GNU Linux-libre 4.4.287-gnu1
[releases.git] / net / vmw_vsock / vmci_transport.c
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/miscdevice.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/net.h>
28 #include <linux/poll.h>
29 #include <linux/skbuff.h>
30 #include <linux/smp.h>
31 #include <linux/socket.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/wait.h>
35 #include <linux/workqueue.h>
36 #include <net/sock.h>
37 #include <net/af_vsock.h>
38
39 #include "vmci_transport_notify.h"
40
41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43 static void vmci_transport_peer_detach_cb(u32 sub_id,
44                                           const struct vmci_event_data *ed,
45                                           void *client_data);
46 static void vmci_transport_recv_pkt_work(struct work_struct *work);
47 static void vmci_transport_cleanup(struct work_struct *work);
48 static int vmci_transport_recv_listen(struct sock *sk,
49                                       struct vmci_transport_packet *pkt);
50 static int vmci_transport_recv_connecting_server(
51                                         struct sock *sk,
52                                         struct sock *pending,
53                                         struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connecting_client(
55                                         struct sock *sk,
56                                         struct vmci_transport_packet *pkt);
57 static int vmci_transport_recv_connecting_client_negotiate(
58                                         struct sock *sk,
59                                         struct vmci_transport_packet *pkt);
60 static int vmci_transport_recv_connecting_client_invalid(
61                                         struct sock *sk,
62                                         struct vmci_transport_packet *pkt);
63 static int vmci_transport_recv_connected(struct sock *sk,
64                                          struct vmci_transport_packet *pkt);
65 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
66 static u16 vmci_transport_new_proto_supported_versions(void);
67 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
68                                                   bool old_pkt_proto);
69
70 struct vmci_transport_recv_pkt_info {
71         struct work_struct work;
72         struct sock *sk;
73         struct vmci_transport_packet pkt;
74 };
75
76 static LIST_HEAD(vmci_transport_cleanup_list);
77 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
78 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
79
80 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
81                                                            VMCI_INVALID_ID };
82 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
83
84 static int PROTOCOL_OVERRIDE = -1;
85
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
88 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
89
90 /* The default peer timeout indicates how long we will wait for a peer response
91  * to a control message.
92  */
93 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
94
95 /* Helper function to convert from a VMCI error code to a VSock error code. */
96
97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
98 {
99         int err;
100
101         switch (vmci_error) {
102         case VMCI_ERROR_NO_MEM:
103                 err = ENOMEM;
104                 break;
105         case VMCI_ERROR_DUPLICATE_ENTRY:
106         case VMCI_ERROR_ALREADY_EXISTS:
107                 err = EADDRINUSE;
108                 break;
109         case VMCI_ERROR_NO_ACCESS:
110                 err = EPERM;
111                 break;
112         case VMCI_ERROR_NO_RESOURCES:
113                 err = ENOBUFS;
114                 break;
115         case VMCI_ERROR_INVALID_RESOURCE:
116                 err = EHOSTUNREACH;
117                 break;
118         case VMCI_ERROR_INVALID_ARGS:
119         default:
120                 err = EINVAL;
121         }
122
123         return err > 0 ? -err : err;
124 }
125
126 static u32 vmci_transport_peer_rid(u32 peer_cid)
127 {
128         if (VMADDR_CID_HYPERVISOR == peer_cid)
129                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
130
131         return VMCI_TRANSPORT_PACKET_RID;
132 }
133
134 static inline void
135 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
136                            struct sockaddr_vm *src,
137                            struct sockaddr_vm *dst,
138                            u8 type,
139                            u64 size,
140                            u64 mode,
141                            struct vmci_transport_waiting_info *wait,
142                            u16 proto,
143                            struct vmci_handle handle)
144 {
145         /* We register the stream control handler as an any cid handle so we
146          * must always send from a source address of VMADDR_CID_ANY
147          */
148         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
149                                        VMCI_TRANSPORT_PACKET_RID);
150         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
151                                        vmci_transport_peer_rid(dst->svm_cid));
152         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
153         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
154         pkt->type = type;
155         pkt->src_port = src->svm_port;
156         pkt->dst_port = dst->svm_port;
157         memset(&pkt->proto, 0, sizeof(pkt->proto));
158         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
159
160         switch (pkt->type) {
161         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
162                 pkt->u.size = 0;
163                 break;
164
165         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
166         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
167                 pkt->u.size = size;
168                 break;
169
170         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
171         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
172                 pkt->u.handle = handle;
173                 break;
174
175         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
176         case VMCI_TRANSPORT_PACKET_TYPE_READ:
177         case VMCI_TRANSPORT_PACKET_TYPE_RST:
178                 pkt->u.size = 0;
179                 break;
180
181         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
182                 pkt->u.mode = mode;
183                 break;
184
185         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
186         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
187                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
188                 break;
189
190         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
191         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
192                 pkt->u.size = size;
193                 pkt->proto = proto;
194                 break;
195         }
196 }
197
198 static inline void
199 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
200                                     struct sockaddr_vm *local,
201                                     struct sockaddr_vm *remote)
202 {
203         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
204         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
205 }
206
207 static int
208 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
209                                   struct sockaddr_vm *src,
210                                   struct sockaddr_vm *dst,
211                                   enum vmci_transport_packet_type type,
212                                   u64 size,
213                                   u64 mode,
214                                   struct vmci_transport_waiting_info *wait,
215                                   u16 proto,
216                                   struct vmci_handle handle,
217                                   bool convert_error)
218 {
219         int err;
220
221         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
222                                    proto, handle);
223         err = vmci_datagram_send(&pkt->dg);
224         if (convert_error && (err < 0))
225                 return vmci_transport_error_to_vsock_error(err);
226
227         return err;
228 }
229
230 static int
231 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
232                                       enum vmci_transport_packet_type type,
233                                       u64 size,
234                                       u64 mode,
235                                       struct vmci_transport_waiting_info *wait,
236                                       struct vmci_handle handle)
237 {
238         struct vmci_transport_packet reply;
239         struct sockaddr_vm src, dst;
240
241         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
242                 return 0;
243         } else {
244                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
245                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
246                                                          type,
247                                                          size, mode, wait,
248                                                          VSOCK_PROTO_INVALID,
249                                                          handle, true);
250         }
251 }
252
253 static int
254 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
255                                    struct sockaddr_vm *dst,
256                                    enum vmci_transport_packet_type type,
257                                    u64 size,
258                                    u64 mode,
259                                    struct vmci_transport_waiting_info *wait,
260                                    struct vmci_handle handle)
261 {
262         /* Note that it is safe to use a single packet across all CPUs since
263          * two tasklets of the same type are guaranteed to not ever run
264          * simultaneously. If that ever changes, or VMCI stops using tasklets,
265          * we can use per-cpu packets.
