 continue;
2425                         chandef = wdev->u.ocb.chandef;
2426                         break;
2427                 case NL80211_IFTYPE_NAN:
2428                         /* we have no info, but NAN is also pretty universal */
2429                         continue;
2430                 default:
2431                         /* others not implemented for now */
2432                         WARN_ON_ONCE(1);
2433                         break;
2434                 }
2435
2436                 switch (iftype) {
2437                 case NL80211_IFTYPE_AP:
2438                 case NL80211_IFTYPE_P2P_GO:
2439                 case NL80211_IFTYPE_ADHOC:
2440                 case NL80211_IFTYPE_MESH_POINT:
2441                         ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2442                                                             iftype);
2443                         if (!ret)
2444                                 return ret;
2445                         break;
2446                 case NL80211_IFTYPE_STATION:
2447                 case NL80211_IFTYPE_P2P_CLIENT:
2448                         ret = cfg80211_chandef_usable(wiphy, &chandef,
2449                                                       IEEE80211_CHAN_DISABLED);
2450                         if (!ret)
2451                                 return ret;
2452                         break;
2453                 default:
2454                         break;
2455                 }
2456         }
2457
2458         return true;
2459 }
2460
2461 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2462 {
2463         struct wireless_dev *wdev;
2464         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2465
2466         wiphy_lock(wiphy);
2467         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2468                 if (!reg_wdev_chan_valid(wiphy, wdev))
2469                         cfg80211_leave(rdev, wdev);
2470         wiphy_unlock(wiphy);
2471 }
2472
2473 static void reg_check_chans_work(struct work_struct *work)
2474 {
2475         struct cfg80211_registered_device *rdev;
2476
2477         pr_debug("Verifying active interfaces after reg change\n");
2478         rtnl_lock();
2479
2480         for_each_rdev(rdev)
2481                 reg_leave_invalid_chans(&rdev->wiphy);
2482
2483         rtnl_unlock();
2484 }
2485
2486 void reg_check_channels(void)
2487 {
2488         /*
2489          * Give usermode a chance to do something nicer (move to another
2490          * channel, orderly disconnection), before forcing a disconnection.
2491          */
2492         mod_delayed_work(system_power_efficient_wq,
2493                          &reg_check_chans,
2494                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2495 }
2496
2497 static void wiphy_update_regulatory(struct wiphy *wiphy,
2498                                     enum nl80211_reg_initiator initiator)
2499 {
2500         enum nl80211_band band;
2501         struct regulatory_request *lr = get_last_request();
2502
2503         if (ignore_reg_update(wiphy, initiator)) {
2504                 /*
2505                  * Regulatory updates set by CORE are ignored for custom
2506                  * regulatory cards. Let us notify the changes to the driver,
2507                  * as some drivers used this to restore its orig_* reg domain.
2508                  */
2509                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2510                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2511                     !(wiphy->regulatory_flags &
2512                       REGULATORY_WIPHY_SELF_MANAGED))
2513                         reg_call_notifier(wiphy, lr);
2514                 return;
2515         }
2516
2517         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2518
2519         for (band = 0; band < NUM_NL80211_BANDS; band++)
2520                 handle_band(wiphy, initiator, wiphy->bands[band]);
2521
2522         reg_process_beacons(wiphy);
2523         reg_process_ht_flags(wiphy);
2524         reg_call_notifier(wiphy, lr);
2525 }
2526
2527 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2528 {
2529         struct cfg80211_registered_device *rdev;
2530         struct wiphy *wiphy;
2531
2532         ASSERT_RTNL();
2533
2534         for_each_rdev(rdev) {
2535                 wiphy = &rdev->wiphy;
2536                 wiphy_update_regulatory(wiphy, initiator);
2537         }
2538
2539         reg_check_channels();
2540 }
2541
2542 static void handle_channel_custom(struct wiphy *wiphy,
2543                                   struct ieee80211_channel *chan,
2544                                   const struct ieee80211_regdomain *regd,
2545                                   u32 min_bw)
2546 {
2547         u32 bw_flags = 0;
2548         const struct ieee80211_reg_rule *reg_rule = NULL;
2549         const struct ieee80211_power_rule *power_rule = NULL;
2550         u32 bw, center_freq_khz;
2551
2552         center_freq_khz = ieee80211_channel_to_khz(chan);
2553         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2554                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2555                 if (!IS_ERR(reg_rule))
2556                         break;
2557         }
2558
2559         if (IS_ERR_OR_NULL(reg_rule)) {
2560                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2561                          chan->center_freq, chan->freq_offset);
2562                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2563                         chan->flags |= IEEE80211_CHAN_DISABLED;
2564                 } else {
2565                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2566                         chan->flags = chan->orig_flags;
2567                 }
2568                 return;
2569         }
2570
2571         power_rule = &reg_rule->power_rule;
2572         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2573
2574         chan->dfs_state_entered = jiffies;
2575         chan->dfs_state = NL80211_DFS_USABLE;
2576
2577         chan->beacon_found = false;
2578
2579         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2580                 chan->flags = chan->orig_flags | bw_flags |
2581                               map_regdom_flags(reg_rule->flags);
2582         else
2583                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2584
2585         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2586         chan->max_reg_power = chan->max_power =
2587                 (int) MBM_TO_DBM(power_rule->max_eirp);
2588
2589         if (chan->flags & IEEE80211_CHAN_RADAR) {
2590                 if (reg_rule->dfs_cac_ms)
2591                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2592                 else
2593                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2594         }
2595
2596         if (chan->flags & IEEE80211_CHAN_PSD)
2597                 chan->psd = reg_rule->psd;
2598
2599         chan->max_power = chan->max_reg_power;
2600 }
2601
2602 static void handle_band_custom(struct wiphy *wiphy,
2603                                struct ieee80211_supported_band *sband,
2604                                const struct ieee80211_regdomain *regd)
2605 {
2606         unsigned int i;
2607
2608         if (!sband)
2609                 return;
2610
2611         /*
2612          * We currently assume that you always want at least 20 MHz,
2613          * otherwise channel 12 might get enabled if this rule is
2614          * compatible to US, which permits 2402 - 2472 MHz.
2615          */
2616         for (i = 0; i < sband->n_channels; i++)
2617                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2618                                       MHZ_TO_KHZ(20));
2619 }
2620
2621 /* Used by drivers prior to wiphy registration */
2622 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2623                                    const struct ieee80211_regdomain *regd)
2624 {
2625         const struct ieee80211_regdomain *new_regd, *tmp;
2626         enum nl80211_band band;
2627         unsigned int bands_set = 0;
2628
2629         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2630              "wiphy should have REGULATORY_CUSTOM_REG\n");
2631         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2632
2633         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2634                 if (!wiphy->bands[band])
2635                         continue;
2636                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2637                 bands_set++;
2638         }
2639
2640         /*
2641          * no point in calling this if it won't have any effect
2642          * on your device's supported bands.
2643          */
2644         WARN_ON(!bands_set);
2645         new_regd = reg_copy_regd(regd);
2646         if (IS_ERR(new_regd))
2647                 return;
2648
2649         rtnl_lock();
2650         wiphy_lock(wiphy);
2651
2652         tmp = get_wiphy_regdom(wiphy);
2653         rcu_assign_pointer(wiphy->regd, new_regd);
2654         rcu_free_regdom(tmp);
2655
2656         wiphy_unlock(wiphy);
2657         rtnl_unlock();
2658 }
2659 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2660
2661 static void reg_set_request_processed(void)
2662 {
2663         bool need_more_processing = false;
2664         struct regulatory_request *lr = get_last_request();
2665
2666         lr->processed = true;
2667
2668         spin_lock(&reg_requests_lock);
2669         if (!list_empty(&reg_requests_list))
2670                 need_more_processing = true;
2671         spin_unlock(&reg_requests_lock);
2672
2673         cancel_crda_timeout();
2674
2675         if (need_more_processing)
2676                 schedule_work(&reg_work);
2677 }
2678
2679 /**
2680  * reg_process_hint_core - process core regulatory requests
2681  * @core_request: a pending core regulatory request
2682  *
2683  * The wireless subsystem can use this function to process
2684  * a regulatory request issued by the regulatory core.
