GNU Linux-libre 4.9.331-gnu1
[releases.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 /*
64  * Grace period we give before making sure all current interfaces reside on
65  * channels allowed by the current regulatory domain.
66  */
67 #define REG_ENFORCE_GRACE_MS 60000
68
69 /**
70  * enum reg_request_treatment - regulatory request treatment
71  *
72  * @REG_REQ_OK: continue processing the regulatory request
73  * @REG_REQ_IGNORE: ignore the regulatory request
74  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75  *      be intersected with the current one.
76  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77  *      regulatory settings, and no further processing is required.
78  */
79 enum reg_request_treatment {
80         REG_REQ_OK,
81         REG_REQ_IGNORE,
82         REG_REQ_INTERSECT,
83         REG_REQ_ALREADY_SET,
84 };
85
86 static struct regulatory_request core_request_world = {
87         .initiator = NL80211_REGDOM_SET_BY_CORE,
88         .alpha2[0] = '0',
89         .alpha2[1] = '0',
90         .intersect = false,
91         .processed = true,
92         .country_ie_env = ENVIRON_ANY,
93 };
94
95 /*
96  * Receipt of information from last regulatory request,
97  * protected by RTNL (and can be accessed with RCU protection)
98  */
99 static struct regulatory_request __rcu *last_request =
100         (void __force __rcu *)&core_request_world;
101
102 /* To trigger userspace events */
103 static struct platform_device *reg_pdev;
104
105 /*
106  * Central wireless core regulatory domains, we only need two,
107  * the current one and a world regulatory domain in case we have no
108  * information to give us an alpha2.
109  * (protected by RTNL, can be read under RCU)
110  */
111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
112
113 /*
114  * Number of devices that registered to the core
115  * that support cellular base station regulatory hints
116  * (protected by RTNL)
117  */
118 static int reg_num_devs_support_basehint;
119
120 /*
121  * State variable indicating if the platform on which the devices
122  * are attached is operating in an indoor environment. The state variable
123  * is relevant for all registered devices.
124  */
125 static bool reg_is_indoor;
126 static spinlock_t reg_indoor_lock;
127
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid;
130
131 static void restore_regulatory_settings(bool reset_user);
132
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135         return rtnl_dereference(cfg80211_regdomain);
136 }
137
138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140         return rtnl_dereference(wiphy->regd);
141 }
142
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145         switch (dfs_region) {
146         case NL80211_DFS_UNSET:
147                 return "unset";
148         case NL80211_DFS_FCC:
149                 return "FCC";
150         case NL80211_DFS_ETSI:
151                 return "ETSI";
152         case NL80211_DFS_JP:
153                 return "JP";
154         }
155         return "Unknown";
156 }
157
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160         const struct ieee80211_regdomain *regd = NULL;
161         const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163         regd = get_cfg80211_regdom();
164         if (!wiphy)
165                 goto out;
166
167         wiphy_regd = get_wiphy_regdom(wiphy);
168         if (!wiphy_regd)
169                 goto out;
170
171         if (wiphy_regd->dfs_region == regd->dfs_region)
172                 goto out;
173
174         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175                  dev_name(&wiphy->dev),
176                  reg_dfs_region_str(wiphy_regd->dfs_region),
177                  reg_dfs_region_str(regd->dfs_region));
178
179 out:
180         return regd->dfs_region;
181 }
182
183 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
184 {
185         if (!r)
186                 return;
187         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
188 }
189
190 static struct regulatory_request *get_last_request(void)
191 {
192         return rcu_dereference_rtnl(last_request);
193 }
194
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list);
197 static spinlock_t reg_requests_lock;
198
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons);
201 static spinlock_t reg_pending_beacons_lock;
202
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list);
205
206 struct reg_beacon {
207         struct list_head list;
208         struct ieee80211_channel chan;
209 };
210
211 static void reg_check_chans_work(struct work_struct *work);
212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
213
214 static void reg_todo(struct work_struct *work);
215 static DECLARE_WORK(reg_work, reg_todo);
216
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom = {
219         .n_reg_rules = 8,
220         .alpha2 =  "00",
221         .reg_rules = {
222                 /* IEEE 802.11b/g, channels 1..11 */
223                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224                 /* IEEE 802.11b/g, channels 12..13. */
225                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
226                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
227                 /* IEEE 802.11 channel 14 - Only JP enables
228                  * this and for 802.11b only */
229                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR |
231                         NL80211_RRF_NO_OFDM),
232                 /* IEEE 802.11a, channel 36..48 */
233                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_AUTO_BW),
236
237                 /* IEEE 802.11a, channel 52..64 - DFS required */
238                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
239                         NL80211_RRF_NO_IR |
240                         NL80211_RRF_AUTO_BW |
241                         NL80211_RRF_DFS),
242
243                 /* IEEE 802.11a, channel 100..144 - DFS required */
244                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245                         NL80211_RRF_NO_IR |
246                         NL80211_RRF_DFS),
247
248                 /* IEEE 802.11a, channel 149..165 */
249                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250                         NL80211_RRF_NO_IR),
251
252                 /* IEEE 802.11ad (60GHz), channels 1..3 */
253                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254         }
255 };
256
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259         &world_regdom;
260
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267 static void reg_free_request(struct regulatory_request *request)
268 {
269         if (request == &core_request_world)
270                 return;
271
272         if (request != get_last_request())
273                 kfree(request);
274 }
275
276 static void reg_free_last_request(void)
277 {
278         struct regulatory_request *lr = get_last_request();
279
280         if (lr != &core_request_world && lr)
281                 kfree_rcu(lr, rcu_head);
282 }
283
284 static void reg_update_last_request(struct regulatory_request *request)
285 {
286         struct regulatory_request *lr;
287
288         lr = get_last_request();
289         if (lr == request)
290                 return;
291
292         reg_free_last_request();
293         rcu_assign_pointer(last_request, request);
294 }
295
296 static void reset_regdomains(bool full_reset,
297                              const struct ieee80211_regdomain *new_regdom)
298 {
299         const struct ieee80211_regdomain *r;
300
301         ASSERT_RTNL();
302
303         r = get_cfg80211_regdom();
304
305         /* avoid freeing static information or freeing something twice */
306         if (r == cfg80211_world_regdom)
307                 r = NULL;
308         if (cfg80211_world_regdom == &world_regdom)
309                 cfg80211_world_regdom = NULL;
310         if (r == &world_regdom)
311                 r = NULL;
312
313         rcu_free_regdom(r);
314         rcu_free_regdom(cfg80211_world_regdom);
315
316         cfg80211_world_regdom = &world_regdom;
317         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
318
319         if (!full_reset)
320                 return;
321
322         reg_update_last_request(&core_request_world);
323 }
324
325 /*
326  * Dynamic world regulatory domain requested by the wireless
327  * core upon initialization
328  */
329 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
330 {
331         struct regulatory_request *lr;
332
333         lr = get_last_request();
334
335         WARN_ON(!lr);
336
337         reset_regdomains(false, rd);
338
339         cfg80211_world_regdom = rd;
340 }
341
342 bool is_world_regdom(const char *alpha2)
343 {
344         if (!alpha2)
345                 return false;
346         return alpha2[0] == '0' && alpha2[1] == '0';
347 }
348
349 static bool is_alpha2_set(const char *alpha2)
350 {
351         if (!alpha2)
352                 return false;
353         return alpha2[0] && alpha2[1];
354 }
355
356 static bool is_unknown_alpha2(const char *alpha2)
357 {
358         if (!alpha2)
359                 return false;
360         /*
361          * Special case where regulatory domain was built by driver
362          * but a specific alpha2 cannot be determined
363          */
364         return alpha2[0] == '9' && alpha2[1] == '9';
365 }
366
367 static bool is_intersected_alpha2(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         /*
372          * Special case where regulatory domain is the
373          * result of an intersection between two regulatory domain
374          * structures
375          */
376         return alpha2[0] == '9' && alpha2[1] == '8';
377 }
378
379 static bool is_an_alpha2(const char *alpha2)
380 {
381         if (!alpha2)
382                 return false;
383         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
384 }
385
386 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
387 {
388         if (!alpha2_x || !alpha2_y)
389                 return false;
390         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
391 }
392
393 static bool regdom_changes(const char *alpha2)
394 {
395         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
396
397         if (!r)
398                 return true;
399         return !alpha2_equal(r->alpha2, alpha2);
400 }
401
402 /*
403  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405  * has ever been issued.
406  */
407 static bool is_user_regdom_saved(void)
408 {
409         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
410                 return false;
411
412         /* This would indicate a mistake on the design */
413         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
414                  "Unexpected user alpha2: %c%c\n",
415                  user_alpha2[0], user_alpha2[1]))
416                 return false;
417
418         return true;
419 }
420
421 static const struct ieee80211_regdomain *
422 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
423 {
424         struct ieee80211_regdomain *regd;
425         int size_of_regd;
426         unsigned int i;
427
428         size_of_regd =
429                 sizeof(struct ieee80211_regdomain) +
430                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
431
432         regd = kzalloc(size_of_regd, GFP_KERNEL);
433         if (!regd)
434                 return ERR_PTR(-ENOMEM);
435
436         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
437
438         for (i = 0; i < src_regd->n_reg_rules; i++)
439                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
440                        sizeof(struct ieee80211_reg_rule));
441
442         return regd;
443 }
444
445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
446 struct reg_regdb_apply_request {
447         struct list_head list;
448         const struct ieee80211_regdomain *regdom;
449 };
450
451 static LIST_HEAD(reg_regdb_apply_list);
452 static DEFINE_MUTEX(reg_regdb_apply_mutex);
453
454 static void reg_regdb_apply(struct work_struct *work)
455 {
456         struct reg_regdb_apply_request *request;
457
458         rtnl_lock();
459
460         mutex_lock(&reg_regdb_apply_mutex);
461         while (!list_empty(&reg_regdb_apply_list)) {
462                 request = list_first_entry(&reg_regdb_apply_list,
463                                            struct reg_regdb_apply_request,
464                                            list);
465                 list_del(&request->list);
466
467                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
468                 kfree(request);
469         }
470         mutex_unlock(&reg_regdb_apply_mutex);
471
472         rtnl_unlock();
473 }
474
475 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
476
477 static int reg_query_builtin(const char *alpha2)
478 {
479         const struct ieee80211_regdomain *regdom = NULL;
480         struct reg_regdb_apply_request *request;
481         unsigned int i;
482
483         for (i = 0; i < reg_regdb_size; i++) {
484                 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
485                         regdom = reg_regdb[i];
486                         break;
487                 }
488         }
489
490         if (!regdom)
491                 return -ENODATA;
492
493         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
494         if (!request)
495                 return -ENOMEM;
496
497         request->regdom = reg_copy_regd(regdom);
498         if (IS_ERR_OR_NULL(request->regdom)) {
499                 kfree(request);
500                 return -ENOMEM;
501         }
502
503         mutex_lock(&reg_regdb_apply_mutex);
504         list_add_tail(&request->list, &reg_regdb_apply_list);
505         mutex_unlock(&reg_regdb_apply_mutex);
506
507         schedule_work(&reg_regdb_work);
508
509         return 0;
510 }
511
512 /* Feel free to add any other sanity checks here */
513 static void reg_regdb_size_check(void)
514 {
515         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
516         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
517 }
518 #else
519 static inline void reg_regdb_size_check(void) {}
520 static inline int reg_query_builtin(const char *alpha2)
521 {
522         return -ENODATA;
523 }
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 static bool reg_query_database(struct regulatory_request *request)
602 {
603         /* query internal regulatory database (if it exists) */
604         if (reg_query_builtin(request->alpha2) == 0)
605                 return true;
606
607         if (call_crda(request->alpha2) == 0)
608                 return true;
609
610         return false;
611 }
612
613 bool reg_is_valid_request(const char *alpha2)
614 {
615         struct regulatory_request *lr = get_last_request();
616
617         if (!lr || lr->processed)
618                 return false;
619
620         return alpha2_equal(lr->alpha2, alpha2);
621 }
622
623 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
624 {
625         struct regulatory_request *lr = get_last_request();
626
627         /*
628          * Follow the driver's regulatory domain, if present, unless a country
629          * IE has been processed or a user wants to help complaince further
630          */
631         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
632             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
633             wiphy->regd)
634                 return get_wiphy_regdom(wiphy);
635
636         return get_cfg80211_regdom();
637 }
638
639 static unsigned int
640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
641                                  const struct ieee80211_reg_rule *rule)
642 {
643         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
644         const struct ieee80211_freq_range *freq_range_tmp;
645         const struct ieee80211_reg_rule *tmp;
646         u32 start_freq, end_freq, idx, no;
647
648         for (idx = 0; idx < rd->n_reg_rules; idx++)
649                 if (rule == &rd->reg_rules[idx])
650                         break;
651
652         if (idx == rd->n_reg_rules)
653                 return 0;
654
655         /* get start_freq */
656         no = idx;
657
658         while (no) {
659                 tmp = &rd->reg_rules[--no];
660                 freq_range_tmp = &tmp->freq_range;
661
662                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
663                         break;
664
665                 freq_range = freq_range_tmp;
666         }
667
668         start_freq = freq_range->start_freq_khz;
669
670         /* get end_freq */
671         freq_range = &rule->freq_range;
672         no = idx;
673
674         while (no < rd->n_reg_rules - 1) {
675                 tmp = &rd->reg_rules[++no];
676                 freq_range_tmp = &tmp->freq_range;
677
678                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
679                         break;
680
681                 freq_range = freq_range_tmp;
682         }
683
684         end_freq = freq_range->end_freq_khz;
685
686         return end_freq - start_freq;
687 }
688
689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
690                                    const struct ieee80211_reg_rule *rule)
691 {
692         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
693
694         if (rule->flags & NL80211_RRF_NO_160MHZ)
695                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
696         if (rule->flags & NL80211_RRF_NO_80MHZ)
697                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
698
699         /*
700          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
701          * are not allowed.