266          */
267         static struct vmci_transport_packet pkt;
268
269         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
270                                                  size, mode, wait,
271                                                  VSOCK_PROTO_INVALID, handle,
272                                                  false);
273 }
274
275 static int
276 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
277                                       struct sockaddr_vm *dst,
278                                       enum vmci_transport_packet_type type,
279                                       u64 size,
280                                       u64 mode,
281                                       struct vmci_transport_waiting_info *wait,
282                                       u16 proto,
283                                       struct vmci_handle handle)
284 {
285         struct vmci_transport_packet *pkt;
286         int err;
287
288         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
289         if (!pkt)
290                 return -ENOMEM;
291
292         err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
293                                                 mode, wait, proto, handle,
294                                                 true);
295         kfree(pkt);
296
297         return err;
298 }
299
300 static int
301 vmci_transport_send_control_pkt(struct sock *sk,
302                                 enum vmci_transport_packet_type type,
303                                 u64 size,
304                                 u64 mode,
305                                 struct vmci_transport_waiting_info *wait,
306                                 u16 proto,
307                                 struct vmci_handle handle)
308 {
309         struct vsock_sock *vsk;
310
311         vsk = vsock_sk(sk);
312
313         if (!vsock_addr_bound(&vsk->local_addr))
314                 return -EINVAL;
315
316         if (!vsock_addr_bound(&vsk->remote_addr))
317                 return -EINVAL;
318
319         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
320                                                      &vsk->remote_addr,
321                                                      type, size, mode,
322                                                      wait, proto, handle);
323 }
324
325 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
326                                         struct sockaddr_vm *src,
327                                         struct vmci_transport_packet *pkt)
328 {
329         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
330                 return 0;
331         return vmci_transport_send_control_pkt_bh(
332                                         dst, src,
333                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
334                                         0, NULL, VMCI_INVALID_HANDLE);
335 }
336
337 static int vmci_transport_send_reset(struct sock *sk,
338                                      struct vmci_transport_packet *pkt)
339 {
340         struct sockaddr_vm *dst_ptr;
341         struct sockaddr_vm dst;
342         struct vsock_sock *vsk;
343
344         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
345                 return 0;
346
347         vsk = vsock_sk(sk);
348
349         if (!vsock_addr_bound(&vsk->local_addr))
350                 return -EINVAL;
351
352         if (vsock_addr_bound(&vsk->remote_addr)) {
353                 dst_ptr = &vsk->remote_addr;
354         } else {
355                 vsock_addr_init(&dst, pkt->dg.src.context,
356                                 pkt->src_port);
357                 dst_ptr = &dst;
358         }
359         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
360                                              VMCI_TRANSPORT_PACKET_TYPE_RST,
361                                              0, 0, NULL, VSOCK_PROTO_INVALID,
362                                              VMCI_INVALID_HANDLE);
363 }
364
365 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
366 {
367         return vmci_transport_send_control_pkt(
368                                         sk,
369                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
370                                         size, 0, NULL,
371                                         VSOCK_PROTO_INVALID,
372                                         VMCI_INVALID_HANDLE);
373 }
374
375 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
376                                           u16 version)
377 {
378         return vmci_transport_send_control_pkt(
379                                         sk,
380                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
381                                         size, 0, NULL, version,
382                                         VMCI_INVALID_HANDLE);
383 }
384
385 static int vmci_transport_send_qp_offer(struct sock *sk,
386                                         struct vmci_handle handle)
387 {
388         return vmci_transport_send_control_pkt(
389                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
390                                         0, NULL,
391                                         VSOCK_PROTO_INVALID, handle);
392 }
393
394 static int vmci_transport_send_attach(struct sock *sk,
395                                       struct vmci_handle handle)
396 {
397         return vmci_transport_send_control_pkt(
398                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
399                                         0, 0, NULL, VSOCK_PROTO_INVALID,
400                                         handle);
401 }
402
403 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
404 {
405         return vmci_transport_reply_control_pkt_fast(
406                                                 pkt,
407                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
408                                                 0, 0, NULL,
409                                                 VMCI_INVALID_HANDLE);
410 }
411
412 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
413                                           struct sockaddr_vm *src)
414 {
415         return vmci_transport_send_control_pkt_bh(
416                                         dst, src,
417                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
418                                         0, 0, NULL, VMCI_INVALID_HANDLE);
419 }
420
421 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
422                                  struct sockaddr_vm *src)
423 {
424         return vmci_transport_send_control_pkt_bh(
425                                         dst, src,
426                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
427                                         0, NULL, VMCI_INVALID_HANDLE);
428 }
429
430 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
431                                 struct sockaddr_vm *src)
432 {
433         return vmci_transport_send_control_pkt_bh(
434                                         dst, src,
435                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
436                                         0, NULL, VMCI_INVALID_HANDLE);
437 }
438
439 int vmci_transport_send_wrote(struct sock *sk)
440 {
441         return vmci_transport_send_control_pkt(
442                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
443                                         0, NULL, VSOCK_PROTO_INVALID,
444                                         VMCI_INVALID_HANDLE);
445 }
446
447 int vmci_transport_send_read(struct sock *sk)
448 {
449         return vmci_transport_send_control_pkt(
450                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
451                                         0, NULL, VSOCK_PROTO_INVALID,
452                                         VMCI_INVALID_HANDLE);
453 }
454
455 int vmci_transport_send_waiting_write(struct sock *sk,
456                                       struct vmci_transport_waiting_info *wait)
457 {
458         return vmci_transport_send_control_pkt(
459                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
460                                 0, 0, wait, VSOCK_PROTO_INVALID,
461                                 VMCI_INVALID_HANDLE);
462 }
463
464 int vmci_transport_send_waiting_read(struct sock *sk,
465                                      struct vmci_transport_waiting_info *wait)
466 {
467         return vmci_transport_send_control_pkt(
468                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
469                                 0, 0, wait, VSOCK_PROTO_INVALID,
470                                 VMCI_INVALID_HANDLE);
471 }
472
473 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
474 {
475         return vmci_transport_send_control_pkt(
476                                         &vsk->sk,
477                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
478                                         0, mode, NULL,
479                                         VSOCK_PROTO_INVALID,
480                                         VMCI_INVALID_HANDLE);
481 }
482
483 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
484 {
485         return vmci_transport_send_control_pkt(sk,
486                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
487                                         size, 0, NULL,
488                                         VSOCK_PROTO_INVALID,
489                                         VMCI_INVALID_HANDLE);
490 }
491
492 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
493                                              u16 version)
494 {
495         return vmci_transport_send_control_pkt(
496                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
497                                         size, 0, NULL, version,
498                                         VMCI_INVALID_HANDLE);
499 }
500
501 static struct sock *vmci_transport_get_pending(
502                                         struct sock *listener,
503                                         struct vmci_transport_packet *pkt)
504 {
505         struct vsock_sock *vlistener;
506         struct vsock_sock *vpending;
507         struct sock *pending;
508         struct sockaddr_vm src;
509
510         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
511
512         vlistener = vsock_sk(listener);
513
514         list_for_each_entry(vpending, &vlistener->pending_links,
515                             pending_links) {
516                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
517                     pkt->dst_port == vpending->local_addr.svm_port) {
518                         pending = sk_vsock(vpending);
519                         sock_hold(pending);
520                         goto found;
521                 }
522         }
523
524         pending = NULL;
525 found:
526         return pending;
527
528 }
529
530 static void vmci_transport_release_pending(struct sock *pending)
531 {
532         sock_put(pending);
533 }
534
535 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
536  * trusted sockets 2) sockets from applications running as the same user as the
537  * VM (this is only true for the host side and only when using hosted products)
538  */
539
540 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
541 {
542         return vsock->trusted ||
543                vmci_is_context_owner(peer_cid, vsock->owner->uid);
544 }
545
546 /* We allow sending datagrams to and receiving datagrams from a restricted VM
547  * only if it is trusted as described in vmci_transport_is_trusted.
548  */
549
550 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
551 {
552         if (VMADDR_CID_HYPERVISOR == peer_cid)
553                 return true;
554
555         if (vsock->cached_peer != peer_cid) {
556                 vsock->cached_peer = peer_cid;
557                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
558                     (vmci_context_get_priv_flags(peer_cid) &
559                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
560                         vsock->cached_peer_allow_dgram = false;
561                 } else {
562                         vsock->cached_peer_allow_dgram = true;
563                 }
564         }
565
566         return vsock->cached_peer_allow_dgram;
567 }
568
569 static int
570 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
571                                 struct vmci_handle *handle,
572                                 u64 produce_size,
573                                 u64 consume_size,
574                                 u32 peer, u32 flags, bool trusted)
575 {
576         int err = 0;
577
578         if (trusted) {
579                 /* Try to allocate our queue pair as trusted. This will only
580                  * work if vsock is running in the host.
581                  */
582
583                 err = vmci_qpair_alloc(qpair, handle, produce_size,
584                                        consume_size,
585                                        peer, flags,
586                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
587                 if (err != VMCI_ERROR_NO_ACCESS)
588                         goto out;
589
590         }
591
592         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
593                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
594 out:
595         if (err < 0) {
596                 pr_err_once("Could not attach to queue pair with %d\n", err);
597                 err = vmci_transport_error_to_vsock_error(err);
598         }
599
600         return err;
601 }
602
603 static int
604 vmci_transport_datagram_create_hnd(u32 resource_id,
605                                    u32 flags,
606                                    vmci_datagram_recv_cb recv_cb,
607                                    void *client_data,
608                                    struct vmci_handle *out_handle)
609 {
610         int err = 0;
611
612         /* Try to allocate our datagram handler as trusted. This will only work
613          * if vsock is running in the host.
