GNU Linux-libre 5.10.153-gnu1
[releases.git] / net / vmw_vsock / vmci_transport.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29
30 #include "vmci_transport_notify.h"
31
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35                                           const struct vmci_event_data *ed,
36                                           void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40                                       struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42                                         struct sock *sk,
43                                         struct sock *pending,
44                                         struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46                                         struct sock *sk,
47                                         struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49                                         struct sock *sk,
50                                         struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52                                         struct sock *sk,
53                                         struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55                                          struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59                                                   bool old_pkt_proto);
60 static bool vmci_check_transport(struct vsock_sock *vsk);
61
62 struct vmci_transport_recv_pkt_info {
63         struct work_struct work;
64         struct sock *sk;
65         struct vmci_transport_packet pkt;
66 };
67
68 static LIST_HEAD(vmci_transport_cleanup_list);
69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
71
72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73                                                            VMCI_INVALID_ID };
74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
75
76 static int PROTOCOL_OVERRIDE = -1;
77
78 static struct vsock_transport vmci_transport; /* forward declaration */
79
80 /* Helper function to convert from a VMCI error code to a VSock error code. */
81
82 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
83 {
84         switch (vmci_error) {
85         case VMCI_ERROR_NO_MEM:
86                 return -ENOMEM;
87         case VMCI_ERROR_DUPLICATE_ENTRY:
88         case VMCI_ERROR_ALREADY_EXISTS:
89                 return -EADDRINUSE;
90         case VMCI_ERROR_NO_ACCESS:
91                 return -EPERM;
92         case VMCI_ERROR_NO_RESOURCES:
93                 return -ENOBUFS;
94         case VMCI_ERROR_INVALID_RESOURCE:
95                 return -EHOSTUNREACH;
96         case VMCI_ERROR_INVALID_ARGS:
97         default:
98                 break;
99         }
100         return -EINVAL;
101 }
102
103 static u32 vmci_transport_peer_rid(u32 peer_cid)
104 {
105         if (VMADDR_CID_HYPERVISOR == peer_cid)
106                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
107
108         return VMCI_TRANSPORT_PACKET_RID;
109 }
110
111 static inline void
112 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
113                            struct sockaddr_vm *src,
114                            struct sockaddr_vm *dst,
115                            u8 type,
116                            u64 size,
117                            u64 mode,
118                            struct vmci_transport_waiting_info *wait,
119                            u16 proto,
120                            struct vmci_handle handle)
121 {
122         /* We register the stream control handler as an any cid handle so we
123          * must always send from a source address of VMADDR_CID_ANY
124          */
125         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
126                                        VMCI_TRANSPORT_PACKET_RID);
127         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
128                                        vmci_transport_peer_rid(dst->svm_cid));
129         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
130         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
131         pkt->type = type;
132         pkt->src_port = src->svm_port;
133         pkt->dst_port = dst->svm_port;
134         memset(&pkt->proto, 0, sizeof(pkt->proto));
135         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
136
137         switch (pkt->type) {
138         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
139                 pkt->u.size = 0;
140                 break;
141
142         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
143         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
144                 pkt->u.size = size;
145                 break;
146
147         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
148         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
149                 pkt->u.handle = handle;
150                 break;
151
152         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
153         case VMCI_TRANSPORT_PACKET_TYPE_READ:
154         case VMCI_TRANSPORT_PACKET_TYPE_RST:
155                 pkt->u.size = 0;
156                 break;
157
158         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
159                 pkt->u.mode = mode;
160                 break;
161
162         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
163         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
164                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
165                 break;
166
167         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
168         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
169                 pkt->u.size = size;
170                 pkt->proto = proto;
171                 break;
172         }
173 }
174
175 static inline void
176 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
177                                     struct sockaddr_vm *local,
178                                     struct sockaddr_vm *remote)
179 {
180         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
181         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
182 }
183
184 static int
185 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
186                                   struct sockaddr_vm *src,
187                                   struct sockaddr_vm *dst,
188                                   enum vmci_transport_packet_type type,
189                                   u64 size,
190                                   u64 mode,
191                                   struct vmci_transport_waiting_info *wait,
192                                   u16 proto,
193                                   struct vmci_handle handle,
194                                   bool convert_error)
195 {
196         int err;
197
198         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
199                                    proto, handle);
200         err = vmci_datagram_send(&pkt->dg);
201         if (convert_error && (err < 0))
202                 return vmci_transport_error_to_vsock_error(err);
203
204         return err;
205 }
206
207 static int
208 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
209                                       enum vmci_transport_packet_type type,
210                                       u64 size,
211                                       u64 mode,
212                                       struct vmci_transport_waiting_info *wait,
213                                       struct vmci_handle handle)
214 {
215         struct vmci_transport_packet reply;
216         struct sockaddr_vm src, dst;
217
218         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
219                 return 0;
220         } else {
221                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
222                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
223                                                          type,
224                                                          size, mode, wait,
225                                                          VSOCK_PROTO_INVALID,
226                                                          handle, true);
227         }
228 }
229
230 static int
231 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
232                                    struct sockaddr_vm *dst,
233                                    enum vmci_transport_packet_type type,
234                                    u64 size,
235                                    u64 mode,
236                                    struct vmci_transport_waiting_info *wait,
237                                    struct vmci_handle handle)
238 {
239         /* Note that it is safe to use a single packet across all CPUs since
240          * two tasklets of the same type are guaranteed to not ever run
241          * simultaneously. If that ever changes, or VMCI stops using tasklets,
242          * we can use per-cpu packets.
243          */
244         static struct vmci_transport_packet pkt;
245
246         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
247                                                  size, mode, wait,
248                                                  VSOCK_PROTO_INVALID, handle,
249                                                  false);
250 }
251
252 static int
253 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
254                                       struct sockaddr_vm *dst,
255                                       enum vmci_transport_packet_type type,
256                                       u64 size,
257                                       u64 mode,
258                                       struct vmci_transport_waiting_info *wait,
259                                       u16 proto,
260                                       struct vmci_handle handle)
261 {
262         struct vmci_transport_packet *pkt;
263         int err;
264
265         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
266         if (!pkt)
267                 return -ENOMEM;
268
269         err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
270                                                 mode, wait, proto, handle,
271                                                 true);
272         kfree(pkt);
273
274         return err;
275 }
276
277 static int
278 vmci_transport_send_control_pkt(struct sock *sk,
279                                 enum vmci_transport_packet_type type,
280                                 u64 size,
281                                 u64 mode,
282                                 struct vmci_transport_waiting_info *wait,
283                                 u16 proto,
284                                 struct vmci_handle handle)
285 {
286         struct vsock_sock *vsk;
287
288         vsk = vsock_sk(sk);
289
290         if (!vsock_addr_bound(&vsk->local_addr))
291                 return -EINVAL;
292
293         if (!vsock_addr_bound(&vsk->remote_addr))
294                 return -EINVAL;
295
296         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
297                                                      &vsk->remote_addr,
298                                                      type, size, mode,
299                                                      wait, proto, handle);
300 }
301
302 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
303                                         struct sockaddr_vm *src,
304                                         struct vmci_transport_packet *pkt)
305 {
306         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
307                 return 0;
308         return vmci_transport_send_control_pkt_bh(
309                                         dst, src,
310                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
311                                         0, NULL, VMCI_INVALID_HANDLE);
312 }
313
314 static int vmci_transport_send_reset(struct sock *sk,
315                                      struct vmci_transport_packet *pkt)
316 {
317         struct sockaddr_vm *dst_ptr;
318         struct sockaddr_vm dst;
319         struct vsock_sock *vsk;
320