2685  *
2686  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2687  *      hint was processed or ignored
2688  */
2689 static enum reg_request_treatment
2690 reg_process_hint_core(struct regulatory_request *core_request)
2691 {
2692         if (reg_query_database(core_request)) {
2693                 core_request->intersect = false;
2694                 core_request->processed = false;
2695                 reg_update_last_request(core_request);
2696                 return REG_REQ_OK;
2697         }
2698
2699         return REG_REQ_IGNORE;
2700 }
2701
2702 static enum reg_request_treatment
2703 __reg_process_hint_user(struct regulatory_request *user_request)
2704 {
2705         struct regulatory_request *lr = get_last_request();
2706
2707         if (reg_request_cell_base(user_request))
2708                 return reg_ignore_cell_hint(user_request);
2709
2710         if (reg_request_cell_base(lr))
2711                 return REG_REQ_IGNORE;
2712
2713         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2714                 return REG_REQ_INTERSECT;
2715         /*
2716          * If the user knows better the user should set the regdom
2717          * to their country before the IE is picked up
2718          */
2719         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2720             lr->intersect)
2721                 return REG_REQ_IGNORE;
2722         /*
2723          * Process user requests only after previous user/driver/core
2724          * requests have been processed
2725          */
2726         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2727              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2728              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2729             regdom_changes(lr->alpha2))
2730                 return REG_REQ_IGNORE;
2731
2732         if (!regdom_changes(user_request->alpha2))
2733                 return REG_REQ_ALREADY_SET;
2734
2735         return REG_REQ_OK;
2736 }
2737
2738 /**
2739  * reg_process_hint_user - process user regulatory requests
2740  * @user_request: a pending user regulatory request
2741  *
2742  * The wireless subsystem can use this function to process
2743  * a regulatory request initiated by userspace.
2744  *
2745  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2746  *      hint was processed or ignored
2747  */
2748 static enum reg_request_treatment
2749 reg_process_hint_user(struct regulatory_request *user_request)
2750 {
2751         enum reg_request_treatment treatment;
2752
2753         treatment = __reg_process_hint_user(user_request);
2754         if (treatment == REG_REQ_IGNORE ||
2755             treatment == REG_REQ_ALREADY_SET)
2756                 return REG_REQ_IGNORE;
2757
2758         user_request->intersect = treatment == REG_REQ_INTERSECT;
2759         user_request->processed = false;
2760
2761         if (reg_query_database(user_request)) {
2762                 reg_update_last_request(user_request);
2763                 user_alpha2[0] = user_request->alpha2[0];
2764                 user_alpha2[1] = user_request->alpha2[1];
2765                 return REG_REQ_OK;
2766         }
2767
2768         return REG_REQ_IGNORE;
2769 }
2770
2771 static enum reg_request_treatment
2772 __reg_process_hint_driver(struct regulatory_request *driver_request)
2773 {
2774         struct regulatory_request *lr = get_last_request();
2775
2776         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2777                 if (regdom_changes(driver_request->alpha2))
2778                         return REG_REQ_OK;
2779                 return REG_REQ_ALREADY_SET;
2780         }
2781
2782         /*
2783          * This would happen if you unplug and plug your card
2784          * back in or if you add a new device for which the previously
2785          * loaded card also agrees on the regulatory domain.
2786          */
2787         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2788             !regdom_changes(driver_request->alpha2))
2789                 return REG_REQ_ALREADY_SET;
2790
2791         return REG_REQ_INTERSECT;
2792 }
2793
2794 /**
2795  * reg_process_hint_driver - process driver regulatory requests
2796  * @wiphy: the wireless device for the regulatory request
2797  * @driver_request: a pending driver regulatory request
2798  *
2799  * The wireless subsystem can use this function to process
2800  * a regulatory request issued by an 802.11 driver.
2801  *
2802  * Returns: one of the different reg request treatment values.
2803  */
2804 static enum reg_request_treatment
2805 reg_process_hint_driver(struct wiphy *wiphy,
2806                         struct regulatory_request *driver_request)
2807 {
2808         const struct ieee80211_regdomain *regd, *tmp;
2809         enum reg_request_treatment treatment;
2810
2811         treatment = __reg_process_hint_driver(driver_request);
2812
2813         switch (treatment) {
2814         case REG_REQ_OK:
2815                 break;
2816         case REG_REQ_IGNORE:
2817                 return REG_REQ_IGNORE;
2818         case REG_REQ_INTERSECT:
2819         case REG_REQ_ALREADY_SET:
2820                 regd = reg_copy_regd(get_cfg80211_regdom());
2821                 if (IS_ERR(regd))
2822                         return REG_REQ_IGNORE;
2823
2824                 tmp = get_wiphy_regdom(wiphy);
2825                 ASSERT_RTNL();
2826                 wiphy_lock(wiphy);
2827                 rcu_assign_pointer(wiphy->regd, regd);
2828                 wiphy_unlock(wiphy);
2829                 rcu_free_regdom(tmp);
2830         }
2831
2832
2833         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2834         driver_request->processed = false;
2835
2836         /*
2837          * Since CRDA will not be called in this case as we already
2838          * have applied the requested regulatory domain before we just
2839          * inform userspace we have processed the request
2840          */
2841         if (treatment == REG_REQ_ALREADY_SET) {
2842                 nl80211_send_reg_change_event(driver_request);
2843                 reg_update_last_request(driver_request);
2844                 reg_set_request_processed();
2845                 return REG_REQ_ALREADY_SET;
2846         }
2847
2848         if (reg_query_database(driver_request)) {
2849                 reg_update_last_request(driver_request);
2850                 return REG_REQ_OK;
2851         }
2852
2853         return REG_REQ_IGNORE;
2854 }
2855
2856 static enum reg_request_treatment
2857 __reg_process_hint_country_ie(struct wiphy *wiphy,
2858                               struct regulatory_request *country_ie_request)
2859 {
2860         struct wiphy *last_wiphy = NULL;
2861         struct regulatory_request *lr = get_last_request();
2862
2863         if (reg_request_cell_base(lr)) {
2864                 /* Trust a Cell base station over the AP's country IE */
2865                 if (regdom_changes(country_ie_request->alpha2))
2866                         return REG_REQ_IGNORE;
2867                 return REG_REQ_ALREADY_SET;
2868         } else {
2869                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2870                         return REG_REQ_IGNORE;
2871         }
2872
2873         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2874                 return -EINVAL;
2875
2876         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2877                 return REG_REQ_OK;
2878
2879         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2880
2881         if (last_wiphy != wiphy) {
2882                 /*
2883                  * Two cards with two APs claiming different
2884                  * Country IE alpha2s. We could
2885                  * intersect them, but that seems unlikely
2886                  * to be correct. Reject second one for now.
2887                  */
2888                 if (regdom_changes(country_ie_request->alpha2))
2889                         return REG_REQ_IGNORE;
2890                 return REG_REQ_ALREADY_SET;
2891         }
2892
2893         if (regdom_changes(country_ie_request->alpha2))
2894                 return REG_REQ_OK;
2895         return REG_REQ_ALREADY_SET;
2896 }
2897
2898 /**
2899  * reg_process_hint_country_ie - process regulatory requests from country IEs
2900  * @wiphy: the wireless device for the regulatory request
2901  * @country_ie_request: a regulatory request from a country IE
2902  *
2903  * The wireless subsystem can use this function to process
2904  * a regulatory request issued by a country Information Element.