614          */
615
616         err = vmci_datagram_create_handle_priv(resource_id, flags,
617                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
618                                                recv_cb,
619                                                client_data, out_handle);
620
621         if (err == VMCI_ERROR_NO_ACCESS)
622                 err = vmci_datagram_create_handle(resource_id, flags,
623                                                   recv_cb, client_data,
624                                                   out_handle);
625
626         return err;
627 }
628
629 /* This is invoked as part of a tasklet that's scheduled when the VMCI
630  * interrupt fires.  This is run in bottom-half context and if it ever needs to
631  * sleep it should defer that work to a work queue.
632  */
633
634 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
635 {
636         struct sock *sk;
637         size_t size;
638         struct sk_buff *skb;
639         struct vsock_sock *vsk;
640
641         sk = (struct sock *)data;
642
643         /* This handler is privileged when this module is running on the host.
644          * We will get datagrams from all endpoints (even VMs that are in a
645          * restricted context). If we get one from a restricted context then
646          * the destination socket must be trusted.
647          *
648          * NOTE: We access the socket struct without holding the lock here.
649          * This is ok because the field we are interested is never modified
650          * outside of the create and destruct socket functions.
651          */
652         vsk = vsock_sk(sk);
653         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
654                 return VMCI_ERROR_NO_ACCESS;
655
656         size = VMCI_DG_SIZE(dg);
657
658         /* Attach the packet to the socket's receive queue as an sk_buff. */
659         skb = alloc_skb(size, GFP_ATOMIC);
660         if (!skb)
661                 return VMCI_ERROR_NO_MEM;
662
663         /* sk_receive_skb() will do a sock_put(), so hold here. */
664         sock_hold(sk);
665         skb_put(skb, size);
666         memcpy(skb->data, dg, size);
667         sk_receive_skb(sk, skb, 0);
668
669         return VMCI_SUCCESS;
670 }
671
672 static bool vmci_transport_stream_allow(u32 cid, u32 port)
673 {
674         static const u32 non_socket_contexts[] = {
675                 VMADDR_CID_RESERVED,
676         };
677         int i;
678
679         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
680
681         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
682                 if (cid == non_socket_contexts[i])
683                         return false;
684         }
685
686         return true;
687 }
688
689 /* This is invoked as part of a tasklet that's scheduled when the VMCI
690  * interrupt fires.  This is run in bottom-half context but it defers most of
691  * its work to the packet handling work queue.
692  */
693
694 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
695 {
696         struct sock *sk;
697         struct sockaddr_vm dst;
698         struct sockaddr_vm src;
699         struct vmci_transport_packet *pkt;
700         struct vsock_sock *vsk;
701         bool bh_process_pkt;
702         int err;
703
704         sk = NULL;
705         err = VMCI_SUCCESS;
706         bh_process_pkt = false;
707
708         /* Ignore incoming packets from contexts without sockets, or resources
709          * that aren't vsock implementations.
710          */
711
712         if (!vmci_transport_stream_allow(dg->src.context, -1)
713             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
714                 return VMCI_ERROR_NO_ACCESS;
715
716         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
717                 /* Drop datagrams that do not contain full VSock packets. */
718                 return VMCI_ERROR_INVALID_ARGS;
719
720         pkt = (struct vmci_transport_packet *)dg;
721
722         /* Find the socket that should handle this packet.  First we look for a
723          * connected socket and if there is none we look for a socket bound to
724          * the destintation address.
725          */
726         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
727         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
728
729         sk = vsock_find_connected_socket(&src, &dst);
730         if (!sk) {
731                 sk = vsock_find_bound_socket(&dst);
732                 if (!sk) {
733                         /* We could not find a socket for this specified
734                          * address.  If this packet is a RST, we just drop it.
735                          * If it is another packet, we send a RST.  Note that
736                          * we do not send a RST reply to RSTs so that we do not
737                          * continually send RSTs between two endpoints.
738                          *
739                          * Note that since this is a reply, dst is src and src
740                          * is dst.
741                          */
742                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
743                                 pr_err("unable to send reset\n");
744
745                         err = VMCI_ERROR_NOT_FOUND;
746                         goto out;
747                 }
748         }
749
750         /* If the received packet type is beyond all types known to this
751          * implementation, reply with an invalid message.  Hopefully this will
752          * help when implementing backwards compatibility in the future.
753          */
754         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
755                 vmci_transport_send_invalid_bh(&dst, &src);
756                 err = VMCI_ERROR_INVALID_ARGS;
757                 goto out;
758         }
759
760         /* This handler is privileged when this module is running on the host.
761          * We will get datagram connect requests from all endpoints (even VMs
762          * that are in a restricted context). If we get one from a restricted
763          * context then the destination socket must be trusted.
764          *
765          * NOTE: We access the socket struct without holding the lock here.
766          * This is ok because the field we are interested is never modified
767          * outside of the create and destruct socket functions.
768          */
769         vsk = vsock_sk(sk);
770         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
771                 err = VMCI_ERROR_NO_ACCESS;
772                 goto out;
773         }
774
775         /* We do most everything in a work queue, but let's fast path the
776          * notification of reads and writes to help data transfer performance.
777          * We can only do this if there is no process context code executing
778          * for this socket since that may change the state.
779          */
780         bh_lock_sock(sk);
781
782         if (!sock_owned_by_user(sk)) {
783                 /* The local context ID may be out of date, update it. */
784                 vsk->local_addr.svm_cid = dst.svm_cid;
785
786                 if (sk->sk_state == SS_CONNECTED)
787                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
788                                         sk, pkt, true, &dst, &src,
789                                         &bh_process_pkt);
790         }
791
792         bh_unlock_sock(sk);
793
794         if (!bh_process_pkt) {
795                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
796
797                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
798                 if (!recv_pkt_info) {
799                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
800                                 pr_err("unable to send reset\n");
801
802                         err = VMCI_ERROR_NO_MEM;
803                         goto out;
804                 }
805
806                 recv_pkt_info->sk = sk;
807                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
808                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
809
810                 schedule_work(&recv_pkt_info->work);
811                 /* Clear sk so that the reference count incremented by one of
812                  * the Find functions above is not decremented below.  We need
813                  * that reference count for the packet handler we've scheduled
814                  * to run.
815                  */
816                 sk = NULL;
817         }
818
819 out:
820         if (sk)
821                 sock_put(sk);
822
823         return err;
824 }
825
826 static void vmci_transport_handle_detach(struct sock *sk)
827 {
828         struct vsock_sock *vsk;
829
830         vsk = vsock_sk(sk);
831         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
832                 sock_set_flag(sk, SOCK_DONE);
833
834                 /* On a detach the peer will not be sending or receiving
835                  * anymore.
836                  */
837                 vsk->peer_shutdown = SHUTDOWN_MASK;
838
839                 /* We should not be sending anymore since the peer won't be
840                  * there to receive, but we can still receive if there is data
841                  * left in our consume queue.
842                  */
843                 if (vsock_stream_has_data(vsk) <= 0) {
844                         if (sk->sk_state == SS_CONNECTING) {
845                                 /* The peer may detach from a queue pair while
846                                  * we are still in the connecting state, i.e.,
847                                  * if the peer VM is killed after attaching to
848                                  * a queue pair, but before we complete the
849                                  * handshake. In that case, we treat the detach
850                                  * event like a reset.
851                                  */
852
853                                 sk->sk_state = SS_UNCONNECTED;
854                                 sk->sk_err = ECONNRESET;
855                                 sk->sk_error_report(sk);
856                                 return;
857                         }
858                         sk->sk_state = SS_UNCONNECTED;
859                 }
860                 sk->sk_state_change(sk);
861         }
862 }
863
864 static void vmci_transport_peer_detach_cb(u32 sub_id,
865                                           const struct vmci_event_data *e_data,
866                                           void *client_data)
867 {
868         struct vmci_transport *trans = client_data;
869         const struct vmci_event_payload_qp *e_payload;
870
871         e_payload = vmci_event_data_const_payload(e_data);
872
873         /* XXX This is lame, we should provide a way to lookup sockets by
874          * qp_handle.
875          */
876         if (vmci_handle_is_invalid(e_payload->handle) ||
877             !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
878                 return;
879
880         /* We don't ask for delayed CBs when we subscribe to this event (we
881          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
882          * guarantees in that case about what context we might be running in,
883          * so it could be BH or process, blockable or non-blockable.  So we
884          * need to account for all possible contexts here.
