GNU Linux-libre 5.19-rc6-gnu
[releases.git] / net / vmw_vsock / af_vsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/init.h>
93 #include <linux/io.h>
94 #include <linux/kernel.h>
95 #include <linux/sched/signal.h>
96 #include <linux/kmod.h>
97 #include <linux/list.h>
98 #include <linux/miscdevice.h>
99 #include <linux/module.h>
100 #include <linux/mutex.h>
101 #include <linux/net.h>
102 #include <linux/poll.h>
103 #include <linux/random.h>
104 #include <linux/skbuff.h>
105 #include <linux/smp.h>
106 #include <linux/socket.h>
107 #include <linux/stddef.h>
108 #include <linux/unistd.h>
109 #include <linux/wait.h>
110 #include <linux/workqueue.h>
111 #include <net/sock.h>
112 #include <net/af_vsock.h>
113
114 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
115 static void vsock_sk_destruct(struct sock *sk);
116 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
117
118 /* Protocol family. */
119 static struct proto vsock_proto = {
120         .name = "AF_VSOCK",
121         .owner = THIS_MODULE,
122         .obj_size = sizeof(struct vsock_sock),
123 };
124
125 /* The default peer timeout indicates how long we will wait for a peer response
126  * to a control message.
127  */
128 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129
130 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
132 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
133
134 /* Transport used for host->guest communication */
135 static const struct vsock_transport *transport_h2g;
136 /* Transport used for guest->host communication */
137 static const struct vsock_transport *transport_g2h;
138 /* Transport used for DGRAM communication */
139 static const struct vsock_transport *transport_dgram;
140 /* Transport used for local communication */
141 static const struct vsock_transport *transport_local;
142 static DEFINE_MUTEX(vsock_register_mutex);
143
144 /**** UTILS ****/
145
146 /* Each bound VSocket is stored in the bind hash table and each connected
147  * VSocket is stored in the connected hash table.
148  *
149  * Unbound sockets are all put on the same list attached to the end of the hash
150  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
151  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
152  * represents the list that addr hashes to).
153  *
154  * Specifically, we initialize the vsock_bind_table array to a size of
155  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
156  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
157  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
158  * mods with VSOCK_HASH_SIZE to ensure this.
159  */
160 #define MAX_PORT_RETRIES        24
161
162 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
163 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
164 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
165
166 /* XXX This can probably be implemented in a better way. */
167 #define VSOCK_CONN_HASH(src, dst)                               \
168         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
169 #define vsock_connected_sockets(src, dst)               \
170         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
171 #define vsock_connected_sockets_vsk(vsk)                                \
172         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
173
174 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
175 EXPORT_SYMBOL_GPL(vsock_bind_table);
176 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
177 EXPORT_SYMBOL_GPL(vsock_connected_table);
178 DEFINE_SPINLOCK(vsock_table_lock);
179 EXPORT_SYMBOL_GPL(vsock_table_lock);
180
181 /* Autobind this socket to the local address if necessary. */
182 static int vsock_auto_bind(struct vsock_sock *vsk)
183 {
184         struct sock *sk = sk_vsock(vsk);
185         struct sockaddr_vm local_addr;
186
187         if (vsock_addr_bound(&vsk->local_addr))
188                 return 0;
189         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
190         return __vsock_bind(sk, &local_addr);
191 }
192
193 static void vsock_init_tables(void)
194 {
195         int i;
196
197         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
198                 INIT_LIST_HEAD(&vsock_bind_table[i]);
199
200         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
201                 INIT_LIST_HEAD(&vsock_connected_table[i]);
202 }
203
204 static void __vsock_insert_bound(struct list_head *list,
205                                  struct vsock_sock *vsk)
206 {
207         sock_hold(&vsk->sk);
208         list_add(&vsk->bound_table, list);
209 }
210
211 static void __vsock_insert_connected(struct list_head *list,
212                                      struct vsock_sock *vsk)
213 {
214         sock_hold(&vsk->sk);
215         list_add(&vsk->connected_table, list);
216 }
217
218 static void __vsock_remove_bound(struct vsock_sock *vsk)
219 {
220         list_del_init(&vsk->bound_table);
221         sock_put(&vsk->sk);
222 }
223
224 static void __vsock_remove_connected(struct vsock_sock *vsk)
225 {
226         list_del_init(&vsk->connected_table);
227         sock_put(&vsk->sk);
228 }
229
230 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
231 {
232         struct vsock_sock *vsk;
233
234         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
235                 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
236                         return sk_vsock(vsk);
237
238                 if (addr->svm_port == vsk->local_addr.svm_port &&
239                     (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
240                      addr->svm_cid == VMADDR_CID_ANY))
241                         return sk_vsock(vsk);
242         }
243
244         return NULL;
245 }
246
247 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
248                                                   struct sockaddr_vm *dst)
249 {
250         struct vsock_sock *vsk;
251
252         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
253                             connected_table) {
254                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
255                     dst->svm_port == vsk->local_addr.svm_port) {
256                         return sk_vsock(vsk);
257                 }
258         }
259
260         return NULL;
261 }
262
263 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 {
265         spin_lock_bh(&vsock_table_lock);
266         __vsock_insert_bound(vsock_unbound_sockets, vsk);
267         spin_unlock_bh(&vsock_table_lock);
268 }
269
270 void vsock_insert_connected(struct vsock_sock *vsk)
271 {
272         struct list_head *list = vsock_connected_sockets(
273                 &vsk->remote_addr, &vsk->local_addr);
274
275         spin_lock_bh(&vsock_table_lock);
276         __vsock_insert_connected(list, vsk);
277         spin_unlock_bh(&vsock_table_lock);
278 }
279 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280
281 void vsock_remove_bound(struct vsock_sock *vsk)
282 {
283         spin_lock_bh(&vsock_table_lock);
284         if (__vsock_in_bound_table(vsk))
285                 __vsock_remove_bound(vsk);
286         spin_unlock_bh(&vsock_table_lock);
287 }
288 EXPORT_SYMBOL_GPL(vsock_remove_bound);
289
290 void vsock_remove_connected(struct vsock_sock *vsk)
291 {
292         spin_lock_bh(&vsock_table_lock);
293         if (__vsock_in_connected_table(vsk))
294                 __vsock_remove_connected(vsk);
295         spin_unlock_bh(&vsock_table_lock);
296 }
297 EXPORT_SYMBOL_GPL(vsock_remove_connected);
298
299 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
300 {
301         struct sock *sk;
302
303         spin_lock_bh(&vsock_table_lock);
304         sk = __vsock_find_bound_socket(addr);
305         if (sk)
306                 sock_hold(sk);
307
308         spin_unlock_bh(&vsock_table_lock);
309
310         return sk;
311 }
312 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
313
314 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
315                                          struct sockaddr_vm *dst)
316 {
317         struct sock *sk;
318
319         spin_lock_bh(&vsock_table_lock);
320         sk = __vsock_find_connected_socket(src, dst);
321         if (sk)
322                 sock_hold(sk);
323
324         spin_unlock_bh(&vsock_table_lock);
325
326         return sk;
327 }
328 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
329
330 void vsock_remove_sock(struct vsock_sock *vsk)
331 {
332         vsock_remove_bound(vsk);
333         vsock_remove_connected(vsk);
334 }
335 EXPORT_SYMBOL_GPL(vsock_remove_sock);
336
337 void vsock_for_each_connected_socket(struct vsock_transport *transport,
338                                      void (*fn)(struct sock *sk))
339 {
340         int i;
341
342         spin_lock_bh(&vsock_table_lock);
343
344         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
345                 struct vsock_sock *vsk;
346                 list_for_each_entry(vsk, &vsock_connected_table[i],
347                                     connected_table) {
348                         if (vsk->transport != transport)
349                                 continue;
350
351                         fn(sk_vsock(vsk));
352                 }
353         }
354
355         spin_unlock_bh(&vsock_table_lock);
356 }
357 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
358
359 void vsock_add_pending(struct sock *listener, struct sock *pending)
360 {
361         struct vsock_sock *vlistener;
362         struct vsock_sock *vpending;
363
364         vlistener = vsock_sk(listener);
365         vpending = vsock_sk(pending);
366
367         sock_hold(pending);
368         sock_hold(listener);
369         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
370 }
371 EXPORT_SYMBOL_GPL(vsock_add_pending);
372
373 void vsock_remove_pending(struct sock *listener, struct sock *pending)
374 {
375         struct vsock_sock *vpending = vsock_sk(pending);
376
377         list_del_init(&vpending->pending_links);
378         sock_put(listener);
379         sock_put(pending);
380 }
381 EXPORT_SYMBOL_GPL(vsock_remove_pending);
382
383 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
384 {
385         struct vsock_sock *vlistener;
386         struct vsock_sock *vconnected;
387
388         vlistener = vsock_sk(listener);
389         vconnected = vsock_sk(connected);
390
391         sock_hold(connected);
392         sock_hold(listener);
393         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
394 }
395 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
396
397 static bool vsock_use_local_transport(unsigned int remote_cid)
398 {
399         if (!transport_local)
400                 return false;
401
402         if (remote_cid == VMADDR_CID_LOCAL)
403                 return true;
404
405         if (transport_g2h) {
406                 return remote_cid == transport_g2h->get_local_cid();
407         } else {
408                 return remote_cid == VMADDR_CID_HOST;
409         }
410 }
411
412 static void vsock_deassign_transport(struct vsock_sock *vsk)
413 {
414         if (!vsk->transport)
415                 return;
416
417         vsk->transport->destruct(vsk);
418         module_put(vsk->transport->module);
419         vsk->transport = NULL;
420 }
421
422 /* Assign a transport to a socket and call the .init transport callback.