321         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322                 return 0;
323
324         vsk = vsock_sk(sk);
325
326         if (!vsock_addr_bound(&vsk->local_addr))
327                 return -EINVAL;
328
329         if (vsock_addr_bound(&vsk->remote_addr)) {
330                 dst_ptr = &vsk->remote_addr;
331         } else {
332                 vsock_addr_init(&dst, pkt->dg.src.context,
333                                 pkt->src_port);
334                 dst_ptr = &dst;
335         }
336         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
337                                              VMCI_TRANSPORT_PACKET_TYPE_RST,
338                                              0, 0, NULL, VSOCK_PROTO_INVALID,
339                                              VMCI_INVALID_HANDLE);
340 }
341
342 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
343 {
344         return vmci_transport_send_control_pkt(
345                                         sk,
346                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
347                                         size, 0, NULL,
348                                         VSOCK_PROTO_INVALID,
349                                         VMCI_INVALID_HANDLE);
350 }
351
352 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
353                                           u16 version)
354 {
355         return vmci_transport_send_control_pkt(
356                                         sk,
357                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
358                                         size, 0, NULL, version,
359                                         VMCI_INVALID_HANDLE);
360 }
361
362 static int vmci_transport_send_qp_offer(struct sock *sk,
363                                         struct vmci_handle handle)
364 {
365         return vmci_transport_send_control_pkt(
366                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
367                                         0, NULL,
368                                         VSOCK_PROTO_INVALID, handle);
369 }
370
371 static int vmci_transport_send_attach(struct sock *sk,
372                                       struct vmci_handle handle)
373 {
374         return vmci_transport_send_control_pkt(
375                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
376                                         0, 0, NULL, VSOCK_PROTO_INVALID,
377                                         handle);
378 }
379
380 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
381 {
382         return vmci_transport_reply_control_pkt_fast(
383                                                 pkt,
384                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
385                                                 0, 0, NULL,
386                                                 VMCI_INVALID_HANDLE);
387 }
388
389 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
390                                           struct sockaddr_vm *src)
391 {
392         return vmci_transport_send_control_pkt_bh(
393                                         dst, src,
394                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
395                                         0, 0, NULL, VMCI_INVALID_HANDLE);
396 }
397
398 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
399                                  struct sockaddr_vm *src)
400 {
401         return vmci_transport_send_control_pkt_bh(
402                                         dst, src,
403                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
404                                         0, NULL, VMCI_INVALID_HANDLE);
405 }
406
407 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
408                                 struct sockaddr_vm *src)
409 {
410         return vmci_transport_send_control_pkt_bh(
411                                         dst, src,
412                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
413                                         0, NULL, VMCI_INVALID_HANDLE);
414 }
415
416 int vmci_transport_send_wrote(struct sock *sk)
417 {
418         return vmci_transport_send_control_pkt(
419                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
420                                         0, NULL, VSOCK_PROTO_INVALID,
421                                         VMCI_INVALID_HANDLE);
422 }
423
424 int vmci_transport_send_read(struct sock *sk)
425 {
426         return vmci_transport_send_control_pkt(
427                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428                                         0, NULL, VSOCK_PROTO_INVALID,
429                                         VMCI_INVALID_HANDLE);
430 }
431
432 int vmci_transport_send_waiting_write(struct sock *sk,
433                                       struct vmci_transport_waiting_info *wait)
434 {
435         return vmci_transport_send_control_pkt(
436                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
437                                 0, 0, wait, VSOCK_PROTO_INVALID,
438                                 VMCI_INVALID_HANDLE);
439 }
440
441 int vmci_transport_send_waiting_read(struct sock *sk,
442                                      struct vmci_transport_waiting_info *wait)
443 {
444         return vmci_transport_send_control_pkt(
445                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
446                                 0, 0, wait, VSOCK_PROTO_INVALID,
447                                 VMCI_INVALID_HANDLE);
448 }
449
450 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
451 {
452         return vmci_transport_send_control_pkt(
453                                         &vsk->sk,
454                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
455                                         0, mode, NULL,
456                                         VSOCK_PROTO_INVALID,
457                                         VMCI_INVALID_HANDLE);
458 }
459
460 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
461 {
462         return vmci_transport_send_control_pkt(sk,
463                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
464                                         size, 0, NULL,
465                                         VSOCK_PROTO_INVALID,
466                                         VMCI_INVALID_HANDLE);
467 }
468
469 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
470                                              u16 version)
471 {
472         return vmci_transport_send_control_pkt(
473                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
474                                         size, 0, NULL, version,
475                                         VMCI_INVALID_HANDLE);
476 }
477
478 static struct sock *vmci_transport_get_pending(
479                                         struct sock *listener,
480                                         struct vmci_transport_packet *pkt)
481 {
482         struct vsock_sock *vlistener;
483         struct vsock_sock *vpending;
484         struct sock *pending;
485         struct sockaddr_vm src;
486
487         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
488
489         vlistener = vsock_sk(listener);
490
491         list_for_each_entry(vpending, &vlistener->pending_links,
492                             pending_links) {
493                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
494                     pkt->dst_port == vpending->local_addr.svm_port) {
495                         pending = sk_vsock(vpending);
496                         sock_hold(pending);
497                         goto found;
498                 }
499         }
500
501         pending = NULL;
502 found:
503         return pending;
504
505 }
506
507 static void vmci_transport_release_pending(struct sock *pending)
508 {
509         sock_put(pending);
510 }
511
512 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
513  * trusted sockets 2) sockets from applications running as the same user as the
514  * VM (this is only true for the host side and only when using hosted products)
515  */
516
517 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
518 {
519         return vsock->trusted ||
520                vmci_is_context_owner(peer_cid, vsock->owner->uid);
521 }
522
523 /* We allow sending datagrams to and receiving datagrams from a restricted VM
524  * only if it is trusted as described in vmci_transport_is_trusted.
525  */
526
527 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
528 {
529         if (VMADDR_CID_HYPERVISOR == peer_cid)
530                 return true;
531
532         if (vsock->cached_peer != peer_cid) {
533                 vsock->cached_peer = peer_cid;
534                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
535                     (vmci_context_get_priv_flags(peer_cid) &
536                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
537                         vsock->cached_peer_allow_dgram = false;
538                 } else {
539                         vsock->cached_peer_allow_dgram = true;
540                 }
541         }
542
543         return vsock->cached_peer_allow_dgram;
544 }
545
546 static int
547 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
548                                 struct vmci_handle *handle,
549                                 u64 produce_size,
550                                 u64 consume_size,
551                                 u32 peer, u32 flags, bool trusted)
552 {
553         int err = 0;
554
555         if (trusted) {
556                 /* Try to allocate our queue pair as trusted. This will only
557                  * work if vsock is running in the host.
558                  */
559
560                 err = vmci_qpair_alloc(qpair, handle, produce_size,
561                                        consume_size,
562                                        peer, flags,
563                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
564                 if (err != VMCI_ERROR_NO_ACCESS)
565                         goto out;
566
567         }
568
569         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
570                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
571 out:
572         if (err < 0) {
573                 pr_err_once("Could not attach to queue pair with %d\n", err);
574                 err = vmci_transport_error_to_vsock_error(err);
575         }
576
577         return err;
578 }
579
580 static int
581 vmci_transport_datagram_create_hnd(u32 resource_id,
582                                    u32 flags,
583                                    vmci_datagram_recv_cb recv_cb,
584                                    void *client_data,
585                                    struct vmci_handle *out_handle)
586 {
587         int err = 0;
588
589         /* Try to allocate our datagram handler as trusted. This will only work
590          * if vsock is running in the host.
591          */
592
593         err = vmci_datagram_create_handle_priv(resource_id, flags,
594                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
595                                                recv_cb,
596                                                client_data, out_handle);
597
598         if (err == VMCI_ERROR_NO_ACCESS)
599                 err = vmci_datagram_create_handle(resource_id, flags,
600                                                   recv_cb, client_data,
601                                                   out_handle);
602
603         return err;
604 }
605
606 /* This is invoked as part of a tasklet that's scheduled when the VMCI
607  * interrupt fires.  This is run in bottom-half context and if it ever needs to
608  * sleep it should defer that work to a work queue.
609  */
610
611 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
612 {
613         struct sock *sk;
614         size_t size;
615         struct sk_buff *skb;
616         struct vsock_sock *vsk;
617
618         sk = (struct sock *)data;
619
620         /* This handler is privileged when this module is running on the host.
