arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2023 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140         return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rcu_dereference_check(wiphy->regd,
151                                      lockdep_is_held(&wiphy->mtx) ||
152                                      lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158         switch (dfs_region) {
159         case NL80211_DFS_UNSET:
160                 return "unset";
161         case NL80211_DFS_FCC:
162                 return "FCC";
163         case NL80211_DFS_ETSI:
164                 return "ETSI";
165         case NL80211_DFS_JP:
166                 return "JP";
167         }
168         return "Unknown";
169 }
170
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173         const struct ieee80211_regdomain *regd = NULL;
174         const struct ieee80211_regdomain *wiphy_regd = NULL;
175         enum nl80211_dfs_regions dfs_region;
176
177         rcu_read_lock();
178         regd = get_cfg80211_regdom();
179         dfs_region = regd->dfs_region;
180
181         if (!wiphy)
182                 goto out;
183
184         wiphy_regd = get_wiphy_regdom(wiphy);
185         if (!wiphy_regd)
186                 goto out;
187
188         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189                 dfs_region = wiphy_regd->dfs_region;
190                 goto out;
191         }
192
193         if (wiphy_regd->dfs_region == regd->dfs_region)
194                 goto out;
195
196         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197                  dev_name(&wiphy->dev),
198                  reg_dfs_region_str(wiphy_regd->dfs_region),
199                  reg_dfs_region_str(regd->dfs_region));
200
201 out:
202         rcu_read_unlock();
203
204         return dfs_region;
205 }
206
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209         if (!r)
210                 return;
211         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
214 static struct regulatory_request *get_last_request(void)
215 {
216         return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231         struct list_head list;
232         struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243         .n_reg_rules = 8,
244         .alpha2 =  "00",
245         .reg_rules = {
246                 /* IEEE 802.11b/g, channels 1..11 */
247                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248                 /* IEEE 802.11b/g, channels 12..13. */
249                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251                 /* IEEE 802.11 channel 14 - Only JP enables
252                  * this and for 802.11b only */
253                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_NO_OFDM),
256                 /* IEEE 802.11a, channel 36..48 */
257                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260
261                 /* IEEE 802.11a, channel 52..64 - DFS required */
262                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR |
264                         NL80211_RRF_AUTO_BW |
265                         NL80211_RRF_DFS),
266
267                 /* IEEE 802.11a, channel 100..144 - DFS required */
268                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269                         NL80211_RRF_NO_IR |
270                         NL80211_RRF_DFS),
271
272                 /* IEEE 802.11a, channel 149..165 */
273                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274                         NL80211_RRF_NO_IR),
275
276                 /* IEEE 802.11ad (60GHz), channels 1..3 */
277                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278         }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283         &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292 static void reg_free_request(struct regulatory_request *request)
293 {
294         if (request == &core_request_world)
295                 return;
296
297         if (request != get_last_request())
298                 kfree(request);
299 }
300
301 static void reg_free_last_request(void)
302 {
303         struct regulatory_request *lr = get_last_request();
304
305         if (lr != &core_request_world && lr)
306                 kfree_rcu(lr, rcu_head);
307 }
308
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311         struct regulatory_request *lr;
312
313         lr = get_last_request();
314         if (lr == request)
315                 return;
316
317         reg_free_last_request();
318         rcu_assign_pointer(last_request, request);
319 }
320
321 static void reset_regdomains(bool full_reset,
322                              const struct ieee80211_regdomain *new_regdom)
323 {
324         const struct ieee80211_regdomain *r;
325
326         ASSERT_RTNL();
327
328         r = get_cfg80211_regdom();
329
330         /* avoid freeing static information or freeing something twice */
331         if (r == cfg80211_world_regdom)
332                 r = NULL;
333         if (cfg80211_world_regdom == &world_regdom)
334                 cfg80211_world_regdom = NULL;
335         if (r == &world_regdom)
336                 r = NULL;
337
338         rcu_free_regdom(r);
339         rcu_free_regdom(cfg80211_world_regdom);
340
341         cfg80211_world_regdom = &world_regdom;
342         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344         if (!full_reset)
345                 return;
346
347         reg_update_last_request(&core_request_world);
348 }
349
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356         struct regulatory_request *lr;
357
358         lr = get_last_request();
359
360         WARN_ON(!lr);
361
362         reset_regdomains(false, rd);
363
364         cfg80211_world_regdom = rd;
365 }
366
367 bool is_world_regdom(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
374 static bool is_alpha2_set(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         return alpha2[0] && alpha2[1];
379 }
380
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383         if (!alpha2)
384                 return false;
385         /*
386          * Special case where regulatory domain was built by driver
387          * but a specific alpha2 cannot be determined
388          */
389         return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394         if (!alpha2)
395                 return false;
396         /*
397          * Special case where regulatory domain is the
398          * result of an intersection between two regulatory domain
399          * structures
400          */
401         return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
404 static bool is_an_alpha2(const char *alpha2)
405 {
406         if (!alpha2)
407                 return false;
408         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413         if (!alpha2_x || !alpha2_y)
414                 return false;
415         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
418 static bool regdom_changes(const char *alpha2)
419 {
420         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422         if (!r)
423                 return true;
424         return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435                 return false;
436
437         /* This would indicate a mistake on the design */
438         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439                  "Unexpected user alpha2: %c%c\n",
440                  user_alpha2[0], user_alpha2[1]))
441                 return false;
442
443         return true;
444 }
445
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449         struct ieee80211_regdomain *regd;
450         unsigned int i;
451
452         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453                        GFP_KERNEL);
454         if (!regd)
455                 return ERR_PTR(-ENOMEM);
456
457         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459         for (i = 0; i < src_regd->n_reg_rules; i++)
460                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461                        sizeof(struct ieee80211_reg_rule));
462
463         return regd;
464 }
465
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468         ASSERT_RTNL();
469
470         if (!IS_ERR(cfg80211_user_regdom))
471                 kfree(cfg80211_user_regdom);
472         cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476         struct list_head list;
477         const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485         struct reg_regdb_apply_request *request;
486
487         rtnl_lock();
488
489         mutex_lock(&reg_regdb_apply_mutex);
490         while (!list_empty(&reg_regdb_apply_list)) {
491                 request = list_first_entry(&reg_regdb_apply_list,
492                                            struct reg_regdb_apply_request,
493                                            list);
494                 list_del(&request->list);
495
496                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497                 kfree(request);
498         }
499         mutex_unlock(&reg_regdb_apply_mutex);
500
501         rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508         struct reg_regdb_apply_request *request;
509
510         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511         if (!request) {
512                 kfree(regdom);
513                 return -ENOMEM;
514         }
515
516         request->regdom = regdom;
517
518         mutex_lock(&reg_regdb_apply_mutex);
519         list_add_tail(&request->list, &reg_regdb_apply_list);
520         mutex_unlock(&reg_regdb_apply_mutex);
521
522         schedule_work(&reg_regdb_work);
523         return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true, false);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605         u8 alpha2[2];
606         __be16 coll_ptr;
607         /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611         u8 len;
612         u8 n_rules;
613         u8 dfs_region;
614         /* no optional data yet */
615         /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619         FWDB_FLAG_NO_OFDM       = BIT(0),
620         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
621         FWDB_FLAG_DFS           = BIT(2),
622         FWDB_FLAG_NO_IR         = BIT(3),
623         FWDB_FLAG_AUTO_BW       = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627         u8 ecw;
628         u8 aifsn;
629         __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638         u8 len;
639         u8 flags;
640         __be16 max_eirp;
641         __be32 start, end, max_bw;
642         /* start of optional data */
643         __be16 cac_timeout;
644         __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651         __be32 magic;
652         __be32 version;
653         struct fwdb_country country[];
654 } __packed __aligned(4);
655
656 static int ecw2cw(int ecw)
657 {
658         return (1 << ecw) - 1;
659 }
660
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664         int i;
665
666         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669                 u8 aifsn = ac[i].aifsn;
670
671                 if (cw_min >= cw_max)
672                         return false;
673
674                 if (aifsn < 1)
675                         return false;
676         }
677
678         return true;
679 }
680
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685         if ((u8 *)rule + sizeof(rule->len) > data + size)
686                 return false;
687
688         /* mandatory fields */
689         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690                 return false;
691         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693                 struct fwdb_wmm_rule *wmm;
694
695                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696                         return false;
697
698                 wmm = (void *)(data + wmm_ptr);
699
700                 if (!valid_wmm(wmm))
701                         return false;
702         }
703         return true;
704 }
705
706 static bool valid_country(const u8 *data, unsigned int size,
707                           const struct fwdb_country *country)
708 {
709         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710         struct fwdb_collection *coll = (void *)(data + ptr);
711         __be16 *rules_ptr;
712         unsigned int i;
713
714         /* make sure we can read len/n_rules */
715         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716                 return false;
717
718         /* make sure base struct and all rules fit */
719         if ((u8 *)coll + ALIGN(coll->len, 2) +
720             (coll->n_rules * 2) > data + size)
721                 return false;
722
723         /* mandatory fields must exist */
724         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725                 return false;
726
727         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729         for (i = 0; i < coll->n_rules; i++) {
730                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732                 if (!valid_rule(data, size, rule_ptr))
733                         return false;
734         }
735
736         return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741
742 static struct key *builtin_regdb_keys;
743
744 static int __init load_builtin_regdb_keys(void)
745 {
746         builtin_regdb_keys =
747                 keyring_alloc(".builtin_regdb_keys",
748                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752         if (IS_ERR(builtin_regdb_keys))
753                 return PTR_ERR(builtin_regdb_keys);
754
755         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758         x509_load_certificate_list(shipped_regdb_certs,
759                                    shipped_regdb_certs_len,
760                                    builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764                 x509_load_certificate_list(extra_regdb_certs,
765                                            extra_regdb_certs_len,
766                                            builtin_regdb_keys);
767 #endif
768
769         return 0;
770 }
771
772 MODULE_FIRMWARE("regulatory.db.p7s");
773
774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776         const struct firmware *sig;
777         bool result;
778
779         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780                 return false;
781
782         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783                                         builtin_regdb_keys,
784                                         VERIFYING_UNSPECIFIED_SIGNATURE,
785                                         NULL, NULL) == 0;
786
787         release_firmware(sig);
788
789         return result;
790 }
791
792 static void free_regdb_keyring(void)
793 {
794         key_put(builtin_regdb_keys);
795 }
796 #else
797 static int load_builtin_regdb_keys(void)
798 {
799         return 0;
800 }
801
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804         return true;
805 }
806
807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814         const struct fwdb_header *hdr = (void *)data;
815         const struct fwdb_country *country;
816
817         if (size < sizeof(*hdr))
818                 return false;
819
820         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821                 return false;
822
823         if (hdr->version != cpu_to_be32(FWDB_VERSION))
824                 return false;
825
826         if (!regdb_has_valid_signature(data, size))
827                 return false;
828
829         country = &hdr->country[0];
830         while ((u8 *)(country + 1) <= data + size) {
831                 if (!country->coll_ptr)
832                         break;
833                 if (!valid_country(data, size, country))
834                         return false;
835                 country++;
836         }
837
838         return true;
839 }
840
841 static void set_wmm_rule(const struct fwdb_header *db,
842                          const struct fwdb_country *country,
843                          const struct fwdb_rule *rule,
844                          struct ieee80211_reg_rule *rrule)
845 {
846         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847         struct fwdb_wmm_rule *wmm;
848         unsigned int i, wmm_ptr;
849
850         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851         wmm = (void *)((u8 *)db + wmm_ptr);
852
853         if (!valid_wmm(wmm)) {
854                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856                        country->alpha2[0], country->alpha2[1]);
857                 return;
858         }
859
860         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861                 wmm_rule->client[i].cw_min =
862                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865                 wmm_rule->client[i].cot =
866                         1000 * be16_to_cpu(wmm->client[i].cot);
867                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871         }
872
873         rrule->has_wmm = true;
874 }
875
876 static int __regdb_query_wmm(const struct fwdb_header *db,
877                              const struct fwdb_country *country, int freq,
878                              struct ieee80211_reg_rule *rrule)
879 {
880         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882         int i;
883
884         for (i = 0; i < coll->n_rules; i++) {
885                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890                         continue;
891
892                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894                         set_wmm_rule(db, country, rule, rrule);
895                         return 0;
896                 }
897         }
898
899         return -ENODATA;
900 }
901
902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904         const struct fwdb_header *hdr = regdb;
905         const struct fwdb_country *country;
906
907         if (!regdb)
908                 return -ENODATA;
909
910         if (IS_ERR(regdb))
911                 return PTR_ERR(regdb);
912
913         country = &hdr->country[0];
914         while (country->coll_ptr) {
915                 if (alpha2_equal(alpha2, country->alpha2))
916                         return __regdb_query_wmm(regdb, country, freq, rule);
917
918                 country++;
919         }
920
921         return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924
925 static int regdb_query_country(const struct fwdb_header *db,
926                                const struct fwdb_country *country)
927 {
928         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930         struct ieee80211_regdomain *regdom;
931         unsigned int i;
932
933         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934                          GFP_KERNEL);
935         if (!regdom)
936                 return -ENOMEM;
937
938         regdom->n_reg_rules = coll->n_rules;
939         regdom->alpha2[0] = country->alpha2[0];
940         regdom->alpha2[1] = country->alpha2[1];
941         regdom->dfs_region = coll->dfs_region;
942
943         for (i = 0; i < regdom->n_reg_rules; i++) {
944                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948
949                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953                 rrule->power_rule.max_antenna_gain = 0;
954                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956                 rrule->flags = 0;
957                 if (rule->flags & FWDB_FLAG_NO_OFDM)
958                         rrule->flags |= NL80211_RRF_NO_OFDM;
959                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961                 if (rule->flags & FWDB_FLAG_DFS)
962                         rrule->flags |= NL80211_RRF_DFS;
963                 if (rule->flags & FWDB_FLAG_NO_IR)
964                         rrule->flags |= NL80211_RRF_NO_IR;
965                 if (rule->flags & FWDB_FLAG_AUTO_BW)
966                         rrule->flags |= NL80211_RRF_AUTO_BW;
967
968                 rrule->dfs_cac_ms = 0;
969
970                 /* handle optional data */
971                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972                         rrule->dfs_cac_ms =
973                                 1000 * be16_to_cpu(rule->cac_timeout);
974                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975                         set_wmm_rule(db, country, rule, rrule);
976         }
977
978         return reg_schedule_apply(regdom);
979 }
980
981 static int query_regdb(const char *alpha2)
982 {
983         const struct fwdb_header *hdr = regdb;
984         const struct fwdb_country *country;
985
986         ASSERT_RTNL();
987
988         if (IS_ERR(regdb))
989                 return PTR_ERR(regdb);
990
991         country = &hdr->country[0];
992         while (country->coll_ptr) {
993                 if (alpha2_equal(alpha2, country->alpha2))
994                         return regdb_query_country(regdb, country);
995                 country++;
996         }
997
998         return -ENODATA;
999 }
1000
1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003         int set_error = 0;
1004         bool restore = true;
1005         void *db;
1006
1007         if (!fw) {
1008                 pr_info("failed to load regulatory.db\n");
1009                 set_error = -ENODATA;
1010         } else if (!valid_regdb(fw->data, fw->size)) {
1011                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012                 set_error = -EINVAL;
1013         }
1014
1015         rtnl_lock();
1016         if (regdb && !IS_ERR(regdb)) {
1017                 /* negative case - a bug
1018                  * positive case - can happen due to race in case of multiple cb's in
1019                  * queue, due to usage of asynchronous callback
1020                  *
1021                  * Either case, just restore and free new db.