423  *
424  * Note: for connection oriented socket this must be called when vsk->remote_addr
425  * is set (e.g. during the connect() or when a connection request on a listener
426  * socket is received).
427  * The vsk->remote_addr is used to decide which transport to use:
428  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
429  *    g2h is not loaded, will use local transport;
430  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
431  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
432  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
433  */
434 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
435 {
436         const struct vsock_transport *new_transport;
437         struct sock *sk = sk_vsock(vsk);
438         unsigned int remote_cid = vsk->remote_addr.svm_cid;
439         __u8 remote_flags;
440         int ret;
441
442         /* If the packet is coming with the source and destination CIDs higher
443          * than VMADDR_CID_HOST, then a vsock channel where all the packets are
444          * forwarded to the host should be established. Then the host will
445          * need to forward the packets to the guest.
446          *
447          * The flag is set on the (listen) receive path (psk is not NULL). On
448          * the connect path the flag can be set by the user space application.
449          */
450         if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
451             vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
452                 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
453
454         remote_flags = vsk->remote_addr.svm_flags;
455
456         switch (sk->sk_type) {
457         case SOCK_DGRAM:
458                 new_transport = transport_dgram;
459                 break;
460         case SOCK_STREAM:
461         case SOCK_SEQPACKET:
462                 if (vsock_use_local_transport(remote_cid))
463                         new_transport = transport_local;
464                 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
465                          (remote_flags & VMADDR_FLAG_TO_HOST))
466                         new_transport = transport_g2h;
467                 else
468                         new_transport = transport_h2g;
469                 break;
470         default:
471                 return -ESOCKTNOSUPPORT;
472         }
473
474         if (vsk->transport) {
475                 if (vsk->transport == new_transport)
476                         return 0;
477
478                 /* transport->release() must be called with sock lock acquired.
479                  * This path can only be taken during vsock_connect(), where we
480                  * have already held the sock lock. In the other cases, this
481                  * function is called on a new socket which is not assigned to
482                  * any transport.
483                  */
484                 vsk->transport->release(vsk);
485                 vsock_deassign_transport(vsk);
486         }
487
488         /* We increase the module refcnt to prevent the transport unloading
489          * while there are open sockets assigned to it.
490          */
491         if (!new_transport || !try_module_get(new_transport->module))
492                 return -ENODEV;
493
494         if (sk->sk_type == SOCK_SEQPACKET) {
495                 if (!new_transport->seqpacket_allow ||
496                     !new_transport->seqpacket_allow(remote_cid)) {
497                         module_put(new_transport->module);
498                         return -ESOCKTNOSUPPORT;
499                 }
500         }
501
502         ret = new_transport->init(vsk, psk);
503         if (ret) {
504                 module_put(new_transport->module);
505                 return ret;
506         }
507
508         vsk->transport = new_transport;
509
510         return 0;
511 }
512 EXPORT_SYMBOL_GPL(vsock_assign_transport);
513
514 bool vsock_find_cid(unsigned int cid)
515 {
516         if (transport_g2h && cid == transport_g2h->get_local_cid())
517                 return true;
518
519         if (transport_h2g && cid == VMADDR_CID_HOST)
520                 return true;
521
522         if (transport_local && cid == VMADDR_CID_LOCAL)
523                 return true;
524
525         return false;
526 }
527 EXPORT_SYMBOL_GPL(vsock_find_cid);
528
529 static struct sock *vsock_dequeue_accept(struct sock *listener)
530 {
531         struct vsock_sock *vlistener;
532         struct vsock_sock *vconnected;
533
534         vlistener = vsock_sk(listener);
535
536         if (list_empty(&vlistener->accept_queue))
537                 return NULL;
538
539         vconnected = list_entry(vlistener->accept_queue.next,
540                                 struct vsock_sock, accept_queue);
541
542         list_del_init(&vconnected->accept_queue);
543         sock_put(listener);
544         /* The caller will need a reference on the connected socket so we let
545          * it call sock_put().
546          */
547
548         return sk_vsock(vconnected);
549 }
550
551 static bool vsock_is_accept_queue_empty(struct sock *sk)
552 {
553         struct vsock_sock *vsk = vsock_sk(sk);
554         return list_empty(&vsk->accept_queue);
555 }
556
557 static bool vsock_is_pending(struct sock *sk)
558 {
559         struct vsock_sock *vsk = vsock_sk(sk);
560         return !list_empty(&vsk->pending_links);
561 }
562
563 static int vsock_send_shutdown(struct sock *sk, int mode)
564 {
565         struct vsock_sock *vsk = vsock_sk(sk);
566
567         if (!vsk->transport)
568                 return -ENODEV;
569
570         return vsk->transport->shutdown(vsk, mode);
571 }
572
573 static void vsock_pending_work(struct work_struct *work)
574 {
575         struct sock *sk;
576         struct sock *listener;
577         struct vsock_sock *vsk;
578         bool cleanup;
579
580         vsk = container_of(work, struct vsock_sock, pending_work.work);
581         sk = sk_vsock(vsk);
582         listener = vsk->listener;
583         cleanup = true;
584
585         lock_sock(listener);
586         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
587
588         if (vsock_is_pending(sk)) {
589                 vsock_remove_pending(listener, sk);
590
591                 sk_acceptq_removed(listener);
592         } else if (!vsk->rejected) {
593                 /* We are not on the pending list and accept() did not reject
594                  * us, so we must have been accepted by our user process.  We
595                  * just need to drop our references to the sockets and be on
596                  * our way.
597                  */
598                 cleanup = false;
599                 goto out;
600         }
601
602         /* We need to remove ourself from the global connected sockets list so
603          * incoming packets can't find this socket, and to reduce the reference
604          * count.
605          */
606         vsock_remove_connected(vsk);
607
608         sk->sk_state = TCP_CLOSE;
609
610 out:
611         release_sock(sk);
612         release_sock(listener);
613         if (cleanup)
614                 sock_put(sk);
615
616         sock_put(sk);
617         sock_put(listener);
618 }
619
620 /**** SOCKET OPERATIONS ****/
621
622 static int __vsock_bind_connectible(struct vsock_sock *vsk,
623                                     struct sockaddr_vm *addr)
624 {
625         static u32 port;
626         struct sockaddr_vm new_addr;
627
628         if (!port)
629                 port = LAST_RESERVED_PORT + 1 +
630                         prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
631
632         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
633
634         if (addr->svm_port == VMADDR_PORT_ANY) {
635                 bool found = false;
636                 unsigned int i;
637
638                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
639                         if (port <= LAST_RESERVED_PORT)
640                                 port = LAST_RESERVED_PORT + 1;
641
642                         new_addr.svm_port = port++;
643
644                         if (!__vsock_find_bound_socket(&new_addr)) {
645                                 found = true;
646                                 break;
647                         }
648                 }
649
650                 if (!found)
651                         return -EADDRNOTAVAIL;
652         } else {
653                 /* If port is in reserved range, ensure caller
654                  * has necessary privileges.