2905  *
2906  * Returns: one of the different reg request treatment values.
2907  */
2908 static enum reg_request_treatment
2909 reg_process_hint_country_ie(struct wiphy *wiphy,
2910                             struct regulatory_request *country_ie_request)
2911 {
2912         enum reg_request_treatment treatment;
2913
2914         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2915
2916         switch (treatment) {
2917         case REG_REQ_OK:
2918                 break;
2919         case REG_REQ_IGNORE:
2920                 return REG_REQ_IGNORE;
2921         case REG_REQ_ALREADY_SET:
2922                 reg_free_request(country_ie_request);
2923                 return REG_REQ_ALREADY_SET;
2924         case REG_REQ_INTERSECT:
2925                 /*
2926                  * This doesn't happen yet, not sure we
2927                  * ever want to support it for this case.
2928                  */
2929                 WARN_ONCE(1, "Unexpected intersection for country elements");
2930                 return REG_REQ_IGNORE;
2931         }
2932
2933         country_ie_request->intersect = false;
2934         country_ie_request->processed = false;
2935
2936         if (reg_query_database(country_ie_request)) {
2937                 reg_update_last_request(country_ie_request);
2938                 return REG_REQ_OK;
2939         }
2940
2941         return REG_REQ_IGNORE;
2942 }
2943
2944 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2945 {
2946         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2947         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2948         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2949         bool dfs_domain_same;
2950
2951         rcu_read_lock();
2952
2953         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2954         wiphy1_regd = rcu_dereference(wiphy1->regd);
2955         if (!wiphy1_regd)
2956                 wiphy1_regd = cfg80211_regd;
2957
2958         wiphy2_regd = rcu_dereference(wiphy2->regd);
2959         if (!wiphy2_regd)
2960                 wiphy2_regd = cfg80211_regd;
2961
2962         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2963
2964         rcu_read_unlock();
2965
2966         return dfs_domain_same;
2967 }
2968
2969 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2970                                     struct ieee80211_channel *src_chan)
2971 {
2972         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2973             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2974                 return;
2975
2976         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2977             src_chan->flags & IEEE80211_CHAN_DISABLED)
2978                 return;
2979
2980         if (src_chan->center_freq == dst_chan->center_freq &&
2981             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2982                 dst_chan->dfs_state = src_chan->dfs_state;
2983                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2984         }
2985 }
2986
2987 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2988                                        struct wiphy *src_wiphy)
2989 {
2990         struct ieee80211_supported_band *src_sband, *dst_sband;
2991         struct ieee80211_channel *src_chan, *dst_chan;
2992         int i, j, band;
2993
2994         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2995                 return;
2996
2997         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2998                 dst_sband = dst_wiphy->bands[band];
2999                 src_sband = src_wiphy->bands[band];
3000                 if (!dst_sband || !src_sband)
3001                         continue;
3002
3003                 for (i = 0; i < dst_sband->n_channels; i++) {
3004                         dst_chan = &dst_sband->channels[i];
3005                         for (j = 0; j < src_sband->n_channels; j++) {
3006                                 src_chan = &src_sband->channels[j];
3007                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
3008                         }
3009                 }
3010         }
3011 }
3012
3013 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3014 {
3015         struct cfg80211_registered_device *rdev;
3016
3017         ASSERT_RTNL();
3018
3019         for_each_rdev(rdev) {
3020                 if (wiphy == &rdev->wiphy)
3021                         continue;
3022                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3023         }
3024 }
3025
3026 /* This processes *all* regulatory hints */
3027 static void reg_process_hint(struct regulatory_request *reg_request)
3028 {
3029         struct wiphy *wiphy = NULL;
3030         enum reg_request_treatment treatment;
3031         enum nl80211_reg_initiator initiator = reg_request->initiator;
3032
3033         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3034                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3035
3036         switch (initiator) {
3037         case NL80211_REGDOM_SET_BY_CORE:
3038                 treatment = reg_process_hint_core(reg_request);
3039                 break;
3040         case NL80211_REGDOM_SET_BY_USER:
3041                 treatment = reg_process_hint_user(reg_request);
3042                 break;
3043         case NL80211_REGDOM_SET_BY_DRIVER:
3044                 if (!wiphy)
3045                         goto out_free;
3046                 treatment = reg_process_hint_driver(wiphy, reg_request);
3047                 break;
3048         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3049                 if (!wiphy)
3050                         goto out_free;
3051                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3052                 break;
3053         default:
3054                 WARN(1, "invalid initiator %d\n", initiator);
3055                 goto out_free;
3056         }
3057
3058         if (treatment == REG_REQ_IGNORE)
3059                 goto out_free;
3060
3061         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3062              "unexpected treatment value %d\n", treatment);
3063
3064         /* This is required so that the orig_* parameters are saved.
3065          * NOTE: treatment must be set for any case that reaches here!
3066          */
3067         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3068             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3069                 wiphy_update_regulatory(wiphy, initiator);
3070                 wiphy_all_share_dfs_chan_state(wiphy);
3071                 reg_check_channels();
3072         }
3073
3074         return;
3075
3076 out_free:
3077         reg_free_request(reg_request);
3078 }
3079
3080 static void notify_self_managed_wiphys(struct regulatory_request *request)
3081 {
3082         struct cfg80211_registered_device *rdev;
3083         struct wiphy *wiphy;
3084
3085         for_each_rdev(rdev) {
3086                 wiphy = &rdev->wiphy;
3087                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3088                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3089                         reg_call_notifier(wiphy, request);
3090         }
3091 }
3092
3093 /*
3094  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3095  * Regulatory hints come on a first come first serve basis and we
3096  * must process each one atomically.