1022                  */
1023         } else if (set_error) {
1024                 regdb = ERR_PTR(set_error);
1025         } else if (fw) {
1026                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027                 if (db) {
1028                         regdb = db;
1029                         restore = context && query_regdb(context);
1030                 } else {
1031                         restore = true;
1032                 }
1033         }
1034
1035         if (restore)
1036                 restore_regulatory_settings(true, false);
1037
1038         rtnl_unlock();
1039
1040         kfree(context);
1041
1042         release_firmware(fw);
1043 }
1044
1045 MODULE_FIRMWARE("regulatory.db");
1046
1047 static int query_regdb_file(const char *alpha2)
1048 {
1049         int err;
1050
1051         ASSERT_RTNL();
1052
1053         if (regdb)
1054                 return query_regdb(alpha2);
1055
1056         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057         if (!alpha2)
1058                 return -ENOMEM;
1059
1060         err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061                                       &reg_pdev->dev, GFP_KERNEL,
1062                                       (void *)alpha2, regdb_fw_cb);
1063         if (err)
1064                 kfree(alpha2);
1065
1066         return err;
1067 }
1068
1069 int reg_reload_regdb(void)
1070 {
1071         const struct firmware *fw;
1072         void *db;
1073         int err;
1074         const struct ieee80211_regdomain *current_regdomain;
1075         struct regulatory_request *request;
1076
1077         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078         if (err)
1079                 return err;
1080
1081         if (!valid_regdb(fw->data, fw->size)) {
1082                 err = -ENODATA;
1083                 goto out;
1084         }
1085
1086         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087         if (!db) {
1088                 err = -ENOMEM;
1089                 goto out;
1090         }
1091
1092         rtnl_lock();
1093         if (!IS_ERR_OR_NULL(regdb))
1094                 kfree(regdb);
1095         regdb = db;
1096
1097         /* reset regulatory domain */
1098         current_regdomain = get_cfg80211_regdom();
1099
1100         request = kzalloc(sizeof(*request), GFP_KERNEL);
1101         if (!request) {
1102                 err = -ENOMEM;
1103                 goto out_unlock;
1104         }
1105
1106         request->wiphy_idx = WIPHY_IDX_INVALID;
1107         request->alpha2[0] = current_regdomain->alpha2[0];
1108         request->alpha2[1] = current_regdomain->alpha2[1];
1109         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112         reg_process_hint(request);
1113
1114 out_unlock:
1115         rtnl_unlock();
1116  out:
1117         release_firmware(fw);
1118         return err;
1119 }
1120
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123         if (query_regdb_file(request->alpha2) == 0)
1124                 return true;
1125
1126         if (call_crda(request->alpha2) == 0)
1127                 return true;
1128
1129         return false;
1130 }
1131
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134         struct regulatory_request *lr = get_last_request();
1135
1136         if (!lr || lr->processed)
1137                 return false;
1138
1139         return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144         struct regulatory_request *lr = get_last_request();
1145
1146         /*
1147          * Follow the driver's regulatory domain, if present, unless a country
1148          * IE has been processed or a user wants to help complaince further
1149          */
1150         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152             wiphy->regd)
1153                 return get_wiphy_regdom(wiphy);
1154
1155         return get_cfg80211_regdom();
1156 }
1157
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160                                  const struct ieee80211_reg_rule *rule)
1161 {
1162         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163         const struct ieee80211_freq_range *freq_range_tmp;
1164         const struct ieee80211_reg_rule *tmp;
1165         u32 start_freq, end_freq, idx, no;
1166
1167         for (idx = 0; idx < rd->n_reg_rules; idx++)
1168                 if (rule == &rd->reg_rules[idx])
1169                         break;
1170
1171         if (idx == rd->n_reg_rules)
1172                 return 0;
1173
1174         /* get start_freq */
1175         no = idx;
1176
1177         while (no) {
1178                 tmp = &rd->reg_rules[--no];
1179                 freq_range_tmp = &tmp->freq_range;
1180
1181                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182                         break;
1183
1184                 freq_range = freq_range_tmp;
1185         }
1186
1187         start_freq = freq_range->start_freq_khz;
1188
1189         /* get end_freq */
1190         freq_range = &rule->freq_range;
1191         no = idx;
1192
1193         while (no < rd->n_reg_rules - 1) {
1194                 tmp = &rd->reg_rules[++no];
1195                 freq_range_tmp = &tmp->freq_range;
1196
1197                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198                         break;
1199
1200                 freq_range = freq_range_tmp;
1201         }
1202
1203         end_freq = freq_range->end_freq_khz;
1204
1205         return end_freq - start_freq;
1206 }
1207
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209                                    const struct ieee80211_reg_rule *rule)
1210 {
1211         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213         if (rule->flags & NL80211_RRF_NO_320MHZ)
1214                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215         if (rule->flags & NL80211_RRF_NO_160MHZ)
1216                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217         if (rule->flags & NL80211_RRF_NO_80MHZ)
1218                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220         /*
1221          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222          * are not allowed.
1223          */
1224         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225             rule->flags & NL80211_RRF_NO_HT40PLUS)
1226                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228         return bw;
1229 }
1230
1231 /* Sanity check on a regulatory rule */
1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235         u32 freq_diff;
1236
1237         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238                 return false;
1239
1240         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241                 return false;
1242
1243         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246             freq_range->max_bandwidth_khz > freq_diff)
1247                 return false;
1248
1249         return true;
1250 }
1251
1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254         const struct ieee80211_reg_rule *reg_rule = NULL;
1255         unsigned int i;
1256
1257         if (!rd->n_reg_rules)
1258                 return false;
1259
1260         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261                 return false;
1262
1263         for (i = 0; i < rd->n_reg_rules; i++) {
1264                 reg_rule = &rd->reg_rules[i];
1265                 if (!is_valid_reg_rule(reg_rule))
1266                         return false;
1267         }
1268
1269         return true;
1270 }
1271
1272 /**
1273  * freq_in_rule_band - tells us if a frequency is in a frequency band
1274  * @freq_range: frequency rule we want to query
1275  * @freq_khz: frequency we are inquiring about
1276  *
1277  * This lets us know if a specific frequency rule is or is not relevant to
1278  * a specific frequency's band. Bands are device specific and artificial
1279  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280  * however it is safe for now to assume that a frequency rule should not be
1281  * part of a frequency's band if the start freq or end freq are off by more
1282  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283  * 60 GHz band.
1284  * This resolution can be lowered and should be considered as we add
1285  * regulatory rule support for other "bands".
1286  *
1287  * Returns: whether or not the frequency is in the range
1288  */
1289 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290                               u32 freq_khz)
1291 {
1292 #define ONE_GHZ_IN_KHZ  1000000
1293         /*
1294          * From 802.11ad: directional multi-gigabit (DMG):
1295          * Pertaining to operation in a frequency band containing a channel
1296          * with the Channel starting frequency above 45 GHz.
1297          */
1298         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301                 return true;
1302         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303                 return true;
1304         return false;
1305 #undef ONE_GHZ_IN_KHZ
1306 }
1307
1308 /*
1309  * Later on we can perhaps use the more restrictive DFS
1310  * region but we don't have information for that yet so
1311  * for now simply disallow conflicts.
1312  */
1313 static enum nl80211_dfs_regions
1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315                          const enum nl80211_dfs_regions dfs_region2)
1316 {
1317         if (dfs_region1 != dfs_region2)
1318                 return NL80211_DFS_UNSET;
1319         return dfs_region1;
1320 }
1321
1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323                                     const struct ieee80211_wmm_ac *wmm_ac2,
1324                                     struct ieee80211_wmm_ac *intersect)
1325 {
1326         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330 }
1331
1332 /*
1333  * Helper for regdom_intersect(), this does the real
1334  * mathematical intersection fun
1335  */
1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337                                const struct ieee80211_regdomain *rd2,
1338                                const struct ieee80211_reg_rule *rule1,
1339                                const struct ieee80211_reg_rule *rule2,
1340                                struct ieee80211_reg_rule *intersected_rule)
1341 {
1342         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343         struct ieee80211_freq_range *freq_range;
1344         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345         struct ieee80211_power_rule *power_rule;
1346         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347         struct ieee80211_wmm_rule *wmm_rule;
1348         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350         freq_range1 = &rule1->freq_range;
1351         freq_range2 = &rule2->freq_range;
1352         freq_range = &intersected_rule->freq_range;
1353
1354         power_rule1 = &rule1->power_rule;
1355         power_rule2 = &rule2->power_rule;
1356         power_rule = &intersected_rule->power_rule;
1357
1358         wmm_rule1 = &rule1->wmm_rule;
1359         wmm_rule2 = &rule2->wmm_rule;
1360         wmm_rule = &intersected_rule->wmm_rule;
1361
1362         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363                                          freq_range2->start_freq_khz);
1364         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365                                        freq_range2->end_freq_khz);
1366
1367         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370         if (rule1->flags & NL80211_RRF_AUTO_BW)
1371                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372         if (rule2->flags & NL80211_RRF_AUTO_BW)
1373                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377         intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379         /*
1380          * In case NL80211_RRF_AUTO_BW requested for both rules
1381          * set AUTO_BW in intersected rule also. Next we will
1382          * calculate BW correctly in handle_channel function.
1383          * In other case remove AUTO_BW flag while we calculate
1384          * maximum bandwidth correctly and auto calculation is
1385          * not required.
1386          */
1387         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388             (rule2->flags & NL80211_RRF_AUTO_BW))
1389                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390         else
1391                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394         if (freq_range->max_bandwidth_khz > freq_diff)
1395                 freq_range->max_bandwidth_khz = freq_diff;
1396
1397         power_rule->max_eirp = min(power_rule1->max_eirp,
1398                 power_rule2->max_eirp);
1399         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400                 power_rule2->max_antenna_gain);
1401
1402         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403                                            rule2->dfs_cac_ms);
1404
1405         if (rule1->has_wmm && rule2->has_wmm) {
1406                 u8 ac;
1407
1408                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410                                                 &wmm_rule2->client[ac],
1411                                                 &wmm_rule->client[ac]);
1412                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413                                                 &wmm_rule2->ap[ac],
1414                                                 &wmm_rule->ap[ac]);
1415                 }
1416
1417                 intersected_rule->has_wmm = true;
1418         } else if (rule1->has_wmm) {
1419                 *wmm_rule = *wmm_rule1;
1420                 intersected_rule->has_wmm = true;
1421         } else if (rule2->has_wmm) {
1422                 *wmm_rule = *wmm_rule2;
1423                 intersected_rule->has_wmm = true;
1424         } else {
1425                 intersected_rule->has_wmm = false;
1426         }
1427
1428         if (!is_valid_reg_rule(intersected_rule))
1429                 return -EINVAL;
1430
1431         return 0;
1432 }
1433
1434 /* check whether old rule contains new rule */
1435 static bool rule_contains(struct ieee80211_reg_rule *r1,
1436                           struct ieee80211_reg_rule *r2)
1437 {
1438         /* for simplicity, currently consider only same flags */
1439         if (r1->flags != r2->flags)
1440                 return false;
1441
1442         /* verify r1 is more restrictive */
1443         if ((r1->power_rule.max_antenna_gain >
1444              r2->power_rule.max_antenna_gain) ||
1445             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446                 return false;
1447
1448         /* make sure r2's range is contained within r1 */
1449         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451                 return false;
1452
1453         /* and finally verify that r1.max_bw >= r2.max_bw */
1454         if (r1->freq_range.max_bandwidth_khz <
1455             r2->freq_range.max_bandwidth_khz)
1456                 return false;
1457
1458         return true;
1459 }
1460
1461 /* add or extend current rules. do nothing if rule is already contained */
1462 static void add_rule(struct ieee80211_reg_rule *rule,
1463                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464 {
1465         struct ieee80211_reg_rule *tmp_rule;
1466         int i;
1467
1468         for (i = 0; i < *n_rules; i++) {
1469                 tmp_rule = &reg_rules[i];
1470                 /* rule is already contained - do nothing */
1471                 if (rule_contains(tmp_rule, rule))
1472                         return;
1473
1474                 /* extend rule if possible */
1475                 if (rule_contains(rule, tmp_rule)) {
1476                         memcpy(tmp_rule, rule, sizeof(*rule));
1477                         return;
1478                 }
1479         }
1480
1481         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482         (*n_rules)++;
1483 }
1484
1485 /**
1486  * regdom_intersect - do the intersection between two regulatory domains
1487  * @rd1: first regulatory domain
1488  * @rd2: second regulatory domain
1489  *
1490  * Use this function to get the intersection between two regulatory domains.
1491  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492  * as no one single alpha2 can represent this regulatory domain.
1493  *
1494  * Returns a pointer to the regulatory domain structure which will hold the
1495  * resulting intersection of rules between rd1 and rd2. We will
1496  * kzalloc() this structure for you.
1497  *
1498  * Returns: the intersected regdomain
1499  */
1500 static struct ieee80211_regdomain *
1501 regdom_intersect(const struct ieee80211_regdomain *rd1,
1502                  const struct ieee80211_regdomain *rd2)
1503 {
1504         int r;
1505         unsigned int x, y;
1506         unsigned int num_rules = 0;
1507         const struct ieee80211_reg_rule *rule1, *rule2;
1508         struct ieee80211_reg_rule intersected_rule;
1509         struct ieee80211_regdomain *rd;
1510
1511         if (!rd1 || !rd2)
1512                 return NULL;
1513
1514         /*
1515          * First we get a count of the rules we'll need, then we actually
1516          * build them. This is to so we can malloc() and free() a
1517          * regdomain once. The reason we use reg_rules_intersect() here
1518          * is it will return -EINVAL if the rule computed makes no sense.