655                  */
656                 if (addr->svm_port <= LAST_RESERVED_PORT &&
657                     !capable(CAP_NET_BIND_SERVICE)) {
658                         return -EACCES;
659                 }
660
661                 if (__vsock_find_bound_socket(&new_addr))
662                         return -EADDRINUSE;
663         }
664
665         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
666
667         /* Remove connection oriented sockets from the unbound list and add them
668          * to the hash table for easy lookup by its address.  The unbound list
669          * is simply an extra entry at the end of the hash table, a trick used
670          * by AF_UNIX.
671          */
672         __vsock_remove_bound(vsk);
673         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
674
675         return 0;
676 }
677
678 static int __vsock_bind_dgram(struct vsock_sock *vsk,
679                               struct sockaddr_vm *addr)
680 {
681         return vsk->transport->dgram_bind(vsk, addr);
682 }
683
684 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
685 {
686         struct vsock_sock *vsk = vsock_sk(sk);
687         int retval;
688
689         /* First ensure this socket isn't already bound. */
690         if (vsock_addr_bound(&vsk->local_addr))
691                 return -EINVAL;
692
693         /* Now bind to the provided address or select appropriate values if
694          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
695          * like AF_INET prevents binding to a non-local IP address (in most
696          * cases), we only allow binding to a local CID.
697          */
698         if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
699                 return -EADDRNOTAVAIL;
700
701         switch (sk->sk_socket->type) {
702         case SOCK_STREAM:
703         case SOCK_SEQPACKET:
704                 spin_lock_bh(&vsock_table_lock);
705                 retval = __vsock_bind_connectible(vsk, addr);
706                 spin_unlock_bh(&vsock_table_lock);
707                 break;
708
709         case SOCK_DGRAM:
710                 retval = __vsock_bind_dgram(vsk, addr);
711                 break;
712
713         default:
714                 retval = -EINVAL;
715                 break;
716         }
717
718         return retval;
719 }
720
721 static void vsock_connect_timeout(struct work_struct *work);
722
723 static struct sock *__vsock_create(struct net *net,
724                                    struct socket *sock,
725                                    struct sock *parent,
726                                    gfp_t priority,
727                                    unsigned short type,
728                                    int kern)
729 {
730         struct sock *sk;
731         struct vsock_sock *psk;
732         struct vsock_sock *vsk;
733
734         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
735         if (!sk)
736                 return NULL;
737
738         sock_init_data(sock, sk);
739
740         /* sk->sk_type is normally set in sock_init_data, but only if sock is
741          * non-NULL. We make sure that our sockets always have a type by
742          * setting it here if needed.
743          */
744         if (!sock)
745                 sk->sk_type = type;
746
747         vsk = vsock_sk(sk);
748         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
749         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
750
751         sk->sk_destruct = vsock_sk_destruct;
752         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
753         sock_reset_flag(sk, SOCK_DONE);
754
755         INIT_LIST_HEAD(&vsk->bound_table);
756         INIT_LIST_HEAD(&vsk->connected_table);
757         vsk->listener = NULL;
758         INIT_LIST_HEAD(&vsk->pending_links);
759         INIT_LIST_HEAD(&vsk->accept_queue);
760         vsk->rejected = false;
761         vsk->sent_request = false;
762         vsk->ignore_connecting_rst = false;
763         vsk->peer_shutdown = 0;
764         INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
765         INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
766
767         psk = parent ? vsock_sk(parent) : NULL;
768         if (parent) {
769                 vsk->trusted = psk->trusted;
770                 vsk->owner = get_cred(psk->owner);
771                 vsk->connect_timeout = psk->connect_timeout;
772                 vsk->buffer_size = psk->buffer_size;
773                 vsk->buffer_min_size = psk->buffer_min_size;
774                 vsk->buffer_max_size = psk->buffer_max_size;
775                 security_sk_clone(parent, sk);
776         } else {
777                 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
778                 vsk->owner = get_current_cred();
779                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
780                 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
781                 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
782                 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
783         }
784
785         return sk;
786 }
787
788 static bool sock_type_connectible(u16 type)
789 {
790         return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
791 }
792
793 static void __vsock_release(struct sock *sk, int level)
794 {
795         if (sk) {
796                 struct sock *pending;
797                 struct vsock_sock *vsk;
798
799                 vsk = vsock_sk(sk);
800                 pending = NULL; /* Compiler warning. */
801
802                 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
803                  * version to avoid the warning "possible recursive locking
804                  * detected". When "level" is 0, lock_sock_nested(sk, level)
805                  * is the same as lock_sock(sk).
806                  */
807                 lock_sock_nested(sk, level);
808
809                 if (vsk->transport)
810                         vsk->transport->release(vsk);
811                 else if (sock_type_connectible(sk->sk_type))
812                         vsock_remove_sock(vsk);
813
814                 sock_orphan(sk);
815                 sk->sk_shutdown = SHUTDOWN_MASK;
816
817                 skb_queue_purge(&sk->sk_receive_queue);
818
819                 /* Clean up any sockets that never were accepted. */
820                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
821                         __vsock_release(pending, SINGLE_DEPTH_NESTING);
822                         sock_put(pending);
823                 }
824
825                 release_sock(sk);
826                 sock_put(sk);
827         }
828 }
829
830 static void vsock_sk_destruct(struct sock *sk)
831 {
832         struct vsock_sock *vsk = vsock_sk(sk);
833
834         vsock_deassign_transport(vsk);
835
836         /* When clearing these addresses, there's no need to set the family and
837          * possibly register the address family with the kernel.
838          */
839         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
840         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
841
842         put_cred(vsk->owner);
843 }
844
845 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
846 {
847         int err;
848
849         err = sock_queue_rcv_skb(sk, skb);
850         if (err)
851                 kfree_skb(skb);
852
853         return err;
854 }
855
856 struct sock *vsock_create_connected(struct sock *parent)
857 {
858         return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
859                               parent->sk_type, 0);
860 }
861 EXPORT_SYMBOL_GPL(vsock_create_connected);
862
863 s64 vsock_stream_has_data(struct vsock_sock *vsk)
864 {
865         return vsk->transport->stream_has_data(vsk);
866 }
867 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
868
869 static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
870 {
871         struct sock *sk = sk_vsock(vsk);
872
873         if (sk->sk_type == SOCK_SEQPACKET)
874                 return vsk->transport->seqpacket_has_data(vsk);
875         else
876                 return vsock_stream_has_data(vsk);
877 }
878
879 s64 vsock_stream_has_space(struct vsock_sock *vsk)
880 {
881         return vsk->transport->stream_has_space(vsk);
882 }
883 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
884
885 static int vsock_release(struct socket *sock)
886 {
887         __vsock_release(sock->sk, 0);
888         sock->sk = NULL;
889         sock->state = SS_FREE;
890
891         return 0;
892 }
893
894 static int
895 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
896 {
897         int err;
898         struct sock *sk;
899         struct sockaddr_vm *vm_addr;
900
901         sk = sock->sk;
902
903         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
904                 return -EINVAL;
905
906         lock_sock(sk);
907         err = __vsock_bind(sk, vm_addr);
908         release_sock(sk);
909
910         return err;
911 }
912
913 static int vsock_getname(struct socket *sock,
914                          struct sockaddr *addr, int peer)
915 {
916         int err;
917         struct sock *sk;
918         struct vsock_sock *vsk;
919         struct sockaddr_vm *vm_addr;
920
921         sk = sock->sk;
922         vsk = vsock_sk(sk);
923         err = 0;
924
925         lock_sock(sk);
926
927         if (peer) {
928                 if (sock->state != SS_CONNECTED) {
929                         err = -ENOTCONN;
930                         goto out;
931                 }
932                 vm_addr = &vsk->remote_addr;
933         } else {
934                 vm_addr = &vsk->local_addr;
935         }
936
937         if (!vm_addr) {
938                 err = -EINVAL;
939                 goto out;
940         }
941
942         /* sys_getsockname() and sys_getpeername() pass us a
943          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
944          * that macro is defined in socket.c instead of .h, so we hardcode its
945          * value here.