621          * We will get datagrams from all endpoints (even VMs that are in a
622          * restricted context). If we get one from a restricted context then
623          * the destination socket must be trusted.
624          *
625          * NOTE: We access the socket struct without holding the lock here.
626          * This is ok because the field we are interested is never modified
627          * outside of the create and destruct socket functions.
628          */
629         vsk = vsock_sk(sk);
630         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
631                 return VMCI_ERROR_NO_ACCESS;
632
633         size = VMCI_DG_SIZE(dg);
634
635         /* Attach the packet to the socket's receive queue as an sk_buff. */
636         skb = alloc_skb(size, GFP_ATOMIC);
637         if (!skb)
638                 return VMCI_ERROR_NO_MEM;
639
640         /* sk_receive_skb() will do a sock_put(), so hold here. */
641         sock_hold(sk);
642         skb_put(skb, size);
643         memcpy(skb->data, dg, size);
644         sk_receive_skb(sk, skb, 0);
645
646         return VMCI_SUCCESS;
647 }
648
649 static bool vmci_transport_stream_allow(u32 cid, u32 port)
650 {
651         static const u32 non_socket_contexts[] = {
652                 VMADDR_CID_LOCAL,
653         };
654         int i;
655
656         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
657
658         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
659                 if (cid == non_socket_contexts[i])
660                         return false;
661         }
662
663         return true;
664 }
665
666 /* This is invoked as part of a tasklet that's scheduled when the VMCI
667  * interrupt fires.  This is run in bottom-half context but it defers most of
668  * its work to the packet handling work queue.
669  */
670
671 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
672 {
673         struct sock *sk;
674         struct sockaddr_vm dst;
675         struct sockaddr_vm src;
676         struct vmci_transport_packet *pkt;
677         struct vsock_sock *vsk;
678         bool bh_process_pkt;
679         int err;
680
681         sk = NULL;
682         err = VMCI_SUCCESS;
683         bh_process_pkt = false;
684
685         /* Ignore incoming packets from contexts without sockets, or resources
686          * that aren't vsock implementations.
687          */
688
689         if (!vmci_transport_stream_allow(dg->src.context, -1)
690             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
691                 return VMCI_ERROR_NO_ACCESS;
692
693         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
694                 /* Drop datagrams that do not contain full VSock packets. */
695                 return VMCI_ERROR_INVALID_ARGS;
696
697         pkt = (struct vmci_transport_packet *)dg;
698
699         /* Find the socket that should handle this packet.  First we look for a
700          * connected socket and if there is none we look for a socket bound to
701          * the destintation address.
702          */
703         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
704         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
705
706         sk = vsock_find_connected_socket(&src, &dst);
707         if (!sk) {
708                 sk = vsock_find_bound_socket(&dst);
709                 if (!sk) {
710                         /* We could not find a socket for this specified
711                          * address.  If this packet is a RST, we just drop it.
712                          * If it is another packet, we send a RST.  Note that
713                          * we do not send a RST reply to RSTs so that we do not
714                          * continually send RSTs between two endpoints.
715                          *
716                          * Note that since this is a reply, dst is src and src
717                          * is dst.
718                          */
719                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
720                                 pr_err("unable to send reset\n");
721
722                         err = VMCI_ERROR_NOT_FOUND;
723                         goto out;
724                 }
725         }
726
727         /* If the received packet type is beyond all types known to this
728          * implementation, reply with an invalid message.  Hopefully this will
729          * help when implementing backwards compatibility in the future.
730          */
731         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
732                 vmci_transport_send_invalid_bh(&dst, &src);
733                 err = VMCI_ERROR_INVALID_ARGS;
734                 goto out;
735         }
736
737         /* This handler is privileged when this module is running on the host.
738          * We will get datagram connect requests from all endpoints (even VMs
739          * that are in a restricted context). If we get one from a restricted
740          * context then the destination socket must be trusted.
741          *
742          * NOTE: We access the socket struct without holding the lock here.
743          * This is ok because the field we are interested is never modified
744          * outside of the create and destruct socket functions.
745          */
746         vsk = vsock_sk(sk);
747         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
748                 err = VMCI_ERROR_NO_ACCESS;
749                 goto out;
750         }
751
752         /* We do most everything in a work queue, but let's fast path the
753          * notification of reads and writes to help data transfer performance.
754          * We can only do this if there is no process context code executing
755          * for this socket since that may change the state.
756          */
757         bh_lock_sock(sk);
758
759         if (!sock_owned_by_user(sk)) {
760                 /* The local context ID may be out of date, update it. */
761                 vsk->local_addr.svm_cid = dst.svm_cid;
762
763                 if (sk->sk_state == TCP_ESTABLISHED)
764                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
765                                         sk, pkt, true, &dst, &src,
766                                         &bh_process_pkt);
767         }
768
769         bh_unlock_sock(sk);
770
771         if (!bh_process_pkt) {
772                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
773
774                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
775                 if (!recv_pkt_info) {
776                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
777                                 pr_err("unable to send reset\n");
778
779                         err = VMCI_ERROR_NO_MEM;
780                         goto out;
781                 }
782
783                 recv_pkt_info->sk = sk;
784                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
785                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
786
787                 schedule_work(&recv_pkt_info->work);
788                 /* Clear sk so that the reference count incremented by one of
789                  * the Find functions above is not decremented below.  We need
790                  * that reference count for the packet handler we've scheduled
791                  * to run.
792                  */
793                 sk = NULL;
794         }
795
796 out:
797         if (sk)
798                 sock_put(sk);
799
800         return err;
801 }
802
803 static void vmci_transport_handle_detach(struct sock *sk)
804 {
805         struct vsock_sock *vsk;
806
807         vsk = vsock_sk(sk);
808         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
809                 sock_set_flag(sk, SOCK_DONE);
810
811                 /* On a detach the peer will not be sending or receiving
812                  * anymore.
813                  */
814                 vsk->peer_shutdown = SHUTDOWN_MASK;
815
816                 /* We should not be sending anymore since the peer won't be
817                  * there to receive, but we can still receive if there is data
818                  * left in our consume queue. If the local endpoint is a host,
819                  * we can't call vsock_stream_has_data, since that may block,
820                  * but a host endpoint can't read data once the VM has
821                  * detached, so there is no available data in that case.
822                  */
823                 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
824                     vsock_stream_has_data(vsk) <= 0) {
825                         if (sk->sk_state == TCP_SYN_SENT) {
826                                 /* The peer may detach from a queue pair while
827                                  * we are still in the connecting state, i.e.,
828                                  * if the peer VM is killed after attaching to
829                                  * a queue pair, but before we complete the
830                                  * handshake. In that case, we treat the detach
831                                  * event like a reset.
832                                  */
833
834                                 sk->sk_state = TCP_CLOSE;
835                                 sk->sk_err = ECONNRESET;
836                                 sk->sk_error_report(sk);
837                                 return;
838                         }
839                         sk->sk_state = TCP_CLOSE;
840                 }
841                 sk->sk_state_change(sk);
842         }
843 }
844
845 static void vmci_transport_peer_detach_cb(u32 sub_id,
846                                           const struct vmci_event_data *e_data,
847                                           void *client_data)
848 {
849         struct vmci_transport *trans = client_data;
850         const struct vmci_event_payload_qp *e_payload;
851
852         e_payload = vmci_event_data_const_payload(e_data);
853
854         /* XXX This is lame, we should provide a way to lookup sockets by
855          * qp_handle.
856          */
857         if (vmci_handle_is_invalid(e_payload->handle) ||
858             !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
859                 return;
860
861         /* We don't ask for delayed CBs when we subscribe to this event (we
862          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
863          * guarantees in that case about what context we might be running in,
864          * so it could be BH or process, blockable or non-blockable.  So we
865          * need to account for all possible contexts here.
866          */
867         spin_lock_bh(&trans->lock);
868         if (!trans->sk)
869                 goto out;
870
871         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
872          * where trans->sk isn't locked.