1519          * All rules that do check out OK are valid.
1520          */
1521
1522         for (x = 0; x < rd1->n_reg_rules; x++) {
1523                 rule1 = &rd1->reg_rules[x];
1524                 for (y = 0; y < rd2->n_reg_rules; y++) {
1525                         rule2 = &rd2->reg_rules[y];
1526                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527                                                  &intersected_rule))
1528                                 num_rules++;
1529                 }
1530         }
1531
1532         if (!num_rules)
1533                 return NULL;
1534
1535         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536         if (!rd)
1537                 return NULL;
1538
1539         for (x = 0; x < rd1->n_reg_rules; x++) {
1540                 rule1 = &rd1->reg_rules[x];
1541                 for (y = 0; y < rd2->n_reg_rules; y++) {
1542                         rule2 = &rd2->reg_rules[y];
1543                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544                                                 &intersected_rule);
1545                         /*
1546                          * No need to memset here the intersected rule here as
1547                          * we're not using the stack anymore
1548                          */
1549                         if (r)
1550                                 continue;
1551
1552                         add_rule(&intersected_rule, rd->reg_rules,
1553                                  &rd->n_reg_rules);
1554                 }
1555         }
1556
1557         rd->alpha2[0] = '9';
1558         rd->alpha2[1] = '8';
1559         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560                                                   rd2->dfs_region);
1561
1562         return rd;
1563 }
1564
1565 /*
1566  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567  * want to just have the channel structure use these
1568  */
1569 static u32 map_regdom_flags(u32 rd_flags)
1570 {
1571         u32 channel_flags = 0;
1572         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573                 channel_flags |= IEEE80211_CHAN_NO_IR;
1574         if (rd_flags & NL80211_RRF_DFS)
1575                 channel_flags |= IEEE80211_CHAN_RADAR;
1576         if (rd_flags & NL80211_RRF_NO_OFDM)
1577                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586         if (rd_flags & NL80211_RRF_NO_80MHZ)
1587                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588         if (rd_flags & NL80211_RRF_NO_160MHZ)
1589                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590         if (rd_flags & NL80211_RRF_NO_HE)
1591                 channel_flags |= IEEE80211_CHAN_NO_HE;
1592         if (rd_flags & NL80211_RRF_NO_320MHZ)
1593                 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594         if (rd_flags & NL80211_RRF_NO_EHT)
1595                 channel_flags |= IEEE80211_CHAN_NO_EHT;
1596         if (rd_flags & NL80211_RRF_PSD)
1597                 channel_flags |= IEEE80211_CHAN_PSD;
1598         return channel_flags;
1599 }
1600
1601 static const struct ieee80211_reg_rule *
1602 freq_reg_info_regd(u32 center_freq,
1603                    const struct ieee80211_regdomain *regd, u32 bw)
1604 {
1605         int i;
1606         bool band_rule_found = false;
1607         bool bw_fits = false;
1608
1609         if (!regd)
1610                 return ERR_PTR(-EINVAL);
1611
1612         for (i = 0; i < regd->n_reg_rules; i++) {
1613                 const struct ieee80211_reg_rule *rr;
1614                 const struct ieee80211_freq_range *fr = NULL;
1615
1616                 rr = &regd->reg_rules[i];
1617                 fr = &rr->freq_range;
1618
1619                 /*
1620                  * We only need to know if one frequency rule was
1621                  * in center_freq's band, that's enough, so let's
1622                  * not overwrite it once found
1623                  */
1624                 if (!band_rule_found)
1625                         band_rule_found = freq_in_rule_band(fr, center_freq);
1626
1627                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1628
1629                 if (band_rule_found && bw_fits)
1630                         return rr;
1631         }
1632
1633         if (!band_rule_found)
1634                 return ERR_PTR(-ERANGE);
1635
1636         return ERR_PTR(-EINVAL);
1637 }
1638
1639 static const struct ieee80211_reg_rule *
1640 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1641 {
1642         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1643         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1644         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1645         int i = ARRAY_SIZE(bws) - 1;
1646         u32 bw;
1647
1648         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1649                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1650                 if (!IS_ERR(reg_rule))
1651                         return reg_rule;
1652         }
1653
1654         return reg_rule;
1655 }
1656
1657 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1658                                                u32 center_freq)
1659 {
1660         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1661
1662         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1663 }
1664 EXPORT_SYMBOL(freq_reg_info);
1665
1666 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1667 {
1668         switch (initiator) {
1669         case NL80211_REGDOM_SET_BY_CORE:
1670                 return "core";
1671         case NL80211_REGDOM_SET_BY_USER:
1672                 return "user";
1673         case NL80211_REGDOM_SET_BY_DRIVER:
1674                 return "driver";
1675         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1676                 return "country element";
1677         default:
1678                 WARN_ON(1);
1679                 return "bug";
1680         }
1681 }
1682 EXPORT_SYMBOL(reg_initiator_name);
1683
1684 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1685                                           const struct ieee80211_reg_rule *reg_rule,
1686                                           const struct ieee80211_channel *chan)
1687 {
1688         const struct ieee80211_freq_range *freq_range = NULL;
1689         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1690         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1691
1692         freq_range = &reg_rule->freq_range;
1693
1694         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1695         center_freq_khz = ieee80211_channel_to_khz(chan);
1696         /* Check if auto calculation requested */
1697         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1698                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1699
1700         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1701         if (!cfg80211_does_bw_fit_range(freq_range,
1702                                         center_freq_khz,
1703                                         MHZ_TO_KHZ(10)))
1704                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1705         if (!cfg80211_does_bw_fit_range(freq_range,
1706                                         center_freq_khz,
1707                                         MHZ_TO_KHZ(20)))
1708                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1709
1710         if (is_s1g) {
1711                 /* S1G is strict about non overlapping channels. We can
1712                  * calculate which bandwidth is allowed per channel by finding
1713                  * the largest bandwidth which cleanly divides the freq_range.
1714                  */
1715                 int edge_offset;
1716                 int ch_bw = max_bandwidth_khz;
1717
1718                 while (ch_bw) {
1719                         edge_offset = (center_freq_khz - ch_bw / 2) -
1720                                       freq_range->start_freq_khz;
1721                         if (edge_offset % ch_bw == 0) {
1722                                 switch (KHZ_TO_MHZ(ch_bw)) {
1723                                 case 1:
1724                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1725                                         break;
1726                                 case 2:
1727                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1728                                         break;
1729                                 case 4:
1730                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1731                                         break;
1732                                 case 8:
1733                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1734                                         break;
1735                                 case 16:
1736                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1737                                         break;
1738                                 default:
1739                                         /* If we got here, no bandwidths fit on
1740                                          * this frequency, ie. band edge.
1741                                          */
1742                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1743                                         break;
1744                                 }
1745                                 break;
1746                         }
1747                         ch_bw /= 2;
1748                 }
1749         } else {
1750                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1751                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1752                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1753                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1754                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1755                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1756                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1757                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1758                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1759                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1760                 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1761                         bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1762         }
1763         return bw_flags;
1764 }
1765
1766 static void handle_channel_single_rule(struct wiphy *wiphy,
1767                                        enum nl80211_reg_initiator initiator,
1768                                        struct ieee80211_channel *chan,
1769                                        u32 flags,
1770                                        struct regulatory_request *lr,
1771                                        struct wiphy *request_wiphy,
1772                                        const struct ieee80211_reg_rule *reg_rule)
1773 {
1774         u32 bw_flags = 0;
1775         const struct ieee80211_power_rule *power_rule = NULL;
1776         const struct ieee80211_regdomain *regd;
1777
1778         regd = reg_get_regdomain(wiphy);
1779
1780         power_rule = &reg_rule->power_rule;
1781         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1782
1783         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1784             request_wiphy && request_wiphy == wiphy &&
1785             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1786                 /*
1787                  * This guarantees the driver's requested regulatory domain
1788                  * will always be used as a base for further regulatory
1789                  * settings
1790                  */
1791                 chan->flags = chan->orig_flags =
1792                         map_regdom_flags(reg_rule->flags) | bw_flags;
1793                 chan->max_antenna_gain = chan->orig_mag =
1794                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1795                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1796                         (int) MBM_TO_DBM(power_rule->max_eirp);
1797
1798                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1799                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1800                         if (reg_rule->dfs_cac_ms)
1801                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1802                 }
1803
1804                 if (chan->flags & IEEE80211_CHAN_PSD)
1805                         chan->psd = reg_rule->psd;
1806
1807                 return;
1808         }
1809
1810         chan->dfs_state = NL80211_DFS_USABLE;
1811         chan->dfs_state_entered = jiffies;
1812
1813         chan->beacon_found = false;
1814         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1815         chan->max_antenna_gain =
1816                 min_t(int, chan->orig_mag,
1817                       MBI_TO_DBI(power_rule->max_antenna_gain));
1818         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1819
1820         if (chan->flags & IEEE80211_CHAN_RADAR) {
1821                 if (reg_rule->dfs_cac_ms)
1822                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1823                 else
1824                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1825         }
1826
1827         if (chan->flags & IEEE80211_CHAN_PSD)
1828                 chan->psd = reg_rule->psd;
1829
1830         if (chan->orig_mpwr) {
1831                 /*
1832                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1833                  * will always follow the passed country IE power settings.
1834                  */
1835                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1836                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1837                         chan->max_power = chan->max_reg_power;
1838                 else
1839                         chan->max_power = min(chan->orig_mpwr,
1840                                               chan->max_reg_power);
1841         } else
1842                 chan->max_power = chan->max_reg_power;
1843 }
1844
1845 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1846                                           enum nl80211_reg_initiator initiator,
1847                                           struct ieee80211_channel *chan,
1848                                           u32 flags,
1849                                           struct regulatory_request *lr,
1850                                           struct wiphy *request_wiphy,
1851                                           const struct ieee80211_reg_rule *rrule1,
1852                                           const struct ieee80211_reg_rule *rrule2,
1853                                           struct ieee80211_freq_range *comb_range)
1854 {
1855         u32 bw_flags1 = 0;
1856         u32 bw_flags2 = 0;
1857         const struct ieee80211_power_rule *power_rule1 = NULL;
1858         const struct ieee80211_power_rule *power_rule2 = NULL;
1859         const struct ieee80211_regdomain *regd;
1860
1861         regd = reg_get_regdomain(wiphy);
1862
1863         power_rule1 = &rrule1->power_rule;
1864         power_rule2 = &rrule2->power_rule;
1865         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1866         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1867
1868         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1869             request_wiphy && request_wiphy == wiphy &&
1870             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1871                 /* This guarantees the driver's requested regulatory domain
1872                  * will always be used as a base for further regulatory
1873                  * settings
1874                  */
1875                 chan->flags =
1876                         map_regdom_flags(rrule1->flags) |
1877                         map_regdom_flags(rrule2->flags) |
1878                         bw_flags1 |
1879                         bw_flags2;
1880                 chan->orig_flags = chan->flags;
1881                 chan->max_antenna_gain =
1882                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1883                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1884                 chan->orig_mag = chan->max_antenna_gain;
1885                 chan->max_reg_power =
1886                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1887                               MBM_TO_DBM(power_rule2->max_eirp));
1888                 chan->max_power = chan->max_reg_power;
1889                 chan->orig_mpwr = chan->max_reg_power;
1890
1891                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1892                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1893                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1894                                 chan->dfs_cac_ms = max_t(unsigned int,
1895                                                          rrule1->dfs_cac_ms,
1896                                                          rrule2->dfs_cac_ms);
1897                 }
1898
1899                 if ((rrule1->flags & NL80211_RRF_PSD) &&
1900                     (rrule2->flags & NL80211_RRF_PSD))
1901                         chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1902                 else
1903                         chan->flags &= ~NL80211_RRF_PSD;
1904
1905                 return;
1906         }
1907
1908         chan->dfs_state = NL80211_DFS_USABLE;
1909         chan->dfs_state_entered = jiffies;
1910
1911         chan->beacon_found = false;
1912         chan->flags = flags | bw_flags1 | bw_flags2 |
1913                       map_regdom_flags(rrule1->flags) |
1914                       map_regdom_flags(rrule2->flags);
1915
1916         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1917          * (otherwise no adj. rule case), recheck therefore
1918          */
1919         if (cfg80211_does_bw_fit_range(comb_range,
1920                                        ieee80211_channel_to_khz(chan),
1921                                        MHZ_TO_KHZ(10)))
1922                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1923         if (cfg80211_does_bw_fit_range(comb_range,
1924                                        ieee80211_channel_to_khz(chan),
1925                                        MHZ_TO_KHZ(20)))
1926                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1927
1928         chan->max_antenna_gain =
1929                 min_t(int, chan->orig_mag,
1930                       min_t(int,
1931                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1932                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1933         chan->max_reg_power = min_t(int,
1934                                     MBM_TO_DBM(power_rule1->max_eirp),
1935                                     MBM_TO_DBM(power_rule2->max_eirp));
1936
1937         if (chan->flags & IEEE80211_CHAN_RADAR) {
1938                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1939                         chan->dfs_cac_ms = max_t(unsigned int,
1940                                                  rrule1->dfs_cac_ms,
1941                                                  rrule2->dfs_cac_ms);
1942                 else
1943                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1944         }
1945
1946         if (chan->orig_mpwr) {
1947                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1948                  * will always follow the passed country IE power settings.
1949                  */
1950                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1951                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1952                         chan->max_power = chan->max_reg_power;
1953                 else
1954                         chan->max_power = min(chan->orig_mpwr,
1955                                               chan->max_reg_power);
1956         } else {
1957                 chan->max_power = chan->max_reg_power;
1958         }
1959 }
1960
1961 /* Note that right now we assume the desired channel bandwidth
1962  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1963  * per channel, the primary and the extension channel).