702          */
703         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
704             rule->flags & NL80211_RRF_NO_HT40PLUS)
705                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
706
707         return bw;
708 }
709
710 /* Sanity check on a regulatory rule */
711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
712 {
713         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
714         u32 freq_diff;
715
716         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
717                 return false;
718
719         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
720                 return false;
721
722         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
723
724         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
725             freq_range->max_bandwidth_khz > freq_diff)
726                 return false;
727
728         return true;
729 }
730
731 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
732 {
733         const struct ieee80211_reg_rule *reg_rule = NULL;
734         unsigned int i;
735
736         if (!rd->n_reg_rules)
737                 return false;
738
739         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
740                 return false;
741
742         for (i = 0; i < rd->n_reg_rules; i++) {
743                 reg_rule = &rd->reg_rules[i];
744                 if (!is_valid_reg_rule(reg_rule))
745                         return false;
746         }
747
748         return true;
749 }
750
751 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
752                             u32 center_freq_khz, u32 bw_khz)
753 {
754         u32 start_freq_khz, end_freq_khz;
755
756         start_freq_khz = center_freq_khz - (bw_khz/2);
757         end_freq_khz = center_freq_khz + (bw_khz/2);
758
759         if (start_freq_khz >= freq_range->start_freq_khz &&
760             end_freq_khz <= freq_range->end_freq_khz)
761                 return true;
762
763         return false;
764 }
765
766 /**
767  * freq_in_rule_band - tells us if a frequency is in a frequency band
768  * @freq_range: frequency rule we want to query
769  * @freq_khz: frequency we are inquiring about
770  *
771  * This lets us know if a specific frequency rule is or is not relevant to
772  * a specific frequency's band. Bands are device specific and artificial
773  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
774  * however it is safe for now to assume that a frequency rule should not be
775  * part of a frequency's band if the start freq or end freq are off by more
776  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
777  * 60 GHz band.
778  * This resolution can be lowered and should be considered as we add
779  * regulatory rule support for other "bands".
780  **/
781 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
782                               u32 freq_khz)
783 {
784 #define ONE_GHZ_IN_KHZ  1000000
785         /*
786          * From 802.11ad: directional multi-gigabit (DMG):
787          * Pertaining to operation in a frequency band containing a channel
788          * with the Channel starting frequency above 45 GHz.
789          */
790         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
791                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
792         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
793                 return true;
794         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
795                 return true;
796         return false;
797 #undef ONE_GHZ_IN_KHZ
798 }
799
800 /*
801  * Later on we can perhaps use the more restrictive DFS
802  * region but we don't have information for that yet so
803  * for now simply disallow conflicts.
804  */
805 static enum nl80211_dfs_regions
806 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
807                          const enum nl80211_dfs_regions dfs_region2)
808 {
809         if (dfs_region1 != dfs_region2)
810                 return NL80211_DFS_UNSET;
811         return dfs_region1;
812 }
813
814 /*
815  * Helper for regdom_intersect(), this does the real
816  * mathematical intersection fun
817  */
818 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
819                                const struct ieee80211_regdomain *rd2,
820                                const struct ieee80211_reg_rule *rule1,
821                                const struct ieee80211_reg_rule *rule2,
822                                struct ieee80211_reg_rule *intersected_rule)
823 {
824         const struct ieee80211_freq_range *freq_range1, *freq_range2;
825         struct ieee80211_freq_range *freq_range;
826         const struct ieee80211_power_rule *power_rule1, *power_rule2;
827         struct ieee80211_power_rule *power_rule;
828         u32 freq_diff, max_bandwidth1, max_bandwidth2;
829
830         freq_range1 = &rule1->freq_range;
831         freq_range2 = &rule2->freq_range;
832         freq_range = &intersected_rule->freq_range;
833
834         power_rule1 = &rule1->power_rule;
835         power_rule2 = &rule2->power_rule;
836         power_rule = &intersected_rule->power_rule;
837
838         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
839                                          freq_range2->start_freq_khz);
840         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
841                                        freq_range2->end_freq_khz);
842
843         max_bandwidth1 = freq_range1->max_bandwidth_khz;
844         max_bandwidth2 = freq_range2->max_bandwidth_khz;
845
846         if (rule1->flags & NL80211_RRF_AUTO_BW)
847                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
848         if (rule2->flags & NL80211_RRF_AUTO_BW)
849                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
850
851         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
852
853         intersected_rule->flags = rule1->flags | rule2->flags;
854
855         /*
856          * In case NL80211_RRF_AUTO_BW requested for both rules
857          * set AUTO_BW in intersected rule also. Next we will
858          * calculate BW correctly in handle_channel function.
859          * In other case remove AUTO_BW flag while we calculate
860          * maximum bandwidth correctly and auto calculation is
861          * not required.
862          */
863         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
864             (rule2->flags & NL80211_RRF_AUTO_BW))
865                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
866         else
867                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
868
869         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
870         if (freq_range->max_bandwidth_khz > freq_diff)
871                 freq_range->max_bandwidth_khz = freq_diff;
872
873         power_rule->max_eirp = min(power_rule1->max_eirp,
874                 power_rule2->max_eirp);
875         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
876                 power_rule2->max_antenna_gain);
877
878         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
879                                            rule2->dfs_cac_ms);
880
881         if (!is_valid_reg_rule(intersected_rule))
882                 return -EINVAL;
883
884         return 0;
885 }
886
887 /* check whether old rule contains new rule */
888 static bool rule_contains(struct ieee80211_reg_rule *r1,
889                           struct ieee80211_reg_rule *r2)
890 {
891         /* for simplicity, currently consider only same flags */
892         if (r1->flags != r2->flags)
893                 return false;
894
895         /* verify r1 is more restrictive */
896         if ((r1->power_rule.max_antenna_gain >
897              r2->power_rule.max_antenna_gain) ||
898             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
899                 return false;
900
901         /* make sure r2's range is contained within r1 */
902         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
903             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
904                 return false;
905
906         /* and finally verify that r1.max_bw >= r2.max_bw */
907         if (r1->freq_range.max_bandwidth_khz <
908             r2->freq_range.max_bandwidth_khz)
909                 return false;
910
911         return true;
912 }
913
914 /* add or extend current rules. do nothing if rule is already contained */
915 static void add_rule(struct ieee80211_reg_rule *rule,
916                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
917 {
918         struct ieee80211_reg_rule *tmp_rule;
919         int i;
920
921         for (i = 0; i < *n_rules; i++) {
922                 tmp_rule = &reg_rules[i];
923                 /* rule is already contained - do nothing */
924                 if (rule_contains(tmp_rule, rule))
925                         return;
926
927                 /* extend rule if possible */
928                 if (rule_contains(rule, tmp_rule)) {
929                         memcpy(tmp_rule, rule, sizeof(*rule));
930                         return;
931                 }
932         }
933
934         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
935         (*n_rules)++;
936 }
937
938 /**
939  * regdom_intersect - do the intersection between two regulatory domains
940  * @rd1: first regulatory domain
941  * @rd2: second regulatory domain
942  *
943  * Use this function to get the intersection between two regulatory domains.
944  * Once completed we will mark the alpha2 for the rd as intersected, "98",
945  * as no one single alpha2 can represent this regulatory domain.
946  *
947  * Returns a pointer to the regulatory domain structure which will hold the
948  * resulting intersection of rules between rd1 and rd2. We will
949  * kzalloc() this structure for you.
950  */
951 static struct ieee80211_regdomain *
952 regdom_intersect(const struct ieee80211_regdomain *rd1,
953                  const struct ieee80211_regdomain *rd2)
954 {
955         int r, size_of_regd;
956         unsigned int x, y;
957         unsigned int num_rules = 0;
958         const struct ieee80211_reg_rule *rule1, *rule2;
959         struct ieee80211_reg_rule intersected_rule;
960         struct ieee80211_regdomain *rd;
961
962         if (!rd1 || !rd2)
963                 return NULL;
964
965         /*
966          * First we get a count of the rules we'll need, then we actually
967          * build them. This is to so we can malloc() and free() a
968          * regdomain once. The reason we use reg_rules_intersect() here
969          * is it will return -EINVAL if the rule computed makes no sense.
970          * All rules that do check out OK are valid.