3097  */
3098 static void reg_process_pending_hints(void)
3099 {
3100         struct regulatory_request *reg_request, *lr;
3101
3102         lr = get_last_request();
3103
3104         /* When last_request->processed becomes true this will be rescheduled */
3105         if (lr && !lr->processed) {
3106                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3107                 return;
3108         }
3109
3110         spin_lock(&reg_requests_lock);
3111
3112         if (list_empty(&reg_requests_list)) {
3113                 spin_unlock(&reg_requests_lock);
3114                 return;
3115         }
3116
3117         reg_request = list_first_entry(&reg_requests_list,
3118                                        struct regulatory_request,
3119                                        list);
3120         list_del_init(&reg_request->list);
3121
3122         spin_unlock(&reg_requests_lock);
3123
3124         notify_self_managed_wiphys(reg_request);
3125
3126         reg_process_hint(reg_request);
3127
3128         lr = get_last_request();
3129
3130         spin_lock(&reg_requests_lock);
3131         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3132                 schedule_work(&reg_work);
3133         spin_unlock(&reg_requests_lock);
3134 }
3135
3136 /* Processes beacon hints -- this has nothing to do with country IEs */
3137 static void reg_process_pending_beacon_hints(void)
3138 {
3139         struct cfg80211_registered_device *rdev;
3140         struct reg_beacon *pending_beacon, *tmp;
3141
3142         /* This goes through the _pending_ beacon list */
3143         spin_lock_bh(&reg_pending_beacons_lock);
3144
3145         list_for_each_entry_safe(pending_beacon, tmp,
3146                                  &reg_pending_beacons, list) {
3147                 list_del_init(&pending_beacon->list);
3148
3149                 /* Applies the beacon hint to current wiphys */
3150                 for_each_rdev(rdev)
3151                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3152
3153                 /* Remembers the beacon hint for new wiphys or reg changes */
3154                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3155         }
3156
3157         spin_unlock_bh(&reg_pending_beacons_lock);
3158 }
3159
3160 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3161 {
3162         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3163         const struct ieee80211_regdomain *tmp;
3164         const struct ieee80211_regdomain *regd;
3165         enum nl80211_band band;
3166         struct regulatory_request request = {};
3167
3168         ASSERT_RTNL();
3169         lockdep_assert_wiphy(wiphy);
3170
3171         spin_lock(&reg_requests_lock);
3172         regd = rdev->requested_regd;
3173         rdev->requested_regd = NULL;
3174         spin_unlock(&reg_requests_lock);
3175
3176         if (!regd)
3177                 return;
3178
3179         tmp = get_wiphy_regdom(wiphy);
3180         rcu_assign_pointer(wiphy->regd, regd);
3181         rcu_free_regdom(tmp);
3182
3183         for (band = 0; band < NUM_NL80211_BANDS; band++)
3184                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3185
3186         reg_process_ht_flags(wiphy);
3187
3188         request.wiphy_idx = get_wiphy_idx(wiphy);
3189         request.alpha2[0] = regd->alpha2[0];
3190         request.alpha2[1] = regd->alpha2[1];
3191         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3192
3193         if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3194                 reg_call_notifier(wiphy, &request);
3195
3196         nl80211_send_wiphy_reg_change_event(&request);
3197 }
3198
3199 static void reg_process_self_managed_hints(void)
3200 {
3201         struct cfg80211_registered_device *rdev;
3202
3203         ASSERT_RTNL();
3204
3205         for_each_rdev(rdev) {
3206                 wiphy_lock(&rdev->wiphy);
3207                 reg_process_self_managed_hint(&rdev->wiphy);
3208                 wiphy_unlock(&rdev->wiphy);
3209         }
3210
3211         reg_check_channels();
3212 }
3213
3214 static void reg_todo(struct work_struct *work)
3215 {
3216         rtnl_lock();
3217         reg_process_pending_hints();
3218         reg_process_pending_beacon_hints();
3219         reg_process_self_managed_hints();
3220         rtnl_unlock();
3221 }
3222
3223 static void queue_regulatory_request(struct regulatory_request *request)
3224 {
3225         request->alpha2[0] = toupper(request->alpha2[0]);
3226         request->alpha2[1] = toupper(request->alpha2[1]);
3227
3228         spin_lock(&reg_requests_lock);
3229         list_add_tail(&request->list, &reg_requests_list);
3230         spin_unlock(&reg_requests_lock);
3231
3232         schedule_work(&reg_work);
3233 }
3234
3235 /*
3236  * Core regulatory hint -- happens during cfg80211_init()
3237  * and when we restore regulatory settings.
3238  */
3239 static int regulatory_hint_core(const char *alpha2)
3240 {
3241         struct regulatory_request *request;
3242
3243         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3244         if (!request)
3245                 return -ENOMEM;
3246
3247         request->alpha2[0] = alpha2[0];
3248         request->alpha2[1] = alpha2[1];
3249         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3250         request->wiphy_idx = WIPHY_IDX_INVALID;
3251
3252         queue_regulatory_request(request);
3253
3254         return 0;
3255 }
3256
3257 /* User hints */
3258 int regulatory_hint_user(const char *alpha2,
3259                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3260 {
3261         struct regulatory_request *request;
3262
3263         if (WARN_ON(!alpha2))
3264                 return -EINVAL;
3265
3266         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3267                 return -EINVAL;
3268
3269         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3270         if (!request)
3271                 return -ENOMEM;
3272
3273         request->wiphy_idx = WIPHY_IDX_INVALID;
3274         request->alpha2[0] = alpha2[0];
3275         request->alpha2[1] = alpha2[1];
3276         request->initiator = NL80211_REGDOM_SET_BY_USER;
3277         request->user_reg_hint_type = user_reg_hint_type;
3278
3279         /* Allow calling CRDA again */
3280         reset_crda_timeouts();
3281
3282         queue_regulatory_request(request);
3283
3284         return 0;
3285 }
3286
3287 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3288 {
3289         spin_lock(&reg_indoor_lock);
3290
3291         /* It is possible that more than one user space process is trying to
3292          * configure the indoor setting. To handle such cases, clear the indoor
3293          * setting in case that some process does not think that the device
3294          * is operating in an indoor environment. In addition, if a user space
3295          * process indicates that it is controlling the indoor setting, save its
3296          * portid, i.e., make it the owner.
3297          */
3298         reg_is_indoor = is_indoor;
3299         if (reg_is_indoor) {
3300                 if (!reg_is_indoor_portid)
3301                         reg_is_indoor_portid = portid;
3302         } else {
3303                 reg_is_indoor_portid = 0;
3304         }
3305
3306         spin_unlock(&reg_indoor_lock);
3307
3308         if (!is_indoor)
3309                 reg_check_channels();
3310
3311         return 0;
3312 }
3313
3314 void regulatory_netlink_notify(u32 portid)
3315 {
3316         spin_lock(&reg_indoor_lock);
3317
3318         if (reg_is_indoor_portid != portid) {
3319                 spin_unlock(&reg_indoor_lock);
3320                 return;
3321         }
3322
3323         reg_is_indoor = false;
3324         reg_is_indoor_portid = 0;
3325
3326         spin_unlock(&reg_indoor_lock);
3327
3328         reg_check_channels();
3329 }
3330
3331 /* Driver hints */
3332 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3333 {
3334         struct regulatory_request *request;
3335
3336         if (WARN_ON(!alpha2 || !wiphy))
3337                 return -EINVAL;
3338
3339         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3340
3341         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3342         if (!request)
3343                 return -ENOMEM;
3344
3345         request->wiphy_idx = get_wiphy_idx(wiphy);
3346
3347         request->alpha2[0] = alpha2[0];
3348         request->alpha2[1] = alpha2[1];
3349         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3350
3351         /* Allow calling CRDA again */
3352         reset_crda_timeouts();
3353
3354         queue_regulatory_request(request);
3355
3356         return 0;
3357 }
3358 EXPORT_SYMBOL(regulatory_hint);
3359
3360 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3361                                 const u8 *country_ie, u8 country_ie_len)
3362 {
3363         char alpha2[2];
3364         enum environment_cap env = ENVIRON_ANY;
3365         struct regulatory_request *request = NULL, *lr;
3366
3367         /* IE len must be evenly divisible by 2 */
3368         if (country_ie_len & 0x01)
3369                 return;
3370
3371         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3372                 return;
3373
3374         request = kzalloc(sizeof(*request), GFP_KERNEL);
3375         if (!request)
3376                 return;
3377
3378         alpha2[0] = country_ie[0];
3379         alpha2[1] = country_ie[1];
3380
3381         if (country_ie[2] == 'I')
3382                 env = ENVIRON_INDOOR;
3383         else if (country_ie[2] == 'O')
3384                 env = ENVIRON_OUTDOOR;
3385
3386         rcu_read_lock();
3387         lr = get_last_request();
3388
3389         if (unlikely(!lr))
3390                 goto out;
3391
3392         /*
3393          * We will run this only upon a successful connection on cfg80211.
3394          * We leave conflict resolution to the workqueue, where can hold
3395          * the RTNL.