1964  */
1965 static void handle_channel(struct wiphy *wiphy,
1966                            enum nl80211_reg_initiator initiator,
1967                            struct ieee80211_channel *chan)
1968 {
1969         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1970         struct regulatory_request *lr = get_last_request();
1971         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1972         const struct ieee80211_reg_rule *rrule = NULL;
1973         const struct ieee80211_reg_rule *rrule1 = NULL;
1974         const struct ieee80211_reg_rule *rrule2 = NULL;
1975
1976         u32 flags = chan->orig_flags;
1977
1978         rrule = freq_reg_info(wiphy, orig_chan_freq);
1979         if (IS_ERR(rrule)) {
1980                 /* check for adjacent match, therefore get rules for
1981                  * chan - 20 MHz and chan + 20 MHz and test
1982                  * if reg rules are adjacent
1983                  */
1984                 rrule1 = freq_reg_info(wiphy,
1985                                        orig_chan_freq - MHZ_TO_KHZ(20));
1986                 rrule2 = freq_reg_info(wiphy,
1987                                        orig_chan_freq + MHZ_TO_KHZ(20));
1988                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1989                         struct ieee80211_freq_range comb_range;
1990
1991                         if (rrule1->freq_range.end_freq_khz !=
1992                             rrule2->freq_range.start_freq_khz)
1993                                 goto disable_chan;
1994
1995                         comb_range.start_freq_khz =
1996                                 rrule1->freq_range.start_freq_khz;
1997                         comb_range.end_freq_khz =
1998                                 rrule2->freq_range.end_freq_khz;
1999                         comb_range.max_bandwidth_khz =
2000                                 min_t(u32,
2001                                       rrule1->freq_range.max_bandwidth_khz,
2002                                       rrule2->freq_range.max_bandwidth_khz);
2003
2004                         if (!cfg80211_does_bw_fit_range(&comb_range,
2005                                                         orig_chan_freq,
2006                                                         MHZ_TO_KHZ(20)))
2007                                 goto disable_chan;
2008
2009                         handle_channel_adjacent_rules(wiphy, initiator, chan,
2010                                                       flags, lr, request_wiphy,
2011                                                       rrule1, rrule2,
2012                                                       &comb_range);
2013                         return;
2014                 }
2015
2016 disable_chan:
2017                 /* We will disable all channels that do not match our
2018                  * received regulatory rule unless the hint is coming
2019                  * from a Country IE and the Country IE had no information
2020                  * about a band. The IEEE 802.11 spec allows for an AP
2021                  * to send only a subset of the regulatory rules allowed,
2022                  * so an AP in the US that only supports 2.4 GHz may only send
2023                  * a country IE with information for the 2.4 GHz band
2024                  * while 5 GHz is still supported.
2025                  */
2026                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2027                     PTR_ERR(rrule) == -ERANGE)
2028                         return;
2029
2030                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2031                     request_wiphy && request_wiphy == wiphy &&
2032                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2033                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2034                                  chan->center_freq, chan->freq_offset);
2035                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2036                         chan->flags = chan->orig_flags;
2037                 } else {
2038                         pr_debug("Disabling freq %d.%03d MHz\n",
2039                                  chan->center_freq, chan->freq_offset);
2040                         chan->flags |= IEEE80211_CHAN_DISABLED;
2041                 }
2042                 return;
2043         }
2044
2045         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2046                                    request_wiphy, rrule);
2047 }
2048
2049 static void handle_band(struct wiphy *wiphy,
2050                         enum nl80211_reg_initiator initiator,
2051                         struct ieee80211_supported_band *sband)
2052 {
2053         unsigned int i;
2054
2055         if (!sband)
2056                 return;
2057
2058         for (i = 0; i < sband->n_channels; i++)
2059                 handle_channel(wiphy, initiator, &sband->channels[i]);
2060 }
2061
2062 static bool reg_request_cell_base(struct regulatory_request *request)
2063 {
2064         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2065                 return false;
2066         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2067 }
2068
2069 bool reg_last_request_cell_base(void)
2070 {
2071         return reg_request_cell_base(get_last_request());
2072 }
2073
2074 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2075 /* Core specific check */
2076 static enum reg_request_treatment
2077 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2078 {
2079         struct regulatory_request *lr = get_last_request();
2080
2081         if (!reg_num_devs_support_basehint)
2082                 return REG_REQ_IGNORE;
2083
2084         if (reg_request_cell_base(lr) &&
2085             !regdom_changes(pending_request->alpha2))
2086                 return REG_REQ_ALREADY_SET;
2087
2088         return REG_REQ_OK;
2089 }
2090
2091 /* Device specific check */
2092 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2093 {
2094         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2095 }
2096 #else
2097 static enum reg_request_treatment
2098 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2099 {
2100         return REG_REQ_IGNORE;
2101 }
2102
2103 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2104 {
2105         return true;
2106 }
2107 #endif
2108
2109 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2110 {
2111         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2112             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2113                 return true;
2114         return false;
2115 }
2116
2117 static bool ignore_reg_update(struct wiphy *wiphy,
2118                               enum nl80211_reg_initiator initiator)
2119 {
2120         struct regulatory_request *lr = get_last_request();
2121
2122         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2123                 return true;
2124
2125         if (!lr) {
2126                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2127                          reg_initiator_name(initiator));
2128                 return true;
2129         }
2130
2131         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2132             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2133                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2134                          reg_initiator_name(initiator));
2135                 return true;
2136         }
2137
2138         /*
2139          * wiphy->regd will be set once the device has its own
2140          * desired regulatory domain set
2141          */
2142         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2143             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2144             !is_world_regdom(lr->alpha2)) {
2145                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2146                          reg_initiator_name(initiator));
2147                 return true;
2148         }
2149
2150         if (reg_request_cell_base(lr))
2151                 return reg_dev_ignore_cell_hint(wiphy);
2152
2153         return false;
2154 }
2155
2156 static bool reg_is_world_roaming(struct wiphy *wiphy)
2157 {
2158         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2159         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2160         struct regulatory_request *lr = get_last_request();
2161
2162         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2163                 return true;
2164
2165         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2166             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2167                 return true;
2168
2169         return false;
2170 }
2171
2172 static void reg_call_notifier(struct wiphy *wiphy,
2173                               struct regulatory_request *request)
2174 {
2175         if (wiphy->reg_notifier)
2176                 wiphy->reg_notifier(wiphy, request);
2177 }
2178
2179 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2180                               struct reg_beacon *reg_beacon)
2181 {
2182         struct ieee80211_supported_band *sband;
2183         struct ieee80211_channel *chan;
2184         bool channel_changed = false;
2185         struct ieee80211_channel chan_before;
2186         struct regulatory_request *lr = get_last_request();
2187
2188         sband = wiphy->bands[reg_beacon->chan.band];
2189         chan = &sband->channels[chan_idx];
2190
2191         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2192                 return;
2193
2194         if (chan->beacon_found)
2195                 return;
2196
2197         chan->beacon_found = true;
2198
2199         if (!reg_is_world_roaming(wiphy))
2200                 return;
2201
2202         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2203                 return;
2204
2205         chan_before = *chan;
2206
2207         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2208                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2209                 channel_changed = true;
2210         }
2211
2212         if (channel_changed) {
2213                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2214                 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2215                         reg_call_notifier(wiphy, lr);
2216         }
2217 }
2218
2219 /*
2220  * Called when a scan on a wiphy finds a beacon on
2221  * new channel
2222  */
2223 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2224                                     struct reg_beacon *reg_beacon)
2225 {
2226         unsigned int i;
2227         struct ieee80211_supported_band *sband;
2228
2229         if (!wiphy->bands[reg_beacon->chan.band])
2230                 return;
2231
2232         sband = wiphy->bands[reg_beacon->chan.band];
2233
2234         for (i = 0; i < sband->n_channels; i++)
2235                 handle_reg_beacon(wiphy, i, reg_beacon);
2236 }
2237
2238 /*
2239  * Called upon reg changes or a new wiphy is added
2240  */
2241 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2242 {
2243         unsigned int i;
2244         struct ieee80211_supported_band *sband;
2245         struct reg_beacon *reg_beacon;
2246
2247         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2248                 if (!wiphy->bands[reg_beacon->chan.band])
2249                         continue;
2250                 sband = wiphy->bands[reg_beacon->chan.band];
2251                 for (i = 0; i < sband->n_channels; i++)
2252                         handle_reg_beacon(wiphy, i, reg_beacon);
2253         }
2254 }
2255
2256 /* Reap the advantages of previously found beacons */
2257 static void reg_process_beacons(struct wiphy *wiphy)
2258 {
2259         /*
2260          * Means we are just firing up cfg80211, so no beacons would
2261          * have been processed yet.
2262          */
2263         if (!last_request)
2264                 return;
2265         wiphy_update_beacon_reg(wiphy);
2266 }
2267
2268 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2269 {
2270         if (!chan)
2271                 return false;
2272         if (chan->flags & IEEE80211_CHAN_DISABLED)
2273                 return false;
2274         /* This would happen when regulatory rules disallow HT40 completely */
2275         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2276                 return false;
2277         return true;
2278 }
2279
2280 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2281                                          struct ieee80211_channel *channel)
2282 {
2283         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2284         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2285         const struct ieee80211_regdomain *regd;
2286         unsigned int i;
2287         u32 flags;
2288
2289         if (!is_ht40_allowed(channel)) {
2290                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2291                 return;
2292         }
2293
2294         /*
2295          * We need to ensure the extension channels exist to
2296          * be able to use HT40- or HT40+, this finds them (or not)
2297          */
2298         for (i = 0; i < sband->n_channels; i++) {
2299                 struct ieee80211_channel *c = &sband->channels[i];
2300
2301                 if (c->center_freq == (channel->center_freq - 20))
2302                         channel_before = c;
2303                 if (c->center_freq == (channel->center_freq + 20))
2304                         channel_after = c;
2305         }
2306
2307         flags = 0;
2308         regd = get_wiphy_regdom(wiphy);
2309         if (regd) {
2310                 const struct ieee80211_reg_rule *reg_rule =
2311                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2312                                            regd, MHZ_TO_KHZ(20));
2313
2314                 if (!IS_ERR(reg_rule))
2315                         flags = reg_rule->flags;
2316         }
2317
2318         /*
2319          * Please note that this assumes target bandwidth is 20 MHz,
2320          * if that ever changes we also need to change the below logic
2321          * to include that as well.
2322          */
2323         if (!is_ht40_allowed(channel_before) ||
2324             flags & NL80211_RRF_NO_HT40MINUS)
2325                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2326         else
2327                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2328
2329         if (!is_ht40_allowed(channel_after) ||
2330             flags & NL80211_RRF_NO_HT40PLUS)
2331                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2332         else
2333                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2334 }
2335
2336 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2337                                       struct ieee80211_supported_band *sband)
2338 {
2339         unsigned int i;
2340
2341         if (!sband)
2342                 return;
2343
2344         for (i = 0; i < sband->n_channels; i++)
2345                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2346 }
2347
2348 static void reg_process_ht_flags(struct wiphy *wiphy)
2349 {
2350         enum nl80211_band band;
2351
2352         if (!wiphy)
2353                 return;
2354
2355         for (band = 0; band < NUM_NL80211_BANDS; band++)
2356                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2357 }
2358
2359 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2360 {
2361         struct cfg80211_chan_def chandef = {};
2362         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2363         enum nl80211_iftype iftype;
2364         bool ret;
2365         int link;
2366
2367         iftype = wdev->iftype;
2368
2369         /* make sure the interface is active */
2370         if (!wdev->netdev || !netif_running(wdev->netdev))
2371                 return true;
2372
2373         for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2374                 struct ieee80211_channel *chan;
2375
2376                 if (!wdev->valid_links && link > 0)
2377                         break;
2378                 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2379                         continue;
2380                 switch (iftype) {
2381                 case NL80211_IFTYPE_AP:
2382                 case NL80211_IFTYPE_P2P_GO:
2383                         if (!wdev->links[link].ap.beacon_interval)
2384                                 continue;
2385                         chandef = wdev->links[link].ap.chandef;
2386                         break;
2387                 case NL80211_IFTYPE_MESH_POINT:
2388                         if (!wdev->u.mesh.beacon_interval)
2389                                 continue;
2390                         chandef = wdev->u.mesh.chandef;
2391                         break;
2392                 case NL80211_IFTYPE_ADHOC:
2393                         if (!wdev->u.ibss.ssid_len)
2394                                 continue;
2395                         chandef = wdev->u.ibss.chandef;
2396                         break;
2397                 case NL80211_IFTYPE_STATION:
2398                 case NL80211_IFTYPE_P2P_CLIENT:
2399                         /* Maybe we could consider disabling that link only? */
2400                         if (!wdev->links[link].client.current_bss)
2401                                 continue;
2402
2403                         chan = wdev->links[link].client.current_bss->pub.channel;
2404                         if (!chan)
2405                                 continue;
2406
2407                         if (!rdev->ops->get_channel ||
2408                             rdev_get_channel(rdev, wdev, link, &chandef))
2409                                 cfg80211_chandef_create(&chandef, chan,
2410                                                         NL80211_CHAN_NO_HT);
2411                         break;
2412                 case NL80211_IFTYPE_MONITOR:
2413                 case NL80211_IFTYPE_AP_VLAN:
2414                 case NL80211_IFTYPE_P2P_DEVICE:
2415                         /* no enforcement required */
2416                         break;
2417                 case NL80211_IFTYPE_OCB:
2418                         if (!wdev->u.ocb.chandef.chan)
2419                                 continue;
2420                         chandef = wdev->u.ocb.chandef;
2421                         break;
2422                 case NL80211_IFTYPE_NAN:
2423                         /* we have no info, but NAN is also pretty universal */
2424                         continue;
2425                 default:
2426                         /* others not implemented for now */
2427                         WARN_ON_ONCE(1);
2428                         break;
2429                 }
2430
2431                 switch (iftype) {
2432                 case NL80211_IFTYPE_AP:
2433                 case NL80211_IFTYPE_P2P_GO:
2434                 case NL80211_IFTYPE_ADHOC:
2435                 case NL80211_IFTYPE_MESH_POINT:
2436                         ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2437                                                             iftype);
2438                         if (!ret)
2439                                 return ret;
2440                         break;
2441                 case NL80211_IFTYPE_STATION:
2442                 case NL80211_IFTYPE_P2P_CLIENT:
2443                         ret = cfg80211_chandef_usable(wiphy, &chandef,
2444                                                       IEEE80211_CHAN_DISABLED);
2445                         if (!ret)
2446                                 return ret;
2447                         break;
2448                 default:
2449                         break;
2450                 }
2451         }
2452
2453         return true;
2454 }
2455
2456 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2457 {
2458         struct wireless_dev *wdev;
2459         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2460
2461         wiphy_lock(wiphy);
2462         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2463                 if (!reg_wdev_chan_valid(wiphy, wdev))
2464                         cfg80211_leave(rdev, wdev);
2465         wiphy_unlock(wiphy);
2466 }
2467
2468 static void reg_check_chans_work(struct work_struct *work)
2469 {
2470         struct cfg80211_registered_device *rdev;
2471
2472         pr_debug("Verifying active interfaces after reg change\n");
2473         rtnl_lock();
2474
2475         for_each_rdev(rdev)
2476                 reg_leave_invalid_chans(&rdev->wiphy);
2477
2478         rtnl_unlock();
2479 }
2480
2481 static void reg_check_channels(void)
2482 {
2483         /*
2484          * Give usermode a chance to do something nicer (move to another
2485          * channel, orderly disconnection), before forcing a disconnection.