873          */
874         bh_lock_sock(trans->sk);
875
876         vmci_transport_handle_detach(trans->sk);
877
878         bh_unlock_sock(trans->sk);
879  out:
880         spin_unlock_bh(&trans->lock);
881 }
882
883 static void vmci_transport_qp_resumed_cb(u32 sub_id,
884                                          const struct vmci_event_data *e_data,
885                                          void *client_data)
886 {
887         vsock_for_each_connected_socket(&vmci_transport,
888                                         vmci_transport_handle_detach);
889 }
890
891 static void vmci_transport_recv_pkt_work(struct work_struct *work)
892 {
893         struct vmci_transport_recv_pkt_info *recv_pkt_info;
894         struct vmci_transport_packet *pkt;
895         struct sock *sk;
896
897         recv_pkt_info =
898                 container_of(work, struct vmci_transport_recv_pkt_info, work);
899         sk = recv_pkt_info->sk;
900         pkt = &recv_pkt_info->pkt;
901
902         lock_sock(sk);
903
904         /* The local context ID may be out of date. */
905         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
906
907         switch (sk->sk_state) {
908         case TCP_LISTEN:
909                 vmci_transport_recv_listen(sk, pkt);
910                 break;
911         case TCP_SYN_SENT:
912                 /* Processing of pending connections for servers goes through
913                  * the listening socket, so see vmci_transport_recv_listen()
914                  * for that path.
915                  */
916                 vmci_transport_recv_connecting_client(sk, pkt);
917                 break;
918         case TCP_ESTABLISHED:
919                 vmci_transport_recv_connected(sk, pkt);
920                 break;
921         default:
922                 /* Because this function does not run in the same context as
923                  * vmci_transport_recv_stream_cb it is possible that the
924                  * socket has closed. We need to let the other side know or it
925                  * could be sitting in a connect and hang forever. Send a
926                  * reset to prevent that.
927                  */
928                 vmci_transport_send_reset(sk, pkt);
929                 break;
930         }
931
932         release_sock(sk);
933         kfree(recv_pkt_info);
934         /* Release reference obtained in the stream callback when we fetched
935          * this socket out of the bound or connected list.
936          */
937         sock_put(sk);
938 }
939
940 static int vmci_transport_recv_listen(struct sock *sk,
941                                       struct vmci_transport_packet *pkt)
942 {
943         struct sock *pending;
944         struct vsock_sock *vpending;
945         int err;
946         u64 qp_size;
947         bool old_request = false;
948         bool old_pkt_proto = false;
949
950         err = 0;
951
952         /* Because we are in the listen state, we could be receiving a packet
953          * for ourself or any previous connection requests that we received.
954          * If it's the latter, we try to find a socket in our list of pending
955          * connections and, if we do, call the appropriate handler for the
956          * state that that socket is in.  Otherwise we try to service the
957          * connection request.
958          */
959         pending = vmci_transport_get_pending(sk, pkt);
960         if (pending) {
961                 lock_sock(pending);
962
963                 /* The local context ID may be out of date. */
964                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
965
966                 switch (pending->sk_state) {
967                 case TCP_SYN_SENT:
968                         err = vmci_transport_recv_connecting_server(sk,
969                                                                     pending,
970                                                                     pkt);
971                         break;
972                 default:
973                         vmci_transport_send_reset(pending, pkt);
974                         err = -EINVAL;
975                 }
976
977                 if (err < 0)
978                         vsock_remove_pending(sk, pending);
979
980                 release_sock(pending);
981                 vmci_transport_release_pending(pending);
982
983                 return err;
984         }
985
986         /* The listen state only accepts connection requests.  Reply with a
987          * reset unless we received a reset.
988          */
989
990         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
991               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
992                 vmci_transport_reply_reset(pkt);
993                 return -EINVAL;
994         }
995
996         if (pkt->u.size == 0) {
997                 vmci_transport_reply_reset(pkt);
998                 return -EINVAL;
999         }
1000
1001         /* If this socket can't accommodate this connection request, we send a
1002          * reset.  Otherwise we create and initialize a child socket and reply
1003          * with a connection negotiation.
1004          */
1005         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1006                 vmci_transport_reply_reset(pkt);
1007                 return -ECONNREFUSED;
1008         }
1009
1010         pending = vsock_create_connected(sk);
1011         if (!pending) {
1012                 vmci_transport_send_reset(sk, pkt);
1013                 return -ENOMEM;
1014         }
1015
1016         vpending = vsock_sk(pending);
1017
1018         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1019                         pkt->dst_port);
1020         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1021                         pkt->src_port);
1022
1023         err = vsock_assign_transport(vpending, vsock_sk(sk));
1024         /* Transport assigned (looking at remote_addr) must be the same
1025          * where we received the request.
1026          */
1027         if (err || !vmci_check_transport(vpending)) {
1028                 vmci_transport_send_reset(sk, pkt);
1029                 sock_put(pending);
1030                 return err;
1031         }
1032
1033         /* If the proposed size fits within our min/max, accept it. Otherwise
1034          * propose our own size.
1035          */
1036         if (pkt->u.size >= vpending->buffer_min_size &&
1037             pkt->u.size <= vpending->buffer_max_size) {
1038                 qp_size = pkt->u.size;
1039         } else {
1040                 qp_size = vpending->buffer_size;
1041         }
1042
1043         /* Figure out if we are using old or new requests based on the
1044          * overrides pkt types sent by our peer.
1045          */
1046         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1047                 old_request = old_pkt_proto;
1048         } else {
1049                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1050                         old_request = true;
1051                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1052                         old_request = false;
1053
1054         }
1055
1056         if (old_request) {
1057                 /* Handle a REQUEST (or override) */
1058                 u16 version = VSOCK_PROTO_INVALID;
1059                 if (vmci_transport_proto_to_notify_struct(
1060                         pending, &version, true))
1061                         err = vmci_transport_send_negotiate(pending, qp_size);
1062                 else
1063                         err = -EINVAL;
1064
1065         } else {
1066                 /* Handle a REQUEST2 (or override) */
1067                 int proto_int = pkt->proto;
1068                 int pos;
1069                 u16 active_proto_version = 0;
1070
1071                 /* The list of possible protocols is the intersection of all
1072                  * protocols the client supports ... plus all the protocols we
1073                  * support.
1074                  */
1075                 proto_int &= vmci_transport_new_proto_supported_versions();
1076
1077                 /* We choose the highest possible protocol version and use that
1078                  * one.
1079                  */
1080                 pos = fls(proto_int);
1081                 if (pos) {
1082                         active_proto_version = (1 << (pos - 1));
1083                         if (vmci_transport_proto_to_notify_struct(
1084                                 pending, &active_proto_version, false))
1085                                 err = vmci_transport_send_negotiate2(pending,
1086                                                         qp_size,
1087                                                         active_proto_version);
1088                         else
1089                                 err = -EINVAL;
1090
1091                 } else {
1092                         err = -EINVAL;
1093                 }
1094         }
1095
1096         if (err < 0) {
1097                 vmci_transport_send_reset(sk, pkt);
1098                 sock_put(pending);
1099                 err = vmci_transport_error_to_vsock_error(err);
1100                 goto out;
1101         }
1102
1103         vsock_add_pending(sk, pending);
1104         sk_acceptq_added(sk);
1105
1106         pending->sk_state = TCP_SYN_SENT;
1107         vmci_trans(vpending)->produce_size =
1108                 vmci_trans(vpending)->consume_size = qp_size;
1109         vpending->buffer_size = qp_size;
1110
1111         vmci_trans(vpending)->notify_ops->process_request(pending);
1112
1113         /* We might never receive another message for this socket and it's not
1114          * connected to any process, so we have to ensure it gets cleaned up
1115          * ourself.  Our delayed work function will take care of that.  Note
1116          * that we do not ever cancel this function since we have few
1117          * guarantees about its state when calling cancel_delayed_work().
1118          * Instead we hold a reference on the socket for that function and make
1119          * it capable of handling cases where it needs to do nothing but
1120          * release that reference.