3396          */
3397         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3398             lr->wiphy_idx != WIPHY_IDX_INVALID)
3399                 goto out;
3400
3401         request->wiphy_idx = get_wiphy_idx(wiphy);
3402         request->alpha2[0] = alpha2[0];
3403         request->alpha2[1] = alpha2[1];
3404         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3405         request->country_ie_env = env;
3406
3407         /* Allow calling CRDA again */
3408         reset_crda_timeouts();
3409
3410         queue_regulatory_request(request);
3411         request = NULL;
3412 out:
3413         kfree(request);
3414         rcu_read_unlock();
3415 }
3416
3417 static void restore_alpha2(char *alpha2, bool reset_user)
3418 {
3419         /* indicates there is no alpha2 to consider for restoration */
3420         alpha2[0] = '9';
3421         alpha2[1] = '7';
3422
3423         /* The user setting has precedence over the module parameter */
3424         if (is_user_regdom_saved()) {
3425                 /* Unless we're asked to ignore it and reset it */
3426                 if (reset_user) {
3427                         pr_debug("Restoring regulatory settings including user preference\n");
3428                         user_alpha2[0] = '9';
3429                         user_alpha2[1] = '7';
3430
3431                         /*
3432                          * If we're ignoring user settings, we still need to
3433                          * check the module parameter to ensure we put things
3434                          * back as they were for a full restore.
3435                          */
3436                         if (!is_world_regdom(ieee80211_regdom)) {
3437                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3438                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3439                                 alpha2[0] = ieee80211_regdom[0];
3440                                 alpha2[1] = ieee80211_regdom[1];
3441                         }
3442                 } else {
3443                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3444                                  user_alpha2[0], user_alpha2[1]);
3445                         alpha2[0] = user_alpha2[0];
3446                         alpha2[1] = user_alpha2[1];
3447                 }
3448         } else if (!is_world_regdom(ieee80211_regdom)) {
3449                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3450                          ieee80211_regdom[0], ieee80211_regdom[1]);
3451                 alpha2[0] = ieee80211_regdom[0];
3452                 alpha2[1] = ieee80211_regdom[1];
3453         } else
3454                 pr_debug("Restoring regulatory settings\n");
3455 }
3456
3457 static void restore_custom_reg_settings(struct wiphy *wiphy)
3458 {
3459         struct ieee80211_supported_band *sband;
3460         enum nl80211_band band;
3461         struct ieee80211_channel *chan;
3462         int i;
3463
3464         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3465                 sband = wiphy->bands[band];
3466                 if (!sband)
3467                         continue;
3468                 for (i = 0; i < sband->n_channels; i++) {
3469                         chan = &sband->channels[i];
3470                         chan->flags = chan->orig_flags;
3471                         chan->max_antenna_gain = chan->orig_mag;
3472                         chan->max_power = chan->orig_mpwr;
3473                         chan->beacon_found = false;
3474                 }
3475         }
3476 }
3477
3478 /*
3479  * Restoring regulatory settings involves ignoring any
3480  * possibly stale country IE information and user regulatory
3481  * settings if so desired, this includes any beacon hints
3482  * learned as we could have traveled outside to another country
3483  * after disconnection. To restore regulatory settings we do
3484  * exactly what we did at bootup:
3485  *
3486  *   - send a core regulatory hint
3487  *   - send a user regulatory hint if applicable
3488  *
3489  * Device drivers that send a regulatory hint for a specific country
3490  * keep their own regulatory domain on wiphy->regd so that does
3491  * not need to be remembered.
3492  */
3493 static void restore_regulatory_settings(bool reset_user, bool cached)
3494 {
3495         char alpha2[2];
3496         char world_alpha2[2];
3497         struct reg_beacon *reg_beacon, *btmp;
3498         LIST_HEAD(tmp_reg_req_list);
3499         struct cfg80211_registered_device *rdev;
3500
3501         ASSERT_RTNL();
3502
3503         /*
3504          * Clear the indoor setting in case that it is not controlled by user
3505          * space, as otherwise there is no guarantee that the device is still
3506          * operating in an indoor environment.
3507          */
3508         spin_lock(&reg_indoor_lock);
3509         if (reg_is_indoor && !reg_is_indoor_portid) {
3510                 reg_is_indoor = false;
3511                 reg_check_channels();
3512         }
3513         spin_unlock(&reg_indoor_lock);
3514
3515         reset_regdomains(true, &world_regdom);
3516         restore_alpha2(alpha2, reset_user);
3517
3518         /*
3519          * If there's any pending requests we simply
3520          * stash them to a temporary pending queue and
3521          * add then after we've restored regulatory
3522          * settings.
3523          */
3524         spin_lock(&reg_requests_lock);
3525         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3526         spin_unlock(&reg_requests_lock);
3527
3528         /* Clear beacon hints */
3529         spin_lock_bh(&reg_pending_beacons_lock);
3530         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3531                 list_del(&reg_beacon->list);
3532                 kfree(reg_beacon);
3533         }
3534         spin_unlock_bh(&reg_pending_beacons_lock);
3535
3536         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3537                 list_del(&reg_beacon->list);
3538                 kfree(reg_beacon);
3539         }
3540
3541         /* First restore to the basic regulatory settings */
3542         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3543         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3544
3545         for_each_rdev(rdev) {
3546                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3547                         continue;
3548                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3549                         restore_custom_reg_settings(&rdev->wiphy);
3550         }
3551
3552         if (cached && (!is_an_alpha2(alpha2) ||
3553                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3554                 reset_regdomains(false, cfg80211_world_regdom);
3555                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3556                 print_regdomain(get_cfg80211_regdom());
3557                 nl80211_send_reg_change_event(&core_request_world);
3558                 reg_set_request_processed();
3559
3560                 if (is_an_alpha2(alpha2) &&
3561                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3562                         struct regulatory_request *ureq;
3563
3564                         spin_lock(&reg_requests_lock);
3565                         ureq = list_last_entry(&reg_requests_list,
3566                                                struct regulatory_request,
3567                                                list);
3568                         list_del(&ureq->list);
3569                         spin_unlock(&reg_requests_lock);
3570
3571                         notify_self_managed_wiphys(ureq);
3572                         reg_update_last_request(ureq);
3573                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3574                                    REGD_SOURCE_CACHED);
3575                 }
3576         } else {
3577                 regulatory_hint_core(world_alpha2);
3578
3579                 /*
3580                  * This restores the ieee80211_regdom module parameter
3581                  * preference or the last user requested regulatory
3582                  * settings, user regulatory settings takes precedence.
3583                  */
3584                 if (is_an_alpha2(alpha2))
3585                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3586         }
3587
3588         spin_lock(&reg_requests_lock);
3589         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3590         spin_unlock(&reg_requests_lock);
3591
3592         pr_debug("Kicking the queue\n");
3593
3594         schedule_work(&reg_work);
3595 }
3596
3597 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3598 {
3599         struct cfg80211_registered_device *rdev;
3600         struct wireless_dev *wdev;
3601
3602         for_each_rdev(rdev) {
3603                 wiphy_lock(&rdev->wiphy);
3604                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3605                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3606                                 wiphy_unlock(&rdev->wiphy);
3607                                 return false;
3608                         }
3609                 }
3610                 wiphy_unlock(&rdev->wiphy);
3611         }
3612
3613         return true;
3614 }
3615
3616 void regulatory_hint_disconnect(void)
3617 {
3618         /* Restore of regulatory settings is not required when wiphy(s)
3619          * ignore IE from connected access point but clearance of beacon hints
3620          * is required when wiphy(s) supports beacon hints.