946          */
947         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
948         memcpy(addr, vm_addr, sizeof(*vm_addr));
949         err = sizeof(*vm_addr);
950
951 out:
952         release_sock(sk);
953         return err;
954 }
955
956 static int vsock_shutdown(struct socket *sock, int mode)
957 {
958         int err;
959         struct sock *sk;
960
961         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
962          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
963          * here like the other address families do.  Note also that the
964          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
965          * which is what we want.
966          */
967         mode++;
968
969         if ((mode & ~SHUTDOWN_MASK) || !mode)
970                 return -EINVAL;
971
972         /* If this is a connection oriented socket and it is not connected then
973          * bail out immediately.  If it is a DGRAM socket then we must first
974          * kick the socket so that it wakes up from any sleeping calls, for
975          * example recv(), and then afterwards return the error.
976          */
977
978         sk = sock->sk;
979
980         lock_sock(sk);
981         if (sock->state == SS_UNCONNECTED) {
982                 err = -ENOTCONN;
983                 if (sock_type_connectible(sk->sk_type))
984                         goto out;
985         } else {
986                 sock->state = SS_DISCONNECTING;
987                 err = 0;
988         }
989
990         /* Receive and send shutdowns are treated alike. */
991         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
992         if (mode) {
993                 sk->sk_shutdown |= mode;
994                 sk->sk_state_change(sk);
995
996                 if (sock_type_connectible(sk->sk_type)) {
997                         sock_reset_flag(sk, SOCK_DONE);
998                         vsock_send_shutdown(sk, mode);
999                 }
1000         }
1001
1002 out:
1003         release_sock(sk);
1004         return err;
1005 }
1006
1007 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1008                                poll_table *wait)
1009 {
1010         struct sock *sk;
1011         __poll_t mask;
1012         struct vsock_sock *vsk;
1013
1014         sk = sock->sk;
1015         vsk = vsock_sk(sk);
1016
1017         poll_wait(file, sk_sleep(sk), wait);
1018         mask = 0;
1019
1020         if (sk->sk_err)
1021                 /* Signify that there has been an error on this socket. */
1022                 mask |= EPOLLERR;
1023
1024         /* INET sockets treat local write shutdown and peer write shutdown as a
1025          * case of EPOLLHUP set.
1026          */
1027         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1028             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1029              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1030                 mask |= EPOLLHUP;
1031         }
1032
1033         if (sk->sk_shutdown & RCV_SHUTDOWN ||
1034             vsk->peer_shutdown & SEND_SHUTDOWN) {
1035                 mask |= EPOLLRDHUP;
1036         }
1037
1038         if (sock->type == SOCK_DGRAM) {
1039                 /* For datagram sockets we can read if there is something in
1040                  * the queue and write as long as the socket isn't shutdown for
1041                  * sending.
1042                  */
1043                 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1044                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
1045                         mask |= EPOLLIN | EPOLLRDNORM;
1046                 }
1047
1048                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1049                         mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1050
1051         } else if (sock_type_connectible(sk->sk_type)) {
1052                 const struct vsock_transport *transport;
1053
1054                 lock_sock(sk);
1055
1056                 transport = vsk->transport;
1057
1058                 /* Listening sockets that have connections in their accept
1059                  * queue can be read.
1060                  */
1061                 if (sk->sk_state == TCP_LISTEN
1062                     && !vsock_is_accept_queue_empty(sk))
1063                         mask |= EPOLLIN | EPOLLRDNORM;
1064
1065                 /* If there is something in the queue then we can read. */
1066                 if (transport && transport->stream_is_active(vsk) &&
1067                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1068                         bool data_ready_now = false;
1069                         int ret = transport->notify_poll_in(
1070                                         vsk, 1, &data_ready_now);
1071                         if (ret < 0) {
1072                                 mask |= EPOLLERR;
1073                         } else {
1074                                 if (data_ready_now)
1075                                         mask |= EPOLLIN | EPOLLRDNORM;
1076
1077                         }
1078                 }
1079
1080                 /* Sockets whose connections have been closed, reset, or
1081                  * terminated should also be considered read, and we check the
1082                  * shutdown flag for that.
1083                  */
1084                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1085                     vsk->peer_shutdown & SEND_SHUTDOWN) {
1086                         mask |= EPOLLIN | EPOLLRDNORM;
1087                 }
1088
1089                 /* Connected sockets that can produce data can be written. */
1090                 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1091                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1092                                 bool space_avail_now = false;
1093                                 int ret = transport->notify_poll_out(
1094                                                 vsk, 1, &space_avail_now);
1095                                 if (ret < 0) {
1096                                         mask |= EPOLLERR;
1097                                 } else {
1098                                         if (space_avail_now)
1099                                                 /* Remove EPOLLWRBAND since INET
1100                                                  * sockets are not setting it.
1101                                                  */
1102                                                 mask |= EPOLLOUT | EPOLLWRNORM;
1103
1104                                 }
1105                         }
1106                 }
1107
1108                 /* Simulate INET socket poll behaviors, which sets
1109                  * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1110                  * but local send is not shutdown.
1111                  */
1112                 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1113                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1114                                 mask |= EPOLLOUT | EPOLLWRNORM;
1115
1116                 }
1117
1118                 release_sock(sk);
1119         }
1120
1121         return mask;
1122 }
1123
1124 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1125                                size_t len)
1126 {
1127         int err;
1128         struct sock *sk;
1129         struct vsock_sock *vsk;
1130         struct sockaddr_vm *remote_addr;
1131         const struct vsock_transport *transport;
1132
1133         if (msg->msg_flags & MSG_OOB)
1134                 return -EOPNOTSUPP;
1135
1136         /* For now, MSG_DONTWAIT is always assumed... */
1137         err = 0;
1138         sk = sock->sk;
1139         vsk = vsock_sk(sk);
1140
1141         lock_sock(sk);
1142
1143         transport = vsk->transport;
1144
1145         err = vsock_auto_bind(vsk);
1146         if (err)
1147                 goto out;
1148
1149
1150         /* If the provided message contains an address, use that.  Otherwise
1151          * fall back on the socket's remote handle (if it has been connected).
1152          */
1153         if (msg->msg_name &&
1154             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1155                             &remote_addr) == 0) {
1156                 /* Ensure this address is of the right type and is a valid
1157                  * destination.
1158                  */
1159
1160                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1161                         remote_addr->svm_cid = transport->get_local_cid();
1162
1163                 if (!vsock_addr_bound(remote_addr)) {
1164                         err = -EINVAL;
1165                         goto out;
1166                 }
1167         } else if (sock->state == SS_CONNECTED) {
1168                 remote_addr = &vsk->remote_addr;
1169
1170                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1171                         remote_addr->svm_cid = transport->get_local_cid();
1172
1173                 /* XXX Should connect() or this function ensure remote_addr is
1174                  * bound?