971          */
972
973         for (x = 0; x < rd1->n_reg_rules; x++) {
974                 rule1 = &rd1->reg_rules[x];
975                 for (y = 0; y < rd2->n_reg_rules; y++) {
976                         rule2 = &rd2->reg_rules[y];
977                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
978                                                  &intersected_rule))
979                                 num_rules++;
980                 }
981         }
982
983         if (!num_rules)
984                 return NULL;
985
986         size_of_regd = sizeof(struct ieee80211_regdomain) +
987                        num_rules * sizeof(struct ieee80211_reg_rule);
988
989         rd = kzalloc(size_of_regd, GFP_KERNEL);
990         if (!rd)
991                 return NULL;
992
993         for (x = 0; x < rd1->n_reg_rules; x++) {
994                 rule1 = &rd1->reg_rules[x];
995                 for (y = 0; y < rd2->n_reg_rules; y++) {
996                         rule2 = &rd2->reg_rules[y];
997                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
998                                                 &intersected_rule);
999                         /*
1000                          * No need to memset here the intersected rule here as
1001                          * we're not using the stack anymore
1002                          */
1003                         if (r)
1004                                 continue;
1005
1006                         add_rule(&intersected_rule, rd->reg_rules,
1007                                  &rd->n_reg_rules);
1008                 }
1009         }
1010
1011         rd->alpha2[0] = '9';
1012         rd->alpha2[1] = '8';
1013         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1014                                                   rd2->dfs_region);
1015
1016         return rd;
1017 }
1018
1019 /*
1020  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1021  * want to just have the channel structure use these
1022  */
1023 static u32 map_regdom_flags(u32 rd_flags)
1024 {
1025         u32 channel_flags = 0;
1026         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1027                 channel_flags |= IEEE80211_CHAN_NO_IR;
1028         if (rd_flags & NL80211_RRF_DFS)
1029                 channel_flags |= IEEE80211_CHAN_RADAR;
1030         if (rd_flags & NL80211_RRF_NO_OFDM)
1031                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1032         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1033                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1034         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1035                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1036         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1037                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1038         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1039                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1040         if (rd_flags & NL80211_RRF_NO_80MHZ)
1041                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1042         if (rd_flags & NL80211_RRF_NO_160MHZ)
1043                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1044         return channel_flags;
1045 }
1046
1047 static const struct ieee80211_reg_rule *
1048 freq_reg_info_regd(u32 center_freq,
1049                    const struct ieee80211_regdomain *regd, u32 bw)
1050 {
1051         int i;
1052         bool band_rule_found = false;
1053         bool bw_fits = false;
1054
1055         if (!regd)
1056                 return ERR_PTR(-EINVAL);
1057
1058         for (i = 0; i < regd->n_reg_rules; i++) {
1059                 const struct ieee80211_reg_rule *rr;
1060                 const struct ieee80211_freq_range *fr = NULL;
1061
1062                 rr = &regd->reg_rules[i];
1063                 fr = &rr->freq_range;
1064
1065                 /*
1066                  * We only need to know if one frequency rule was
1067                  * was in center_freq's band, that's enough, so lets
1068                  * not overwrite it once found
1069                  */
1070                 if (!band_rule_found)
1071                         band_rule_found = freq_in_rule_band(fr, center_freq);
1072
1073                 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1074
1075                 if (band_rule_found && bw_fits)
1076                         return rr;
1077         }
1078
1079         if (!band_rule_found)
1080                 return ERR_PTR(-ERANGE);
1081
1082         return ERR_PTR(-EINVAL);
1083 }
1084
1085 static const struct ieee80211_reg_rule *
1086 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1087 {
1088         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1089         const struct ieee80211_reg_rule *reg_rule = NULL;
1090         u32 bw;
1091
1092         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1093                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1094                 if (!IS_ERR(reg_rule))
1095                         return reg_rule;
1096         }
1097
1098         return reg_rule;
1099 }
1100
1101 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1102                                                u32 center_freq)
1103 {
1104         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1105 }
1106 EXPORT_SYMBOL(freq_reg_info);
1107
1108 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1109 {
1110         switch (initiator) {
1111         case NL80211_REGDOM_SET_BY_CORE:
1112                 return "core";
1113         case NL80211_REGDOM_SET_BY_USER:
1114                 return "user";
1115         case NL80211_REGDOM_SET_BY_DRIVER:
1116                 return "driver";
1117         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1118                 return "country IE";
1119         default:
1120                 WARN_ON(1);
1121                 return "bug";
1122         }
1123 }
1124 EXPORT_SYMBOL(reg_initiator_name);
1125
1126 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1127                                           const struct ieee80211_reg_rule *reg_rule,
1128                                           const struct ieee80211_channel *chan)
1129 {
1130         const struct ieee80211_freq_range *freq_range = NULL;
1131         u32 max_bandwidth_khz, bw_flags = 0;
1132
1133         freq_range = &reg_rule->freq_range;
1134
1135         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1136         /* Check if auto calculation requested */
1137         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1138                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1139
1140         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1141         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1142                              MHZ_TO_KHZ(10)))
1143                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1144         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1145                              MHZ_TO_KHZ(20)))
1146                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1147
1148         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1149                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1150         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1151                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1152         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1153                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1154         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1155                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1156         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1157                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1158         return bw_flags;
1159 }
1160
1161 /*
1162  * Note that right now we assume the desired channel bandwidth
1163  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1164  * per channel, the primary and the extension channel).
1165  */
1166 static void handle_channel(struct wiphy *wiphy,
1167                            enum nl80211_reg_initiator initiator,
1168                            struct ieee80211_channel *chan)
1169 {
1170         u32 flags, bw_flags = 0;
1171         const struct ieee80211_reg_rule *reg_rule = NULL;
1172         const struct ieee80211_power_rule *power_rule = NULL;
1173         struct wiphy *request_wiphy = NULL;
1174         struct regulatory_request *lr = get_last_request();
1175         const struct ieee80211_regdomain *regd;
1176
1177         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1178
1179         flags = chan->orig_flags;
1180
1181         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1182         if (IS_ERR(reg_rule)) {
1183                 /*
1184                  * We will disable all channels that do not match our
1185                  * received regulatory rule unless the hint is coming
1186                  * from a Country IE and the Country IE had no information
1187                  * about a band. The IEEE 802.11 spec allows for an AP
1188                  * to send only a subset of the regulatory rules allowed,
1189                  * so an AP in the US that only supports 2.4 GHz may only send
1190                  * a country IE with information for the 2.4 GHz band
1191                  * while 5 GHz is still supported.
1192                  */
1193                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1194                     PTR_ERR(reg_rule) == -ERANGE)
1195                         return;
1196
1197                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1198                     request_wiphy && request_wiphy == wiphy &&
1199                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1200                         pr_debug("Disabling freq %d MHz for good\n",
1201                                  chan->center_freq);
1202                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1203                         chan->flags = chan->orig_flags;
1204                 } else {
1205                         pr_debug("Disabling freq %d MHz\n",
1206                                  chan->center_freq);
1207                         chan->flags |= IEEE80211_CHAN_DISABLED;
1208                 }
1209                 return;
1210         }
1211
1212         regd = reg_get_regdomain(wiphy);
1213
1214         power_rule = &reg_rule->power_rule;
1215         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1216
1217         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1218             request_wiphy && request_wiphy == wiphy &&
1219             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1220                 /*
1221                  * This guarantees the driver's requested regulatory domain
1222                  * will always be used as a base for further regulatory
1223                  * settings
1224                  */
1225                 chan->flags = chan->orig_flags =
1226                         map_regdom_flags(reg_rule->flags) | bw_flags;
1227                 chan->max_antenna_gain = chan->orig_mag =
1228                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1229                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1230                         (int) MBM_TO_DBM(power_rule->max_eirp);
1231
1232                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1233                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1234                         if (reg_rule->dfs_cac_ms)
1235                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1236                 }
1237
1238                 return;
1239         }
1240
1241         chan->dfs_state = NL80211_DFS_USABLE;
1242         chan->dfs_state_entered = jiffies;
1243
1244         chan->beacon_found = false;
1245         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1246         chan->max_antenna_gain =
1247                 min_t(int, chan->orig_mag,
1248                       MBI_TO_DBI(power_rule->max_antenna_gain));
1249         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1250
1251         if (chan->flags & IEEE80211_CHAN_RADAR) {
1252                 if (reg_rule->dfs_cac_ms)
1253                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1254                 else
1255                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1256         }
1257
1258         if (chan->orig_mpwr) {
1259                 /*
1260                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1261                  * will always follow the passed country IE power settings.
1262                  */
1263                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1264                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1265                         chan->max_power = chan->max_reg_power;
1266                 else
1267                         chan->max_power = min(chan->orig_mpwr,
1268                                               chan->max_reg_power);
1269         } else
1270                 chan->max_power = chan->max_reg_power;
1271 }
1272
1273 static void handle_band(struct wiphy *wiphy,
1274                         enum nl80211_reg_initiator initiator,
1275                         struct ieee80211_supported_band *sband)
1276 {
1277         unsigned int i;
1278
1279         if (!sband)
1280                 return;
1281
1282         for (i = 0; i < sband->n_channels; i++)
1283                 handle_channel(wiphy, initiator, &sband->channels[i]);
1284 }
1285
1286 static bool reg_request_cell_base(struct regulatory_request *request)
1287 {
1288         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1289                 return false;
1290         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1291 }
1292
1293 bool reg_last_request_cell_base(void)
1294 {
1295         return reg_request_cell_base(get_last_request());
1296 }
1297
1298 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1299 /* Core specific check */
1300 static enum reg_request_treatment
1301 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1302 {
1303         struct regulatory_request *lr = get_last_request();
1304
1305         if (!reg_num_devs_support_basehint)
1306                 return REG_REQ_IGNORE;
1307
1308         if (reg_request_cell_base(lr) &&
1309             !regdom_changes(pending_request->alpha2))
1310                 return REG_REQ_ALREADY_SET;
1311
1312         return REG_REQ_OK;
1313 }
1314
1315 /* Device specific check */
1316 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1317 {
1318         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1319 }
1320 #else
1321 static enum reg_request_treatment
1322 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1323 {
1324         return REG_REQ_IGNORE;
1325 }
1326
1327 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1328 {
1329         return true;
1330 }
1331 #endif
1332
1333 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1334 {
1335         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1336             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1337                 return true;
1338         return false;
1339 }
1340
1341 static bool ignore_reg_update(struct wiphy *wiphy,
1342                               enum nl80211_reg_initiator initiator)
1343 {
1344         struct regulatory_request *lr = get_last_request();
1345
1346         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1347                 return true;
1348
1349         if (!lr) {
1350                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1351                          reg_initiator_name(initiator));
1352                 return true;
1353         }
1354
1355         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1356             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1357                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1358                          reg_initiator_name(initiator));
1359                 return true;
1360         }
1361
1362         /*
1363          * wiphy->regd will be set once the device has its own
1364          * desired regulatory domain set
1365          */
1366         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1367             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1368             !is_world_regdom(lr->alpha2)) {
1369                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1370                          reg_initiator_name(initiator));
1371                 return true;
1372         }
1373
1374         if (reg_request_cell_base(lr))
1375                 return reg_dev_ignore_cell_hint(wiphy);
1376
1377         return false;
1378 }
1379
1380 static bool reg_is_world_roaming(struct wiphy *wiphy)
1381 {
1382         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1383         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1384         struct regulatory_request *lr = get_last_request();
1385
1386         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1387                 return true;
1388
1389         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1390             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1391                 return true;
1392
1393         return false;
1394 }
1395
1396 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1397                               struct reg_beacon *reg_beacon)
1398 {
1399         struct ieee80211_supported_band *sband;
1400         struct ieee80211_channel *chan;
1401         bool channel_changed = false;
1402         struct ieee80211_channel chan_before;
1403
1404         sband = wiphy->bands[reg_beacon->chan.band];
1405         chan = &sband->channels[chan_idx];
1406
1407         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1408                 return;
1409
1410         if (chan->beacon_found)
1411                 return;
1412
1413         chan->beacon_found = true;
1414
1415         if (!reg_is_world_roaming(wiphy))
1416                 return;
1417
1418         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1419                 return;
1420
1421         chan_before.center_freq = chan->center_freq;
1422         chan_before.flags = chan->flags;
1423
1424         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1425                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1426                 channel_changed = true;
1427         }
1428
1429         if (channel_changed)
1430                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1431 }
1432
1433 /*
1434  * Called when a scan on a wiphy finds a beacon on
1435  * new channel
1436  */
1437 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1438                                     struct reg_beacon *reg_beacon)
1439 {
1440         unsigned int i;
1441         struct ieee80211_supported_band *sband;
1442
1443         if (!wiphy->bands[reg_beacon->chan.band])
1444                 return;
1445
1446         sband = wiphy->bands[reg_beacon->chan.band];
1447
1448         for (i = 0; i < sband->n_channels; i++)
1449                 handle_reg_beacon(wiphy, i, reg_beacon);
1450 }
1451
1452 /*
1453  * Called upon reg changes or a new wiphy is added
1454  */
1455 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1456 {
1457         unsigned int i;
1458         struct ieee80211_supported_band *sband;
1459         struct reg_beacon *reg_beacon;
1460
1461         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1462                 if (!wiphy->bands[reg_beacon->chan.band])
1463                         continue;
1464                 sband = wiphy->bands[reg_beacon->chan.band];
1465                 for (i = 0; i < sband->n_channels; i++)
1466                         handle_reg_beacon(wiphy, i, reg_beacon);
1467         }
1468 }
1469
1470 /* Reap the advantages of previously found beacons */
1471 static void reg_process_beacons(struct wiphy *wiphy)
1472 {
1473         /*
1474          * Means we are just firing up cfg80211, so no beacons would
1475          * have been processed yet.