1121          */
1122         vpending->listener = sk;
1123         sock_hold(sk);
1124         sock_hold(pending);
1125         schedule_delayed_work(&vpending->pending_work, HZ);
1126
1127 out:
1128         return err;
1129 }
1130
1131 static int
1132 vmci_transport_recv_connecting_server(struct sock *listener,
1133                                       struct sock *pending,
1134                                       struct vmci_transport_packet *pkt)
1135 {
1136         struct vsock_sock *vpending;
1137         struct vmci_handle handle;
1138         struct vmci_qp *qpair;
1139         bool is_local;
1140         u32 flags;
1141         u32 detach_sub_id;
1142         int err;
1143         int skerr;
1144
1145         vpending = vsock_sk(pending);
1146         detach_sub_id = VMCI_INVALID_ID;
1147
1148         switch (pkt->type) {
1149         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1150                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1151                         vmci_transport_send_reset(pending, pkt);
1152                         skerr = EPROTO;
1153                         err = -EINVAL;
1154                         goto destroy;
1155                 }
1156                 break;
1157         default:
1158                 /* Close and cleanup the connection. */
1159                 vmci_transport_send_reset(pending, pkt);
1160                 skerr = EPROTO;
1161                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1162                 goto destroy;
1163         }
1164
1165         /* In order to complete the connection we need to attach to the offered
1166          * queue pair and send an attach notification.  We also subscribe to the
1167          * detach event so we know when our peer goes away, and we do that
1168          * before attaching so we don't miss an event.  If all this succeeds,
1169          * we update our state and wakeup anything waiting in accept() for a
1170          * connection.
1171          */
1172
1173         /* We don't care about attach since we ensure the other side has
1174          * attached by specifying the ATTACH_ONLY flag below.
1175          */
1176         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1177                                    vmci_transport_peer_detach_cb,
1178                                    vmci_trans(vpending), &detach_sub_id);
1179         if (err < VMCI_SUCCESS) {
1180                 vmci_transport_send_reset(pending, pkt);
1181                 err = vmci_transport_error_to_vsock_error(err);
1182                 skerr = -err;
1183                 goto destroy;
1184         }
1185
1186         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1187
1188         /* Now attach to the queue pair the client created. */
1189         handle = pkt->u.handle;
1190
1191         /* vpending->local_addr always has a context id so we do not need to
1192          * worry about VMADDR_CID_ANY in this case.
1193          */
1194         is_local =
1195             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1196         flags = VMCI_QPFLAG_ATTACH_ONLY;
1197         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1198
1199         err = vmci_transport_queue_pair_alloc(
1200                                         &qpair,
1201                                         &handle,
1202                                         vmci_trans(vpending)->produce_size,
1203                                         vmci_trans(vpending)->consume_size,
1204                                         pkt->dg.src.context,
1205                                         flags,
1206                                         vmci_transport_is_trusted(
1207                                                 vpending,
1208                                                 vpending->remote_addr.svm_cid));
1209         if (err < 0) {
1210                 vmci_transport_send_reset(pending, pkt);
1211                 skerr = -err;
1212                 goto destroy;
1213         }
1214
1215         vmci_trans(vpending)->qp_handle = handle;
1216         vmci_trans(vpending)->qpair = qpair;
1217
1218         /* When we send the attach message, we must be ready to handle incoming
1219          * control messages on the newly connected socket. So we move the
1220          * pending socket to the connected state before sending the attach
1221          * message. Otherwise, an incoming packet triggered by the attach being
1222          * received by the peer may be processed concurrently with what happens
1223          * below after sending the attach message, and that incoming packet
1224          * will find the listening socket instead of the (currently) pending
1225          * socket. Note that enqueueing the socket increments the reference
1226          * count, so even if a reset comes before the connection is accepted,
1227          * the socket will be valid until it is removed from the queue.
1228          *
1229          * If we fail sending the attach below, we remove the socket from the
1230          * connected list and move the socket to TCP_CLOSE before
1231          * releasing the lock, so a pending slow path processing of an incoming
1232          * packet will not see the socket in the connected state in that case.
1233          */
1234         pending->sk_state = TCP_ESTABLISHED;
1235
1236         vsock_insert_connected(vpending);
1237
1238         /* Notify our peer of our attach. */
1239         err = vmci_transport_send_attach(pending, handle);
1240         if (err < 0) {
1241                 vsock_remove_connected(vpending);
1242                 pr_err("Could not send attach\n");
1243                 vmci_transport_send_reset(pending, pkt);
1244                 err = vmci_transport_error_to_vsock_error(err);
1245                 skerr = -err;
1246                 goto destroy;
1247         }
1248
1249         /* We have a connection. Move the now connected socket from the
1250          * listener's pending list to the accept queue so callers of accept()
1251          * can find it.
1252          */
1253         vsock_remove_pending(listener, pending);
1254         vsock_enqueue_accept(listener, pending);
1255
1256         /* Callers of accept() will be be waiting on the listening socket, not
1257          * the pending socket.
1258          */
1259         listener->sk_data_ready(listener);
1260
1261         return 0;
1262
1263 destroy:
1264         pending->sk_err = skerr;
1265         pending->sk_state = TCP_CLOSE;
1266         /* As long as we drop our reference, all necessary cleanup will handle
1267          * when the cleanup function drops its reference and our destruct
1268          * implementation is called.  Note that since the listen handler will
1269          * remove pending from the pending list upon our failure, the cleanup
1270          * function won't drop the additional reference, which is why we do it
1271          * here.
1272          */
1273         sock_put(pending);
1274
1275         return err;
1276 }
1277
1278 static int
1279 vmci_transport_recv_connecting_client(struct sock *sk,
1280                                       struct vmci_transport_packet *pkt)
1281 {
1282         struct vsock_sock *vsk;
1283         int err;
1284         int skerr;
1285
1286         vsk = vsock_sk(sk);
1287
1288         switch (pkt->type) {
1289         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1290                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1291                     !vmci_handle_is_equal(pkt->u.handle,
1292                                           vmci_trans(vsk)->qp_handle)) {
1293                         skerr = EPROTO;
1294                         err = -EINVAL;
1295                         goto destroy;
1296                 }
1297
1298                 /* Signify the socket is connected and wakeup the waiter in
1299                  * connect(). Also place the socket in the connected table for
1300                  * accounting (it can already be found since it's in the bound
1301                  * table).
1302                  */
1303                 sk->sk_state = TCP_ESTABLISHED;
1304                 sk->sk_socket->state = SS_CONNECTED;
1305                 vsock_insert_connected(vsk);
1306                 sk->sk_state_change(sk);
1307
1308                 break;
1309         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1310         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1311                 if (pkt->u.size == 0
1312                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1313                     || pkt->src_port != vsk->remote_addr.svm_port
1314                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1315                     || vmci_trans(vsk)->qpair
1316                     || vmci_trans(vsk)->produce_size != 0
1317                     || vmci_trans(vsk)->consume_size != 0
1318                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1319                         skerr = EPROTO;
1320                         err = -EINVAL;
1321
1322                         goto destroy;
1323                 }
1324
1325                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1326                 if (err) {
1327                         skerr = -err;
1328                         goto destroy;
1329                 }
1330
1331                 break;
1332         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1333                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1334                 if (err) {
1335                         skerr = -err;
1336                         goto destroy;
1337                 }
1338
1339                 break;
1340         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1341                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1342                  * continue processing here after they sent an INVALID packet.
1343                  * This meant that we got a RST after the INVALID. We ignore a
1344                  * RST after an INVALID. The common code doesn't send the RST
1345                  * ... so we can hang if an old version of the common code
1346                  * fails between getting a REQUEST and sending an OFFER back.
1347                  * Not much we can do about it... except hope that it doesn't
1348                  * happen.