1175                  */
1176                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1177                         err = -EINVAL;
1178                         goto out;
1179                 }
1180         } else {
1181                 err = -EINVAL;
1182                 goto out;
1183         }
1184
1185         if (!transport->dgram_allow(remote_addr->svm_cid,
1186                                     remote_addr->svm_port)) {
1187                 err = -EINVAL;
1188                 goto out;
1189         }
1190
1191         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1192
1193 out:
1194         release_sock(sk);
1195         return err;
1196 }
1197
1198 static int vsock_dgram_connect(struct socket *sock,
1199                                struct sockaddr *addr, int addr_len, int flags)
1200 {
1201         int err;
1202         struct sock *sk;
1203         struct vsock_sock *vsk;
1204         struct sockaddr_vm *remote_addr;
1205
1206         sk = sock->sk;
1207         vsk = vsock_sk(sk);
1208
1209         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1210         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1211                 lock_sock(sk);
1212                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1213                                 VMADDR_PORT_ANY);
1214                 sock->state = SS_UNCONNECTED;
1215                 release_sock(sk);
1216                 return 0;
1217         } else if (err != 0)
1218                 return -EINVAL;
1219
1220         lock_sock(sk);
1221
1222         err = vsock_auto_bind(vsk);
1223         if (err)
1224                 goto out;
1225
1226         if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1227                                          remote_addr->svm_port)) {
1228                 err = -EINVAL;
1229                 goto out;
1230         }
1231
1232         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1233         sock->state = SS_CONNECTED;
1234
1235 out:
1236         release_sock(sk);
1237         return err;
1238 }
1239
1240 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1241                                size_t len, int flags)
1242 {
1243         struct vsock_sock *vsk = vsock_sk(sock->sk);
1244
1245         return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1246 }
1247
1248 static const struct proto_ops vsock_dgram_ops = {
1249         .family = PF_VSOCK,
1250         .owner = THIS_MODULE,
1251         .release = vsock_release,
1252         .bind = vsock_bind,
1253         .connect = vsock_dgram_connect,
1254         .socketpair = sock_no_socketpair,
1255         .accept = sock_no_accept,
1256         .getname = vsock_getname,
1257         .poll = vsock_poll,
1258         .ioctl = sock_no_ioctl,
1259         .listen = sock_no_listen,
1260         .shutdown = vsock_shutdown,
1261         .sendmsg = vsock_dgram_sendmsg,
1262         .recvmsg = vsock_dgram_recvmsg,
1263         .mmap = sock_no_mmap,
1264         .sendpage = sock_no_sendpage,
1265 };
1266
1267 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1268 {
1269         const struct vsock_transport *transport = vsk->transport;
1270
1271         if (!transport || !transport->cancel_pkt)
1272                 return -EOPNOTSUPP;
1273
1274         return transport->cancel_pkt(vsk);
1275 }
1276
1277 static void vsock_connect_timeout(struct work_struct *work)
1278 {
1279         struct sock *sk;
1280         struct vsock_sock *vsk;
1281
1282         vsk = container_of(work, struct vsock_sock, connect_work.work);
1283         sk = sk_vsock(vsk);
1284
1285         lock_sock(sk);
1286         if (sk->sk_state == TCP_SYN_SENT &&
1287             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1288                 sk->sk_state = TCP_CLOSE;
1289                 sk->sk_err = ETIMEDOUT;
1290                 sk_error_report(sk);
1291                 vsock_transport_cancel_pkt(vsk);
1292         }
1293         release_sock(sk);
1294
1295         sock_put(sk);
1296 }
1297
1298 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1299                          int addr_len, int flags)
1300 {
1301         int err;
1302         struct sock *sk;
1303         struct vsock_sock *vsk;
1304         const struct vsock_transport *transport;
1305         struct sockaddr_vm *remote_addr;
1306         long timeout;
1307         DEFINE_WAIT(wait);
1308
1309         err = 0;
1310         sk = sock->sk;
1311         vsk = vsock_sk(sk);
1312
1313         lock_sock(sk);
1314
1315         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1316         switch (sock->state) {
1317         case SS_CONNECTED:
1318                 err = -EISCONN;
1319                 goto out;
1320         case SS_DISCONNECTING:
1321                 err = -EINVAL;
1322                 goto out;
1323         case SS_CONNECTING:
1324                 /* This continues on so we can move sock into the SS_CONNECTED
1325                  * state once the connection has completed (at which point err
1326                  * will be set to zero also).  Otherwise, we will either wait
1327                  * for the connection or return -EALREADY should this be a
1328                  * non-blocking call.
1329                  */
1330                 err = -EALREADY;
1331                 if (flags & O_NONBLOCK)
1332                         goto out;
1333                 break;
1334         default:
1335                 if ((sk->sk_state == TCP_LISTEN) ||
1336                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1337                         err = -EINVAL;
1338                         goto out;
1339                 }
1340
1341                 /* Set the remote address that we are connecting to. */
1342                 memcpy(&vsk->remote_addr, remote_addr,
1343                        sizeof(vsk->remote_addr));
1344
1345                 err = vsock_assign_transport(vsk, NULL);
1346                 if (err)
1347                         goto out;
1348
1349                 transport = vsk->transport;
1350
1351                 /* The hypervisor and well-known contexts do not have socket
1352                  * endpoints.
1353                  */
1354                 if (!transport ||
1355                     !transport->stream_allow(remote_addr->svm_cid,
1356                                              remote_addr->svm_port)) {
1357                         err = -ENETUNREACH;
1358                         goto out;
1359                 }
1360
1361                 err = vsock_auto_bind(vsk);
1362                 if (err)
1363                         goto out;
1364
1365                 sk->sk_state = TCP_SYN_SENT;
1366
1367                 err = transport->connect(vsk);
1368                 if (err < 0)
1369                         goto out;
1370
1371                 /* Mark sock as connecting and set the error code to in
1372                  * progress in case this is a non-blocking connect.
1373                  */
1374                 sock->state = SS_CONNECTING;
1375                 err = -EINPROGRESS;
1376         }
1377
1378         /* The receive path will handle all communication until we are able to
1379          * enter the connected state.  Here we wait for the connection to be
1380          * completed or a notification of an error.
1381          */
1382         timeout = vsk->connect_timeout;
1383         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1384
1385         while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1386                 if (flags & O_NONBLOCK) {
1387                         /* If we're not going to block, we schedule a timeout
1388                          * function to generate a timeout on the connection
1389                          * attempt, in case the peer doesn't respond in a
1390                          * timely manner. We hold on to the socket until the
1391                          * timeout fires.
1392                          */
1393                         sock_hold(sk);
1394                         schedule_delayed_work(&vsk->connect_work, timeout);
1395
1396                         /* Skip ahead to preserve error code set above. */
1397                         goto out_wait;
1398                 }
1399
1400                 release_sock(sk);
1401                 timeout = schedule_timeout(timeout);
1402                 lock_sock(sk);
1403
1404                 if (signal_pending(current)) {
1405                         err = sock_intr_errno(timeout);
1406                         sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1407                         sock->state = SS_UNCONNECTED;
1408                         vsock_transport_cancel_pkt(vsk);
1409                         vsock_remove_connected(vsk);
1410                         goto out_wait;
1411                 } else if (timeout == 0) {
1412                         err = -ETIMEDOUT;
1413                         sk->sk_state = TCP_CLOSE;
1414                         sock->state = SS_UNCONNECTED;
1415                         vsock_transport_cancel_pkt(vsk);
1416                         goto out_wait;
1417                 }
1418
1419                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1420         }
1421
1422         if (sk->sk_err) {
1423                 err = -sk->sk_err;
1424                 sk->sk_state = TCP_CLOSE;
1425                 sock->state = SS_UNCONNECTED;
1426         } else {
1427                 err = 0;
1428         }
1429
1430 out_wait:
1431         finish_wait(sk_sleep(sk), &wait);
1432 out:
1433         release_sock(sk);
1434         return err;
1435 }
1436
1437 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1438                         bool kern)
1439 {
1440         struct sock *listener;
1441         int err;
1442         struct sock *connected;
1443         struct vsock_sock *vconnected;
1444         long timeout;
1445         DEFINE_WAIT(wait);
1446
1447         err = 0;
1448         listener = sock->sk;
1449
1450         lock_sock(listener);
1451
1452         if (!sock_type_connectible(sock->type)) {
1453                 err = -EOPNOTSUPP;
1454                 goto out;
1455         }
1456
1457         if (listener->sk_state != TCP_LISTEN) {
1458                 err = -EINVAL;
1459                 goto out;
1460         }
1461
1462         /* Wait for children sockets to appear; these are the new sockets
1463          * created upon connection establishment.