885          */
886         spin_lock_bh(&trans->lock);
887         if (!trans->sk)
888                 goto out;
889
890         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
891          * where trans->sk isn't locked.
892          */
893         bh_lock_sock(trans->sk);
894
895         vmci_transport_handle_detach(trans->sk);
896
897         bh_unlock_sock(trans->sk);
898  out:
899         spin_unlock_bh(&trans->lock);
900 }
901
902 static void vmci_transport_qp_resumed_cb(u32 sub_id,
903                                          const struct vmci_event_data *e_data,
904                                          void *client_data)
905 {
906         vsock_for_each_connected_socket(vmci_transport_handle_detach);
907 }
908
909 static void vmci_transport_recv_pkt_work(struct work_struct *work)
910 {
911         struct vmci_transport_recv_pkt_info *recv_pkt_info;
912         struct vmci_transport_packet *pkt;
913         struct sock *sk;
914
915         recv_pkt_info =
916                 container_of(work, struct vmci_transport_recv_pkt_info, work);
917         sk = recv_pkt_info->sk;
918         pkt = &recv_pkt_info->pkt;
919
920         lock_sock(sk);
921
922         /* The local context ID may be out of date. */
923         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
924
925         switch (sk->sk_state) {
926         case VSOCK_SS_LISTEN:
927                 vmci_transport_recv_listen(sk, pkt);
928                 break;
929         case SS_CONNECTING:
930                 /* Processing of pending connections for servers goes through
931                  * the listening socket, so see vmci_transport_recv_listen()
932                  * for that path.
933                  */
934                 vmci_transport_recv_connecting_client(sk, pkt);
935                 break;
936         case SS_CONNECTED:
937                 vmci_transport_recv_connected(sk, pkt);
938                 break;
939         default:
940                 /* Because this function does not run in the same context as
941                  * vmci_transport_recv_stream_cb it is possible that the
942                  * socket has closed. We need to let the other side know or it
943                  * could be sitting in a connect and hang forever. Send a
944                  * reset to prevent that.
945                  */
946                 vmci_transport_send_reset(sk, pkt);
947                 break;
948         }
949
950         release_sock(sk);
951         kfree(recv_pkt_info);
952         /* Release reference obtained in the stream callback when we fetched
953          * this socket out of the bound or connected list.
954          */
955         sock_put(sk);
956 }
957
958 static int vmci_transport_recv_listen(struct sock *sk,
959                                       struct vmci_transport_packet *pkt)
960 {
961         struct sock *pending;
962         struct vsock_sock *vpending;
963         int err;
964         u64 qp_size;
965         bool old_request = false;
966         bool old_pkt_proto = false;
967
968         err = 0;
969
970         /* Because we are in the listen state, we could be receiving a packet
971          * for ourself or any previous connection requests that we received.
972          * If it's the latter, we try to find a socket in our list of pending
973          * connections and, if we do, call the appropriate handler for the
974          * state that that socket is in.  Otherwise we try to service the
975          * connection request.
976          */
977         pending = vmci_transport_get_pending(sk, pkt);
978         if (pending) {
979                 lock_sock(pending);
980
981                 /* The local context ID may be out of date. */
982                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
983
984                 switch (pending->sk_state) {
985                 case SS_CONNECTING:
986                         err = vmci_transport_recv_connecting_server(sk,
987                                                                     pending,
988                                                                     pkt);
989                         break;
990                 default:
991                         vmci_transport_send_reset(pending, pkt);
992                         err = -EINVAL;
993                 }
994
995                 if (err < 0)
996                         vsock_remove_pending(sk, pending);
997
998                 release_sock(pending);
999                 vmci_transport_release_pending(pending);
1000
1001                 return err;
1002         }
1003
1004         /* The listen state only accepts connection requests.  Reply with a
1005          * reset unless we received a reset.
1006          */
1007
1008         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
1009               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
1010                 vmci_transport_reply_reset(pkt);
1011                 return -EINVAL;
1012         }
1013
1014         if (pkt->u.size == 0) {
1015                 vmci_transport_reply_reset(pkt);
1016                 return -EINVAL;
1017         }
1018
1019         /* If this socket can't accommodate this connection request, we send a
1020          * reset.  Otherwise we create and initialize a child socket and reply
1021          * with a connection negotiation.
1022          */
1023         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1024                 vmci_transport_reply_reset(pkt);
1025                 return -ECONNREFUSED;
1026         }
1027
1028         pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1029                                  sk->sk_type, 0);
1030         if (!pending) {
1031                 vmci_transport_send_reset(sk, pkt);
1032                 return -ENOMEM;
1033         }
1034
1035         vpending = vsock_sk(pending);
1036
1037         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1038                         pkt->dst_port);
1039         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1040                         pkt->src_port);
1041
1042         /* If the proposed size fits within our min/max, accept it. Otherwise
1043          * propose our own size.
1044          */
1045         if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1046             pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1047                 qp_size = pkt->u.size;
1048         } else {
1049                 qp_size = vmci_trans(vpending)->queue_pair_size;
1050         }
1051
1052         /* Figure out if we are using old or new requests based on the
1053          * overrides pkt types sent by our peer.
1054          */
1055         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1056                 old_request = old_pkt_proto;
1057         } else {
1058                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1059                         old_request = true;
1060                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1061                         old_request = false;
1062
1063         }
1064
1065         if (old_request) {
1066                 /* Handle a REQUEST (or override) */
1067                 u16 version = VSOCK_PROTO_INVALID;
1068                 if (vmci_transport_proto_to_notify_struct(
1069                         pending, &version, true))
1070                         err = vmci_transport_send_negotiate(pending, qp_size);
1071                 else
1072                         err = -EINVAL;
1073
1074         } else {
1075                 /* Handle a REQUEST2 (or override) */
1076                 int proto_int = pkt->proto;
1077                 int pos;
1078                 u16 active_proto_version = 0;
1079
1080                 /* The list of possible protocols is the intersection of all
1081                  * protocols the client supports ... plus all the protocols we
1082                  * support.
1083                  */
1084                 proto_int &= vmci_transport_new_proto_supported_versions();
1085
1086                 /* We choose the highest possible protocol version and use that
1087                  * one.
1088                  */
1089                 pos = fls(proto_int);
1090                 if (pos) {
1091                         active_proto_version = (1 << (pos - 1));
1092                         if (vmci_transport_proto_to_notify_struct(
1093                                 pending, &active_proto_version, false))
1094                                 err = vmci_transport_send_negotiate2(pending,
1095                                                         qp_size,
1096                                                         active_proto_version);
1097                         else
1098                                 err = -EINVAL;
1099
1100                 } else {
1101                         err = -EINVAL;
1102                 }
1103         }
1104
1105         if (err < 0) {
1106                 vmci_transport_send_reset(sk, pkt);
1107                 sock_put(pending);
1108                 err = vmci_transport_error_to_vsock_error(err);
1109                 goto out;
1110         }
1111
1112         vsock_add_pending(sk, pending);
1113         sk->sk_ack_backlog++;
1114
1115         pending->sk_state = SS_CONNECTING;
1116         vmci_trans(vpending)->produce_size =
1117                 vmci_trans(vpending)->consume_size = qp_size;
1118         vmci_trans(vpending)->queue_pair_size = qp_size;
1119
1120         vmci_trans(vpending)->notify_ops->process_request(pending);
1121
1122         /* We might never receive another message for this socket and it's not
1123          * connected to any process, so we have to ensure it gets cleaned up
1124          * ourself.  Our delayed work function will take care of that.  Note
1125          * that we do not ever cancel this function since we have few
1126          * guarantees about its state when calling cancel_delayed_work().
1127          * Instead we hold a reference on the socket for that function and make
1128          * it capable of handling cases where it needs to do nothing but
1129          * release that reference.