2486          */
2487         mod_delayed_work(system_power_efficient_wq,
2488                          &reg_check_chans,
2489                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2490 }
2491
2492 static void wiphy_update_regulatory(struct wiphy *wiphy,
2493                                     enum nl80211_reg_initiator initiator)
2494 {
2495         enum nl80211_band band;
2496         struct regulatory_request *lr = get_last_request();
2497
2498         if (ignore_reg_update(wiphy, initiator)) {
2499                 /*
2500                  * Regulatory updates set by CORE are ignored for custom
2501                  * regulatory cards. Let us notify the changes to the driver,
2502                  * as some drivers used this to restore its orig_* reg domain.
2503                  */
2504                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2505                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2506                     !(wiphy->regulatory_flags &
2507                       REGULATORY_WIPHY_SELF_MANAGED))
2508                         reg_call_notifier(wiphy, lr);
2509                 return;
2510         }
2511
2512         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2513
2514         for (band = 0; band < NUM_NL80211_BANDS; band++)
2515                 handle_band(wiphy, initiator, wiphy->bands[band]);
2516
2517         reg_process_beacons(wiphy);
2518         reg_process_ht_flags(wiphy);
2519         reg_call_notifier(wiphy, lr);
2520 }
2521
2522 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2523 {
2524         struct cfg80211_registered_device *rdev;
2525         struct wiphy *wiphy;
2526
2527         ASSERT_RTNL();
2528
2529         for_each_rdev(rdev) {
2530                 wiphy = &rdev->wiphy;
2531                 wiphy_update_regulatory(wiphy, initiator);
2532         }
2533
2534         reg_check_channels();
2535 }
2536
2537 static void handle_channel_custom(struct wiphy *wiphy,
2538                                   struct ieee80211_channel *chan,
2539                                   const struct ieee80211_regdomain *regd,
2540                                   u32 min_bw)
2541 {
2542         u32 bw_flags = 0;
2543         const struct ieee80211_reg_rule *reg_rule = NULL;
2544         const struct ieee80211_power_rule *power_rule = NULL;
2545         u32 bw, center_freq_khz;
2546
2547         center_freq_khz = ieee80211_channel_to_khz(chan);
2548         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2549                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2550                 if (!IS_ERR(reg_rule))
2551                         break;
2552         }
2553
2554         if (IS_ERR_OR_NULL(reg_rule)) {
2555                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2556                          chan->center_freq, chan->freq_offset);
2557                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2558                         chan->flags |= IEEE80211_CHAN_DISABLED;
2559                 } else {
2560                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2561                         chan->flags = chan->orig_flags;
2562                 }
2563                 return;
2564         }
2565
2566         power_rule = &reg_rule->power_rule;
2567         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2568
2569         chan->dfs_state_entered = jiffies;
2570         chan->dfs_state = NL80211_DFS_USABLE;
2571
2572         chan->beacon_found = false;
2573
2574         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2575                 chan->flags = chan->orig_flags | bw_flags |
2576                               map_regdom_flags(reg_rule->flags);
2577         else
2578                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2579
2580         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2581         chan->max_reg_power = chan->max_power =
2582                 (int) MBM_TO_DBM(power_rule->max_eirp);
2583
2584         if (chan->flags & IEEE80211_CHAN_RADAR) {
2585                 if (reg_rule->dfs_cac_ms)
2586                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2587                 else
2588                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2589         }
2590
2591         if (chan->flags & IEEE80211_CHAN_PSD)
2592                 chan->psd = reg_rule->psd;
2593
2594         chan->max_power = chan->max_reg_power;
2595 }
2596
2597 static void handle_band_custom(struct wiphy *wiphy,
2598                                struct ieee80211_supported_band *sband,
2599                                const struct ieee80211_regdomain *regd)
2600 {
2601         unsigned int i;
2602
2603         if (!sband)
2604                 return;
2605
2606         /*
2607          * We currently assume that you always want at least 20 MHz,
2608          * otherwise channel 12 might get enabled if this rule is
2609          * compatible to US, which permits 2402 - 2472 MHz.
2610          */
2611         for (i = 0; i < sband->n_channels; i++)
2612                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2613                                       MHZ_TO_KHZ(20));
2614 }
2615
2616 /* Used by drivers prior to wiphy registration */
2617 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2618                                    const struct ieee80211_regdomain *regd)
2619 {
2620         const struct ieee80211_regdomain *new_regd, *tmp;
2621         enum nl80211_band band;
2622         unsigned int bands_set = 0;
2623
2624         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2625              "wiphy should have REGULATORY_CUSTOM_REG\n");
2626         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2627
2628         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2629                 if (!wiphy->bands[band])
2630                         continue;
2631                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2632                 bands_set++;
2633         }
2634
2635         /*
2636          * no point in calling this if it won't have any effect
2637          * on your device's supported bands.
2638          */
2639         WARN_ON(!bands_set);
2640         new_regd = reg_copy_regd(regd);
2641         if (IS_ERR(new_regd))
2642                 return;
2643
2644         rtnl_lock();
2645         wiphy_lock(wiphy);
2646
2647         tmp = get_wiphy_regdom(wiphy);
2648         rcu_assign_pointer(wiphy->regd, new_regd);
2649         rcu_free_regdom(tmp);
2650
2651         wiphy_unlock(wiphy);
2652         rtnl_unlock();
2653 }
2654 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2655
2656 static void reg_set_request_processed(void)
2657 {
2658         bool need_more_processing = false;
2659         struct regulatory_request *lr = get_last_request();
2660
2661         lr->processed = true;
2662
2663         spin_lock(&reg_requests_lock);
2664         if (!list_empty(&reg_requests_list))
2665                 need_more_processing = true;
2666         spin_unlock(&reg_requests_lock);
2667
2668         cancel_crda_timeout();
2669
2670         if (need_more_processing)
2671                 schedule_work(&reg_work);
2672 }
2673
2674 /**
2675  * reg_process_hint_core - process core regulatory requests
2676  * @core_request: a pending core regulatory request
2677  *
2678  * The wireless subsystem can use this function to process
2679  * a regulatory request issued by the regulatory core.
2680  *
2681  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2682  *      hint was processed or ignored
2683  */
2684 static enum reg_request_treatment
2685 reg_process_hint_core(struct regulatory_request *core_request)
2686 {
2687         if (reg_query_database(core_request)) {
2688                 core_request->intersect = false;
2689                 core_request->processed = false;
2690                 reg_update_last_request(core_request);
2691                 return REG_REQ_OK;
2692         }
2693
2694         return REG_REQ_IGNORE;
2695 }
2696
2697 static enum reg_request_treatment
2698 __reg_process_hint_user(struct regulatory_request *user_request)
2699 {
2700         struct regulatory_request *lr = get_last_request();
2701
2702         if (reg_request_cell_base(user_request))
2703                 return reg_ignore_cell_hint(user_request);
2704
2705         if (reg_request_cell_base(lr))
2706                 return REG_REQ_IGNORE;
2707
2708         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2709                 return REG_REQ_INTERSECT;
2710         /*
2711          * If the user knows better the user should set the regdom
2712          * to their country before the IE is picked up
2713          */
2714         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2715             lr->intersect)
2716                 return REG_REQ_IGNORE;
2717         /*
2718          * Process user requests only after previous user/driver/core
2719          * requests have been processed
2720          */
2721         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2722              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2723              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2724             regdom_changes(lr->alpha2))
2725                 return REG_REQ_IGNORE;
2726
2727         if (!regdom_changes(user_request->alpha2))
2728                 return REG_REQ_ALREADY_SET;
2729
2730         return REG_REQ_OK;
2731 }
2732
2733 /**
2734  * reg_process_hint_user - process user regulatory requests
2735  * @user_request: a pending user regulatory request
2736  *
2737  * The wireless subsystem can use this function to process
2738  * a regulatory request initiated by userspace.
2739  *
2740  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2741  *      hint was processed or ignored
2742  */
2743 static enum reg_request_treatment
2744 reg_process_hint_user(struct regulatory_request *user_request)
2745 {
2746         enum reg_request_treatment treatment;
2747
2748         treatment = __reg_process_hint_user(user_request);
2749         if (treatment == REG_REQ_IGNORE ||
2750             treatment == REG_REQ_ALREADY_SET)
2751                 return REG_REQ_IGNORE;
2752
2753         user_request->intersect = treatment == REG_REQ_INTERSECT;
2754         user_request->processed = false;
2755
2756         if (reg_query_database(user_request)) {
2757                 reg_update_last_request(user_request);
2758                 user_alpha2[0] = user_request->alpha2[0];
2759                 user_alpha2[1] = user_request->alpha2[1];
2760                 return REG_REQ_OK;
2761         }
2762
2763         return REG_REQ_IGNORE;
2764 }
2765
2766 static enum reg_request_treatment
2767 __reg_process_hint_driver(struct regulatory_request *driver_request)
2768 {
2769         struct regulatory_request *lr = get_last_request();
2770
2771         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2772                 if (regdom_changes(driver_request->alpha2))
2773                         return REG_REQ_OK;
2774                 return REG_REQ_ALREADY_SET;
2775         }
2776
2777         /*
2778          * This would happen if you unplug and plug your card
2779          * back in or if you add a new device for which the previously
2780          * loaded card also agrees on the regulatory domain.
2781          */
2782         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2783             !regdom_changes(driver_request->alpha2))
2784                 return REG_REQ_ALREADY_SET;
2785
2786         return REG_REQ_INTERSECT;
2787 }
2788
2789 /**
2790  * reg_process_hint_driver - process driver regulatory requests
2791  * @wiphy: the wireless device for the regulatory request
2792  * @driver_request: a pending driver regulatory request
2793  *
2794  * The wireless subsystem can use this function to process
2795  * a regulatory request issued by an 802.11 driver.
2796  *
2797  * Returns: one of the different reg request treatment values.
2798  */
2799 static enum reg_request_treatment
2800 reg_process_hint_driver(struct wiphy *wiphy,
2801                         struct regulatory_request *driver_request)
2802 {
2803         const struct ieee80211_regdomain *regd, *tmp;
2804         enum reg_request_treatment treatment;
2805
2806         treatment = __reg_process_hint_driver(driver_request);
2807
2808         switch (treatment) {
2809         case REG_REQ_OK:
2810                 break;
2811         case REG_REQ_IGNORE:
2812                 return REG_REQ_IGNORE;
2813         case REG_REQ_INTERSECT:
2814         case REG_REQ_ALREADY_SET:
2815                 regd = reg_copy_regd(get_cfg80211_regdom());
2816                 if (IS_ERR(regd))
2817                         return REG_REQ_IGNORE;
2818
2819                 tmp = get_wiphy_regdom(wiphy);
2820                 ASSERT_RTNL();
2821                 wiphy_lock(wiphy);
2822                 rcu_assign_pointer(wiphy->regd, regd);
2823                 wiphy_unlock(wiphy);
2824                 rcu_free_regdom(tmp);
2825         }
2826
2827
2828         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2829         driver_request->processed = false;
2830
2831         /*
2832          * Since CRDA will not be called in this case as we already
2833          * have applied the requested regulatory domain before we just
2834          * inform userspace we have processed the request
2835          */
2836         if (treatment == REG_REQ_ALREADY_SET) {
2837                 nl80211_send_reg_change_event(driver_request);
2838                 reg_update_last_request(driver_request);
2839                 reg_set_request_processed();
2840                 return REG_REQ_ALREADY_SET;
2841         }
2842
2843         if (reg_query_database(driver_request)) {
2844                 reg_update_last_request(driver_request);
2845                 return REG_REQ_OK;
2846         }
2847
2848         return REG_REQ_IGNORE;
2849 }
2850
2851 static enum reg_request_treatment
2852 __reg_process_hint_country_ie(struct wiphy *wiphy,
2853                               struct regulatory_request *country_ie_request)
2854 {
2855         struct wiphy *last_wiphy = NULL;
2856         struct regulatory_request *lr = get_last_request();
2857
2858         if (reg_request_cell_base(lr)) {
2859                 /* Trust a Cell base station over the AP's country IE */
2860                 if (regdom_changes(country_ie_request->alpha2))
2861                         return REG_REQ_IGNORE;
2862                 return REG_REQ_ALREADY_SET;
2863         } else {
2864                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2865                         return REG_REQ_IGNORE;
2866         }
2867
2868         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2869                 return -EINVAL;
2870
2871         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2872                 return REG_REQ_OK;
2873
2874         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2875
2876         if (last_wiphy != wiphy) {
2877                 /*
2878                  * Two cards with two APs claiming different
2879                  * Country IE alpha2s. We could
2880                  * intersect them, but that seems unlikely
2881                  * to be correct. Reject second one for now.
2882                  */
2883                 if (regdom_changes(country_ie_request->alpha2))
2884                         return REG_REQ_IGNORE;
2885                 return REG_REQ_ALREADY_SET;
2886         }
2887
2888         if (regdom_changes(country_ie_request->alpha2))
2889                 return REG_REQ_OK;
2890         return REG_REQ_ALREADY_SET;
2891 }
2892
2893 /**
2894  * reg_process_hint_country_ie - process regulatory requests from country IEs
2895  * @wiphy: the wireless device for the regulatory request
2896  * @country_ie_request: a regulatory request from a country IE
2897  *
2898  * The wireless subsystem can use this function to process
2899  * a regulatory request issued by a country Information Element.
2900  *
2901  * Returns: one of the different reg request treatment values.
2902  */
2903 static enum reg_request_treatment
2904 reg_process_hint_country_ie(struct wiphy *wiphy,
2905                             struct regulatory_request *country_ie_request)
2906 {
2907         enum reg_request_treatment treatment;
2908
2909         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2910
2911         switch (treatment) {
2912         case REG_REQ_OK:
2913                 break;
2914         case REG_REQ_IGNORE:
2915                 return REG_REQ_IGNORE;
2916         case REG_REQ_ALREADY_SET:
2917                 reg_free_request(country_ie_request);
2918                 return REG_REQ_ALREADY_SET;
2919         case REG_REQ_INTERSECT:
2920                 /*
2921                  * This doesn't happen yet, not sure we
2922                  * ever want to support it for this case.