1476          */
1477         if (!last_request)
1478                 return;
1479         wiphy_update_beacon_reg(wiphy);
1480 }
1481
1482 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1483 {
1484         if (!chan)
1485                 return false;
1486         if (chan->flags & IEEE80211_CHAN_DISABLED)
1487                 return false;
1488         /* This would happen when regulatory rules disallow HT40 completely */
1489         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1490                 return false;
1491         return true;
1492 }
1493
1494 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1495                                          struct ieee80211_channel *channel)
1496 {
1497         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1498         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1499         unsigned int i;
1500
1501         if (!is_ht40_allowed(channel)) {
1502                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1503                 return;
1504         }
1505
1506         /*
1507          * We need to ensure the extension channels exist to
1508          * be able to use HT40- or HT40+, this finds them (or not)
1509          */
1510         for (i = 0; i < sband->n_channels; i++) {
1511                 struct ieee80211_channel *c = &sband->channels[i];
1512
1513                 if (c->center_freq == (channel->center_freq - 20))
1514                         channel_before = c;
1515                 if (c->center_freq == (channel->center_freq + 20))
1516                         channel_after = c;
1517         }
1518
1519         /*
1520          * Please note that this assumes target bandwidth is 20 MHz,
1521          * if that ever changes we also need to change the below logic
1522          * to include that as well.
1523          */
1524         if (!is_ht40_allowed(channel_before))
1525                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1526         else
1527                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1528
1529         if (!is_ht40_allowed(channel_after))
1530                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1531         else
1532                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1533 }
1534
1535 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1536                                       struct ieee80211_supported_band *sband)
1537 {
1538         unsigned int i;
1539
1540         if (!sband)
1541                 return;
1542
1543         for (i = 0; i < sband->n_channels; i++)
1544                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1545 }
1546
1547 static void reg_process_ht_flags(struct wiphy *wiphy)
1548 {
1549         enum nl80211_band band;
1550
1551         if (!wiphy)
1552                 return;
1553
1554         for (band = 0; band < NUM_NL80211_BANDS; band++)
1555                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1556 }
1557
1558 static void reg_call_notifier(struct wiphy *wiphy,
1559                               struct regulatory_request *request)
1560 {
1561         if (wiphy->reg_notifier)
1562                 wiphy->reg_notifier(wiphy, request);
1563 }
1564
1565 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1566 {
1567         struct cfg80211_chan_def chandef = {};
1568         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1569         enum nl80211_iftype iftype;
1570
1571         wdev_lock(wdev);
1572         iftype = wdev->iftype;
1573
1574         /* make sure the interface is active */
1575         if (!wdev->netdev || !netif_running(wdev->netdev))
1576                 goto wdev_inactive_unlock;
1577
1578         switch (iftype) {
1579         case NL80211_IFTYPE_AP:
1580         case NL80211_IFTYPE_P2P_GO:
1581                 if (!wdev->beacon_interval)
1582                         goto wdev_inactive_unlock;
1583                 chandef = wdev->chandef;
1584                 break;
1585         case NL80211_IFTYPE_ADHOC:
1586                 if (!wdev->ssid_len)
1587                         goto wdev_inactive_unlock;
1588                 chandef = wdev->chandef;
1589                 break;
1590         case NL80211_IFTYPE_STATION:
1591         case NL80211_IFTYPE_P2P_CLIENT:
1592                 if (!wdev->current_bss ||
1593                     !wdev->current_bss->pub.channel)
1594                         goto wdev_inactive_unlock;
1595
1596                 if (!rdev->ops->get_channel ||
1597                     rdev_get_channel(rdev, wdev, &chandef))
1598                         cfg80211_chandef_create(&chandef,
1599                                                 wdev->current_bss->pub.channel,
1600                                                 NL80211_CHAN_NO_HT);
1601                 break;
1602         case NL80211_IFTYPE_MONITOR:
1603         case NL80211_IFTYPE_AP_VLAN:
1604         case NL80211_IFTYPE_P2P_DEVICE:
1605                 /* no enforcement required */
1606                 break;
1607         default:
1608                 /* others not implemented for now */
1609                 WARN_ON(1);
1610                 break;
1611         }
1612
1613         wdev_unlock(wdev);
1614
1615         switch (iftype) {
1616         case NL80211_IFTYPE_AP:
1617         case NL80211_IFTYPE_P2P_GO:
1618         case NL80211_IFTYPE_ADHOC:
1619                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1620         case NL80211_IFTYPE_STATION:
1621         case NL80211_IFTYPE_P2P_CLIENT:
1622                 return cfg80211_chandef_usable(wiphy, &chandef,
1623                                                IEEE80211_CHAN_DISABLED);
1624         default:
1625                 break;
1626         }
1627
1628         return true;
1629
1630 wdev_inactive_unlock:
1631         wdev_unlock(wdev);
1632         return true;
1633 }
1634
1635 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1636 {
1637         struct wireless_dev *wdev;
1638         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1639
1640         ASSERT_RTNL();
1641
1642         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1643                 if (!reg_wdev_chan_valid(wiphy, wdev))
1644                         cfg80211_leave(rdev, wdev);
1645 }
1646
1647 static void reg_check_chans_work(struct work_struct *work)
1648 {
1649         struct cfg80211_registered_device *rdev;
1650
1651         pr_debug("Verifying active interfaces after reg change\n");
1652         rtnl_lock();
1653
1654         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1655                 if (!(rdev->wiphy.regulatory_flags &
1656                       REGULATORY_IGNORE_STALE_KICKOFF))
1657                         reg_leave_invalid_chans(&rdev->wiphy);
1658
1659         rtnl_unlock();
1660 }
1661
1662 static void reg_check_channels(void)
1663 {
1664         /*
1665          * Give usermode a chance to do something nicer (move to another
1666          * channel, orderly disconnection), before forcing a disconnection.
1667          */
1668         mod_delayed_work(system_power_efficient_wq,
1669                          &reg_check_chans,
1670                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1671 }
1672
1673 static void wiphy_update_regulatory(struct wiphy *wiphy,
1674                                     enum nl80211_reg_initiator initiator)
1675 {
1676         enum nl80211_band band;
1677         struct regulatory_request *lr = get_last_request();
1678
1679         if (ignore_reg_update(wiphy, initiator)) {
1680                 /*
1681                  * Regulatory updates set by CORE are ignored for custom
1682                  * regulatory cards. Let us notify the changes to the driver,
1683                  * as some drivers used this to restore its orig_* reg domain.
1684                  */
1685                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1686                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1687                         reg_call_notifier(wiphy, lr);
1688                 return;
1689         }
1690
1691         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1692
1693         for (band = 0; band < NUM_NL80211_BANDS; band++)
1694                 handle_band(wiphy, initiator, wiphy->bands[band]);
1695
1696         reg_process_beacons(wiphy);
1697         reg_process_ht_flags(wiphy);
1698         reg_call_notifier(wiphy, lr);
1699 }
1700
1701 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1702 {
1703         struct cfg80211_registered_device *rdev;
1704         struct wiphy *wiphy;
1705
1706         ASSERT_RTNL();
1707
1708         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1709                 wiphy = &rdev->wiphy;
1710                 wiphy_update_regulatory(wiphy, initiator);
1711         }
1712
1713         reg_check_channels();
1714 }
1715
1716 static void handle_channel_custom(struct wiphy *wiphy,
1717                                   struct ieee80211_channel *chan,
1718                                   const struct ieee80211_regdomain *regd,
1719                                   u32 min_bw)
1720 {
1721         u32 bw_flags = 0;
1722         const struct ieee80211_reg_rule *reg_rule = NULL;
1723         const struct ieee80211_power_rule *power_rule = NULL;
1724         u32 bw;
1725
1726         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1727                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1728                                               regd, bw);
1729                 if (!IS_ERR(reg_rule))
1730                         break;
1731         }
1732
1733         if (IS_ERR_OR_NULL(reg_rule)) {
1734                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1735                          chan->center_freq);
1736                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1737                         chan->flags |= IEEE80211_CHAN_DISABLED;
1738                 } else {
1739                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1740                         chan->flags = chan->orig_flags;
1741                 }
1742                 return;
1743         }
1744
1745         power_rule = &reg_rule->power_rule;
1746         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1747
1748         chan->dfs_state_entered = jiffies;
1749         chan->dfs_state = NL80211_DFS_USABLE;
1750
1751         chan->beacon_found = false;
1752
1753         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1754                 chan->flags = chan->orig_flags | bw_flags |
1755                               map_regdom_flags(reg_rule->flags);
1756         else
1757                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1758
1759         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1760         chan->max_reg_power = chan->max_power =
1761                 (int) MBM_TO_DBM(power_rule->max_eirp);
1762
1763         if (chan->flags & IEEE80211_CHAN_RADAR) {
1764                 if (reg_rule->dfs_cac_ms)
1765                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1766                 else
1767                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1768         }
1769
1770         chan->max_power = chan->max_reg_power;
1771 }
1772
1773 static void handle_band_custom(struct wiphy *wiphy,
1774                                struct ieee80211_supported_band *sband,
1775                                const struct ieee80211_regdomain *regd)
1776 {
1777         unsigned int i;
1778
1779         if (!sband)
1780                 return;
1781
1782         /*
1783          * We currently assume that you always want at least 20 MHz,
1784          * otherwise channel 12 might get enabled if this rule is
1785          * compatible to US, which permits 2402 - 2472 MHz.