1130          */
1131         vpending->listener = sk;
1132         sock_hold(sk);
1133         sock_hold(pending);
1134         schedule_delayed_work(&vpending->pending_work, HZ);
1135
1136 out:
1137         return err;
1138 }
1139
1140 static int
1141 vmci_transport_recv_connecting_server(struct sock *listener,
1142                                       struct sock *pending,
1143                                       struct vmci_transport_packet *pkt)
1144 {
1145         struct vsock_sock *vpending;
1146         struct vmci_handle handle;
1147         struct vmci_qp *qpair;
1148         bool is_local;
1149         u32 flags;
1150         u32 detach_sub_id;
1151         int err;
1152         int skerr;
1153
1154         vpending = vsock_sk(pending);
1155         detach_sub_id = VMCI_INVALID_ID;
1156
1157         switch (pkt->type) {
1158         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1159                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1160                         vmci_transport_send_reset(pending, pkt);
1161                         skerr = EPROTO;
1162                         err = -EINVAL;
1163                         goto destroy;
1164                 }
1165                 break;
1166         default:
1167                 /* Close and cleanup the connection. */
1168                 vmci_transport_send_reset(pending, pkt);
1169                 skerr = EPROTO;
1170                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1171                 goto destroy;
1172         }
1173
1174         /* In order to complete the connection we need to attach to the offered
1175          * queue pair and send an attach notification.  We also subscribe to the
1176          * detach event so we know when our peer goes away, and we do that
1177          * before attaching so we don't miss an event.  If all this succeeds,
1178          * we update our state and wakeup anything waiting in accept() for a
1179          * connection.
1180          */
1181
1182         /* We don't care about attach since we ensure the other side has
1183          * attached by specifying the ATTACH_ONLY flag below.
1184          */
1185         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1186                                    vmci_transport_peer_detach_cb,
1187                                    vmci_trans(vpending), &detach_sub_id);
1188         if (err < VMCI_SUCCESS) {
1189                 vmci_transport_send_reset(pending, pkt);
1190                 err = vmci_transport_error_to_vsock_error(err);
1191                 skerr = -err;
1192                 goto destroy;
1193         }
1194
1195         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1196
1197         /* Now attach to the queue pair the client created. */
1198         handle = pkt->u.handle;
1199
1200         /* vpending->local_addr always has a context id so we do not need to
1201          * worry about VMADDR_CID_ANY in this case.
1202          */
1203         is_local =
1204             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1205         flags = VMCI_QPFLAG_ATTACH_ONLY;
1206         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1207
1208         err = vmci_transport_queue_pair_alloc(
1209                                         &qpair,
1210                                         &handle,
1211                                         vmci_trans(vpending)->produce_size,
1212                                         vmci_trans(vpending)->consume_size,
1213                                         pkt->dg.src.context,
1214                                         flags,
1215                                         vmci_transport_is_trusted(
1216                                                 vpending,
1217                                                 vpending->remote_addr.svm_cid));
1218         if (err < 0) {
1219                 vmci_transport_send_reset(pending, pkt);
1220                 skerr = -err;
1221                 goto destroy;
1222         }
1223
1224         vmci_trans(vpending)->qp_handle = handle;
1225         vmci_trans(vpending)->qpair = qpair;
1226
1227         /* When we send the attach message, we must be ready to handle incoming
1228          * control messages on the newly connected socket. So we move the
1229          * pending socket to the connected state before sending the attach
1230          * message. Otherwise, an incoming packet triggered by the attach being
1231          * received by the peer may be processed concurrently with what happens
1232          * below after sending the attach message, and that incoming packet
1233          * will find the listening socket instead of the (currently) pending
1234          * socket. Note that enqueueing the socket increments the reference
1235          * count, so even if a reset comes before the connection is accepted,
1236          * the socket will be valid until it is removed from the queue.
1237          *
1238          * If we fail sending the attach below, we remove the socket from the
1239          * connected list and move the socket to SS_UNCONNECTED before
1240          * releasing the lock, so a pending slow path processing of an incoming
1241          * packet will not see the socket in the connected state in that case.
1242          */
1243         pending->sk_state = SS_CONNECTED;
1244
1245         vsock_insert_connected(vpending);
1246
1247         /* Notify our peer of our attach. */
1248         err = vmci_transport_send_attach(pending, handle);
1249         if (err < 0) {
1250                 vsock_remove_connected(vpending);
1251                 pr_err("Could not send attach\n");
1252                 vmci_transport_send_reset(pending, pkt);
1253                 err = vmci_transport_error_to_vsock_error(err);
1254                 skerr = -err;
1255                 goto destroy;
1256         }
1257
1258         /* We have a connection. Move the now connected socket from the
1259          * listener's pending list to the accept queue so callers of accept()
1260          * can find it.
1261          */
1262         vsock_remove_pending(listener, pending);
1263         vsock_enqueue_accept(listener, pending);
1264
1265         /* Callers of accept() will be be waiting on the listening socket, not
1266          * the pending socket.
1267          */
1268         listener->sk_data_ready(listener);
1269
1270         return 0;
1271
1272 destroy:
1273         pending->sk_err = skerr;
1274         pending->sk_state = SS_UNCONNECTED;
1275         /* As long as we drop our reference, all necessary cleanup will handle
1276          * when the cleanup function drops its reference and our destruct
1277          * implementation is called.  Note that since the listen handler will
1278          * remove pending from the pending list upon our failure, the cleanup
1279          * function won't drop the additional reference, which is why we do it
1280          * here.
1281          */
1282         sock_put(pending);
1283
1284         return err;
1285 }
1286
1287 static int
1288 vmci_transport_recv_connecting_client(struct sock *sk,
1289                                       struct vmci_transport_packet *pkt)
1290 {
1291         struct vsock_sock *vsk;
1292         int err;
1293         int skerr;
1294
1295         vsk = vsock_sk(sk);
1296
1297         switch (pkt->type) {
1298         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1299                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1300                     !vmci_handle_is_equal(pkt->u.handle,
1301                                           vmci_trans(vsk)->qp_handle)) {
1302                         skerr = EPROTO;
1303                         err = -EINVAL;
1304                         goto destroy;
1305                 }
1306
1307                 /* Signify the socket is connected and wakeup the waiter in
1308                  * connect(). Also place the socket in the connected table for
1309                  * accounting (it can already be found since it's in the bound
1310                  * table).
1311                  */
1312                 sk->sk_state = SS_CONNECTED;
1313                 sk->sk_socket->state = SS_CONNECTED;
1314                 vsock_insert_connected(vsk);
1315                 sk->sk_state_change(sk);
1316
1317                 break;
1318         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1319         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1320                 if (pkt->u.size == 0
1321                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1322                     || pkt->src_port != vsk->remote_addr.svm_port
1323                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1324                     || vmci_trans(vsk)->qpair
1325                     || vmci_trans(vsk)->produce_size != 0
1326                     || vmci_trans(vsk)->consume_size != 0
1327                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1328                         skerr = EPROTO;
1329                         err = -EINVAL;
1330
1331                         goto destroy;
1332                 }
1333
1334                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1335                 if (err) {
1336                         skerr = -err;
1337                         goto destroy;
1338                 }
1339
1340                 break;
1341         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1342                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1343                 if (err) {
1344                         skerr = -err;
1345                         goto destroy;
1346                 }
1347
1348                 break;
1349         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1350                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1351                  * continue processing here after they sent an INVALID packet.
1352                  * This meant that we got a RST after the INVALID. We ignore a
1353                  * RST after an INVALID. The common code doesn't send the RST
1354                  * ... so we can hang if an old version of the common code
1355                  * fails between getting a REQUEST and sending an OFFER back.
1356                  * Not much we can do about it... except hope that it doesn't
1357                  * happen.
1358                  */
1359                 if (vsk->ignore_connecting_rst) {
1360                         vsk->ignore_connecting_rst = false;
1361                 } else {
1362                         skerr = ECONNRESET;
1363                         err = 0;
1364                         goto destroy;
1365                 }
1366
1367                 break;
1368         default:
1369                 /* Close and cleanup the connection. */
1370                 skerr = EPROTO;
1371                 err = -EINVAL;
1372                 goto destroy;
1373         }
1374
1375         return 0;
1376
1377 destroy:
1378         vmci_transport_send_reset(sk, pkt);
1379
1380         sk->sk_state = SS_UNCONNECTED;
1381         sk->sk_err = skerr;
1382         sk->sk_error_report(sk);
1383         return err;
1384 }
1385
1386 static int vmci_transport_recv_connecting_client_negotiate(
1387                                         struct sock *sk,
1388                                         struct vmci_transport_packet *pkt)
1389 {
1390         int err;
1391         struct vsock_sock *vsk;
1392         struct vmci_handle handle;
1393         struct vmci_qp *qpair;
1394         u32 detach_sub_id;
1395         bool is_local;
1396         u32 flags;
1397         bool old_proto = true;
1398         bool old_pkt_proto;
1399         u16 version;
1400
1401         vsk = vsock_sk(sk);
1402         handle = VMCI_INVALID_HANDLE;
1403         detach_sub_id = VMCI_INVALID_ID;
1404
1405         /* If we have gotten here then we should be past the point where old
1406          * linux vsock could have sent the bogus rst.