3621          */
3622         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3623                 struct reg_beacon *reg_beacon, *btmp;
3624
3625                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3626                         return;
3627
3628                 spin_lock_bh(&reg_pending_beacons_lock);
3629                 list_for_each_entry_safe(reg_beacon, btmp,
3630                                          &reg_pending_beacons, list) {
3631                         list_del(&reg_beacon->list);
3632                         kfree(reg_beacon);
3633                 }
3634                 spin_unlock_bh(&reg_pending_beacons_lock);
3635
3636                 list_for_each_entry_safe(reg_beacon, btmp,
3637                                          &reg_beacon_list, list) {
3638                         list_del(&reg_beacon->list);
3639                         kfree(reg_beacon);
3640                 }
3641
3642                 return;
3643         }
3644
3645         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3646         restore_regulatory_settings(false, true);
3647 }
3648
3649 static bool freq_is_chan_12_13_14(u32 freq)
3650 {
3651         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3652             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3653             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3654                 return true;
3655         return false;
3656 }
3657
3658 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3659 {
3660         struct reg_beacon *pending_beacon;
3661
3662         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3663                 if (ieee80211_channel_equal(beacon_chan,
3664                                             &pending_beacon->chan))
3665                         return true;
3666         return false;
3667 }
3668
3669 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3670                                  struct ieee80211_channel *beacon_chan,
3671                                  gfp_t gfp)
3672 {
3673         struct reg_beacon *reg_beacon;
3674         bool processing;
3675
3676         if (beacon_chan->beacon_found ||
3677             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3678             (beacon_chan->band == NL80211_BAND_2GHZ &&
3679              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3680                 return 0;
3681
3682         spin_lock_bh(&reg_pending_beacons_lock);
3683         processing = pending_reg_beacon(beacon_chan);
3684         spin_unlock_bh(&reg_pending_beacons_lock);
3685
3686         if (processing)
3687                 return 0;
3688
3689         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3690         if (!reg_beacon)
3691                 return -ENOMEM;
3692
3693         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3694                  beacon_chan->center_freq, beacon_chan->freq_offset,
3695                  ieee80211_freq_khz_to_channel(
3696                          ieee80211_channel_to_khz(beacon_chan)),
3697                  wiphy_name(wiphy));
3698
3699         memcpy(&reg_beacon->chan, beacon_chan,
3700                sizeof(struct ieee80211_channel));
3701
3702         /*
3703          * Since we can be called from BH or and non-BH context
3704          * we must use spin_lock_bh()
3705          */
3706         spin_lock_bh(&reg_pending_beacons_lock);
3707         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3708         spin_unlock_bh(&reg_pending_beacons_lock);
3709
3710         schedule_work(&reg_work);
3711
3712         return 0;
3713 }
3714
3715 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3716 {
3717         unsigned int i;
3718         const struct ieee80211_reg_rule *reg_rule = NULL;
3719         const struct ieee80211_freq_range *freq_range = NULL;
3720         const struct ieee80211_power_rule *power_rule = NULL;
3721         char bw[32], cac_time[32];
3722
3723         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3724
3725         for (i = 0; i < rd->n_reg_rules; i++) {
3726                 reg_rule = &rd->reg_rules[i];
3727                 freq_range = &reg_rule->freq_range;
3728                 power_rule = &reg_rule->power_rule;
3729
3730                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3731                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3732                                  freq_range->max_bandwidth_khz,
3733                                  reg_get_max_bandwidth(rd, reg_rule));
3734                 else
3735                         snprintf(bw, sizeof(bw), "%d KHz",
3736                                  freq_range->max_bandwidth_khz);
3737
3738                 if (reg_rule->flags & NL80211_RRF_DFS)
3739                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3740                                   reg_rule->dfs_cac_ms/1000);
3741                 else
3742                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3743
3744
3745                 /*
3746                  * There may not be documentation for max antenna gain
3747                  * in certain regions
3748                  */
3749                 if (power_rule->max_antenna_gain)
3750                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3751                                 freq_range->start_freq_khz,
3752                                 freq_range->end_freq_khz,
3753                                 bw,
3754                                 power_rule->max_antenna_gain,
3755                                 power_rule->max_eirp,
3756                                 cac_time);
3757                 else
3758                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3759                                 freq_range->start_freq_khz,
3760                                 freq_range->end_freq_khz,
3761                                 bw,
3762                                 power_rule->max_eirp,
3763                                 cac_time);
3764         }
3765 }
3766
3767 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3768 {
3769         switch (dfs_region) {
3770         case NL80211_DFS_UNSET:
3771         case NL80211_DFS_FCC:
3772         case NL80211_DFS_ETSI:
3773         case NL80211_DFS_JP:
3774                 return true;
3775         default:
3776                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3777                 return false;
3778         }
3779 }
3780
3781 static void print_regdomain(const struct ieee80211_regdomain *rd)
3782 {
3783         struct regulatory_request *lr = get_last_request();
3784
3785         if (is_intersected_alpha2(rd->alpha2)) {
3786                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3787                         struct cfg80211_registered_device *rdev;
3788                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3789                         if (rdev) {
3790                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3791                                         rdev->country_ie_alpha2[0],
3792                                         rdev->country_ie_alpha2[1]);
3793                         } else
3794                                 pr_debug("Current regulatory domain intersected:\n");
3795                 } else
3796                         pr_debug("Current regulatory domain intersected:\n");
3797         } else if (is_world_regdom(rd->alpha2)) {
3798                 pr_debug("World regulatory domain updated:\n");
3799         } else {
3800                 if (is_unknown_alpha2(rd->alpha2))
3801                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3802                 else {
3803                         if (reg_request_cell_base(lr))
3804                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3805                                         rd->alpha2[0], rd->alpha2[1]);
3806                         else
3807                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3808                                         rd->alpha2[0], rd->alpha2[1]);
3809                 }
3810         }
3811
3812         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3813         print_rd_rules(rd);
3814 }
3815
3816 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3817 {
3818         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3819         print_rd_rules(rd);
3820 }
3821
3822 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3823 {
3824         if (!is_world_regdom(rd->alpha2))
3825                 return -EINVAL;
3826         update_world_regdomain(rd);
3827         return 0;
3828 }
3829
3830 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3831                            struct regulatory_request *user_request)
3832 {
3833         const struct ieee80211_regdomain *intersected_rd = NULL;
3834
3835         if (!regdom_changes(rd->alpha2))
3836                 return -EALREADY;
3837
3838         if (!is_valid_rd(rd)) {
3839                 pr_err("Invalid regulatory domain detected: %c%c\n",
3840                        rd->alpha2[0], rd->alpha2[1]);
3841                 print_regdomain_info(rd);
3842                 return -EINVAL;
3843         }
3844
3845         if (!user_request->intersect) {
3846                 reset_regdomains(false, rd);
3847                 return 0;
3848         }
3849
3850         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3851         if (!intersected_rd)
3852                 return -EINVAL;
3853
3854         kfree(rd);
3855         rd = NULL;
3856         reset_regdomains(false, intersected_rd);
3857
3858         return 0;
3859 }
3860
3861 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3862                              struct regulatory_request *driver_request)
3863 {
3864         const struct ieee80211_regdomain *regd;
3865         const struct ieee80211_regdomain *intersected_rd = NULL;
3866         const struct ieee80211_regdomain *tmp = NULL;
3867         struct wiphy *request_wiphy;
3868
3869         if (is_world_regdom(rd->alpha2))
3870                 return -EINVAL;
3871
3872         if (!regdom_changes(rd->alpha2))
3873                 return -EALREADY;
3874
3875         if (!is_valid_rd(rd)) {
3876                 pr_err("Invalid regulatory domain detected: %c%c\n",
3877                        rd->alpha2[0], rd->alpha2[1]);
3878                 print_regdomain_info(rd);
3879                 return -EINVAL;
3880         }
3881
3882         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3883         if (!request_wiphy)
3884                 return -ENODEV;
3885
3886         if (!driver_request->intersect) {
3887                 ASSERT_RTNL();
3888                 wiphy_lock(request_wiphy);
3889                 if (request_wiphy->regd)
3890                         tmp = get_wiphy_regdom(request_wiphy);
3891
3892                 regd = reg_copy_regd(rd);
3893                 if (IS_ERR(regd)) {
3894                         wiphy_unlock(request_wiphy);
3895                         return PTR_ERR(regd);
3896                 }
3897
3898                 rcu_assign_pointer(request_wiphy->regd, regd);
3899                 rcu_free_regdom(tmp);
3900                 wiphy_unlock(request_wiphy);
3901                 reset_regdomains(false, rd);
3902                 return 0;
3903         }
3904
3905         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3906         if (!intersected_rd)
3907                 return -EINVAL;
3908
3909         /*
3910          * We can trash what CRDA provided now.