1786          */
1787         for (i = 0; i < sband->n_channels; i++)
1788                 handle_channel_custom(wiphy, &sband->channels[i], regd,
1789                                       MHZ_TO_KHZ(20));
1790 }
1791
1792 /* Used by drivers prior to wiphy registration */
1793 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1794                                    const struct ieee80211_regdomain *regd)
1795 {
1796         enum nl80211_band band;
1797         unsigned int bands_set = 0;
1798
1799         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1800              "wiphy should have REGULATORY_CUSTOM_REG\n");
1801         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1802
1803         for (band = 0; band < NUM_NL80211_BANDS; band++) {
1804                 if (!wiphy->bands[band])
1805                         continue;
1806                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1807                 bands_set++;
1808         }
1809
1810         /*
1811          * no point in calling this if it won't have any effect
1812          * on your device's supported bands.
1813          */
1814         WARN_ON(!bands_set);
1815 }
1816 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1817
1818 static void reg_set_request_processed(void)
1819 {
1820         bool need_more_processing = false;
1821         struct regulatory_request *lr = get_last_request();
1822
1823         lr->processed = true;
1824
1825         spin_lock(&reg_requests_lock);
1826         if (!list_empty(&reg_requests_list))
1827                 need_more_processing = true;
1828         spin_unlock(&reg_requests_lock);
1829
1830         cancel_crda_timeout();
1831
1832         if (need_more_processing)
1833                 schedule_work(&reg_work);
1834 }
1835
1836 /**
1837  * reg_process_hint_core - process core regulatory requests
1838  * @pending_request: a pending core regulatory request
1839  *
1840  * The wireless subsystem can use this function to process
1841  * a regulatory request issued by the regulatory core.
1842  */
1843 static enum reg_request_treatment
1844 reg_process_hint_core(struct regulatory_request *core_request)
1845 {
1846         if (reg_query_database(core_request)) {
1847                 core_request->intersect = false;
1848                 core_request->processed = false;
1849                 reg_update_last_request(core_request);
1850                 return REG_REQ_OK;
1851         }
1852
1853         return REG_REQ_IGNORE;
1854 }
1855
1856 static enum reg_request_treatment
1857 __reg_process_hint_user(struct regulatory_request *user_request)
1858 {
1859         struct regulatory_request *lr = get_last_request();
1860
1861         if (reg_request_cell_base(user_request))
1862                 return reg_ignore_cell_hint(user_request);
1863
1864         if (reg_request_cell_base(lr))
1865                 return REG_REQ_IGNORE;
1866
1867         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1868                 return REG_REQ_INTERSECT;
1869         /*
1870          * If the user knows better the user should set the regdom
1871          * to their country before the IE is picked up
1872          */
1873         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1874             lr->intersect)
1875                 return REG_REQ_IGNORE;
1876         /*
1877          * Process user requests only after previous user/driver/core
1878          * requests have been processed
1879          */
1880         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1881              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1882              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1883             regdom_changes(lr->alpha2))
1884                 return REG_REQ_IGNORE;
1885
1886         if (!regdom_changes(user_request->alpha2))
1887                 return REG_REQ_ALREADY_SET;
1888
1889         return REG_REQ_OK;
1890 }
1891
1892 /**
1893  * reg_process_hint_user - process user regulatory requests
1894  * @user_request: a pending user regulatory request
1895  *
1896  * The wireless subsystem can use this function to process
1897  * a regulatory request initiated by userspace.
1898  */
1899 static enum reg_request_treatment
1900 reg_process_hint_user(struct regulatory_request *user_request)
1901 {
1902         enum reg_request_treatment treatment;
1903
1904         treatment = __reg_process_hint_user(user_request);
1905         if (treatment == REG_REQ_IGNORE ||
1906             treatment == REG_REQ_ALREADY_SET)
1907                 return REG_REQ_IGNORE;
1908
1909         user_request->intersect = treatment == REG_REQ_INTERSECT;
1910         user_request->processed = false;
1911
1912         if (reg_query_database(user_request)) {
1913                 reg_update_last_request(user_request);
1914                 user_alpha2[0] = user_request->alpha2[0];
1915                 user_alpha2[1] = user_request->alpha2[1];
1916                 return REG_REQ_OK;
1917         }
1918
1919         return REG_REQ_IGNORE;
1920 }
1921
1922 static enum reg_request_treatment
1923 __reg_process_hint_driver(struct regulatory_request *driver_request)
1924 {
1925         struct regulatory_request *lr = get_last_request();
1926
1927         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1928                 if (regdom_changes(driver_request->alpha2))
1929                         return REG_REQ_OK;
1930                 return REG_REQ_ALREADY_SET;
1931         }
1932
1933         /*
1934          * This would happen if you unplug and plug your card
1935          * back in or if you add a new device for which the previously
1936          * loaded card also agrees on the regulatory domain.
1937          */
1938         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1939             !regdom_changes(driver_request->alpha2))
1940                 return REG_REQ_ALREADY_SET;
1941
1942         return REG_REQ_INTERSECT;
1943 }
1944
1945 /**
1946  * reg_process_hint_driver - process driver regulatory requests
1947  * @driver_request: a pending driver regulatory request
1948  *
1949  * The wireless subsystem can use this function to process
1950  * a regulatory request issued by an 802.11 driver.
1951  *
1952  * Returns one of the different reg request treatment values.
1953  */
1954 static enum reg_request_treatment
1955 reg_process_hint_driver(struct wiphy *wiphy,
1956                         struct regulatory_request *driver_request)
1957 {
1958         const struct ieee80211_regdomain *regd, *tmp;
1959         enum reg_request_treatment treatment;
1960
1961         treatment = __reg_process_hint_driver(driver_request);
1962
1963         switch (treatment) {
1964         case REG_REQ_OK:
1965                 break;
1966         case REG_REQ_IGNORE:
1967                 return REG_REQ_IGNORE;
1968         case REG_REQ_INTERSECT:
1969         case REG_REQ_ALREADY_SET:
1970                 regd = reg_copy_regd(get_cfg80211_regdom());
1971                 if (IS_ERR(regd))
1972                         return REG_REQ_IGNORE;
1973
1974                 tmp = get_wiphy_regdom(wiphy);
1975                 rcu_assign_pointer(wiphy->regd, regd);
1976                 rcu_free_regdom(tmp);
1977         }
1978
1979
1980         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1981         driver_request->processed = false;
1982
1983         /*
1984          * Since CRDA will not be called in this case as we already
1985          * have applied the requested regulatory domain before we just
1986          * inform userspace we have processed the request
1987          */
1988         if (treatment == REG_REQ_ALREADY_SET) {
1989                 nl80211_send_reg_change_event(driver_request);
1990                 reg_update_last_request(driver_request);
1991                 reg_set_request_processed();
1992                 return REG_REQ_ALREADY_SET;
1993         }
1994
1995         if (reg_query_database(driver_request)) {
1996                 reg_update_last_request(driver_request);
1997                 return REG_REQ_OK;
1998         }
1999
2000         return REG_REQ_IGNORE;
2001 }
2002
2003 static enum reg_request_treatment
2004 __reg_process_hint_country_ie(struct wiphy *wiphy,
2005                               struct regulatory_request *country_ie_request)
2006 {
2007         struct wiphy *last_wiphy = NULL;
2008         struct regulatory_request *lr = get_last_request();
2009
2010         if (reg_request_cell_base(lr)) {
2011                 /* Trust a Cell base station over the AP's country IE */
2012                 if (regdom_changes(country_ie_request->alpha2))
2013                         return REG_REQ_IGNORE;
2014                 return REG_REQ_ALREADY_SET;
2015         } else {
2016                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2017                         return REG_REQ_IGNORE;
2018         }
2019
2020         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2021                 return -EINVAL;
2022
2023         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2024                 return REG_REQ_OK;
2025
2026         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2027
2028         if (last_wiphy != wiphy) {
2029                 /*
2030                  * Two cards with two APs claiming different
2031                  * Country IE alpha2s. We could
2032                  * intersect them, but that seems unlikely
2033                  * to be correct. Reject second one for now.
2034                  */
2035                 if (regdom_changes(country_ie_request->alpha2))
2036                         return REG_REQ_IGNORE;
2037                 return REG_REQ_ALREADY_SET;
2038         }
2039
2040         if (regdom_changes(country_ie_request->alpha2))
2041                 return REG_REQ_OK;
2042         return REG_REQ_ALREADY_SET;
2043 }
2044
2045 /**
2046  * reg_process_hint_country_ie - process regulatory requests from country IEs
2047  * @country_ie_request: a regulatory request from a country IE
2048  *
2049  * The wireless subsystem can use this function to process
2050  * a regulatory request issued by a country Information Element.
2051  *
2052  * Returns one of the different reg request treatment values.
2053  */
2054 static enum reg_request_treatment
2055 reg_process_hint_country_ie(struct wiphy *wiphy,
2056                             struct regulatory_request *country_ie_request)
2057 {
2058         enum reg_request_treatment treatment;
2059
2060         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2061
2062         switch (treatment) {
2063         case REG_REQ_OK:
2064                 break;
2065         case REG_REQ_IGNORE:
2066                 return REG_REQ_IGNORE;
2067         case REG_REQ_ALREADY_SET:
2068                 reg_free_request(country_ie_request);
2069                 return REG_REQ_ALREADY_SET;
2070         case REG_REQ_INTERSECT:
2071                 /*
2072                  * This doesn't happen yet, not sure we
2073                  * ever want to support it for this case.
2074                  */
2075                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2076                 return REG_REQ_IGNORE;
2077         }
2078
2079         country_ie_request->intersect = false;
2080         country_ie_request->processed = false;
2081
2082         if (reg_query_database(country_ie_request)) {
2083                 reg_update_last_request(country_ie_request);
2084                 return REG_REQ_OK;
2085         }
2086
2087         return REG_REQ_IGNORE;
2088 }
2089
2090 /* This processes *all* regulatory hints */
2091 static void reg_process_hint(struct regulatory_request *reg_request)
2092 {
2093         struct wiphy *wiphy = NULL;
2094         enum reg_request_treatment treatment;
2095
2096         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2097                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2098
2099         switch (reg_request->initiator) {
2100         case NL80211_REGDOM_SET_BY_CORE:
2101                 treatment = reg_process_hint_core(reg_request);
2102                 break;
2103         case NL80211_REGDOM_SET_BY_USER:
2104                 treatment = reg_process_hint_user(reg_request);
2105                 break;
2106         case NL80211_REGDOM_SET_BY_DRIVER:
2107                 if (!wiphy)
2108                         goto out_free;
2109                 treatment = reg_process_hint_driver(wiphy, reg_request);
2110                 break;
2111         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2112                 if (!wiphy)
2113                         goto out_free;
2114                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2115                 break;
2116         default:
2117                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2118                 goto out_free;
2119         }
2120
2121         if (treatment == REG_REQ_IGNORE)
2122                 goto out_free;
2123
2124         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2125              "unexpected treatment value %d\n", treatment);
2126
2127         /* This is required so that the orig_* parameters are saved.
2128          * NOTE: treatment must be set for any case that reaches here!