1407          */
1408         vsk->sent_request = false;
1409         vsk->ignore_connecting_rst = false;
1410
1411         /* Verify that we're OK with the proposed queue pair size */
1412         if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1413             pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1414                 err = -EINVAL;
1415                 goto destroy;
1416         }
1417
1418         /* At this point we know the CID the peer is using to talk to us. */
1419
1420         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1421                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1422
1423         /* Setup the notify ops to be the highest supported version that both
1424          * the server and the client support.
1425          */
1426
1427         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1428                 old_proto = old_pkt_proto;
1429         } else {
1430                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1431                         old_proto = true;
1432                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1433                         old_proto = false;
1434
1435         }
1436
1437         if (old_proto)
1438                 version = VSOCK_PROTO_INVALID;
1439         else
1440                 version = pkt->proto;
1441
1442         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1443                 err = -EINVAL;
1444                 goto destroy;
1445         }
1446
1447         /* Subscribe to detach events first.
1448          *
1449          * XXX We attach once for each queue pair created for now so it is easy
1450          * to find the socket (it's provided), but later we should only
1451          * subscribe once and add a way to lookup sockets by queue pair handle.
1452          */
1453         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1454                                    vmci_transport_peer_detach_cb,
1455                                    vmci_trans(vsk), &detach_sub_id);
1456         if (err < VMCI_SUCCESS) {
1457                 err = vmci_transport_error_to_vsock_error(err);
1458                 goto destroy;
1459         }
1460
1461         /* Make VMCI select the handle for us. */
1462         handle = VMCI_INVALID_HANDLE;
1463         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1464         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1465
1466         err = vmci_transport_queue_pair_alloc(&qpair,
1467                                               &handle,
1468                                               pkt->u.size,
1469                                               pkt->u.size,
1470                                               vsk->remote_addr.svm_cid,
1471                                               flags,
1472                                               vmci_transport_is_trusted(
1473                                                   vsk,
1474                                                   vsk->
1475                                                   remote_addr.svm_cid));
1476         if (err < 0)
1477                 goto destroy;
1478
1479         err = vmci_transport_send_qp_offer(sk, handle);
1480         if (err < 0) {
1481                 err = vmci_transport_error_to_vsock_error(err);
1482                 goto destroy;
1483         }
1484
1485         vmci_trans(vsk)->qp_handle = handle;
1486         vmci_trans(vsk)->qpair = qpair;
1487
1488         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1489                 pkt->u.size;
1490
1491         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1492
1493         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1494
1495         return 0;
1496
1497 destroy:
1498         if (detach_sub_id != VMCI_INVALID_ID)
1499                 vmci_event_unsubscribe(detach_sub_id);
1500
1501         if (!vmci_handle_is_invalid(handle))
1502                 vmci_qpair_detach(&qpair);
1503
1504         return err;
1505 }
1506
1507 static int
1508 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1509                                               struct vmci_transport_packet *pkt)
1510 {
1511         int err = 0;
1512         struct vsock_sock *vsk = vsock_sk(sk);
1513
1514         if (vsk->sent_request) {
1515                 vsk->sent_request = false;
1516                 vsk->ignore_connecting_rst = true;
1517
1518                 err = vmci_transport_send_conn_request(
1519                         sk, vmci_trans(vsk)->queue_pair_size);
1520                 if (err < 0)
1521                         err = vmci_transport_error_to_vsock_error(err);
1522                 else
1523                         err = 0;
1524
1525         }
1526
1527         return err;
1528 }
1529
1530 static int vmci_transport_recv_connected(struct sock *sk,
1531                                          struct vmci_transport_packet *pkt)
1532 {
1533         struct vsock_sock *vsk;
1534         bool pkt_processed = false;
1535
1536         /* In cases where we are closing the connection, it's sufficient to
1537          * mark the state change (and maybe error) and wake up any waiting
1538          * threads. Since this is a connected socket, it's owned by a user
1539          * process and will be cleaned up when the failure is passed back on
1540          * the current or next system call.  Our system call implementations
1541          * must therefore check for error and state changes on entry and when
1542          * being awoken.
1543          */
1544         switch (pkt->type) {
1545         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1546                 if (pkt->u.mode) {
1547                         vsk = vsock_sk(sk);
1548
1549                         vsk->peer_shutdown |= pkt->u.mode;
1550                         sk->sk_state_change(sk);
1551                 }
1552                 break;
1553
1554         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1555                 vsk = vsock_sk(sk);
1556                 /* It is possible that we sent our peer a message (e.g a
1557                  * WAITING_READ) right before we got notified that the peer had
1558                  * detached. If that happens then we can get a RST pkt back
1559                  * from our peer even though there is data available for us to
1560                  * read. In that case, don't shutdown the socket completely but
1561                  * instead allow the local client to finish reading data off
1562                  * the queuepair. Always treat a RST pkt in connected mode like
1563                  * a clean shutdown.
1564                  */
1565                 sock_set_flag(sk, SOCK_DONE);
1566                 vsk->peer_shutdown = SHUTDOWN_MASK;
1567                 if (vsock_stream_has_data(vsk) <= 0)
1568                         sk->sk_state = SS_DISCONNECTING;
1569
1570                 sk->sk_state_change(sk);
1571                 break;
1572
1573         default:
1574                 vsk = vsock_sk(sk);
1575                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1576                                 sk, pkt, false, NULL, NULL,
1577                                 &pkt_processed);
1578                 if (!pkt_processed)
1579                         return -EINVAL;
1580
1581                 break;
1582         }
1583
1584         return 0;
1585 }
1586
1587 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1588                                       struct vsock_sock *psk)
1589 {
1590         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1591         if (!vsk->trans)
1592                 return -ENOMEM;
1593
1594         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1595         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1596         vmci_trans(vsk)->qpair = NULL;
1597         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1598         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1599         vmci_trans(vsk)->notify_ops = NULL;
1600         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1601         vmci_trans(vsk)->sk = &vsk->sk;
1602         spin_lock_init(&vmci_trans(vsk)->lock);
1603         if (psk) {
1604                 vmci_trans(vsk)->queue_pair_size =
1605                         vmci_trans(psk)->queue_pair_size;
1606                 vmci_trans(vsk)->queue_pair_min_size =
1607                         vmci_trans(psk)->queue_pair_min_size;
1608                 vmci_trans(vsk)->queue_pair_max_size =
1609                         vmci_trans(psk)->queue_pair_max_size;
1610         } else {
1611                 vmci_trans(vsk)->queue_pair_size =
1612                         VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1613                 vmci_trans(vsk)->queue_pair_min_size =
1614                          VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1615                 vmci_trans(vsk)->queue_pair_max_size =
1616                         VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1617         }
1618
1619         return 0;
1620 }
1621
1622 static void vmci_transport_free_resources(struct list_head *transport_list)
1623 {
1624         while (!list_empty(transport_list)) {
1625                 struct vmci_transport *transport =
1626                     list_first_entry(transport_list, struct vmci_transport,
1627                                      elem);
1628                 list_del(&transport->elem);
1629
1630                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1631                         vmci_event_unsubscribe(transport->detach_sub_id);
1632                         transport->detach_sub_id = VMCI_INVALID_ID;
1633                 }
1634
1635                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1636                         vmci_qpair_detach(&transport->qpair);
1637                         transport->qp_handle = VMCI_INVALID_HANDLE;
1638                         transport->produce_size = 0;
1639                         transport->consume_size = 0;
1640                 }
1641
1642                 kfree(transport);
1643         }
1644 }
1645
1646 static void vmci_transport_cleanup(struct work_struct *work)
1647 {
1648         LIST_HEAD(pending);
1649
1650         spin_lock_bh(&vmci_transport_cleanup_lock);
1651         list_replace_init(&vmci_transport_cleanup_list, &pending);
1652         spin_unlock_bh(&vmci_transport_cleanup_lock);
1653         vmci_transport_free_resources(&pending);
1654 }
1655
1656 static void vmci_transport_destruct(struct vsock_sock *vsk)
1657 {
1658         /* transport can be NULL if we hit a failure at init() time */
1659         if (!vmci_trans(vsk))
1660                 return;
1661
1662         /* Ensure that the detach callback doesn't use the sk/vsk
1663          * we are about to destruct.