3911          * However if a driver requested this specific regulatory
3912          * domain we keep it for its private use
3913          */
3914         tmp = get_wiphy_regdom(request_wiphy);
3915         rcu_assign_pointer(request_wiphy->regd, rd);
3916         rcu_free_regdom(tmp);
3917
3918         rd = NULL;
3919
3920         reset_regdomains(false, intersected_rd);
3921
3922         return 0;
3923 }
3924
3925 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3926                                  struct regulatory_request *country_ie_request)
3927 {
3928         struct wiphy *request_wiphy;
3929
3930         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3931             !is_unknown_alpha2(rd->alpha2))
3932                 return -EINVAL;
3933
3934         /*
3935          * Lets only bother proceeding on the same alpha2 if the current
3936          * rd is non static (it means CRDA was present and was used last)
3937          * and the pending request came in from a country IE
3938          */
3939
3940         if (!is_valid_rd(rd)) {
3941                 pr_err("Invalid regulatory domain detected: %c%c\n",
3942                        rd->alpha2[0], rd->alpha2[1]);
3943                 print_regdomain_info(rd);
3944                 return -EINVAL;
3945         }
3946
3947         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3948         if (!request_wiphy)
3949                 return -ENODEV;
3950
3951         if (country_ie_request->intersect)
3952                 return -EINVAL;
3953
3954         reset_regdomains(false, rd);
3955         return 0;
3956 }
3957
3958 /*
3959  * Use this call to set the current regulatory domain. Conflicts with
3960  * multiple drivers can be ironed out later. Caller must've already
3961  * kmalloc'd the rd structure.
3962  */
3963 int set_regdom(const struct ieee80211_regdomain *rd,
3964                enum ieee80211_regd_source regd_src)
3965 {
3966         struct regulatory_request *lr;
3967         bool user_reset = false;
3968         int r;
3969
3970         if (IS_ERR_OR_NULL(rd))
3971                 return -ENODATA;
3972
3973         if (!reg_is_valid_request(rd->alpha2)) {
3974                 kfree(rd);
3975                 return -EINVAL;
3976         }
3977
3978         if (regd_src == REGD_SOURCE_CRDA)
3979                 reset_crda_timeouts();
3980
3981         lr = get_last_request();
3982
3983         /* Note that this doesn't update the wiphys, this is done below */
3984         switch (lr->initiator) {
3985         case NL80211_REGDOM_SET_BY_CORE:
3986                 r = reg_set_rd_core(rd);
3987                 break;
3988         case NL80211_REGDOM_SET_BY_USER:
3989                 cfg80211_save_user_regdom(rd);
3990                 r = reg_set_rd_user(rd, lr);
3991                 user_reset = true;
3992                 break;
3993         case NL80211_REGDOM_SET_BY_DRIVER:
3994                 r = reg_set_rd_driver(rd, lr);
3995                 break;
3996         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3997                 r = reg_set_rd_country_ie(rd, lr);
3998                 break;
3999         default:
4000                 WARN(1, "invalid initiator %d\n", lr->initiator);
4001                 kfree(rd);
4002                 return -EINVAL;
4003         }
4004
4005         if (r) {
4006                 switch (r) {
4007                 case -EALREADY:
4008                         reg_set_request_processed();
4009                         break;
4010                 default:
4011                         /* Back to world regulatory in case of errors */
4012                         restore_regulatory_settings(user_reset, false);
4013                 }
4014
4015                 kfree(rd);
4016                 return r;
4017         }
4018
4019         /* This would make this whole thing pointless */
4020         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4021                 return -EINVAL;
4022
4023         /* update all wiphys now with the new established regulatory domain */
4024         update_all_wiphy_regulatory(lr->initiator);
4025
4026         print_regdomain(get_cfg80211_regdom());
4027
4028         nl80211_send_reg_change_event(lr);
4029
4030         reg_set_request_processed();
4031
4032         return 0;
4033 }
4034
4035 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4036                                        struct ieee80211_regdomain *rd)
4037 {
4038         const struct ieee80211_regdomain *regd;
4039         const struct ieee80211_regdomain *prev_regd;
4040         struct cfg80211_registered_device *rdev;
4041
4042         if (WARN_ON(!wiphy || !rd))
4043                 return -EINVAL;
4044
4045         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4046                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4047                 return -EPERM;
4048
4049         if (WARN(!is_valid_rd(rd),
4050                  "Invalid regulatory domain detected: %c%c\n",
4051                  rd->alpha2[0], rd->alpha2[1])) {
4052                 print_regdomain_info(rd);
4053                 return -EINVAL;
4054         }
4055
4056         regd = reg_copy_regd(rd);
4057         if (IS_ERR(regd))
4058                 return PTR_ERR(regd);
4059
4060         rdev = wiphy_to_rdev(wiphy);
4061
4062         spin_lock(&reg_requests_lock);
4063         prev_regd = rdev->requested_regd;
4064         rdev->requested_regd = regd;
4065         spin_unlock(&reg_requests_lock);
4066
4067         kfree(prev_regd);
4068         return 0;
4069 }
4070
4071 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4072                               struct ieee80211_regdomain *rd)
4073 {
4074         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4075
4076         if (ret)
4077                 return ret;
4078
4079         schedule_work(&reg_work);
4080         return 0;
4081 }
4082 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4083
4084 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4085                                    struct ieee80211_regdomain *rd)
4086 {
4087         int ret;
4088
4089         ASSERT_RTNL();
4090
4091         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4092         if (ret)
4093                 return ret;
4094
4095         /* process the request immediately */
4096         reg_process_self_managed_hint(wiphy);
4097         reg_check_channels();
4098         return 0;
4099 }
4100 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4101
4102 void wiphy_regulatory_register(struct wiphy *wiphy)
4103 {
4104         struct regulatory_request *lr = get_last_request();
4105
4106         /* self-managed devices ignore beacon hints and country IE */
4107         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4108                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4109                                            REGULATORY_COUNTRY_IE_IGNORE;
4110
4111                 /*
4112                  * The last request may have been received before this
4113                  * registration call. Call the driver notifier if
4114                  * initiator is USER.