2129          */
2130         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2131             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2132                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2133                 reg_check_channels();
2134         }
2135
2136         return;
2137
2138 out_free:
2139         reg_free_request(reg_request);
2140 }
2141
2142 static bool reg_only_self_managed_wiphys(void)
2143 {
2144         struct cfg80211_registered_device *rdev;
2145         struct wiphy *wiphy;
2146         bool self_managed_found = false;
2147
2148         ASSERT_RTNL();
2149
2150         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2151                 wiphy = &rdev->wiphy;
2152                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2153                         self_managed_found = true;
2154                 else
2155                         return false;
2156         }
2157
2158         /* make sure at least one self-managed wiphy exists */
2159         return self_managed_found;
2160 }
2161
2162 /*
2163  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2164  * Regulatory hints come on a first come first serve basis and we
2165  * must process each one atomically.
2166  */
2167 static void reg_process_pending_hints(void)
2168 {
2169         struct regulatory_request *reg_request, *lr;
2170
2171         lr = get_last_request();
2172
2173         /* When last_request->processed becomes true this will be rescheduled */
2174         if (lr && !lr->processed) {
2175                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2176                 return;
2177         }
2178
2179         spin_lock(&reg_requests_lock);
2180
2181         if (list_empty(&reg_requests_list)) {
2182                 spin_unlock(&reg_requests_lock);
2183                 return;
2184         }
2185
2186         reg_request = list_first_entry(&reg_requests_list,
2187                                        struct regulatory_request,
2188                                        list);
2189         list_del_init(&reg_request->list);
2190
2191         spin_unlock(&reg_requests_lock);
2192
2193         if (reg_only_self_managed_wiphys()) {
2194                 reg_free_request(reg_request);
2195                 return;
2196         }
2197
2198         reg_process_hint(reg_request);
2199
2200         lr = get_last_request();
2201
2202         spin_lock(&reg_requests_lock);
2203         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2204                 schedule_work(&reg_work);
2205         spin_unlock(&reg_requests_lock);
2206 }
2207
2208 /* Processes beacon hints -- this has nothing to do with country IEs */
2209 static void reg_process_pending_beacon_hints(void)
2210 {
2211         struct cfg80211_registered_device *rdev;
2212         struct reg_beacon *pending_beacon, *tmp;
2213
2214         /* This goes through the _pending_ beacon list */
2215         spin_lock_bh(&reg_pending_beacons_lock);
2216
2217         list_for_each_entry_safe(pending_beacon, tmp,
2218                                  &reg_pending_beacons, list) {
2219                 list_del_init(&pending_beacon->list);
2220
2221                 /* Applies the beacon hint to current wiphys */
2222                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2223                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2224
2225                 /* Remembers the beacon hint for new wiphys or reg changes */
2226                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2227         }
2228
2229         spin_unlock_bh(&reg_pending_beacons_lock);
2230 }
2231
2232 static void reg_process_self_managed_hints(void)
2233 {
2234         struct cfg80211_registered_device *rdev;
2235         struct wiphy *wiphy;
2236         const struct ieee80211_regdomain *tmp;
2237         const struct ieee80211_regdomain *regd;
2238         enum nl80211_band band;
2239         struct regulatory_request request = {};
2240
2241         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2242                 wiphy = &rdev->wiphy;
2243
2244                 spin_lock(&reg_requests_lock);
2245                 regd = rdev->requested_regd;
2246                 rdev->requested_regd = NULL;
2247                 spin_unlock(&reg_requests_lock);
2248
2249                 if (regd == NULL)
2250                         continue;
2251
2252                 tmp = get_wiphy_regdom(wiphy);
2253                 rcu_assign_pointer(wiphy->regd, regd);
2254                 rcu_free_regdom(tmp);
2255
2256                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2257                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2258
2259                 reg_process_ht_flags(wiphy);
2260
2261                 request.wiphy_idx = get_wiphy_idx(wiphy);
2262                 request.alpha2[0] = regd->alpha2[0];
2263                 request.alpha2[1] = regd->alpha2[1];
2264                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2265
2266                 nl80211_send_wiphy_reg_change_event(&request);
2267         }
2268
2269         reg_check_channels();
2270 }
2271
2272 static void reg_todo(struct work_struct *work)
2273 {
2274         rtnl_lock();
2275         reg_process_pending_hints();
2276         reg_process_pending_beacon_hints();
2277         reg_process_self_managed_hints();
2278         rtnl_unlock();
2279 }
2280
2281 static void queue_regulatory_request(struct regulatory_request *request)
2282 {
2283         request->alpha2[0] = toupper(request->alpha2[0]);
2284         request->alpha2[1] = toupper(request->alpha2[1]);
2285
2286         spin_lock(&reg_requests_lock);
2287         list_add_tail(&request->list, &reg_requests_list);
2288         spin_unlock(&reg_requests_lock);
2289
2290         schedule_work(&reg_work);
2291 }
2292
2293 /*
2294  * Core regulatory hint -- happens during cfg80211_init()
2295  * and when we restore regulatory settings.
2296  */
2297 static int regulatory_hint_core(const char *alpha2)
2298 {
2299         struct regulatory_request *request;
2300
2301         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2302         if (!request)
2303                 return -ENOMEM;
2304
2305         request->alpha2[0] = alpha2[0];
2306         request->alpha2[1] = alpha2[1];
2307         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2308         request->wiphy_idx = WIPHY_IDX_INVALID;
2309
2310         queue_regulatory_request(request);
2311
2312         return 0;
2313 }
2314
2315 /* User hints */
2316 int regulatory_hint_user(const char *alpha2,
2317                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2318 {
2319         struct regulatory_request *request;
2320
2321         if (WARN_ON(!alpha2))
2322                 return -EINVAL;
2323
2324         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
2325                 return -EINVAL;
2326
2327         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2328         if (!request)
2329                 return -ENOMEM;
2330
2331         request->wiphy_idx = WIPHY_IDX_INVALID;
2332         request->alpha2[0] = alpha2[0];
2333         request->alpha2[1] = alpha2[1];
2334         request->initiator = NL80211_REGDOM_SET_BY_USER;
2335         request->user_reg_hint_type = user_reg_hint_type;
2336
2337         /* Allow calling CRDA again */
2338         reset_crda_timeouts();
2339
2340         queue_regulatory_request(request);
2341
2342         return 0;
2343 }
2344
2345 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2346 {
2347         spin_lock(&reg_indoor_lock);
2348
2349         /* It is possible that more than one user space process is trying to
2350          * configure the indoor setting. To handle such cases, clear the indoor
2351          * setting in case that some process does not think that the device
2352          * is operating in an indoor environment. In addition, if a user space
2353          * process indicates that it is controlling the indoor setting, save its
2354          * portid, i.e., make it the owner.
2355          */
2356         reg_is_indoor = is_indoor;
2357         if (reg_is_indoor) {
2358                 if (!reg_is_indoor_portid)
2359                         reg_is_indoor_portid = portid;
2360         } else {
2361                 reg_is_indoor_portid = 0;
2362         }
2363
2364         spin_unlock(&reg_indoor_lock);
2365
2366         if (!is_indoor)
2367                 reg_check_channels();
2368
2369         return 0;
2370 }
2371
2372 void regulatory_netlink_notify(u32 portid)
2373 {
2374         spin_lock(&reg_indoor_lock);
2375
2376         if (reg_is_indoor_portid != portid) {
2377                 spin_unlock(&reg_indoor_lock);
2378                 return;
2379         }
2380
2381         reg_is_indoor = false;
2382         reg_is_indoor_portid = 0;
2383
2384         spin_unlock(&reg_indoor_lock);
2385
2386         reg_check_channels();
2387 }
2388
2389 /* Driver hints */
2390 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2391 {
2392         struct regulatory_request *request;
2393
2394         if (WARN_ON(!alpha2 || !wiphy))
2395                 return -EINVAL;
2396
2397         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2398
2399         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2400         if (!request)
2401                 return -ENOMEM;
2402
2403         request->wiphy_idx = get_wiphy_idx(wiphy);
2404
2405         request->alpha2[0] = alpha2[0];
2406         request->alpha2[1] = alpha2[1];
2407         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2408
2409         /* Allow calling CRDA again */
2410         reset_crda_timeouts();
2411
2412         queue_regulatory_request(request);
2413
2414         return 0;
2415 }
2416 EXPORT_SYMBOL(regulatory_hint);
2417
2418 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2419                                 const u8 *country_ie, u8 country_ie_len)
2420 {
2421         char alpha2[2];
2422         enum environment_cap env = ENVIRON_ANY;
2423         struct regulatory_request *request = NULL, *lr;
2424
2425         /* IE len must be evenly divisible by 2 */
2426         if (country_ie_len & 0x01)
2427                 return;
2428
2429         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2430                 return;
2431
2432         request = kzalloc(sizeof(*request), GFP_KERNEL);
2433         if (!request)
2434                 return;
2435
2436         alpha2[0] = country_ie[0];
2437         alpha2[1] = country_ie[1];
2438
2439         if (country_ie[2] == 'I')
2440                 env = ENVIRON_INDOOR;
2441         else if (country_ie[2] == 'O')
2442                 env = ENVIRON_OUTDOOR;
2443
2444         rcu_read_lock();
2445         lr = get_last_request();
2446
2447         if (unlikely(!lr))
2448                 goto out;
2449
2450         /*
2451          * We will run this only upon a successful connection on cfg80211.
2452          * We leave conflict resolution to the workqueue, where can hold
2453          * the RTNL.
2454          */
2455         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2456             lr->wiphy_idx != WIPHY_IDX_INVALID)
2457                 goto out;
2458
2459         request->wiphy_idx = get_wiphy_idx(wiphy);
2460         request->alpha2[0] = alpha2[0];
2461         request->alpha2[1] = alpha2[1];
2462         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2463         request->country_ie_env = env;
2464
2465         /* Allow calling CRDA again */
2466         reset_crda_timeouts();
2467
2468         queue_regulatory_request(request);
2469         request = NULL;
2470 out:
2471         kfree(request);
2472         rcu_read_unlock();
2473 }
2474
2475 static void restore_alpha2(char *alpha2, bool reset_user)
2476 {
2477         /* indicates there is no alpha2 to consider for restoration */
2478         alpha2[0] = '9';
2479         alpha2[1] = '7';
2480
2481         /* The user setting has precedence over the module parameter */
2482         if (is_user_regdom_saved()) {
2483                 /* Unless we're asked to ignore it and reset it */
2484                 if (reset_user) {
2485                         pr_debug("Restoring regulatory settings including user preference\n");
2486                         user_alpha2[0] = '9';
2487                         user_alpha2[1] = '7';
2488
2489                         /*
2490                          * If we're ignoring user settings, we still need to
2491                          * check the module parameter to ensure we put things
2492                          * back as they were for a full restore.