1664          */
1665         spin_lock_bh(&vmci_trans(vsk)->lock);
1666         vmci_trans(vsk)->sk = NULL;
1667         spin_unlock_bh(&vmci_trans(vsk)->lock);
1668
1669         if (vmci_trans(vsk)->notify_ops)
1670                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1671
1672         spin_lock_bh(&vmci_transport_cleanup_lock);
1673         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1674         spin_unlock_bh(&vmci_transport_cleanup_lock);
1675         schedule_work(&vmci_transport_cleanup_work);
1676
1677         vsk->trans = NULL;
1678 }
1679
1680 static void vmci_transport_release(struct vsock_sock *vsk)
1681 {
1682         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1683                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1684                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1685         }
1686 }
1687
1688 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1689                                      struct sockaddr_vm *addr)
1690 {
1691         u32 port;
1692         u32 flags;
1693         int err;
1694
1695         /* VMCI will select a resource ID for us if we provide
1696          * VMCI_INVALID_ID.
1697          */
1698         port = addr->svm_port == VMADDR_PORT_ANY ?
1699                         VMCI_INVALID_ID : addr->svm_port;
1700
1701         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1702                 return -EACCES;
1703
1704         flags = addr->svm_cid == VMADDR_CID_ANY ?
1705                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1706
1707         err = vmci_transport_datagram_create_hnd(port, flags,
1708                                                  vmci_transport_recv_dgram_cb,
1709                                                  &vsk->sk,
1710                                                  &vmci_trans(vsk)->dg_handle);
1711         if (err < VMCI_SUCCESS)
1712                 return vmci_transport_error_to_vsock_error(err);
1713         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1714                         vmci_trans(vsk)->dg_handle.resource);
1715
1716         return 0;
1717 }
1718
1719 static int vmci_transport_dgram_enqueue(
1720         struct vsock_sock *vsk,
1721         struct sockaddr_vm *remote_addr,
1722         struct msghdr *msg,
1723         size_t len)
1724 {
1725         int err;
1726         struct vmci_datagram *dg;
1727
1728         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1729                 return -EMSGSIZE;
1730
1731         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1732                 return -EPERM;
1733
1734         /* Allocate a buffer for the user's message and our packet header. */
1735         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1736         if (!dg)
1737                 return -ENOMEM;
1738
1739         memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1740
1741         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1742                                    remote_addr->svm_port);
1743         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1744                                    vsk->local_addr.svm_port);
1745         dg->payload_size = len;
1746
1747         err = vmci_datagram_send(dg);
1748         kfree(dg);
1749         if (err < 0)
1750                 return vmci_transport_error_to_vsock_error(err);
1751
1752         return err - sizeof(*dg);
1753 }
1754
1755 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1756                                         struct msghdr *msg, size_t len,
1757                                         int flags)
1758 {
1759         int err;
1760         int noblock;
1761         struct vmci_datagram *dg;
1762         size_t payload_len;
1763         struct sk_buff *skb;
1764
1765         noblock = flags & MSG_DONTWAIT;
1766
1767         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1768                 return -EOPNOTSUPP;
1769
1770         /* Retrieve the head sk_buff from the socket's receive queue. */
1771         err = 0;
1772         skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1773         if (err)
1774                 return err;
1775
1776         if (!skb)
1777                 return -EAGAIN;
1778
1779         dg = (struct vmci_datagram *)skb->data;
1780         if (!dg)
1781                 /* err is 0, meaning we read zero bytes. */
1782                 goto out;
1783
1784         payload_len = dg->payload_size;
1785         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1786         if (payload_len != skb->len - sizeof(*dg)) {
1787                 err = -EINVAL;
1788                 goto out;
1789         }
1790
1791         if (payload_len > len) {
1792                 payload_len = len;
1793                 msg->msg_flags |= MSG_TRUNC;
1794         }
1795
1796         /* Place the datagram payload in the user's iovec. */
1797         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1798         if (err)
1799                 goto out;
1800
1801         if (msg->msg_name) {
1802                 /* Provide the address of the sender. */
1803                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1804                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1805                 msg->msg_namelen = sizeof(*vm_addr);
1806         }
1807         err = payload_len;
1808
1809 out:
1810         skb_free_datagram(&vsk->sk, skb);
1811         return err;
1812 }
1813
1814 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1815 {
1816         if (cid == VMADDR_CID_HYPERVISOR) {
1817                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1818                  * state and are allowed.
1819                  */
1820                 return port == VMCI_UNITY_PBRPC_REGISTER;
1821         }
1822
1823         return true;
1824 }
1825
1826 static int vmci_transport_connect(struct vsock_sock *vsk)
1827 {
1828         int err;
1829         bool old_pkt_proto = false;
1830         struct sock *sk = &vsk->sk;
1831
1832         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1833                 old_pkt_proto) {
1834                 err = vmci_transport_send_conn_request(
1835                         sk, vmci_trans(vsk)->queue_pair_size);
1836                 if (err < 0) {
1837                         sk->sk_state = SS_UNCONNECTED;
1838                         return err;
1839                 }
1840         } else {
1841                 int supported_proto_versions =
1842                         vmci_transport_new_proto_supported_versions();
1843                 err = vmci_transport_send_conn_request2(
1844                                 sk, vmci_trans(vsk)->queue_pair_size,
1845                                 supported_proto_versions);
1846                 if (err < 0) {
1847                         sk->sk_state = SS_UNCONNECTED;
1848                         return err;
1849                 }
1850
1851                 vsk->sent_request = true;
1852         }
1853
1854         return err;
1855 }
1856
1857 static ssize_t vmci_transport_stream_dequeue(
1858         struct vsock_sock *vsk,
1859         struct msghdr *msg,
1860         size_t len,
1861         int flags)
1862 {
1863         if (flags & MSG_PEEK)
1864                 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1865         else
1866                 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1867 }
1868
1869 static ssize_t vmci_transport_stream_enqueue(
1870         struct vsock_sock *vsk,
1871         struct msghdr *msg,
1872         size_t len)
1873 {
1874         return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1875 }
1876
1877 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1878 {
1879         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1880 }
1881
1882 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1883 {
1884         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1885 }
1886
1887 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1888 {
1889         return vmci_trans(vsk)->consume_size;
1890 }
1891
1892 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1893 {
1894         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1895 }
1896
1897 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1898 {
1899         return vmci_trans(vsk)->queue_pair_size;
1900 }
1901
1902 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1903 {
1904         return vmci_trans(vsk)->queue_pair_min_size;
1905 }
1906
1907 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1908 {
1909         return vmci_trans(vsk)->queue_pair_max_size;
1910 }
1911
1912 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1913 {
1914         if (val < vmci_trans(vsk)->queue_pair_min_size)
1915                 vmci_trans(vsk)->queue_pair_min_size = val;
1916         if (val > vmci_trans(vsk)->queue_pair_max_size)
1917                 vmci_trans(vsk)->queue_pair_max_size = val;
1918         vmci_trans(vsk)->queue_pair_size = val;
1919 }
1920
1921 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1922                                                u64 val)
1923 {
1924         if (val > vmci_trans(vsk)->queue_pair_size)
1925                 vmci_trans(vsk)->queue_pair_size = val;
1926         vmci_trans(vsk)->queue_pair_min_size = val;
1927 }
1928
1929 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1930                                                u64 val)
1931 {
1932         if (val < vmci_trans(vsk)->queue_pair_size)
1933                 vmci_trans(vsk)->queue_pair_size = val;
1934         vmci_trans(vsk)->queue_pair_max_size = val;
1935 }
1936
1937 static int vmci_transport_notify_poll_in(
1938         struct vsock_sock *vsk,
1939         size_t target,
1940         bool *data_ready_now)
1941 {
1942         return vmci_trans(vsk)->notify_ops->poll_in(
1943                         &vsk->sk, target, data_ready_now);
1944 }
1945
1946 static int vmci_transport_notify_poll_out(
1947         struct vsock_sock *vsk,
1948         size_t target,
1949         bool *space_available_now)