1464          */
1465         timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1466         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1467
1468         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1469                listener->sk_err == 0) {
1470                 release_sock(listener);
1471                 timeout = schedule_timeout(timeout);
1472                 finish_wait(sk_sleep(listener), &wait);
1473                 lock_sock(listener);
1474
1475                 if (signal_pending(current)) {
1476                         err = sock_intr_errno(timeout);
1477                         goto out;
1478                 } else if (timeout == 0) {
1479                         err = -EAGAIN;
1480                         goto out;
1481                 }
1482
1483                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1484         }
1485         finish_wait(sk_sleep(listener), &wait);
1486
1487         if (listener->sk_err)
1488                 err = -listener->sk_err;
1489
1490         if (connected) {
1491                 sk_acceptq_removed(listener);
1492
1493                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1494                 vconnected = vsock_sk(connected);
1495
1496                 /* If the listener socket has received an error, then we should
1497                  * reject this socket and return.  Note that we simply mark the
1498                  * socket rejected, drop our reference, and let the cleanup
1499                  * function handle the cleanup; the fact that we found it in
1500                  * the listener's accept queue guarantees that the cleanup
1501                  * function hasn't run yet.
1502                  */
1503                 if (err) {
1504                         vconnected->rejected = true;
1505                 } else {
1506                         newsock->state = SS_CONNECTED;
1507                         sock_graft(connected, newsock);
1508                 }
1509
1510                 release_sock(connected);
1511                 sock_put(connected);
1512         }
1513
1514 out:
1515         release_sock(listener);
1516         return err;
1517 }
1518
1519 static int vsock_listen(struct socket *sock, int backlog)
1520 {
1521         int err;
1522         struct sock *sk;
1523         struct vsock_sock *vsk;
1524
1525         sk = sock->sk;
1526
1527         lock_sock(sk);
1528
1529         if (!sock_type_connectible(sk->sk_type)) {
1530                 err = -EOPNOTSUPP;
1531                 goto out;
1532         }
1533
1534         if (sock->state != SS_UNCONNECTED) {
1535                 err = -EINVAL;
1536                 goto out;
1537         }
1538
1539         vsk = vsock_sk(sk);
1540
1541         if (!vsock_addr_bound(&vsk->local_addr)) {
1542                 err = -EINVAL;
1543                 goto out;
1544         }
1545
1546         sk->sk_max_ack_backlog = backlog;
1547         sk->sk_state = TCP_LISTEN;
1548
1549         err = 0;
1550
1551 out:
1552         release_sock(sk);
1553         return err;
1554 }
1555
1556 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1557                                      const struct vsock_transport *transport,
1558                                      u64 val)
1559 {
1560         if (val > vsk->buffer_max_size)
1561                 val = vsk->buffer_max_size;
1562
1563         if (val < vsk->buffer_min_size)
1564                 val = vsk->buffer_min_size;
1565
1566         if (val != vsk->buffer_size &&
1567             transport && transport->notify_buffer_size)
1568                 transport->notify_buffer_size(vsk, &val);
1569
1570         vsk->buffer_size = val;
1571 }
1572
1573 static int vsock_connectible_setsockopt(struct socket *sock,
1574                                         int level,
1575                                         int optname,
1576                                         sockptr_t optval,
1577                                         unsigned int optlen)
1578 {
1579         int err;
1580         struct sock *sk;
1581         struct vsock_sock *vsk;
1582         const struct vsock_transport *transport;
1583         u64 val;
1584
1585         if (level != AF_VSOCK)
1586                 return -ENOPROTOOPT;
1587
1588 #define COPY_IN(_v)                                       \
1589         do {                                              \
1590                 if (optlen < sizeof(_v)) {                \
1591                         err = -EINVAL;                    \
1592                         goto exit;                        \
1593                 }                                         \
1594                 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1595                         err = -EFAULT;                                  \
1596                         goto exit;                                      \
1597                 }                                                       \
1598         } while (0)
1599
1600         err = 0;
1601         sk = sock->sk;
1602         vsk = vsock_sk(sk);
1603
1604         lock_sock(sk);
1605
1606         transport = vsk->transport;
1607
1608         switch (optname) {
1609         case SO_VM_SOCKETS_BUFFER_SIZE:
1610                 COPY_IN(val);
1611                 vsock_update_buffer_size(vsk, transport, val);
1612                 break;
1613
1614         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1615                 COPY_IN(val);
1616                 vsk->buffer_max_size = val;
1617                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1618                 break;
1619
1620         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1621                 COPY_IN(val);
1622                 vsk->buffer_min_size = val;
1623                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1624                 break;
1625
1626         case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1627         case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1628                 struct __kernel_sock_timeval tv;
1629
1630                 err = sock_copy_user_timeval(&tv, optval, optlen,
1631                                              optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1632                 if (err)
1633                         break;
1634                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1635                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1636                         vsk->connect_timeout = tv.tv_sec * HZ +
1637                                 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1638                         if (vsk->connect_timeout == 0)
1639                                 vsk->connect_timeout =
1640                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1641
1642                 } else {
1643                         err = -ERANGE;
1644                 }
1645                 break;
1646         }
1647
1648         default:
1649                 err = -ENOPROTOOPT;
1650                 break;
1651         }
1652
1653 #undef COPY_IN
1654
1655 exit:
1656         release_sock(sk);
1657         return err;
1658 }
1659
1660 static int vsock_connectible_getsockopt(struct socket *sock,
1661                                         int level, int optname,
1662                                         char __user *optval,
1663                                         int __user *optlen)
1664 {
1665         struct sock *sk = sock->sk;
1666         struct vsock_sock *vsk = vsock_sk(sk);
1667
1668         union {
1669                 u64 val64;
1670                 struct old_timeval32 tm32;
1671                 struct __kernel_old_timeval tm;
1672                 struct  __kernel_sock_timeval stm;
1673         } v;
1674
1675         int lv = sizeof(v.val64);
1676         int len;
1677
1678         if (level != AF_VSOCK)
1679                 return -ENOPROTOOPT;
1680
1681         if (get_user(len, optlen))
1682                 return -EFAULT;
1683
1684         memset(&v, 0, sizeof(v));
1685
1686         switch (optname) {
1687         case SO_VM_SOCKETS_BUFFER_SIZE:
1688                 v.val64 = vsk->buffer_size;
1689                 break;
1690
1691         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1692                 v.val64 = vsk->buffer_max_size;
1693                 break;
1694
1695         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1696                 v.val64 = vsk->buffer_min_size;
1697                 break;
1698
1699         case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1700         case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1701                 lv = sock_get_timeout(vsk->connect_timeout, &v,
1702                                       optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1703                 break;
1704
1705         default:
1706                 return -ENOPROTOOPT;
1707         }
1708
1709         if (len < lv)
1710                 return -EINVAL;
1711         if (len > lv)
1712                 len = lv;
1713         if (copy_to_user(optval, &v, len))
1714                 return -EFAULT;
1715
1716         if (put_user(len, optlen))
1717                 return -EFAULT;
1718
1719         return 0;
1720 }
1721
1722 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1723                                      size_t len)
1724 {
1725         struct sock *sk;
1726         struct vsock_sock *vsk;
1727         const struct vsock_transport *transport;
1728         ssize_t total_written;
1729         long timeout;
1730         int err;
1731         struct vsock_transport_send_notify_data send_data;
1732         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1733
1734         sk = sock->sk;
1735         vsk = vsock_sk(sk);
1736         total_written = 0;
1737         err = 0;
1738
1739         if (msg->msg_flags & MSG_OOB)
1740                 return -EOPNOTSUPP;
1741
1742         lock_sock(sk);
1743
1744         transport = vsk->transport;
1745
1746         /* Callers should not provide a destination with connection oriented
1747          * sockets.