2923                  */
2924                 WARN_ONCE(1, "Unexpected intersection for country elements");
2925                 return REG_REQ_IGNORE;
2926         }
2927
2928         country_ie_request->intersect = false;
2929         country_ie_request->processed = false;
2930
2931         if (reg_query_database(country_ie_request)) {
2932                 reg_update_last_request(country_ie_request);
2933                 return REG_REQ_OK;
2934         }
2935
2936         return REG_REQ_IGNORE;
2937 }
2938
2939 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2940 {
2941         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2942         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2943         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2944         bool dfs_domain_same;
2945
2946         rcu_read_lock();
2947
2948         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2949         wiphy1_regd = rcu_dereference(wiphy1->regd);
2950         if (!wiphy1_regd)
2951                 wiphy1_regd = cfg80211_regd;
2952
2953         wiphy2_regd = rcu_dereference(wiphy2->regd);
2954         if (!wiphy2_regd)
2955                 wiphy2_regd = cfg80211_regd;
2956
2957         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2958
2959         rcu_read_unlock();
2960
2961         return dfs_domain_same;
2962 }
2963
2964 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2965                                     struct ieee80211_channel *src_chan)
2966 {
2967         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2968             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2969                 return;
2970
2971         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2972             src_chan->flags & IEEE80211_CHAN_DISABLED)
2973                 return;
2974
2975         if (src_chan->center_freq == dst_chan->center_freq &&
2976             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2977                 dst_chan->dfs_state = src_chan->dfs_state;
2978                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2979         }
2980 }
2981
2982 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2983                                        struct wiphy *src_wiphy)
2984 {
2985         struct ieee80211_supported_band *src_sband, *dst_sband;
2986         struct ieee80211_channel *src_chan, *dst_chan;
2987         int i, j, band;
2988
2989         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2990                 return;
2991
2992         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2993                 dst_sband = dst_wiphy->bands[band];
2994                 src_sband = src_wiphy->bands[band];
2995                 if (!dst_sband || !src_sband)
2996                         continue;
2997
2998                 for (i = 0; i < dst_sband->n_channels; i++) {
2999                         dst_chan = &dst_sband->channels[i];
3000                         for (j = 0; j < src_sband->n_channels; j++) {
3001                                 src_chan = &src_sband->channels[j];
3002                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
3003                         }
3004                 }
3005         }
3006 }
3007
3008 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3009 {
3010         struct cfg80211_registered_device *rdev;
3011
3012         ASSERT_RTNL();
3013
3014         for_each_rdev(rdev) {
3015                 if (wiphy == &rdev->wiphy)
3016                         continue;
3017                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3018         }
3019 }
3020
3021 /* This processes *all* regulatory hints */
3022 static void reg_process_hint(struct regulatory_request *reg_request)
3023 {
3024         struct wiphy *wiphy = NULL;
3025         enum reg_request_treatment treatment;
3026         enum nl80211_reg_initiator initiator = reg_request->initiator;
3027
3028         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3029                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3030
3031         switch (initiator) {
3032         case NL80211_REGDOM_SET_BY_CORE:
3033                 treatment = reg_process_hint_core(reg_request);
3034                 break;
3035         case NL80211_REGDOM_SET_BY_USER:
3036                 treatment = reg_process_hint_user(reg_request);
3037                 break;
3038         case NL80211_REGDOM_SET_BY_DRIVER:
3039                 if (!wiphy)
3040                         goto out_free;
3041                 treatment = reg_process_hint_driver(wiphy, reg_request);
3042                 break;
3043         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3044                 if (!wiphy)
3045                         goto out_free;
3046                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3047                 break;
3048         default:
3049                 WARN(1, "invalid initiator %d\n", initiator);
3050                 goto out_free;
3051         }
3052
3053         if (treatment == REG_REQ_IGNORE)
3054                 goto out_free;
3055
3056         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3057              "unexpected treatment value %d\n", treatment);
3058
3059         /* This is required so that the orig_* parameters are saved.
3060          * NOTE: treatment must be set for any case that reaches here!
3061          */
3062         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3063             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3064                 wiphy_update_regulatory(wiphy, initiator);
3065                 wiphy_all_share_dfs_chan_state(wiphy);
3066                 reg_check_channels();
3067         }
3068
3069         return;
3070
3071 out_free:
3072         reg_free_request(reg_request);
3073 }
3074
3075 static void notify_self_managed_wiphys(struct regulatory_request *request)
3076 {
3077         struct cfg80211_registered_device *rdev;
3078         struct wiphy *wiphy;
3079
3080         for_each_rdev(rdev) {
3081                 wiphy = &rdev->wiphy;
3082                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3083                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3084                         reg_call_notifier(wiphy, request);
3085         }
3086 }
3087
3088 /*
3089  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3090  * Regulatory hints come on a first come first serve basis and we
3091  * must process each one atomically.
3092  */
3093 static void reg_process_pending_hints(void)
3094 {
3095         struct regulatory_request *reg_request, *lr;
3096
3097         lr = get_last_request();
3098
3099         /* When last_request->processed becomes true this will be rescheduled */
3100         if (lr && !lr->processed) {
3101                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3102                 return;
3103         }
3104
3105         spin_lock(&reg_requests_lock);
3106
3107         if (list_empty(&reg_requests_list)) {
3108                 spin_unlock(&reg_requests_lock);
3109                 return;
3110         }
3111
3112         reg_request = list_first_entry(&reg_requests_list,
3113                                        struct regulatory_request,
3114                                        list);
3115         list_del_init(&reg_request->list);
3116
3117         spin_unlock(&reg_requests_lock);
3118
3119         notify_self_managed_wiphys(reg_request);
3120
3121         reg_process_hint(reg_request);
3122
3123         lr = get_last_request();
3124
3125         spin_lock(&reg_requests_lock);
3126         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3127                 schedule_work(&reg_work);
3128         spin_unlock(&reg_requests_lock);
3129 }
3130
3131 /* Processes beacon hints -- this has nothing to do with country IEs */
3132 static void reg_process_pending_beacon_hints(void)
3133 {
3134         struct cfg80211_registered_device *rdev;
3135         struct reg_beacon *pending_beacon, *tmp;
3136
3137         /* This goes through the _pending_ beacon list */
3138         spin_lock_bh(&reg_pending_beacons_lock);
3139
3140         list_for_each_entry_safe(pending_beacon, tmp,
3141                                  &reg_pending_beacons, list) {
3142                 list_del_init(&pending_beacon->list);
3143
3144                 /* Applies the beacon hint to current wiphys */
3145                 for_each_rdev(rdev)
3146                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3147
3148                 /* Remembers the beacon hint for new wiphys or reg changes */
3149                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3150         }
3151
3152         spin_unlock_bh(&reg_pending_beacons_lock);
3153 }
3154
3155 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3156 {
3157         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3158         const struct ieee80211_regdomain *tmp;
3159         const struct ieee80211_regdomain *regd;
3160         enum nl80211_band band;
3161         struct regulatory_request request = {};
3162
3163         ASSERT_RTNL();
3164         lockdep_assert_wiphy(wiphy);
3165
3166         spin_lock(&reg_requests_lock);
3167         regd = rdev->requested_regd;
3168         rdev->requested_regd = NULL;
3169         spin_unlock(&reg_requests_lock);
3170
3171         if (!regd)
3172                 return;
3173
3174         tmp = get_wiphy_regdom(wiphy);
3175         rcu_assign_pointer(wiphy->regd, regd);
3176         rcu_free_regdom(tmp);
3177
3178         for (band = 0; band < NUM_NL80211_BANDS; band++)
3179                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3180
3181         reg_process_ht_flags(wiphy);
3182
3183         request.wiphy_idx = get_wiphy_idx(wiphy);
3184         request.alpha2[0] = regd->alpha2[0];
3185         request.alpha2[1] = regd->alpha2[1];
3186         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3187
3188         if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3189                 reg_call_notifier(wiphy, &request);
3190
3191         nl80211_send_wiphy_reg_change_event(&request);
3192 }
3193
3194 static void reg_process_self_managed_hints(void)
3195 {
3196         struct cfg80211_registered_device *rdev;
3197
3198         ASSERT_RTNL();
3199
3200         for_each_rdev(rdev) {
3201                 wiphy_lock(&rdev->wiphy);
3202                 reg_process_self_managed_hint(&rdev->wiphy);
3203                 wiphy_unlock(&rdev->wiphy);
3204         }
3205
3206         reg_check_channels();
3207 }
3208
3209 static void reg_todo(struct work_struct *work)
3210 {
3211         rtnl_lock();
3212         reg_process_pending_hints();
3213         reg_process_pending_beacon_hints();
3214         reg_process_self_managed_hints();
3215         rtnl_unlock();
3216 }
3217
3218 static void queue_regulatory_request(struct regulatory_request *request)
3219 {
3220         request->alpha2[0] = toupper(request->alpha2[0]);
3221         request->alpha2[1] = toupper(request->alpha2[1]);
3222
3223         spin_lock(&reg_requests_lock);
3224         list_add_tail(&request->list, &reg_requests_list);
3225         spin_unlock(&reg_requests_lock);
3226
3227         schedule_work(&reg_work);
3228 }
3229
3230 /*
3231  * Core regulatory hint -- happens during cfg80211_init()
3232  * and when we restore regulatory settings.
3233  */
3234 static int regulatory_hint_core(const char *alpha2)
3235 {
3236         struct regulatory_request *request;
3237
3238         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3239         if (!request)
3240                 return -ENOMEM;
3241
3242         request->alpha2[0] = alpha2[0];
3243         request->alpha2[1] = alpha2[1];
3244         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3245         request->wiphy_idx = WIPHY_IDX_INVALID;
3246
3247         queue_regulatory_request(request);
3248
3249         return 0;
3250 }
3251
3252 /* User hints */
3253 int regulatory_hint_user(const char *alpha2,
3254                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3255 {
3256         struct regulatory_request *request;
3257
3258         if (WARN_ON(!alpha2))
3259                 return -EINVAL;
3260
3261         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3262                 return -EINVAL;
3263
3264         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3265         if (!request)
3266                 return -ENOMEM;
3267
3268         request->wiphy_idx = WIPHY_IDX_INVALID;
3269         request->alpha2[0] = alpha2[0];
3270         request->alpha2[1] = alpha2[1];
3271         request->initiator = NL80211_REGDOM_SET_BY_USER;
3272         request->user_reg_hint_type = user_reg_hint_type;
3273
3274         /* Allow calling CRDA again */
3275         reset_crda_timeouts();
3276
3277         queue_regulatory_request(request);
3278
3279         return 0;
3280 }
3281
3282 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3283 {
3284         spin_lock(&reg_indoor_lock);
3285
3286         /* It is possible that more than one user space process is trying to
3287          * configure the indoor setting. To handle such cases, clear the indoor
3288          * setting in case that some process does not think that the device
3289          * is operating in an indoor environment. In addition, if a user space
3290          * process indicates that it is controlling the indoor setting, save its
3291          * portid, i.e., make it the owner.
3292          */
3293         reg_is_indoor = is_indoor;
3294         if (reg_is_indoor) {
3295                 if (!reg_is_indoor_portid)
3296                         reg_is_indoor_portid = portid;
3297         } else {
3298                 reg_is_indoor_portid = 0;
3299         }
3300
3301         spin_unlock(&reg_indoor_lock);
3302
3303         if (!is_indoor)
3304                 reg_check_channels();
3305
3306         return 0;
3307 }
3308
3309 void regulatory_netlink_notify(u32 portid)
3310 {
3311         spin_lock(&reg_indoor_lock);
3312
3313         if (reg_is_indoor_portid != portid) {
3314                 spin_unlock(&reg_indoor_lock);
3315                 return;
3316         }
3317
3318         reg_is_indoor = false;
3319         reg_is_indoor_portid = 0;
3320
3321         spin_unlock(&reg_indoor_lock);
3322
3323         reg_check_channels();
3324 }
3325
3326 /* Driver hints */
3327 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3328 {
3329         struct regulatory_request *request;
3330
3331         if (WARN_ON(!alpha2 || !wiphy))
3332                 return -EINVAL;
3333
3334         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3335
3336         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3337         if (!request)
3338                 return -ENOMEM;
3339
3340         request->wiphy_idx = get_wiphy_idx(wiphy);
3341
3342         request->alpha2[0] = alpha2[0];
3343         request->alpha2[1] = alpha2[1];
3344         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3345
3346         /* Allow calling CRDA again */
3347         reset_crda_timeouts();
3348
3349         queue_regulatory_request(request);
3350
3351         return 0;
3352 }
3353 EXPORT_SYMBOL(regulatory_hint);
3354
3355 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3356                                 const u8 *country_ie, u8 country_ie_len)
3357 {
3358         char alpha2[2];
3359         enum environment_cap env = ENVIRON_ANY;
3360         struct regulatory_request *request = NULL, *lr;
3361
3362         /* IE len must be evenly divisible by 2 */
3363         if (country_ie_len & 0x01)
3364                 return;
3365
3366         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3367                 return;
3368
3369         request = kzalloc(sizeof(*request), GFP_KERNEL);
3370         if (!request)
3371                 return;
3372
3373         alpha2[0] = country_ie[0];
3374         alpha2[1] = country_ie[1];
3375
3376         if (country_ie[2] == 'I')
3377                 env = ENVIRON_INDOOR;
3378         else if (country_ie[2] == 'O')
3379                 env = ENVIRON_OUTDOOR;
3380
3381         rcu_read_lock();
3382         lr = get_last_request();
3383
3384         if (unlikely(!lr))
3385                 goto out;
3386
3387         /*
3388          * We will run this only upon a successful connection on cfg80211.
3389          * We leave conflict resolution to the workqueue, where can hold
3390          * the RTNL.
3391          */
3392         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3393             lr->wiphy_idx != WIPHY_IDX_INVALID)
3394                 goto out;
3395
3396         request->wiphy_idx = get_wiphy_idx(wiphy);
3397         request->alpha2[0] = alpha2[0];
3398         request->alpha2[1] = alpha2[1];
3399         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3400         request->country_ie_env = env;
3401
3402         /* Allow calling CRDA again */
3403         reset_crda_timeouts();
3404
3405         queue_regulatory_request(request);
3406         request = NULL;
3407 out:
3408         kfree(request);
3409         rcu_read_unlock();
3410 }
3411
3412 static void restore_alpha2(char *alpha2, bool reset_user)
3413 {
3414         /* indicates there is no alpha2 to consider for restoration */
3415         alpha2[0] = '9';
3416         alpha2[1] = '7';
3417
3418         /* The user setting has precedence over the module parameter */
3419         if (is_user_regdom_saved()) {
3420                 /* Unless we're asked to ignore it and reset it */
3421                 if (reset_user) {
3422                         pr_debug("Restoring regulatory settings including user preference\n");
3423                         user_alpha2[0] = '9';
3424                         user_alpha2[1] = '7';
3425
3426                         /*
3427                          * If we're ignoring user settings, we still need to
3428                          * check the module parameter to ensure we put things
3429                          * back as they were for a full restore.