1950 {
1951         return vmci_trans(vsk)->notify_ops->poll_out(
1952                         &vsk->sk, target, space_available_now);
1953 }
1954
1955 static int vmci_transport_notify_recv_init(
1956         struct vsock_sock *vsk,
1957         size_t target,
1958         struct vsock_transport_recv_notify_data *data)
1959 {
1960         return vmci_trans(vsk)->notify_ops->recv_init(
1961                         &vsk->sk, target,
1962                         (struct vmci_transport_recv_notify_data *)data);
1963 }
1964
1965 static int vmci_transport_notify_recv_pre_block(
1966         struct vsock_sock *vsk,
1967         size_t target,
1968         struct vsock_transport_recv_notify_data *data)
1969 {
1970         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1971                         &vsk->sk, target,
1972                         (struct vmci_transport_recv_notify_data *)data);
1973 }
1974
1975 static int vmci_transport_notify_recv_pre_dequeue(
1976         struct vsock_sock *vsk,
1977         size_t target,
1978         struct vsock_transport_recv_notify_data *data)
1979 {
1980         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1981                         &vsk->sk, target,
1982                         (struct vmci_transport_recv_notify_data *)data);
1983 }
1984
1985 static int vmci_transport_notify_recv_post_dequeue(
1986         struct vsock_sock *vsk,
1987         size_t target,
1988         ssize_t copied,
1989         bool data_read,
1990         struct vsock_transport_recv_notify_data *data)
1991 {
1992         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1993                         &vsk->sk, target, copied, data_read,
1994                         (struct vmci_transport_recv_notify_data *)data);
1995 }
1996
1997 static int vmci_transport_notify_send_init(
1998         struct vsock_sock *vsk,
1999         struct vsock_transport_send_notify_data *data)
2000 {
2001         return vmci_trans(vsk)->notify_ops->send_init(
2002                         &vsk->sk,
2003                         (struct vmci_transport_send_notify_data *)data);
2004 }
2005
2006 static int vmci_transport_notify_send_pre_block(
2007         struct vsock_sock *vsk,
2008         struct vsock_transport_send_notify_data *data)
2009 {
2010         return vmci_trans(vsk)->notify_ops->send_pre_block(
2011                         &vsk->sk,
2012                         (struct vmci_transport_send_notify_data *)data);
2013 }
2014
2015 static int vmci_transport_notify_send_pre_enqueue(
2016         struct vsock_sock *vsk,
2017         struct vsock_transport_send_notify_data *data)
2018 {
2019         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2020                         &vsk->sk,
2021                         (struct vmci_transport_send_notify_data *)data);
2022 }
2023
2024 static int vmci_transport_notify_send_post_enqueue(
2025         struct vsock_sock *vsk,
2026         ssize_t written,
2027         struct vsock_transport_send_notify_data *data)
2028 {
2029         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2030                         &vsk->sk, written,
2031                         (struct vmci_transport_send_notify_data *)data);
2032 }
2033
2034 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2035 {
2036         if (PROTOCOL_OVERRIDE != -1) {
2037                 if (PROTOCOL_OVERRIDE == 0)
2038                         *old_pkt_proto = true;
2039                 else
2040                         *old_pkt_proto = false;
2041
2042                 pr_info("Proto override in use\n");
2043                 return true;
2044         }
2045
2046         return false;
2047 }
2048
2049 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2050                                                   u16 *proto,
2051                                                   bool old_pkt_proto)
2052 {
2053         struct vsock_sock *vsk = vsock_sk(sk);
2054
2055         if (old_pkt_proto) {
2056                 if (*proto != VSOCK_PROTO_INVALID) {
2057                         pr_err("Can't set both an old and new protocol\n");
2058                         return false;
2059                 }
2060                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2061                 goto exit;
2062         }
2063
2064         switch (*proto) {
2065         case VSOCK_PROTO_PKT_ON_NOTIFY:
2066                 vmci_trans(vsk)->notify_ops =
2067                         &vmci_transport_notify_pkt_q_state_ops;
2068                 break;
2069         default:
2070                 pr_err("Unknown notify protocol version\n");
2071                 return false;
2072         }
2073
2074 exit:
2075         vmci_trans(vsk)->notify_ops->socket_init(sk);
2076         return true;
2077 }
2078
2079 static u16 vmci_transport_new_proto_supported_versions(void)
2080 {
2081         if (PROTOCOL_OVERRIDE != -1)
2082                 return PROTOCOL_OVERRIDE;
2083
2084         return VSOCK_PROTO_ALL_SUPPORTED;
2085 }
2086
2087 static u32 vmci_transport_get_local_cid(void)
2088 {
2089         return vmci_get_context_id();
2090 }
2091
2092 static struct vsock_transport vmci_transport = {
2093         .init = vmci_transport_socket_init,
2094         .destruct = vmci_transport_destruct,
2095         .release = vmci_transport_release,
2096         .connect = vmci_transport_connect,
2097         .dgram_bind = vmci_transport_dgram_bind,
2098         .dgram_dequeue = vmci_transport_dgram_dequeue,
2099         .dgram_enqueue = vmci_transport_dgram_enqueue,
2100         .dgram_allow = vmci_transport_dgram_allow,
2101         .stream_dequeue = vmci_transport_stream_dequeue,
2102         .stream_enqueue = vmci_transport_stream_enqueue,
2103         .stream_has_data = vmci_transport_stream_has_data,
2104         .stream_has_space = vmci_transport_stream_has_space,
2105         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2106         .stream_is_active = vmci_transport_stream_is_active,
2107         .stream_allow = vmci_transport_stream_allow,
2108         .notify_poll_in = vmci_transport_notify_poll_in,
2109         .notify_poll_out = vmci_transport_notify_poll_out,
2110         .notify_recv_init = vmci_transport_notify_recv_init,
2111         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2112         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2113         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2114         .notify_send_init = vmci_transport_notify_send_init,
2115         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2116         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2117         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2118         .shutdown = vmci_transport_shutdown,
2119         .set_buffer_size = vmci_transport_set_buffer_size,
2120         .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2121         .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2122         .get_buffer_size = vmci_transport_get_buffer_size,
2123         .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2124         .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2125         .get_local_cid = vmci_transport_get_local_cid,
2126 };
2127
2128 static int __init vmci_transport_init(void)
2129 {
2130         int err;
2131
2132         /* Create the datagram handle that we will use to send and receive all
2133          * VSocket control messages for this context.
2134          */
2135         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2136                                                  VMCI_FLAG_ANYCID_DG_HND,
2137                                                  vmci_transport_recv_stream_cb,
2138                                                  NULL,
2139                                                  &vmci_transport_stream_handle);
2140         if (err < VMCI_SUCCESS) {
2141                 pr_err("Unable to create datagram handle. (%d)\n", err);
2142                 return vmci_transport_error_to_vsock_error(err);
2143         }
2144
2145         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2146                                    vmci_transport_qp_resumed_cb,
2147                                    NULL, &vmci_transport_qp_resumed_sub_id);
2148         if (err < VMCI_SUCCESS) {
2149                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2150                 err = vmci_transport_error_to_vsock_error(err);
2151                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2152                 goto err_destroy_stream_handle;
2153         }
2154
2155         err = vsock_core_init(&vmci_transport);
2156         if (err < 0)
2157                 goto err_unsubscribe;
2158
2159         return 0;
2160
2161 err_unsubscribe:
2162         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2163 err_destroy_stream_handle:
2164         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2165         return err;
2166 }
2167 module_init(vmci_transport_init);
2168
2169 static void __exit vmci_transport_exit(void)
2170 {
2171         cancel_work_sync(&vmci_transport_cleanup_work);
2172         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2173
2174         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2175                 if (vmci_datagram_destroy_handle(
2176                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2177                         pr_err("Couldn't destroy datagram handle\n");
2178                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2179         }
2180
2181         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2182                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2183                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2184         }
2185
2186         vsock_core_exit();
2187 }
2188 module_exit(vmci_transport_exit);
2189
2190 MODULE_AUTHOR("VMware, Inc.");
2191 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2192 MODULE_VERSION("1.0.3.0-k");
2193 MODULE_LICENSE("GPL v2");
2194 MODULE_ALIAS("vmware_vsock");
2195 MODULE_ALIAS_NETPROTO(PF_VSOCK);