4115                  */
4116                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4117                         reg_call_notifier(wiphy, lr);
4118         }
4119
4120         if (!reg_dev_ignore_cell_hint(wiphy))
4121                 reg_num_devs_support_basehint++;
4122
4123         wiphy_update_regulatory(wiphy, lr->initiator);
4124         wiphy_all_share_dfs_chan_state(wiphy);
4125         reg_process_self_managed_hints();
4126 }
4127
4128 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4129 {
4130         struct wiphy *request_wiphy = NULL;
4131         struct regulatory_request *lr;
4132
4133         lr = get_last_request();
4134
4135         if (!reg_dev_ignore_cell_hint(wiphy))
4136                 reg_num_devs_support_basehint--;
4137
4138         rcu_free_regdom(get_wiphy_regdom(wiphy));
4139         RCU_INIT_POINTER(wiphy->regd, NULL);
4140
4141         if (lr)
4142                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4143
4144         if (!request_wiphy || request_wiphy != wiphy)
4145                 return;
4146
4147         lr->wiphy_idx = WIPHY_IDX_INVALID;
4148         lr->country_ie_env = ENVIRON_ANY;
4149 }
4150
4151 /*
4152  * See FCC notices for UNII band definitions
4153  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4154  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4155  */
4156 int cfg80211_get_unii(int freq)
4157 {
4158         /* UNII-1 */
4159         if (freq >= 5150 && freq <= 5250)
4160                 return 0;
4161
4162         /* UNII-2A */
4163         if (freq > 5250 && freq <= 5350)
4164                 return 1;
4165
4166         /* UNII-2B */
4167         if (freq > 5350 && freq <= 5470)
4168                 return 2;
4169
4170         /* UNII-2C */
4171         if (freq > 5470 && freq <= 5725)
4172                 return 3;
4173
4174         /* UNII-3 */
4175         if (freq > 5725 && freq <= 5825)
4176                 return 4;
4177
4178         /* UNII-5 */
4179         if (freq > 5925 && freq <= 6425)
4180                 return 5;
4181
4182         /* UNII-6 */
4183         if (freq > 6425 && freq <= 6525)
4184                 return 6;
4185
4186         /* UNII-7 */
4187         if (freq > 6525 && freq <= 6875)
4188                 return 7;
4189
4190         /* UNII-8 */
4191         if (freq > 6875 && freq <= 7125)
4192                 return 8;
4193
4194         return -EINVAL;
4195 }
4196
4197 bool regulatory_indoor_allowed(void)
4198 {
4199         return reg_is_indoor;
4200 }
4201
4202 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4203 {
4204         const struct ieee80211_regdomain *regd = NULL;
4205         const struct ieee80211_regdomain *wiphy_regd = NULL;
4206         bool pre_cac_allowed = false;
4207
4208         rcu_read_lock();
4209
4210         regd = rcu_dereference(cfg80211_regdomain);
4211         wiphy_regd = rcu_dereference(wiphy->regd);
4212         if (!wiphy_regd) {
4213                 if (regd->dfs_region == NL80211_DFS_ETSI)
4214                         pre_cac_allowed = true;
4215
4216                 rcu_read_unlock();
4217
4218                 return pre_cac_allowed;
4219         }
4220
4221         if (regd->dfs_region == wiphy_regd->dfs_region &&
4222             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4223                 pre_cac_allowed = true;
4224
4225         rcu_read_unlock();
4226
4227         return pre_cac_allowed;
4228 }
4229 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4230
4231 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4232 {
4233         struct wireless_dev *wdev;
4234         /* If we finished CAC or received radar, we should end any
4235          * CAC running on the same channels.
4236          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4237          * either all channels are available - those the CAC_FINISHED
4238          * event has effected another wdev state, or there is a channel
4239          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4240          * event has effected another wdev state.
4241          * In both cases we should end the CAC on the wdev.
4242          */
4243         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4244                 struct cfg80211_chan_def *chandef;
4245
4246                 if (!wdev->cac_started)
4247                         continue;
4248
4249                 /* FIXME: radar detection is tied to link 0 for now */
4250                 chandef = wdev_chandef(wdev, 0);
4251                 if (!chandef)
4252                         continue;
4253
4254                 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4255                         rdev_end_cac(rdev, wdev->netdev);
4256         }
4257 }
4258
4259 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4260                                     struct cfg80211_chan_def *chandef,
4261                                     enum nl80211_dfs_state dfs_state,
4262                                     enum nl80211_radar_event event)
4263 {
4264         struct cfg80211_registered_device *rdev;
4265
4266         ASSERT_RTNL();
4267
4268         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4269                 return;
4270
4271         for_each_rdev(rdev) {
4272                 if (wiphy == &rdev->wiphy)
4273                         continue;
4274
4275                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4276                         continue;
4277
4278                 if (!ieee80211_get_channel(&rdev->wiphy,
4279                                            chandef->chan->center_freq))
4280                         continue;
4281
4282                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4283
4284                 if (event == NL80211_RADAR_DETECTED ||
4285                     event == NL80211_RADAR_CAC_FINISHED) {
4286                         cfg80211_sched_dfs_chan_update(rdev);
4287                         cfg80211_check_and_end_cac(rdev);
4288                 }
4289
4290                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4291         }
4292 }
4293
4294 static int __init regulatory_init_db(void)
4295 {
4296         int err;
4297
4298         /*
4299          * It's possible that - due to other bugs/issues - cfg80211
4300          * never called regulatory_init() below, or that it failed;
4301          * in that case, don't try to do any further work here as
4302          * it's doomed to lead to crashes.
4303          */
4304         if (IS_ERR_OR_NULL(reg_pdev))
4305                 return -EINVAL;
4306
4307         err = load_builtin_regdb_keys();
4308         if (err) {
4309                 platform_device_unregister(reg_pdev);
4310                 return err;
4311         }
4312
4313         /* We always try to get an update for the static regdomain */
4314         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4315         if (err) {
4316                 if (err == -ENOMEM) {
4317                         platform_device_unregister(reg_pdev);
4318                         return err;
4319                 }
4320                 /*
4321                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4322                  * memory which is handled and propagated appropriately above
4323                  * but it can also fail during a netlink_broadcast() or during
4324                  * early boot for call_usermodehelper(). For now treat these
4325                  * errors as non-fatal.
4326                  */
4327                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4328         }
4329
4330         /*
4331          * Finally, if the user set the module parameter treat it
4332          * as a user hint.
4333          */
4334         if (!is_world_regdom(ieee80211_regdom))
4335                 regulatory_hint_user(ieee80211_regdom,
4336                                      NL80211_USER_REG_HINT_USER);
4337
4338         return 0;
4339 }
4340 #ifndef MODULE
4341 late_initcall(regulatory_init_db);
4342 #endif
4343
4344 int __init regulatory_init(void)
4345 {
4346         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4347         if (IS_ERR(reg_pdev))
4348                 return PTR_ERR(reg_pdev);
4349
4350         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4351
4352         user_alpha2[0] = '9';
4353         user_alpha2[1] = '7';
4354
4355 #ifdef MODULE
4356         return regulatory_init_db();
4357 #else
4358         return 0;
4359 #endif
4360 }
4361
4362 void regulatory_exit(void)
4363 {
4364         struct regulatory_request *reg_request, *tmp;
4365         struct reg_beacon *reg_beacon, *btmp;
4366
4367         cancel_work_sync(&reg_work);
4368         cancel_crda_timeout_sync();
4369         cancel_delayed_work_sync(&reg_check_chans);
4370
4371         /* Lock to suppress warnings */
4372         rtnl_lock();
4373         reset_regdomains(true, NULL);
4374         rtnl_unlock();
4375
4376         dev_set_uevent_suppress(&reg_pdev->dev, true);
4377
4378         platform_device_unregister(reg_pdev);
4379
4380         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4381                 list_del(&reg_beacon->list);
4382                 kfree(reg_beacon);
4383         }
4384
4385         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4386                 list_del(&reg_beacon->list);
4387                 kfree(reg_beacon);
4388         }
4389
4390         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4391                 list_del(&reg_request->list);
4392                 kfree(reg_request);
4393         }
4394
4395         if (!IS_ERR_OR_NULL(regdb))
4396                 kfree(regdb);
4397         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4398                 kfree(cfg80211_user_regdom);
4399
4400         free_regdb_keyring();
4401 }