1748          */
1749         if (msg->msg_namelen) {
1750                 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1751                 goto out;
1752         }
1753
1754         /* Send data only if both sides are not shutdown in the direction. */
1755         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1756             vsk->peer_shutdown & RCV_SHUTDOWN) {
1757                 err = -EPIPE;
1758                 goto out;
1759         }
1760
1761         if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1762             !vsock_addr_bound(&vsk->local_addr)) {
1763                 err = -ENOTCONN;
1764                 goto out;
1765         }
1766
1767         if (!vsock_addr_bound(&vsk->remote_addr)) {
1768                 err = -EDESTADDRREQ;
1769                 goto out;
1770         }
1771
1772         /* Wait for room in the produce queue to enqueue our user's data. */
1773         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1774
1775         err = transport->notify_send_init(vsk, &send_data);
1776         if (err < 0)
1777                 goto out;
1778
1779         while (total_written < len) {
1780                 ssize_t written;
1781
1782                 add_wait_queue(sk_sleep(sk), &wait);
1783                 while (vsock_stream_has_space(vsk) == 0 &&
1784                        sk->sk_err == 0 &&
1785                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1786                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1787
1788                         /* Don't wait for non-blocking sockets. */
1789                         if (timeout == 0) {
1790                                 err = -EAGAIN;
1791                                 remove_wait_queue(sk_sleep(sk), &wait);
1792                                 goto out_err;
1793                         }
1794
1795                         err = transport->notify_send_pre_block(vsk, &send_data);
1796                         if (err < 0) {
1797                                 remove_wait_queue(sk_sleep(sk), &wait);
1798                                 goto out_err;
1799                         }
1800
1801                         release_sock(sk);
1802                         timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1803                         lock_sock(sk);
1804                         if (signal_pending(current)) {
1805                                 err = sock_intr_errno(timeout);
1806                                 remove_wait_queue(sk_sleep(sk), &wait);
1807                                 goto out_err;
1808                         } else if (timeout == 0) {
1809                                 err = -EAGAIN;
1810                                 remove_wait_queue(sk_sleep(sk), &wait);
1811                                 goto out_err;
1812                         }
1813                 }
1814                 remove_wait_queue(sk_sleep(sk), &wait);
1815
1816                 /* These checks occur both as part of and after the loop
1817                  * conditional since we need to check before and after
1818                  * sleeping.
1819                  */
1820                 if (sk->sk_err) {
1821                         err = -sk->sk_err;
1822                         goto out_err;
1823                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1824                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1825                         err = -EPIPE;
1826                         goto out_err;
1827                 }
1828
1829                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1830                 if (err < 0)
1831                         goto out_err;
1832
1833                 /* Note that enqueue will only write as many bytes as are free
1834                  * in the produce queue, so we don't need to ensure len is
1835                  * smaller than the queue size.  It is the caller's
1836                  * responsibility to check how many bytes we were able to send.
1837                  */
1838
1839                 if (sk->sk_type == SOCK_SEQPACKET) {
1840                         written = transport->seqpacket_enqueue(vsk,
1841                                                 msg, len - total_written);
1842                 } else {
1843                         written = transport->stream_enqueue(vsk,
1844                                         msg, len - total_written);
1845                 }
1846                 if (written < 0) {
1847                         err = -ENOMEM;
1848                         goto out_err;
1849                 }
1850
1851                 total_written += written;
1852
1853                 err = transport->notify_send_post_enqueue(
1854                                 vsk, written, &send_data);
1855                 if (err < 0)
1856                         goto out_err;
1857
1858         }
1859
1860 out_err:
1861         if (total_written > 0) {
1862                 /* Return number of written bytes only if:
1863                  * 1) SOCK_STREAM socket.
1864                  * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1865                  */
1866                 if (sk->sk_type == SOCK_STREAM || total_written == len)
1867                         err = total_written;
1868         }
1869 out:
1870         release_sock(sk);
1871         return err;
1872 }
1873
1874 static int vsock_connectible_wait_data(struct sock *sk,
1875                                        struct wait_queue_entry *wait,
1876                                        long timeout,
1877                                        struct vsock_transport_recv_notify_data *recv_data,
1878                                        size_t target)
1879 {
1880         const struct vsock_transport *transport;
1881         struct vsock_sock *vsk;
1882         s64 data;
1883         int err;
1884
1885         vsk = vsock_sk(sk);
1886         err = 0;
1887         transport = vsk->transport;
1888
1889         while ((data = vsock_connectible_has_data(vsk)) == 0) {
1890                 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1891
1892                 if (sk->sk_err != 0 ||
1893                     (sk->sk_shutdown & RCV_SHUTDOWN) ||
1894                     (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1895                         break;
1896                 }
1897
1898                 /* Don't wait for non-blocking sockets. */
1899                 if (timeout == 0) {
1900                         err = -EAGAIN;
1901                         break;
1902                 }
1903
1904                 if (recv_data) {
1905                         err = transport->notify_recv_pre_block(vsk, target, recv_data);
1906                         if (err < 0)
1907                                 break;
1908                 }
1909
1910                 release_sock(sk);
1911                 timeout = schedule_timeout(timeout);
1912                 lock_sock(sk);
1913
1914                 if (signal_pending(current)) {
1915                         err = sock_intr_errno(timeout);
1916                         break;
1917                 } else if (timeout == 0) {
1918                         err = -EAGAIN;
1919                         break;
1920                 }
1921         }
1922
1923         finish_wait(sk_sleep(sk), wait);
1924
1925         if (err)
1926                 return err;
1927
1928         /* Internal transport error when checking for available
1929          * data. XXX This should be changed to a connection
1930          * reset in a later change.
1931          */
1932         if (data < 0)
1933                 return -ENOMEM;
1934
1935         return data;
1936 }
1937
1938 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1939                                   size_t len, int flags)
1940 {
1941         struct vsock_transport_recv_notify_data recv_data;
1942         const struct vsock_transport *transport;
1943         struct vsock_sock *vsk;
1944         ssize_t copied;
1945         size_t target;
1946         long timeout;
1947         int err;
1948
1949         DEFINE_WAIT(wait);
1950
1951         vsk = vsock_sk(sk);
1952         transport = vsk->transport;
1953
1954         /* We must not copy less than target bytes into the user's buffer
1955          * before returning successfully, so we wait for the consume queue to
1956          * have that much data to consume before dequeueing.  Note that this
1957          * makes it impossible to handle cases where target is greater than the
1958          * queue size.
1959          */
1960         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1961         if (target >= transport->stream_rcvhiwat(vsk)) {
1962                 err = -ENOMEM;
1963                 goto out;
1964         }
1965         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1966         copied = 0;
1967
1968         err = transport->notify_recv_init(vsk, target, &recv_data);
1969         if (err < 0)
1970                 goto out;
1971
1972
1973         while (1) {
1974                 ssize_t read;
1975
1976                 err = vsock_connectible_wait_data(sk, &wait, timeout,
1977                                                   &recv_data, target);
1978                 if (err <= 0)
1979                         break;
1980
1981                 err = transport->notify_recv_pre_dequeue(vsk, target,
1982                                                          &recv_data);
1983                 if (err < 0)
1984                         break;
1985
1986                 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
1987                 if (read < 0) {
1988                         err = -ENOMEM;
1989                         break;
1990                 }
1991
1992                 copied += read;
1993
1994                 err = transport->notify_recv_post_dequeue(vsk, target, read,
1995                                                 !(flags & MSG_PEEK), &recv_data);
1996                 if (err < 0)
1997                         goto out;
1998
1999                 if (read >= target || flags & MSG_PEEK)
2000                         break;
2001
2002                 target -= read;
2003         }
2004
2005         if (sk->sk_err)
2006                 err = -sk->sk_err;
2007         else if (sk->sk_shutdown & RCV_SHUTDOWN)
2008                 err = 0;
2009
2010         if (copied > 0)
2011                 err = copied;
2012
2013 out:
2014         return err;
2015 }
2016
2017 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2018                                      size_t len, int flags)
2019 {
2020         const struct vsock_transport *transport;
2021         struct vsock_sock *vsk;
2022         ssize_t msg_len;
2023         long timeout;
2024         int err = 0;
2025         DEFINE_WAIT(wait);
2026
2027         vsk = vsock_sk(sk);
2028         transport = vsk->transport;
2029
2030         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2031
2032         err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2033         if (err <= 0)
2034                 goto out;
2035
2036         msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2037
2038         if (msg_len < 0) {
2039                 err = -ENOMEM;
2040                 goto out;
2041         }
2042
2043         if (sk->sk_err) {
2044                 err = -sk->sk_err;
2045         } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2046                 err = 0;
2047         } else {
2048                 /* User sets MSG_TRUNC, so return real length of
2049                  * packet.