3430                          */
3431                         if (!is_world_regdom(ieee80211_regdom)) {
3432                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3433                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3434                                 alpha2[0] = ieee80211_regdom[0];
3435                                 alpha2[1] = ieee80211_regdom[1];
3436                         }
3437                 } else {
3438                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3439                                  user_alpha2[0], user_alpha2[1]);
3440                         alpha2[0] = user_alpha2[0];
3441                         alpha2[1] = user_alpha2[1];
3442                 }
3443         } else if (!is_world_regdom(ieee80211_regdom)) {
3444                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3445                          ieee80211_regdom[0], ieee80211_regdom[1]);
3446                 alpha2[0] = ieee80211_regdom[0];
3447                 alpha2[1] = ieee80211_regdom[1];
3448         } else
3449                 pr_debug("Restoring regulatory settings\n");
3450 }
3451
3452 static void restore_custom_reg_settings(struct wiphy *wiphy)
3453 {
3454         struct ieee80211_supported_band *sband;
3455         enum nl80211_band band;
3456         struct ieee80211_channel *chan;
3457         int i;
3458
3459         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3460                 sband = wiphy->bands[band];
3461                 if (!sband)
3462                         continue;
3463                 for (i = 0; i < sband->n_channels; i++) {
3464                         chan = &sband->channels[i];
3465                         chan->flags = chan->orig_flags;
3466                         chan->max_antenna_gain = chan->orig_mag;
3467                         chan->max_power = chan->orig_mpwr;
3468                         chan->beacon_found = false;
3469                 }
3470         }
3471 }
3472
3473 /*
3474  * Restoring regulatory settings involves ignoring any
3475  * possibly stale country IE information and user regulatory
3476  * settings if so desired, this includes any beacon hints
3477  * learned as we could have traveled outside to another country
3478  * after disconnection. To restore regulatory settings we do
3479  * exactly what we did at bootup:
3480  *
3481  *   - send a core regulatory hint
3482  *   - send a user regulatory hint if applicable
3483  *
3484  * Device drivers that send a regulatory hint for a specific country
3485  * keep their own regulatory domain on wiphy->regd so that does
3486  * not need to be remembered.
3487  */
3488 static void restore_regulatory_settings(bool reset_user, bool cached)
3489 {
3490         char alpha2[2];
3491         char world_alpha2[2];
3492         struct reg_beacon *reg_beacon, *btmp;
3493         LIST_HEAD(tmp_reg_req_list);
3494         struct cfg80211_registered_device *rdev;
3495
3496         ASSERT_RTNL();
3497
3498         /*
3499          * Clear the indoor setting in case that it is not controlled by user
3500          * space, as otherwise there is no guarantee that the device is still
3501          * operating in an indoor environment.
3502          */
3503         spin_lock(&reg_indoor_lock);
3504         if (reg_is_indoor && !reg_is_indoor_portid) {
3505                 reg_is_indoor = false;
3506                 reg_check_channels();
3507         }
3508         spin_unlock(&reg_indoor_lock);
3509
3510         reset_regdomains(true, &world_regdom);
3511         restore_alpha2(alpha2, reset_user);
3512
3513         /*
3514          * If there's any pending requests we simply
3515          * stash them to a temporary pending queue and
3516          * add then after we've restored regulatory
3517          * settings.
3518          */
3519         spin_lock(&reg_requests_lock);
3520         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3521         spin_unlock(&reg_requests_lock);
3522
3523         /* Clear beacon hints */
3524         spin_lock_bh(&reg_pending_beacons_lock);
3525         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3526                 list_del(&reg_beacon->list);
3527                 kfree(reg_beacon);
3528         }
3529         spin_unlock_bh(&reg_pending_beacons_lock);
3530
3531         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3532                 list_del(&reg_beacon->list);
3533                 kfree(reg_beacon);
3534         }
3535
3536         /* First restore to the basic regulatory settings */
3537         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3538         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3539
3540         for_each_rdev(rdev) {
3541                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3542                         continue;
3543                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3544                         restore_custom_reg_settings(&rdev->wiphy);
3545         }
3546
3547         if (cached && (!is_an_alpha2(alpha2) ||
3548                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3549                 reset_regdomains(false, cfg80211_world_regdom);
3550                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3551                 print_regdomain(get_cfg80211_regdom());
3552                 nl80211_send_reg_change_event(&core_request_world);
3553                 reg_set_request_processed();
3554
3555                 if (is_an_alpha2(alpha2) &&
3556                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3557                         struct regulatory_request *ureq;
3558
3559                         spin_lock(&reg_requests_lock);
3560                         ureq = list_last_entry(&reg_requests_list,
3561                                                struct regulatory_request,
3562                                                list);
3563                         list_del(&ureq->list);
3564                         spin_unlock(&reg_requests_lock);
3565
3566                         notify_self_managed_wiphys(ureq);
3567                         reg_update_last_request(ureq);
3568                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3569                                    REGD_SOURCE_CACHED);
3570                 }
3571         } else {
3572                 regulatory_hint_core(world_alpha2);
3573
3574                 /*
3575                  * This restores the ieee80211_regdom module parameter
3576                  * preference or the last user requested regulatory
3577                  * settings, user regulatory settings takes precedence.
3578                  */
3579                 if (is_an_alpha2(alpha2))
3580                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3581         }
3582
3583         spin_lock(&reg_requests_lock);
3584         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3585         spin_unlock(&reg_requests_lock);
3586
3587         pr_debug("Kicking the queue\n");
3588
3589         schedule_work(&reg_work);
3590 }
3591
3592 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3593 {
3594         struct cfg80211_registered_device *rdev;
3595         struct wireless_dev *wdev;
3596
3597         for_each_rdev(rdev) {
3598                 wiphy_lock(&rdev->wiphy);
3599                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3600                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3601                                 wiphy_unlock(&rdev->wiphy);
3602                                 return false;
3603                         }
3604                 }
3605                 wiphy_unlock(&rdev->wiphy);
3606         }
3607
3608         return true;
3609 }
3610
3611 void regulatory_hint_disconnect(void)
3612 {
3613         /* Restore of regulatory settings is not required when wiphy(s)
3614          * ignore IE from connected access point but clearance of beacon hints
3615          * is required when wiphy(s) supports beacon hints.
3616          */
3617         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3618                 struct reg_beacon *reg_beacon, *btmp;
3619
3620                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3621                         return;
3622
3623                 spin_lock_bh(&reg_pending_beacons_lock);
3624                 list_for_each_entry_safe(reg_beacon, btmp,
3625                                          &reg_pending_beacons, list) {
3626                         list_del(&reg_beacon->list);
3627                         kfree(reg_beacon);
3628                 }
3629                 spin_unlock_bh(&reg_pending_beacons_lock);
3630
3631                 list_for_each_entry_safe(reg_beacon, btmp,
3632                                          &reg_beacon_list, list) {
3633                         list_del(&reg_beacon->list);
3634                         kfree(reg_beacon);
3635                 }
3636
3637                 return;
3638         }
3639
3640         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3641         restore_regulatory_settings(false, true);
3642 }
3643
3644 static bool freq_is_chan_12_13_14(u32 freq)
3645 {
3646         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3647             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3648             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3649                 return true;
3650         return false;
3651 }
3652
3653 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3654 {
3655         struct reg_beacon *pending_beacon;
3656
3657         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3658                 if (ieee80211_channel_equal(beacon_chan,
3659                                             &pending_beacon->chan))
3660                         return true;
3661         return false;
3662 }
3663
3664 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3665                                  struct ieee80211_channel *beacon_chan,
3666                                  gfp_t gfp)
3667 {
3668         struct reg_beacon *reg_beacon;
3669         bool processing;
3670
3671         if (beacon_chan->beacon_found ||
3672             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3673             (beacon_chan->band == NL80211_BAND_2GHZ &&
3674              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3675                 return 0;
3676
3677         spin_lock_bh(&reg_pending_beacons_lock);
3678         processing = pending_reg_beacon(beacon_chan);
3679         spin_unlock_bh(&reg_pending_beacons_lock);
3680
3681         if (processing)
3682                 return 0;
3683
3684         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3685         if (!reg_beacon)
3686                 return -ENOMEM;
3687
3688         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3689                  beacon_chan->center_freq, beacon_chan->freq_offset,
3690                  ieee80211_freq_khz_to_channel(
3691                          ieee80211_channel_to_khz(beacon_chan)),
3692                  wiphy_name(wiphy));
3693
3694         memcpy(&reg_beacon->chan, beacon_chan,
3695                sizeof(struct ieee80211_channel));
3696
3697         /*
3698          * Since we can be called from BH or and non-BH context
3699          * we must use spin_lock_bh()
3700          */
3701         spin_lock_bh(&reg_pending_beacons_lock);
3702         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3703         spin_unlock_bh(&reg_pending_beacons_lock);
3704
3705         schedule_work(&reg_work);
3706
3707         return 0;
3708 }
3709
3710 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3711 {
3712         unsigned int i;
3713         const struct ieee80211_reg_rule *reg_rule = NULL;
3714         const struct ieee80211_freq_range *freq_range = NULL;
3715         const struct ieee80211_power_rule *power_rule = NULL;
3716         char bw[32], cac_time[32];
3717
3718         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3719
3720         for (i = 0; i < rd->n_reg_rules; i++) {
3721                 reg_rule = &rd->reg_rules[i];
3722                 freq_range = &reg_rule->freq_range;
3723                 power_rule = &reg_rule->power_rule;
3724
3725                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3726                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3727                                  freq_range->max_bandwidth_khz,
3728                                  reg_get_max_bandwidth(rd, reg_rule));
3729                 else
3730                         snprintf(bw, sizeof(bw), "%d KHz",
3731                                  freq_range->max_bandwidth_khz);
3732
3733                 if (reg_rule->flags & NL80211_RRF_DFS)
3734                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3735                                   reg_rule->dfs_cac_ms/1000);
3736                 else
3737                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3738
3739
3740                 /*
3741                  * There may not be documentation for max antenna gain
3742                  * in certain regions
3743                  */
3744                 if (power_rule->max_antenna_gain)
3745                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3746                                 freq_range->start_freq_khz,
3747                                 freq_range->end_freq_khz,
3748                                 bw,
3749                                 power_rule->max_antenna_gain,
3750                                 power_rule->max_eirp,
3751                                 cac_time);
3752                 else
3753                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3754                                 freq_range->start_freq_khz,
3755                                 freq_range->end_freq_khz,
3756                                 bw,
3757                                 power_rule->max_eirp,
3758                                 cac_time);
3759         }
3760 }
3761
3762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3763 {
3764         switch (dfs_region) {
3765         case NL80211_DFS_UNSET:
3766         case NL80211_DFS_FCC:
3767         case NL80211_DFS_ETSI:
3768         case NL80211_DFS_JP:
3769                 return true;
3770         default:
3771                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3772                 return false;
3773         }
3774 }
3775
3776 static void print_regdomain(const struct ieee80211_regdomain *rd)
3777 {
3778         struct regulatory_request *lr = get_last_request();
3779
3780         if (is_intersected_alpha2(rd->alpha2)) {
3781                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3782                         struct cfg80211_registered_device *rdev;
3783                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3784                         if (rdev) {
3785                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3786                                         rdev->country_ie_alpha2[0],
3787                                         rdev->country_ie_alpha2[1]);
3788                         } else
3789                                 pr_debug("Current regulatory domain intersected:\n");
3790                 } else
3791                         pr_debug("Current regulatory domain intersected:\n");
3792         } else if (is_world_regdom(rd->alpha2)) {
3793                 pr_debug("World regulatory domain updated:\n");
3794         } else {
3795                 if (is_unknown_alpha2(rd->alpha2))
3796                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3797                 else {
3798                         if (reg_request_cell_base(lr))
3799                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3800                                         rd->alpha2[0], rd->alpha2[1]);
3801                         else
3802                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3803                                         rd->alpha2[0], rd->alpha2[1]);
3804                 }
3805         }
3806
3807         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3808         print_rd_rules(rd);
3809 }
3810
3811 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3812 {
3813         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3814         print_rd_rules(rd);
3815 }
3816
3817 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3818 {
3819         if (!is_world_regdom(rd->alpha2))
3820                 return -EINVAL;
3821         update_world_regdomain(rd);
3822         return 0;
3823 }
3824
3825 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3826                            struct regulatory_request *user_request)
3827 {
3828         const struct ieee80211_regdomain *intersected_rd = NULL;
3829
3830         if (!regdom_changes(rd->alpha2))
3831                 return -EALREADY;
3832
3833         if (!is_valid_rd(rd)) {
3834                 pr_err("Invalid regulatory domain detected: %c%c\n",
3835                        rd->alpha2[0], rd->alpha2[1]);
3836                 print_regdomain_info(rd);
3837                 return -EINVAL;
3838         }
3839
3840         if (!user_request->intersect) {
3841                 reset_regdomains(false, rd);
3842                 return 0;
3843         }
3844
3845         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3846         if (!intersected_rd)
3847                 return -EINVAL;
3848
3849         kfree(rd);
3850         rd = NULL;
3851         reset_regdomains(false, intersected_rd);
3852
3853         return 0;
3854 }
3855
3856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3857                              struct regulatory_request *driver_request)
3858 {
3859         const struct ieee80211_regdomain *regd;
3860         const struct ieee80211_regdomain *intersected_rd = NULL;
3861         const struct ieee80211_regdomain *tmp = NULL;
3862         struct wiphy *request_wiphy;
3863
3864         if (is_world_regdom(rd->alpha2))
3865                 return -EINVAL;
3866
3867         if (!regdom_changes(rd->alpha2))
3868                 return -EALREADY;
3869
3870         if (!is_valid_rd(rd)) {
3871                 pr_err("Invalid regulatory domain detected: %c%c\n",
3872                        rd->alpha2[0], rd->alpha2[1]);
3873                 print_regdomain_info(rd);
3874                 return -EINVAL;
3875         }
3876
3877         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3878         if (!request_wiphy)
3879                 return -ENODEV;
3880
3881         if (!driver_request->intersect) {
3882                 ASSERT_RTNL();
3883                 wiphy_lock(request_wiphy);
3884                 if (request_wiphy->regd)
3885                         tmp = get_wiphy_regdom(request_wiphy);
3886
3887                 regd = reg_copy_regd(rd);
3888                 if (IS_ERR(regd)) {
3889                         wiphy_unlock(request_wiphy);
3890                         return PTR_ERR(regd);
3891                 }
3892
3893                 rcu_assign_pointer(request_wiphy->regd, regd);
3894                 rcu_free_regdom(tmp);
3895                 wiphy_unlock(request_wiphy);
3896                 reset_regdomains(false, rd);
3897                 return 0;
3898         }
3899
3900         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3901         if (!intersected_rd)
3902                 return -EINVAL;
3903
3904         /*
3905          * We can trash what CRDA provided now.