1349                  */
1350                 if (vsk->ignore_connecting_rst) {
1351                         vsk->ignore_connecting_rst = false;
1352                 } else {
1353                         skerr = ECONNRESET;
1354                         err = 0;
1355                         goto destroy;
1356                 }
1357
1358                 break;
1359         default:
1360                 /* Close and cleanup the connection. */
1361                 skerr = EPROTO;
1362                 err = -EINVAL;
1363                 goto destroy;
1364         }
1365
1366         return 0;
1367
1368 destroy:
1369         vmci_transport_send_reset(sk, pkt);
1370
1371         sk->sk_state = TCP_CLOSE;
1372         sk->sk_err = skerr;
1373         sk->sk_error_report(sk);
1374         return err;
1375 }
1376
1377 static int vmci_transport_recv_connecting_client_negotiate(
1378                                         struct sock *sk,
1379                                         struct vmci_transport_packet *pkt)
1380 {
1381         int err;
1382         struct vsock_sock *vsk;
1383         struct vmci_handle handle;
1384         struct vmci_qp *qpair;
1385         u32 detach_sub_id;
1386         bool is_local;
1387         u32 flags;
1388         bool old_proto = true;
1389         bool old_pkt_proto;
1390         u16 version;
1391
1392         vsk = vsock_sk(sk);
1393         handle = VMCI_INVALID_HANDLE;
1394         detach_sub_id = VMCI_INVALID_ID;
1395
1396         /* If we have gotten here then we should be past the point where old
1397          * linux vsock could have sent the bogus rst.
1398          */
1399         vsk->sent_request = false;
1400         vsk->ignore_connecting_rst = false;
1401
1402         /* Verify that we're OK with the proposed queue pair size */
1403         if (pkt->u.size < vsk->buffer_min_size ||
1404             pkt->u.size > vsk->buffer_max_size) {
1405                 err = -EINVAL;
1406                 goto destroy;
1407         }
1408
1409         /* At this point we know the CID the peer is using to talk to us. */
1410
1411         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1412                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1413
1414         /* Setup the notify ops to be the highest supported version that both
1415          * the server and the client support.
1416          */
1417
1418         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1419                 old_proto = old_pkt_proto;
1420         } else {
1421                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1422                         old_proto = true;
1423                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1424                         old_proto = false;
1425
1426         }
1427
1428         if (old_proto)
1429                 version = VSOCK_PROTO_INVALID;
1430         else
1431                 version = pkt->proto;
1432
1433         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1434                 err = -EINVAL;
1435                 goto destroy;
1436         }
1437
1438         /* Subscribe to detach events first.
1439          *
1440          * XXX We attach once for each queue pair created for now so it is easy
1441          * to find the socket (it's provided), but later we should only
1442          * subscribe once and add a way to lookup sockets by queue pair handle.
1443          */
1444         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1445                                    vmci_transport_peer_detach_cb,
1446                                    vmci_trans(vsk), &detach_sub_id);
1447         if (err < VMCI_SUCCESS) {
1448                 err = vmci_transport_error_to_vsock_error(err);
1449                 goto destroy;
1450         }
1451
1452         /* Make VMCI select the handle for us. */
1453         handle = VMCI_INVALID_HANDLE;
1454         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1455         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1456
1457         err = vmci_transport_queue_pair_alloc(&qpair,
1458                                               &handle,
1459                                               pkt->u.size,
1460                                               pkt->u.size,
1461                                               vsk->remote_addr.svm_cid,
1462                                               flags,
1463                                               vmci_transport_is_trusted(
1464                                                   vsk,
1465                                                   vsk->
1466                                                   remote_addr.svm_cid));
1467         if (err < 0)
1468                 goto destroy;
1469
1470         err = vmci_transport_send_qp_offer(sk, handle);
1471         if (err < 0) {
1472                 err = vmci_transport_error_to_vsock_error(err);
1473                 goto destroy;
1474         }
1475
1476         vmci_trans(vsk)->qp_handle = handle;
1477         vmci_trans(vsk)->qpair = qpair;
1478
1479         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1480                 pkt->u.size;
1481
1482         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1483
1484         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1485
1486         return 0;
1487
1488 destroy:
1489         if (detach_sub_id != VMCI_INVALID_ID)
1490                 vmci_event_unsubscribe(detach_sub_id);
1491
1492         if (!vmci_handle_is_invalid(handle))
1493                 vmci_qpair_detach(&qpair);
1494
1495         return err;
1496 }
1497
1498 static int
1499 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1500                                               struct vmci_transport_packet *pkt)
1501 {
1502         int err = 0;
1503         struct vsock_sock *vsk = vsock_sk(sk);
1504
1505         if (vsk->sent_request) {
1506                 vsk->sent_request = false;
1507                 vsk->ignore_connecting_rst = true;
1508
1509                 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1510                 if (err < 0)
1511                         err = vmci_transport_error_to_vsock_error(err);
1512                 else
1513                         err = 0;
1514
1515         }
1516
1517         return err;
1518 }
1519
1520 static int vmci_transport_recv_connected(struct sock *sk,
1521                                          struct vmci_transport_packet *pkt)
1522 {
1523         struct vsock_sock *vsk;
1524         bool pkt_processed = false;
1525
1526         /* In cases where we are closing the connection, it's sufficient to
1527          * mark the state change (and maybe error) and wake up any waiting
1528          * threads. Since this is a connected socket, it's owned by a user
1529          * process and will be cleaned up when the failure is passed back on
1530          * the current or next system call.  Our system call implementations
1531          * must therefore check for error and state changes on entry and when
1532          * being awoken.
1533          */
1534         switch (pkt->type) {
1535         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1536                 if (pkt->u.mode) {
1537                         vsk = vsock_sk(sk);
1538
1539                         vsk->peer_shutdown |= pkt->u.mode;
1540                         sk->sk_state_change(sk);
1541                 }
1542                 break;
1543
1544         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1545                 vsk = vsock_sk(sk);
1546                 /* It is possible that we sent our peer a message (e.g a
1547                  * WAITING_READ) right before we got notified that the peer had
1548                  * detached. If that happens then we can get a RST pkt back
1549                  * from our peer even though there is data available for us to
1550                  * read. In that case, don't shutdown the socket completely but
1551                  * instead allow the local client to finish reading data off
1552                  * the queuepair. Always treat a RST pkt in connected mode like
1553                  * a clean shutdown.
1554                  */
1555                 sock_set_flag(sk, SOCK_DONE);
1556                 vsk->peer_shutdown = SHUTDOWN_MASK;
1557                 if (vsock_stream_has_data(vsk) <= 0)
1558                         sk->sk_state = TCP_CLOSING;
1559
1560                 sk->sk_state_change(sk);
1561                 break;
1562
1563         default:
1564                 vsk = vsock_sk(sk);
1565                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1566                                 sk, pkt, false, NULL, NULL,
1567                                 &pkt_processed);
1568                 if (!pkt_processed)
1569                         return -EINVAL;
1570
1571                 break;
1572         }
1573
1574         return 0;
1575 }
1576
1577 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1578                                       struct vsock_sock *psk)
1579 {
1580         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1581         if (!vsk->trans)
1582                 return -ENOMEM;
1583
1584         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1585         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1586         vmci_trans(vsk)->qpair = NULL;
1587         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1588         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1589         vmci_trans(vsk)->notify_ops = NULL;
1590         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1591         vmci_trans(vsk)->sk = &vsk->sk;
1592         spin_lock_init(&vmci_trans(vsk)->lock);
1593
1594         return 0;
1595 }
1596
1597 static void vmci_transport_free_resources(struct list_head *transport_list)
1598 {
1599         while (!list_empty(transport_list)) {
1600                 struct vmci_transport *transport =
1601                     list_first_entry(transport_list, struct vmci_transport,
1602                                      elem);
1603                 list_del(&transport->elem);
1604
1605                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1606                         vmci_event_unsubscribe(transport->detach_sub_id);
1607                         transport->detach_sub_id = VMCI_INVALID_ID;
1608                 }
1609
1610                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1611                         vmci_qpair_detach(&transport->qpair);
1612                         transport->qp_handle = VMCI_INVALID_HANDLE;
1613                         transport->produce_size = 0;
1614                         transport->consume_size = 0;
1615                 }
1616
1617                 kfree(transport);
1618         }
1619 }
1620
1621 static void vmci_transport_cleanup(struct work_struct *work)
1622 {
1623         LIST_HEAD(pending);
1624
1625         spin_lock_bh(&vmci_transport_cleanup_lock);
1626         list_replace_init(&vmci_transport_cleanup_list, &pending);
1627         spin_unlock_bh(&vmci_transport_cleanup_lock);
1628         vmci_transport_free_resources(&pending);
1629 }
1630
1631 static void vmci_transport_destruct(struct vsock_sock *vsk)
1632 {
1633         /* transport can be NULL if we hit a failure at init() time */
1634         if (!vmci_trans(vsk))
1635                 return;
1636
1637         /* Ensure that the detach callback doesn't use the sk/vsk
1638          * we are about to destruct.