2493                          */
2494                         if (!is_world_regdom(ieee80211_regdom)) {
2495                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2496                                          ieee80211_regdom[0], ieee80211_regdom[1]);
2497                                 alpha2[0] = ieee80211_regdom[0];
2498                                 alpha2[1] = ieee80211_regdom[1];
2499                         }
2500                 } else {
2501                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2502                                  user_alpha2[0], user_alpha2[1]);
2503                         alpha2[0] = user_alpha2[0];
2504                         alpha2[1] = user_alpha2[1];
2505                 }
2506         } else if (!is_world_regdom(ieee80211_regdom)) {
2507                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2508                          ieee80211_regdom[0], ieee80211_regdom[1]);
2509                 alpha2[0] = ieee80211_regdom[0];
2510                 alpha2[1] = ieee80211_regdom[1];
2511         } else
2512                 pr_debug("Restoring regulatory settings\n");
2513 }
2514
2515 static void restore_custom_reg_settings(struct wiphy *wiphy)
2516 {
2517         struct ieee80211_supported_band *sband;
2518         enum nl80211_band band;
2519         struct ieee80211_channel *chan;
2520         int i;
2521
2522         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2523                 sband = wiphy->bands[band];
2524                 if (!sband)
2525                         continue;
2526                 for (i = 0; i < sband->n_channels; i++) {
2527                         chan = &sband->channels[i];
2528                         chan->flags = chan->orig_flags;
2529                         chan->max_antenna_gain = chan->orig_mag;
2530                         chan->max_power = chan->orig_mpwr;
2531                         chan->beacon_found = false;
2532                 }
2533         }
2534 }
2535
2536 /*
2537  * Restoring regulatory settings involves ingoring any
2538  * possibly stale country IE information and user regulatory
2539  * settings if so desired, this includes any beacon hints
2540  * learned as we could have traveled outside to another country
2541  * after disconnection. To restore regulatory settings we do
2542  * exactly what we did at bootup:
2543  *
2544  *   - send a core regulatory hint
2545  *   - send a user regulatory hint if applicable
2546  *
2547  * Device drivers that send a regulatory hint for a specific country
2548  * keep their own regulatory domain on wiphy->regd so that does does
2549  * not need to be remembered.
2550  */
2551 static void restore_regulatory_settings(bool reset_user)
2552 {
2553         char alpha2[2];
2554         char world_alpha2[2];
2555         struct reg_beacon *reg_beacon, *btmp;
2556         LIST_HEAD(tmp_reg_req_list);
2557         struct cfg80211_registered_device *rdev;
2558
2559         ASSERT_RTNL();
2560
2561         /*
2562          * Clear the indoor setting in case that it is not controlled by user
2563          * space, as otherwise there is no guarantee that the device is still
2564          * operating in an indoor environment.
2565          */
2566         spin_lock(&reg_indoor_lock);
2567         if (reg_is_indoor && !reg_is_indoor_portid) {
2568                 reg_is_indoor = false;
2569                 reg_check_channels();
2570         }
2571         spin_unlock(&reg_indoor_lock);
2572
2573         reset_regdomains(true, &world_regdom);
2574         restore_alpha2(alpha2, reset_user);
2575
2576         /*
2577          * If there's any pending requests we simply
2578          * stash them to a temporary pending queue and
2579          * add then after we've restored regulatory
2580          * settings.
2581          */
2582         spin_lock(&reg_requests_lock);
2583         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2584         spin_unlock(&reg_requests_lock);
2585
2586         /* Clear beacon hints */
2587         spin_lock_bh(&reg_pending_beacons_lock);
2588         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2589                 list_del(&reg_beacon->list);
2590                 kfree(reg_beacon);
2591         }
2592         spin_unlock_bh(&reg_pending_beacons_lock);
2593
2594         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2595                 list_del(&reg_beacon->list);
2596                 kfree(reg_beacon);
2597         }
2598
2599         /* First restore to the basic regulatory settings */
2600         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2601         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2602
2603         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2604                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2605                         continue;
2606                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2607                         restore_custom_reg_settings(&rdev->wiphy);
2608         }
2609
2610         regulatory_hint_core(world_alpha2);
2611
2612         /*
2613          * This restores the ieee80211_regdom module parameter
2614          * preference or the last user requested regulatory
2615          * settings, user regulatory settings takes precedence.
2616          */
2617         if (is_an_alpha2(alpha2))
2618                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2619
2620         spin_lock(&reg_requests_lock);
2621         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2622         spin_unlock(&reg_requests_lock);
2623
2624         pr_debug("Kicking the queue\n");
2625
2626         schedule_work(&reg_work);
2627 }
2628
2629 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
2630 {
2631         struct cfg80211_registered_device *rdev;
2632         struct wireless_dev *wdev;
2633
2634         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2635                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
2636                         wdev_lock(wdev);
2637                         if (!(wdev->wiphy->regulatory_flags & flag)) {
2638                                 wdev_unlock(wdev);
2639                                 return false;
2640                         }
2641                         wdev_unlock(wdev);
2642                 }
2643         }
2644
2645         return true;
2646 }
2647
2648 void regulatory_hint_disconnect(void)
2649 {
2650         /* Restore of regulatory settings is not required when wiphy(s)
2651          * ignore IE from connected access point but clearance of beacon hints
2652          * is required when wiphy(s) supports beacon hints.
2653          */
2654         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
2655                 struct reg_beacon *reg_beacon, *btmp;
2656
2657                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
2658                         return;
2659
2660                 spin_lock_bh(&reg_pending_beacons_lock);
2661                 list_for_each_entry_safe(reg_beacon, btmp,
2662                                          &reg_pending_beacons, list) {
2663                         list_del(&reg_beacon->list);
2664                         kfree(reg_beacon);
2665                 }
2666                 spin_unlock_bh(&reg_pending_beacons_lock);
2667
2668                 list_for_each_entry_safe(reg_beacon, btmp,
2669                                          &reg_beacon_list, list) {
2670                         list_del(&reg_beacon->list);
2671                         kfree(reg_beacon);
2672                 }
2673
2674                 return;
2675         }
2676
2677         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2678         restore_regulatory_settings(false);
2679 }
2680
2681 static bool freq_is_chan_12_13_14(u16 freq)
2682 {
2683         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2684             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2685             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2686                 return true;
2687         return false;
2688 }
2689
2690 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2691 {
2692         struct reg_beacon *pending_beacon;
2693
2694         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2695                 if (beacon_chan->center_freq ==
2696                     pending_beacon->chan.center_freq)
2697                         return true;
2698         return false;
2699 }
2700
2701 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2702                                  struct ieee80211_channel *beacon_chan,
2703                                  gfp_t gfp)
2704 {
2705         struct reg_beacon *reg_beacon;
2706         bool processing;
2707
2708         if (beacon_chan->beacon_found ||
2709             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2710             (beacon_chan->band == NL80211_BAND_2GHZ &&
2711              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2712                 return 0;
2713
2714         spin_lock_bh(&reg_pending_beacons_lock);
2715         processing = pending_reg_beacon(beacon_chan);
2716         spin_unlock_bh(&reg_pending_beacons_lock);
2717
2718         if (processing)
2719                 return 0;
2720
2721         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2722         if (!reg_beacon)
2723                 return -ENOMEM;
2724
2725         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2726                  beacon_chan->center_freq,
2727                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
2728                  wiphy_name(wiphy));
2729
2730         memcpy(&reg_beacon->chan, beacon_chan,
2731                sizeof(struct ieee80211_channel));
2732
2733         /*
2734          * Since we can be called from BH or and non-BH context
2735          * we must use spin_lock_bh()
2736          */
2737         spin_lock_bh(&reg_pending_beacons_lock);
2738         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2739         spin_unlock_bh(&reg_pending_beacons_lock);
2740
2741         schedule_work(&reg_work);
2742
2743         return 0;
2744 }
2745
2746 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2747 {
2748         unsigned int i;
2749         const struct ieee80211_reg_rule *reg_rule = NULL;
2750         const struct ieee80211_freq_range *freq_range = NULL;
2751         const struct ieee80211_power_rule *power_rule = NULL;
2752         char bw[32], cac_time[32];
2753
2754         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2755
2756         for (i = 0; i < rd->n_reg_rules; i++) {
2757                 reg_rule = &rd->reg_rules[i];
2758                 freq_range = &reg_rule->freq_range;
2759                 power_rule = &reg_rule->power_rule;
2760
2761                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2762                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
2763                                  freq_range->max_bandwidth_khz,
2764                                  reg_get_max_bandwidth(rd, reg_rule));
2765                 else
2766                         snprintf(bw, sizeof(bw), "%d KHz",
2767                                  freq_range->max_bandwidth_khz);
2768
2769                 if (reg_rule->flags & NL80211_RRF_DFS)
2770                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2771                                   reg_rule->dfs_cac_ms/1000);
2772                 else
2773                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2774
2775
2776                 /*
2777                  * There may not be documentation for max antenna gain
2778                  * in certain regions
2779                  */
2780                 if (power_rule->max_antenna_gain)
2781                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2782                                 freq_range->start_freq_khz,
2783                                 freq_range->end_freq_khz,
2784                                 bw,
2785                                 power_rule->max_antenna_gain,
2786                                 power_rule->max_eirp,
2787                                 cac_time);
2788                 else
2789                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2790                                 freq_range->start_freq_khz,
2791                                 freq_range->end_freq_khz,
2792                                 bw,
2793                                 power_rule->max_eirp,
2794                                 cac_time);
2795         }
2796 }
2797
2798 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2799 {
2800         switch (dfs_region) {
2801         case NL80211_DFS_UNSET:
2802         case NL80211_DFS_FCC:
2803         case NL80211_DFS_ETSI:
2804         case NL80211_DFS_JP:
2805                 return true;
2806         default:
2807                 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2808                 return false;
2809         }
2810 }
2811
2812 static void print_regdomain(const struct ieee80211_regdomain *rd)
2813 {
2814         struct regulatory_request *lr = get_last_request();
2815
2816         if (is_intersected_alpha2(rd->alpha2)) {
2817                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2818                         struct cfg80211_registered_device *rdev;
2819                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2820                         if (rdev) {
2821                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2822                                         rdev->country_ie_alpha2[0],
2823                                         rdev->country_ie_alpha2[1]);
2824                         } else
2825                                 pr_debug("Current regulatory domain intersected:\n");
2826                 } else
2827                         pr_debug("Current regulatory domain intersected:\n");
2828         } else if (is_world_regdom(rd->alpha2)) {
2829                 pr_debug("World regulatory domain updated:\n");
2830         } else {
2831                 if (is_unknown_alpha2(rd->alpha2))
2832                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2833                 else {
2834                         if (reg_request_cell_base(lr))
2835                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2836                                         rd->alpha2[0], rd->alpha2[1]);
2837                         else
2838                                 pr_debug("Regulatory domain changed to country: %c%c\n",
2839                                         rd->alpha2[0], rd->alpha2[1]);
2840                 }
2841         }
2842
2843         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2844         print_rd_rules(rd);
2845 }
2846
2847 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2848 {
2849         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2850         print_rd_rules(rd);
2851 }
2852
2853 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2854 {
2855         if (!is_world_regdom(rd->alpha2))
2856                 return -EINVAL;
2857         update_world_regdomain(rd);
2858         return 0;
2859 }
2860
2861 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2862                            struct regulatory_request *user_request)
2863 {
2864         const struct ieee80211_regdomain *intersected_rd = NULL;
2865
2866         if (!regdom_changes(rd->alpha2))
2867                 return -EALREADY;
2868
2869         if (!is_valid_rd(rd)) {
2870                 pr_err("Invalid regulatory domain detected: %c%c\n",
2871                        rd->alpha2[0], rd->alpha2[1]);
2872                 print_regdomain_info(rd);
2873                 return -EINVAL;
2874         }
2875
2876         if (!user_request->intersect) {
2877                 reset_regdomains(false, rd);
2878                 return 0;
2879         }
2880
2881         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2882         if (!intersected_rd)
2883                 return -EINVAL;
2884
2885         kfree(rd);
2886         rd = NULL;
2887         reset_regdomains(false, intersected_rd);
2888
2889         return 0;
2890 }
2891
2892 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2893                              struct regulatory_request *driver_request)
2894 {
2895         const struct ieee80211_regdomain *regd;
2896         const struct ieee80211_regdomain *intersected_rd = NULL;
2897         const struct ieee80211_regdomain *tmp;
2898         struct wiphy *request_wiphy;
2899
2900         if (is_world_regdom(rd->alpha2))
2901                 return -EINVAL;
2902
2903         if (!regdom_changes(rd->alpha2))
2904                 return -EALREADY;
2905
2906         if (!is_valid_rd(rd)) {
2907                 pr_err("Invalid regulatory domain detected: %c%c\n",
2908                        rd->alpha2[0], rd->alpha2[1]);
2909                 print_regdomain_info(rd);
2910                 return -EINVAL;
2911         }
2912
2913         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2914         if (!request_wiphy)
2915                 return -ENODEV;
2916
2917         if (!driver_request->intersect) {
2918                 if (request_wiphy->regd)
2919                         return -EALREADY;
2920
2921                 regd = reg_copy_regd(rd);
2922                 if (IS_ERR(regd))
2923                         return PTR_ERR(regd);
2924
2925                 rcu_assign_pointer(request_wiphy->regd, regd);
2926                 reset_regdomains(false, rd);
2927                 return 0;
2928         }
2929
2930         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2931         if (!intersected_rd)
2932                 return -EINVAL;
2933
2934         /*
2935          * We can trash what CRDA provided now.