3906          * However if a driver requested this specific regulatory
3907          * domain we keep it for its private use
3908          */
3909         tmp = get_wiphy_regdom(request_wiphy);
3910         rcu_assign_pointer(request_wiphy->regd, rd);
3911         rcu_free_regdom(tmp);
3912
3913         rd = NULL;
3914
3915         reset_regdomains(false, intersected_rd);
3916
3917         return 0;
3918 }
3919
3920 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3921                                  struct regulatory_request *country_ie_request)
3922 {
3923         struct wiphy *request_wiphy;
3924
3925         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3926             !is_unknown_alpha2(rd->alpha2))
3927                 return -EINVAL;
3928
3929         /*
3930          * Lets only bother proceeding on the same alpha2 if the current
3931          * rd is non static (it means CRDA was present and was used last)
3932          * and the pending request came in from a country IE
3933          */
3934
3935         if (!is_valid_rd(rd)) {
3936                 pr_err("Invalid regulatory domain detected: %c%c\n",
3937                        rd->alpha2[0], rd->alpha2[1]);
3938                 print_regdomain_info(rd);
3939                 return -EINVAL;
3940         }
3941
3942         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3943         if (!request_wiphy)
3944                 return -ENODEV;
3945
3946         if (country_ie_request->intersect)
3947                 return -EINVAL;
3948
3949         reset_regdomains(false, rd);
3950         return 0;
3951 }
3952
3953 /*
3954  * Use this call to set the current regulatory domain. Conflicts with
3955  * multiple drivers can be ironed out later. Caller must've already
3956  * kmalloc'd the rd structure.
3957  */
3958 int set_regdom(const struct ieee80211_regdomain *rd,
3959                enum ieee80211_regd_source regd_src)
3960 {
3961         struct regulatory_request *lr;
3962         bool user_reset = false;
3963         int r;
3964
3965         if (IS_ERR_OR_NULL(rd))
3966                 return -ENODATA;
3967
3968         if (!reg_is_valid_request(rd->alpha2)) {
3969                 kfree(rd);
3970                 return -EINVAL;
3971         }
3972
3973         if (regd_src == REGD_SOURCE_CRDA)
3974                 reset_crda_timeouts();
3975
3976         lr = get_last_request();
3977
3978         /* Note that this doesn't update the wiphys, this is done below */
3979         switch (lr->initiator) {
3980         case NL80211_REGDOM_SET_BY_CORE:
3981                 r = reg_set_rd_core(rd);
3982                 break;
3983         case NL80211_REGDOM_SET_BY_USER:
3984                 cfg80211_save_user_regdom(rd);
3985                 r = reg_set_rd_user(rd, lr);
3986                 user_reset = true;
3987                 break;
3988         case NL80211_REGDOM_SET_BY_DRIVER:
3989                 r = reg_set_rd_driver(rd, lr);
3990                 break;
3991         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3992                 r = reg_set_rd_country_ie(rd, lr);
3993                 break;
3994         default:
3995                 WARN(1, "invalid initiator %d\n", lr->initiator);
3996                 kfree(rd);
3997                 return -EINVAL;
3998         }
3999
4000         if (r) {
4001                 switch (r) {
4002                 case -EALREADY:
4003                         reg_set_request_processed();
4004                         break;
4005                 default:
4006                         /* Back to world regulatory in case of errors */
4007                         restore_regulatory_settings(user_reset, false);
4008                 }
4009
4010                 kfree(rd);
4011                 return r;
4012         }
4013
4014         /* This would make this whole thing pointless */
4015         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4016                 return -EINVAL;
4017
4018         /* update all wiphys now with the new established regulatory domain */
4019         update_all_wiphy_regulatory(lr->initiator);
4020
4021         print_regdomain(get_cfg80211_regdom());
4022
4023         nl80211_send_reg_change_event(lr);
4024
4025         reg_set_request_processed();
4026
4027         return 0;
4028 }
4029
4030 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4031                                        struct ieee80211_regdomain *rd)
4032 {
4033         const struct ieee80211_regdomain *regd;
4034         const struct ieee80211_regdomain *prev_regd;
4035         struct cfg80211_registered_device *rdev;
4036
4037         if (WARN_ON(!wiphy || !rd))
4038                 return -EINVAL;
4039
4040         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4041                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4042                 return -EPERM;
4043
4044         if (WARN(!is_valid_rd(rd),
4045                  "Invalid regulatory domain detected: %c%c\n",
4046                  rd->alpha2[0], rd->alpha2[1])) {
4047                 print_regdomain_info(rd);
4048                 return -EINVAL;
4049         }
4050
4051         regd = reg_copy_regd(rd);
4052         if (IS_ERR(regd))
4053                 return PTR_ERR(regd);
4054
4055         rdev = wiphy_to_rdev(wiphy);
4056
4057         spin_lock(&reg_requests_lock);
4058         prev_regd = rdev->requested_regd;
4059         rdev->requested_regd = regd;
4060         spin_unlock(&reg_requests_lock);
4061
4062         kfree(prev_regd);
4063         return 0;
4064 }
4065
4066 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4067                               struct ieee80211_regdomain *rd)
4068 {
4069         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4070
4071         if (ret)
4072                 return ret;
4073
4074         schedule_work(&reg_work);
4075         return 0;
4076 }
4077 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4078
4079 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4080                                    struct ieee80211_regdomain *rd)
4081 {
4082         int ret;
4083
4084         ASSERT_RTNL();
4085
4086         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4087         if (ret)
4088                 return ret;
4089
4090         /* process the request immediately */
4091         reg_process_self_managed_hint(wiphy);
4092         reg_check_channels();
4093         return 0;
4094 }
4095 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4096
4097 void wiphy_regulatory_register(struct wiphy *wiphy)
4098 {
4099         struct regulatory_request *lr = get_last_request();
4100
4101         /* self-managed devices ignore beacon hints and country IE */
4102         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4103                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4104                                            REGULATORY_COUNTRY_IE_IGNORE;
4105
4106                 /*
4107                  * The last request may have been received before this
4108                  * registration call. Call the driver notifier if
4109                  * initiator is USER.
4110                  */
4111                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4112                         reg_call_notifier(wiphy, lr);
4113         }
4114
4115         if (!reg_dev_ignore_cell_hint(wiphy))
4116                 reg_num_devs_support_basehint++;
4117
4118         wiphy_update_regulatory(wiphy, lr->initiator);
4119         wiphy_all_share_dfs_chan_state(wiphy);
4120         reg_process_self_managed_hints();
4121 }
4122
4123 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4124 {
4125         struct wiphy *request_wiphy = NULL;
4126         struct regulatory_request *lr;
4127
4128         lr = get_last_request();
4129
4130         if (!reg_dev_ignore_cell_hint(wiphy))
4131                 reg_num_devs_support_basehint--;
4132
4133         rcu_free_regdom(get_wiphy_regdom(wiphy));
4134         RCU_INIT_POINTER(wiphy->regd, NULL);
4135
4136         if (lr)
4137                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4138
4139         if (!request_wiphy || request_wiphy != wiphy)
4140                 return;
4141
4142         lr->wiphy_idx = WIPHY_IDX_INVALID;
4143         lr->country_ie_env = ENVIRON_ANY;
4144 }
4145
4146 /*
4147  * See FCC notices for UNII band definitions
4148  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4149  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4150  */
4151 int cfg80211_get_unii(int freq)
4152 {
4153         /* UNII-1 */
4154         if (freq >= 5150 && freq <= 5250)
4155                 return 0;
4156
4157         /* UNII-2A */
4158         if (freq > 5250 && freq <= 5350)
4159                 return 1;
4160
4161         /* UNII-2B */
4162         if (freq > 5350 && freq <= 5470)
4163                 return 2;
4164
4165         /* UNII-2C */
4166         if (freq > 5470 && freq <= 5725)
4167                 return 3;
4168
4169         /* UNII-3 */
4170         if (freq > 5725 && freq <= 5825)
4171                 return 4;
4172
4173         /* UNII-5 */
4174         if (freq > 5925 && freq <= 6425)
4175                 return 5;
4176
4177         /* UNII-6 */
4178         if (freq > 6425 && freq <= 6525)
4179                 return 6;
4180
4181         /* UNII-7 */
4182         if (freq > 6525 && freq <= 6875)
4183                 return 7;
4184
4185         /* UNII-8 */
4186         if (freq > 6875 && freq <= 7125)
4187                 return 8;
4188
4189         return -EINVAL;
4190 }
4191
4192 bool regulatory_indoor_allowed(void)
4193 {
4194         return reg_is_indoor;
4195 }
4196
4197 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4198 {
4199         const struct ieee80211_regdomain *regd = NULL;
4200         const struct ieee80211_regdomain *wiphy_regd = NULL;
4201         bool pre_cac_allowed = false;
4202
4203         rcu_read_lock();
4204
4205         regd = rcu_dereference(cfg80211_regdomain);
4206         wiphy_regd = rcu_dereference(wiphy->regd);
4207         if (!wiphy_regd) {
4208                 if (regd->dfs_region == NL80211_DFS_ETSI)
4209                         pre_cac_allowed = true;
4210
4211                 rcu_read_unlock();
4212
4213                 return pre_cac_allowed;
4214         }
4215
4216         if (regd->dfs_region == wiphy_regd->dfs_region &&
4217             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4218                 pre_cac_allowed = true;
4219
4220         rcu_read_unlock();
4221
4222         return pre_cac_allowed;
4223 }
4224 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4225
4226 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4227 {
4228         struct wireless_dev *wdev;
4229         /* If we finished CAC or received radar, we should end any
4230          * CAC running on the same channels.
4231          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4232          * either all channels are available - those the CAC_FINISHED
4233          * event has effected another wdev state, or there is a channel
4234          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4235          * event has effected another wdev state.
4236          * In both cases we should end the CAC on the wdev.
4237          */
4238         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4239                 struct cfg80211_chan_def *chandef;
4240
4241                 if (!wdev->cac_started)
4242                         continue;
4243
4244                 /* FIXME: radar detection is tied to link 0 for now */
4245                 chandef = wdev_chandef(wdev, 0);
4246                 if (!chandef)
4247                         continue;
4248
4249                 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4250                         rdev_end_cac(rdev, wdev->netdev);
4251         }
4252 }
4253
4254 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4255                                     struct cfg80211_chan_def *chandef,
4256                                     enum nl80211_dfs_state dfs_state,
4257                                     enum nl80211_radar_event event)
4258 {
4259         struct cfg80211_registered_device *rdev;
4260
4261         ASSERT_RTNL();
4262
4263         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4264                 return;
4265
4266         for_each_rdev(rdev) {
4267                 if (wiphy == &rdev->wiphy)
4268                         continue;
4269
4270                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4271                         continue;
4272
4273                 if (!ieee80211_get_channel(&rdev->wiphy,
4274                                            chandef->chan->center_freq))
4275                         continue;
4276
4277                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4278
4279                 if (event == NL80211_RADAR_DETECTED ||
4280                     event == NL80211_RADAR_CAC_FINISHED) {
4281                         cfg80211_sched_dfs_chan_update(rdev);
4282                         cfg80211_check_and_end_cac(rdev);
4283                 }
4284
4285                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4286         }
4287 }
4288
4289 static int __init regulatory_init_db(void)
4290 {
4291         int err;
4292
4293         /*
4294          * It's possible that - due to other bugs/issues - cfg80211
4295          * never called regulatory_init() below, or that it failed;
4296          * in that case, don't try to do any further work here as
4297          * it's doomed to lead to crashes.
4298          */
4299         if (IS_ERR_OR_NULL(reg_pdev))
4300                 return -EINVAL;
4301
4302         err = load_builtin_regdb_keys();
4303         if (err) {
4304                 platform_device_unregister(reg_pdev);
4305                 return err;
4306         }
4307
4308         /* We always try to get an update for the static regdomain */
4309         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4310         if (err) {
4311                 if (err == -ENOMEM) {
4312                         platform_device_unregister(reg_pdev);
4313                         return err;
4314                 }
4315                 /*
4316                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4317                  * memory which is handled and propagated appropriately above
4318                  * but it can also fail during a netlink_broadcast() or during
4319                  * early boot for call_usermodehelper(). For now treat these
4320                  * errors as non-fatal.
4321                  */
4322                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4323         }
4324
4325         /*
4326          * Finally, if the user set the module parameter treat it
4327          * as a user hint.
4328          */
4329         if (!is_world_regdom(ieee80211_regdom))
4330                 regulatory_hint_user(ieee80211_regdom,
4331                                      NL80211_USER_REG_HINT_USER);
4332
4333         return 0;
4334 }
4335 #ifndef MODULE
4336 late_initcall(regulatory_init_db);
4337 #endif
4338
4339 int __init regulatory_init(void)
4340 {
4341         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4342         if (IS_ERR(reg_pdev))
4343                 return PTR_ERR(reg_pdev);
4344
4345         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4346
4347         user_alpha2[0] = '9';
4348         user_alpha2[1] = '7';
4349
4350 #ifdef MODULE
4351         return regulatory_init_db();
4352 #else
4353         return 0;
4354 #endif
4355 }
4356
4357 void regulatory_exit(void)
4358 {
4359         struct regulatory_request *reg_request, *tmp;
4360         struct reg_beacon *reg_beacon, *btmp;
4361
4362         cancel_work_sync(&reg_work);
4363         cancel_crda_timeout_sync();
4364         cancel_delayed_work_sync(&reg_check_chans);
4365
4366         /* Lock to suppress warnings */
4367         rtnl_lock();
4368         reset_regdomains(true, NULL);
4369         rtnl_unlock();
4370
4371         dev_set_uevent_suppress(&reg_pdev->dev, true);
4372
4373         platform_device_unregister(reg_pdev);
4374
4375         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4376                 list_del(&reg_beacon->list);
4377                 kfree(reg_beacon);
4378         }
4379
4380         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4381                 list_del(&reg_beacon->list);
4382                 kfree(reg_beacon);
4383         }
4384
4385         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4386                 list_del(&reg_request->list);
4387                 kfree(reg_request);
4388         }
4389
4390         if (!IS_ERR_OR_NULL(regdb))
4391                 kfree(regdb);
4392         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4393                 kfree(cfg80211_user_regdom);
4394
4395         free_regdb_keyring();
4396 }