1639          */
1640         spin_lock_bh(&vmci_trans(vsk)->lock);
1641         vmci_trans(vsk)->sk = NULL;
1642         spin_unlock_bh(&vmci_trans(vsk)->lock);
1643
1644         if (vmci_trans(vsk)->notify_ops)
1645                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1646
1647         spin_lock_bh(&vmci_transport_cleanup_lock);
1648         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1649         spin_unlock_bh(&vmci_transport_cleanup_lock);
1650         schedule_work(&vmci_transport_cleanup_work);
1651
1652         vsk->trans = NULL;
1653 }
1654
1655 static void vmci_transport_release(struct vsock_sock *vsk)
1656 {
1657         vsock_remove_sock(vsk);
1658
1659         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1660                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1661                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1662         }
1663 }
1664
1665 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1666                                      struct sockaddr_vm *addr)
1667 {
1668         u32 port;
1669         u32 flags;
1670         int err;
1671
1672         /* VMCI will select a resource ID for us if we provide
1673          * VMCI_INVALID_ID.
1674          */
1675         port = addr->svm_port == VMADDR_PORT_ANY ?
1676                         VMCI_INVALID_ID : addr->svm_port;
1677
1678         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1679                 return -EACCES;
1680
1681         flags = addr->svm_cid == VMADDR_CID_ANY ?
1682                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1683
1684         err = vmci_transport_datagram_create_hnd(port, flags,
1685                                                  vmci_transport_recv_dgram_cb,
1686                                                  &vsk->sk,
1687                                                  &vmci_trans(vsk)->dg_handle);
1688         if (err < VMCI_SUCCESS)
1689                 return vmci_transport_error_to_vsock_error(err);
1690         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1691                         vmci_trans(vsk)->dg_handle.resource);
1692
1693         return 0;
1694 }
1695
1696 static int vmci_transport_dgram_enqueue(
1697         struct vsock_sock *vsk,
1698         struct sockaddr_vm *remote_addr,
1699         struct msghdr *msg,
1700         size_t len)
1701 {
1702         int err;
1703         struct vmci_datagram *dg;
1704
1705         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1706                 return -EMSGSIZE;
1707
1708         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1709                 return -EPERM;
1710
1711         /* Allocate a buffer for the user's message and our packet header. */
1712         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1713         if (!dg)
1714                 return -ENOMEM;
1715
1716         memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1717
1718         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1719                                    remote_addr->svm_port);
1720         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1721                                    vsk->local_addr.svm_port);
1722         dg->payload_size = len;
1723
1724         err = vmci_datagram_send(dg);
1725         kfree(dg);
1726         if (err < 0)
1727                 return vmci_transport_error_to_vsock_error(err);
1728
1729         return err - sizeof(*dg);
1730 }
1731
1732 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1733                                         struct msghdr *msg, size_t len,
1734                                         int flags)
1735 {
1736         int err;
1737         int noblock;
1738         struct vmci_datagram *dg;
1739         size_t payload_len;
1740         struct sk_buff *skb;
1741
1742         noblock = flags & MSG_DONTWAIT;
1743
1744         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1745                 return -EOPNOTSUPP;
1746
1747         /* Retrieve the head sk_buff from the socket's receive queue. */
1748         err = 0;
1749         skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1750         if (!skb)
1751                 return err;
1752
1753         dg = (struct vmci_datagram *)skb->data;
1754         if (!dg)
1755                 /* err is 0, meaning we read zero bytes. */
1756                 goto out;
1757
1758         payload_len = dg->payload_size;
1759         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1760         if (payload_len != skb->len - sizeof(*dg)) {
1761                 err = -EINVAL;
1762                 goto out;
1763         }
1764
1765         if (payload_len > len) {
1766                 payload_len = len;
1767                 msg->msg_flags |= MSG_TRUNC;
1768         }
1769
1770         /* Place the datagram payload in the user's iovec. */
1771         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1772         if (err)
1773                 goto out;
1774
1775         if (msg->msg_name) {
1776                 /* Provide the address of the sender. */
1777                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1778                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1779                 msg->msg_namelen = sizeof(*vm_addr);
1780         }
1781         err = payload_len;
1782
1783 out:
1784         skb_free_datagram(&vsk->sk, skb);
1785         return err;
1786 }
1787
1788 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1789 {
1790         if (cid == VMADDR_CID_HYPERVISOR) {
1791                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1792                  * state and are allowed.
1793                  */
1794                 return port == VMCI_UNITY_PBRPC_REGISTER;
1795         }
1796
1797         return true;
1798 }
1799
1800 static int vmci_transport_connect(struct vsock_sock *vsk)
1801 {
1802         int err;
1803         bool old_pkt_proto = false;
1804         struct sock *sk = &vsk->sk;
1805
1806         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1807                 old_pkt_proto) {
1808                 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1809                 if (err < 0) {
1810                         sk->sk_state = TCP_CLOSE;
1811                         return err;
1812                 }
1813         } else {
1814                 int supported_proto_versions =
1815                         vmci_transport_new_proto_supported_versions();
1816                 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1817                                 supported_proto_versions);
1818                 if (err < 0) {
1819                         sk->sk_state = TCP_CLOSE;
1820                         return err;
1821                 }
1822
1823                 vsk->sent_request = true;
1824         }
1825
1826         return err;
1827 }
1828
1829 static ssize_t vmci_transport_stream_dequeue(
1830         struct vsock_sock *vsk,
1831         struct msghdr *msg,
1832         size_t len,
1833         int flags)
1834 {
1835         if (flags & MSG_PEEK)
1836                 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1837         else
1838                 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1839 }
1840
1841 static ssize_t vmci_transport_stream_enqueue(
1842         struct vsock_sock *vsk,
1843         struct msghdr *msg,
1844         size_t len)
1845 {
1846         return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1847 }
1848
1849 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1850 {
1851         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1852 }
1853
1854 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1855 {
1856         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1857 }
1858
1859 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1860 {
1861         return vmci_trans(vsk)->consume_size;
1862 }
1863
1864 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1865 {
1866         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1867 }
1868
1869 static int vmci_transport_notify_poll_in(
1870         struct vsock_sock *vsk,
1871         size_t target,
1872         bool *data_ready_now)
1873 {
1874         return vmci_trans(vsk)->notify_ops->poll_in(
1875                         &vsk->sk, target, data_ready_now);
1876 }
1877
1878 static int vmci_transport_notify_poll_out(
1879         struct vsock_sock *vsk,
1880         size_t target,
1881         bool *space_available_now)
1882 {
1883         return vmci_trans(vsk)->notify_ops->poll_out(
1884                         &vsk->sk, target, space_available_now);
1885 }
1886
1887 static int vmci_transport_notify_recv_init(
1888         struct vsock_sock *vsk,
1889         size_t target,
1890         struct vsock_transport_recv_notify_data *data)
1891 {
1892         return vmci_trans(vsk)->notify_ops->recv_init(
1893                         &vsk->sk, target,
1894                         (struct vmci_transport_recv_notify_data *)data);
1895 }
1896
1897 static int vmci_transport_notify_recv_pre_block(
1898         struct vsock_sock *vsk,
1899         size_t target,
1900         struct vsock_transport_recv_notify_data *data)
1901 {
1902         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1903                         &vsk->sk, target,
1904                         (struct vmci_transport_recv_notify_data *)data);
1905 }
1906
1907 static int vmci_transport_notify_recv_pre_dequeue(
1908         struct vsock_sock *vsk,
1909         size_t target,
1910         struct vsock_transport_recv_notify_data *data)