2936          * However if a driver requested this specific regulatory
2937          * domain we keep it for its private use
2938          */
2939         tmp = get_wiphy_regdom(request_wiphy);
2940         rcu_assign_pointer(request_wiphy->regd, rd);
2941         rcu_free_regdom(tmp);
2942
2943         rd = NULL;
2944
2945         reset_regdomains(false, intersected_rd);
2946
2947         return 0;
2948 }
2949
2950 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2951                                  struct regulatory_request *country_ie_request)
2952 {
2953         struct wiphy *request_wiphy;
2954
2955         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2956             !is_unknown_alpha2(rd->alpha2))
2957                 return -EINVAL;
2958
2959         /*
2960          * Lets only bother proceeding on the same alpha2 if the current
2961          * rd is non static (it means CRDA was present and was used last)
2962          * and the pending request came in from a country IE
2963          */
2964
2965         if (!is_valid_rd(rd)) {
2966                 pr_err("Invalid regulatory domain detected: %c%c\n",
2967                        rd->alpha2[0], rd->alpha2[1]);
2968                 print_regdomain_info(rd);
2969                 return -EINVAL;
2970         }
2971
2972         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2973         if (!request_wiphy)
2974                 return -ENODEV;
2975
2976         if (country_ie_request->intersect)
2977                 return -EINVAL;
2978
2979         reset_regdomains(false, rd);
2980         return 0;
2981 }
2982
2983 /*
2984  * Use this call to set the current regulatory domain. Conflicts with
2985  * multiple drivers can be ironed out later. Caller must've already
2986  * kmalloc'd the rd structure.
2987  */
2988 int set_regdom(const struct ieee80211_regdomain *rd,
2989                enum ieee80211_regd_source regd_src)
2990 {
2991         struct regulatory_request *lr;
2992         bool user_reset = false;
2993         int r;
2994
2995         if (!reg_is_valid_request(rd->alpha2)) {
2996                 kfree(rd);
2997                 return -EINVAL;
2998         }
2999
3000         if (regd_src == REGD_SOURCE_CRDA)
3001                 reset_crda_timeouts();
3002
3003         lr = get_last_request();
3004
3005         /* Note that this doesn't update the wiphys, this is done below */
3006         switch (lr->initiator) {
3007         case NL80211_REGDOM_SET_BY_CORE:
3008                 r = reg_set_rd_core(rd);
3009                 break;
3010         case NL80211_REGDOM_SET_BY_USER:
3011                 r = reg_set_rd_user(rd, lr);
3012                 user_reset = true;
3013                 break;
3014         case NL80211_REGDOM_SET_BY_DRIVER:
3015                 r = reg_set_rd_driver(rd, lr);
3016                 break;
3017         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3018                 r = reg_set_rd_country_ie(rd, lr);
3019                 break;
3020         default:
3021                 WARN(1, "invalid initiator %d\n", lr->initiator);
3022                 kfree(rd);
3023                 return -EINVAL;
3024         }
3025
3026         if (r) {
3027                 switch (r) {
3028                 case -EALREADY:
3029                         reg_set_request_processed();
3030                         break;
3031                 default:
3032                         /* Back to world regulatory in case of errors */
3033                         restore_regulatory_settings(user_reset);
3034                 }
3035
3036                 kfree(rd);
3037                 return r;
3038         }
3039
3040         /* This would make this whole thing pointless */
3041         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3042                 return -EINVAL;
3043
3044         /* update all wiphys now with the new established regulatory domain */
3045         update_all_wiphy_regulatory(lr->initiator);
3046
3047         print_regdomain(get_cfg80211_regdom());
3048
3049         nl80211_send_reg_change_event(lr);
3050
3051         reg_set_request_processed();
3052
3053         return 0;
3054 }
3055
3056 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3057                                        struct ieee80211_regdomain *rd)
3058 {
3059         const struct ieee80211_regdomain *regd;
3060         const struct ieee80211_regdomain *prev_regd;
3061         struct cfg80211_registered_device *rdev;
3062
3063         if (WARN_ON(!wiphy || !rd))
3064                 return -EINVAL;
3065
3066         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3067                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3068                 return -EPERM;
3069
3070         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3071                 print_regdomain_info(rd);
3072                 return -EINVAL;
3073         }
3074
3075         regd = reg_copy_regd(rd);
3076         if (IS_ERR(regd))
3077                 return PTR_ERR(regd);
3078
3079         rdev = wiphy_to_rdev(wiphy);
3080
3081         spin_lock(&reg_requests_lock);
3082         prev_regd = rdev->requested_regd;
3083         rdev->requested_regd = regd;
3084         spin_unlock(&reg_requests_lock);
3085
3086         kfree(prev_regd);
3087         return 0;
3088 }
3089
3090 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3091                               struct ieee80211_regdomain *rd)
3092 {
3093         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3094
3095         if (ret)
3096                 return ret;
3097
3098         schedule_work(&reg_work);
3099         return 0;
3100 }
3101 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3102
3103 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3104                                         struct ieee80211_regdomain *rd)
3105 {
3106         int ret;
3107
3108         ASSERT_RTNL();
3109
3110         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3111         if (ret)
3112                 return ret;
3113
3114         /* process the request immediately */
3115         reg_process_self_managed_hints();
3116         return 0;
3117 }
3118 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3119
3120 void wiphy_regulatory_register(struct wiphy *wiphy)
3121 {
3122         struct regulatory_request *lr;
3123
3124         /* self-managed devices ignore external hints */
3125         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3126                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3127                                            REGULATORY_COUNTRY_IE_IGNORE;
3128
3129         if (!reg_dev_ignore_cell_hint(wiphy))
3130                 reg_num_devs_support_basehint++;
3131
3132         lr = get_last_request();
3133         wiphy_update_regulatory(wiphy, lr->initiator);
3134 }
3135
3136 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3137 {
3138         struct wiphy *request_wiphy = NULL;
3139         struct regulatory_request *lr;
3140
3141         lr = get_last_request();
3142
3143         if (!reg_dev_ignore_cell_hint(wiphy))
3144                 reg_num_devs_support_basehint--;
3145
3146         rcu_free_regdom(get_wiphy_regdom(wiphy));
3147         RCU_INIT_POINTER(wiphy->regd, NULL);
3148
3149         if (lr)
3150                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3151
3152         if (!request_wiphy || request_wiphy != wiphy)
3153                 return;
3154
3155         lr->wiphy_idx = WIPHY_IDX_INVALID;
3156         lr->country_ie_env = ENVIRON_ANY;
3157 }
3158
3159 /*
3160  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3161  * UNII band definitions
3162  */
3163 int cfg80211_get_unii(int freq)
3164 {
3165         /* UNII-1 */
3166         if (freq >= 5150 && freq <= 5250)
3167                 return 0;
3168
3169         /* UNII-2A */
3170         if (freq > 5250 && freq <= 5350)
3171                 return 1;
3172
3173         /* UNII-2B */
3174         if (freq > 5350 && freq <= 5470)
3175                 return 2;
3176
3177         /* UNII-2C */
3178         if (freq > 5470 && freq <= 5725)
3179                 return 3;
3180
3181         /* UNII-3 */
3182         if (freq > 5725 && freq <= 5825)
3183                 return 4;
3184
3185         return -EINVAL;
3186 }
3187
3188 bool regulatory_indoor_allowed(void)
3189 {
3190         return reg_is_indoor;
3191 }
3192
3193 int __init regulatory_init(void)
3194 {
3195         int err = 0;
3196
3197         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3198         if (IS_ERR(reg_pdev))
3199                 return PTR_ERR(reg_pdev);
3200
3201         spin_lock_init(&reg_requests_lock);
3202         spin_lock_init(&reg_pending_beacons_lock);
3203         spin_lock_init(&reg_indoor_lock);
3204
3205         reg_regdb_size_check();
3206
3207         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3208
3209         user_alpha2[0] = '9';
3210         user_alpha2[1] = '7';
3211
3212         /* We always try to get an update for the static regdomain */
3213         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3214         if (err) {
3215                 if (err == -ENOMEM) {
3216                         platform_device_unregister(reg_pdev);
3217                         return err;
3218                 }
3219                 /*
3220                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3221                  * memory which is handled and propagated appropriately above
3222                  * but it can also fail during a netlink_broadcast() or during
3223                  * early boot for call_usermodehelper(). For now treat these
3224                  * errors as non-fatal.
3225                  */
3226                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3227         }
3228
3229         /*
3230          * Finally, if the user set the module parameter treat it
3231          * as a user hint.
3232          */
3233         if (!is_world_regdom(ieee80211_regdom))
3234                 regulatory_hint_user(ieee80211_regdom,
3235                                      NL80211_USER_REG_HINT_USER);
3236
3237         return 0;
3238 }
3239
3240 void regulatory_exit(void)
3241 {
3242         struct regulatory_request *reg_request, *tmp;
3243         struct reg_beacon *reg_beacon, *btmp;
3244
3245         cancel_work_sync(&reg_work);
3246         cancel_crda_timeout_sync();
3247         cancel_delayed_work_sync(&reg_check_chans);
3248
3249         /* Lock to suppress warnings */
3250         rtnl_lock();
3251         reset_regdomains(true, NULL);
3252         rtnl_unlock();
3253
3254         dev_set_uevent_suppress(&reg_pdev->dev, true);
3255
3256         platform_device_unregister(reg_pdev);
3257
3258         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3259                 list_del(&reg_beacon->list);
3260                 kfree(reg_beacon);
3261         }
3262
3263         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3264                 list_del(&reg_beacon->list);
3265                 kfree(reg_beacon);
3266         }
3267
3268         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3269                 list_del(&reg_request->list);
3270                 kfree(reg_request);
3271         }
3272 }