1911 {
1912         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1913                         &vsk->sk, target,
1914                         (struct vmci_transport_recv_notify_data *)data);
1915 }
1916
1917 static int vmci_transport_notify_recv_post_dequeue(
1918         struct vsock_sock *vsk,
1919         size_t target,
1920         ssize_t copied,
1921         bool data_read,
1922         struct vsock_transport_recv_notify_data *data)
1923 {
1924         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1925                         &vsk->sk, target, copied, data_read,
1926                         (struct vmci_transport_recv_notify_data *)data);
1927 }
1928
1929 static int vmci_transport_notify_send_init(
1930         struct vsock_sock *vsk,
1931         struct vsock_transport_send_notify_data *data)
1932 {
1933         return vmci_trans(vsk)->notify_ops->send_init(
1934                         &vsk->sk,
1935                         (struct vmci_transport_send_notify_data *)data);
1936 }
1937
1938 static int vmci_transport_notify_send_pre_block(
1939         struct vsock_sock *vsk,
1940         struct vsock_transport_send_notify_data *data)
1941 {
1942         return vmci_trans(vsk)->notify_ops->send_pre_block(
1943                         &vsk->sk,
1944                         (struct vmci_transport_send_notify_data *)data);
1945 }
1946
1947 static int vmci_transport_notify_send_pre_enqueue(
1948         struct vsock_sock *vsk,
1949         struct vsock_transport_send_notify_data *data)
1950 {
1951         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1952                         &vsk->sk,
1953                         (struct vmci_transport_send_notify_data *)data);
1954 }
1955
1956 static int vmci_transport_notify_send_post_enqueue(
1957         struct vsock_sock *vsk,
1958         ssize_t written,
1959         struct vsock_transport_send_notify_data *data)
1960 {
1961         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1962                         &vsk->sk, written,
1963                         (struct vmci_transport_send_notify_data *)data);
1964 }
1965
1966 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1967 {
1968         if (PROTOCOL_OVERRIDE != -1) {
1969                 if (PROTOCOL_OVERRIDE == 0)
1970                         *old_pkt_proto = true;
1971                 else
1972                         *old_pkt_proto = false;
1973
1974                 pr_info("Proto override in use\n");
1975                 return true;
1976         }
1977
1978         return false;
1979 }
1980
1981 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1982                                                   u16 *proto,
1983                                                   bool old_pkt_proto)
1984 {
1985         struct vsock_sock *vsk = vsock_sk(sk);
1986
1987         if (old_pkt_proto) {
1988                 if (*proto != VSOCK_PROTO_INVALID) {
1989                         pr_err("Can't set both an old and new protocol\n");
1990                         return false;
1991                 }
1992                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
1993                 goto exit;
1994         }
1995
1996         switch (*proto) {
1997         case VSOCK_PROTO_PKT_ON_NOTIFY:
1998                 vmci_trans(vsk)->notify_ops =
1999                         &vmci_transport_notify_pkt_q_state_ops;
2000                 break;
2001         default:
2002                 pr_err("Unknown notify protocol version\n");
2003                 return false;
2004         }
2005
2006 exit:
2007         vmci_trans(vsk)->notify_ops->socket_init(sk);
2008         return true;
2009 }
2010
2011 static u16 vmci_transport_new_proto_supported_versions(void)
2012 {
2013         if (PROTOCOL_OVERRIDE != -1)
2014                 return PROTOCOL_OVERRIDE;
2015
2016         return VSOCK_PROTO_ALL_SUPPORTED;
2017 }
2018
2019 static u32 vmci_transport_get_local_cid(void)
2020 {
2021         return vmci_get_context_id();
2022 }
2023
2024 static struct vsock_transport vmci_transport = {
2025         .module = THIS_MODULE,
2026         .init = vmci_transport_socket_init,
2027         .destruct = vmci_transport_destruct,
2028         .release = vmci_transport_release,
2029         .connect = vmci_transport_connect,
2030         .dgram_bind = vmci_transport_dgram_bind,
2031         .dgram_dequeue = vmci_transport_dgram_dequeue,
2032         .dgram_enqueue = vmci_transport_dgram_enqueue,
2033         .dgram_allow = vmci_transport_dgram_allow,
2034         .stream_dequeue = vmci_transport_stream_dequeue,
2035         .stream_enqueue = vmci_transport_stream_enqueue,
2036         .stream_has_data = vmci_transport_stream_has_data,
2037         .stream_has_space = vmci_transport_stream_has_space,
2038         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2039         .stream_is_active = vmci_transport_stream_is_active,
2040         .stream_allow = vmci_transport_stream_allow,
2041         .notify_poll_in = vmci_transport_notify_poll_in,
2042         .notify_poll_out = vmci_transport_notify_poll_out,
2043         .notify_recv_init = vmci_transport_notify_recv_init,
2044         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2045         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2046         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2047         .notify_send_init = vmci_transport_notify_send_init,
2048         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2049         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2050         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2051         .shutdown = vmci_transport_shutdown,
2052         .get_local_cid = vmci_transport_get_local_cid,
2053 };
2054
2055 static bool vmci_check_transport(struct vsock_sock *vsk)
2056 {
2057         return vsk->transport == &vmci_transport;
2058 }
2059
2060 static void vmci_vsock_transport_cb(bool is_host)
2061 {
2062         int features;
2063
2064         if (is_host)
2065                 features = VSOCK_TRANSPORT_F_H2G;
2066         else
2067                 features = VSOCK_TRANSPORT_F_G2H;
2068
2069         vsock_core_register(&vmci_transport, features);
2070 }
2071
2072 static int __init vmci_transport_init(void)
2073 {
2074         int err;
2075
2076         /* Create the datagram handle that we will use to send and receive all
2077          * VSocket control messages for this context.
2078          */
2079         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2080                                                  VMCI_FLAG_ANYCID_DG_HND,
2081                                                  vmci_transport_recv_stream_cb,
2082                                                  NULL,
2083                                                  &vmci_transport_stream_handle);
2084         if (err < VMCI_SUCCESS) {
2085                 pr_err("Unable to create datagram handle. (%d)\n", err);
2086                 return vmci_transport_error_to_vsock_error(err);
2087         }
2088         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2089                                    vmci_transport_qp_resumed_cb,
2090                                    NULL, &vmci_transport_qp_resumed_sub_id);
2091         if (err < VMCI_SUCCESS) {
2092                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2093                 err = vmci_transport_error_to_vsock_error(err);
2094                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2095                 goto err_destroy_stream_handle;
2096         }
2097
2098         /* Register only with dgram feature, other features (H2G, G2H) will be
2099          * registered when the first host or guest becomes active.
2100          */
2101         err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2102         if (err < 0)
2103                 goto err_unsubscribe;
2104
2105         err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2106         if (err < 0)
2107                 goto err_unregister;
2108
2109         return 0;
2110
2111 err_unregister:
2112         vsock_core_unregister(&vmci_transport);
2113 err_unsubscribe:
2114         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2115 err_destroy_stream_handle:
2116         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2117         return err;
2118 }
2119 module_init(vmci_transport_init);
2120
2121 static void __exit vmci_transport_exit(void)
2122 {
2123         cancel_work_sync(&vmci_transport_cleanup_work);
2124         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2125
2126         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2127                 if (vmci_datagram_destroy_handle(
2128                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2129                         pr_err("Couldn't destroy datagram handle\n");
2130                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2131         }
2132
2133         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2134                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2135                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2136         }
2137
2138         vmci_register_vsock_callback(NULL);
2139         vsock_core_unregister(&vmci_transport);
2140 }
2141 module_exit(vmci_transport_exit);
2142
2143 MODULE_AUTHOR("VMware, Inc.");
2144 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2145 MODULE_VERSION("1.0.5.0-k");
2146 MODULE_LICENSE("GPL v2");
2147 MODULE_ALIAS("vmware_vsock");
2148 MODULE_ALIAS_NETPROTO(PF_VSOCK);