2050                  */
2051                 if (flags & MSG_TRUNC)
2052                         err = msg_len;
2053                 else
2054                         err = len - msg_data_left(msg);
2055
2056                 /* Always set MSG_TRUNC if real length of packet is
2057                  * bigger than user's buffer.
2058                  */
2059                 if (msg_len > len)
2060                         msg->msg_flags |= MSG_TRUNC;
2061         }
2062
2063 out:
2064         return err;
2065 }
2066
2067 static int
2068 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2069                           int flags)
2070 {
2071         struct sock *sk;
2072         struct vsock_sock *vsk;
2073         const struct vsock_transport *transport;
2074         int err;
2075
2076         DEFINE_WAIT(wait);
2077
2078         sk = sock->sk;
2079         vsk = vsock_sk(sk);
2080         err = 0;
2081
2082         lock_sock(sk);
2083
2084         transport = vsk->transport;
2085
2086         if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2087                 /* Recvmsg is supposed to return 0 if a peer performs an
2088                  * orderly shutdown. Differentiate between that case and when a
2089                  * peer has not connected or a local shutdown occurred with the
2090                  * SOCK_DONE flag.
2091                  */
2092                 if (sock_flag(sk, SOCK_DONE))
2093                         err = 0;
2094                 else
2095                         err = -ENOTCONN;
2096
2097                 goto out;
2098         }
2099
2100         if (flags & MSG_OOB) {
2101                 err = -EOPNOTSUPP;
2102                 goto out;
2103         }
2104
2105         /* We don't check peer_shutdown flag here since peer may actually shut
2106          * down, but there can be data in the queue that a local socket can
2107          * receive.
2108          */
2109         if (sk->sk_shutdown & RCV_SHUTDOWN) {
2110                 err = 0;
2111                 goto out;
2112         }
2113
2114         /* It is valid on Linux to pass in a zero-length receive buffer.  This
2115          * is not an error.  We may as well bail out now.
2116          */
2117         if (!len) {
2118                 err = 0;
2119                 goto out;
2120         }
2121
2122         if (sk->sk_type == SOCK_STREAM)
2123                 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2124         else
2125                 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2126
2127 out:
2128         release_sock(sk);
2129         return err;
2130 }
2131
2132 static const struct proto_ops vsock_stream_ops = {
2133         .family = PF_VSOCK,
2134         .owner = THIS_MODULE,
2135         .release = vsock_release,
2136         .bind = vsock_bind,
2137         .connect = vsock_connect,
2138         .socketpair = sock_no_socketpair,
2139         .accept = vsock_accept,
2140         .getname = vsock_getname,
2141         .poll = vsock_poll,
2142         .ioctl = sock_no_ioctl,
2143         .listen = vsock_listen,
2144         .shutdown = vsock_shutdown,
2145         .setsockopt = vsock_connectible_setsockopt,
2146         .getsockopt = vsock_connectible_getsockopt,
2147         .sendmsg = vsock_connectible_sendmsg,
2148         .recvmsg = vsock_connectible_recvmsg,
2149         .mmap = sock_no_mmap,
2150         .sendpage = sock_no_sendpage,
2151 };
2152
2153 static const struct proto_ops vsock_seqpacket_ops = {
2154         .family = PF_VSOCK,
2155         .owner = THIS_MODULE,
2156         .release = vsock_release,
2157         .bind = vsock_bind,
2158         .connect = vsock_connect,
2159         .socketpair = sock_no_socketpair,
2160         .accept = vsock_accept,
2161         .getname = vsock_getname,
2162         .poll = vsock_poll,
2163         .ioctl = sock_no_ioctl,
2164         .listen = vsock_listen,
2165         .shutdown = vsock_shutdown,
2166         .setsockopt = vsock_connectible_setsockopt,
2167         .getsockopt = vsock_connectible_getsockopt,
2168         .sendmsg = vsock_connectible_sendmsg,
2169         .recvmsg = vsock_connectible_recvmsg,
2170         .mmap = sock_no_mmap,
2171         .sendpage = sock_no_sendpage,
2172 };
2173
2174 static int vsock_create(struct net *net, struct socket *sock,
2175                         int protocol, int kern)
2176 {
2177         struct vsock_sock *vsk;
2178         struct sock *sk;
2179         int ret;
2180
2181         if (!sock)
2182                 return -EINVAL;
2183
2184         if (protocol && protocol != PF_VSOCK)
2185                 return -EPROTONOSUPPORT;
2186
2187         switch (sock->type) {
2188         case SOCK_DGRAM:
2189                 sock->ops = &vsock_dgram_ops;
2190                 break;
2191         case SOCK_STREAM:
2192                 sock->ops = &vsock_stream_ops;
2193                 break;
2194         case SOCK_SEQPACKET:
2195                 sock->ops = &vsock_seqpacket_ops;
2196                 break;
2197         default:
2198                 return -ESOCKTNOSUPPORT;
2199         }
2200
2201         sock->state = SS_UNCONNECTED;
2202
2203         sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2204         if (!sk)
2205                 return -ENOMEM;
2206
2207         vsk = vsock_sk(sk);
2208
2209         if (sock->type == SOCK_DGRAM) {
2210                 ret = vsock_assign_transport(vsk, NULL);
2211                 if (ret < 0) {
2212                         sock_put(sk);
2213                         return ret;
2214                 }
2215         }
2216
2217         vsock_insert_unbound(vsk);
2218
2219         return 0;
2220 }
2221
2222 static const struct net_proto_family vsock_family_ops = {
2223         .family = AF_VSOCK,
2224         .create = vsock_create,
2225         .owner = THIS_MODULE,
2226 };
2227
2228 static long vsock_dev_do_ioctl(struct file *filp,
2229                                unsigned int cmd, void __user *ptr)
2230 {
2231         u32 __user *p = ptr;
2232         u32 cid = VMADDR_CID_ANY;
2233         int retval = 0;
2234
2235         switch (cmd) {
2236         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2237                 /* To be compatible with the VMCI behavior, we prioritize the
2238                  * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2239                  */
2240                 if (transport_g2h)
2241                         cid = transport_g2h->get_local_cid();
2242                 else if (transport_h2g)
2243                         cid = transport_h2g->get_local_cid();
2244
2245                 if (put_user(cid, p) != 0)
2246                         retval = -EFAULT;
2247                 break;
2248
2249         default:
2250                 retval = -ENOIOCTLCMD;
2251         }
2252
2253         return retval;
2254 }
2255
2256 static long vsock_dev_ioctl(struct file *filp,
2257                             unsigned int cmd, unsigned long arg)
2258 {
2259         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2260 }
2261
2262 #ifdef CONFIG_COMPAT
2263 static long vsock_dev_compat_ioctl(struct file *filp,
2264                                    unsigned int cmd, unsigned long arg)
2265 {
2266         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2267 }
2268 #endif
2269
2270 static const struct file_operations vsock_device_ops = {
2271         .owner          = THIS_MODULE,
2272         .unlocked_ioctl = vsock_dev_ioctl,
2273 #ifdef CONFIG_COMPAT
2274         .compat_ioctl   = vsock_dev_compat_ioctl,
2275 #endif
2276         .open           = nonseekable_open,
2277 };
2278
2279 static struct miscdevice vsock_device = {
2280         .name           = "vsock",
2281         .fops           = &vsock_device_ops,
2282 };
2283
2284 static int __init vsock_init(void)
2285 {
2286         int err = 0;
2287
2288         vsock_init_tables();
2289
2290         vsock_proto.owner = THIS_MODULE;
2291         vsock_device.minor = MISC_DYNAMIC_MINOR;
2292         err = misc_register(&vsock_device);
2293         if (err) {
2294                 pr_err("Failed to register misc device\n");
2295                 goto err_reset_transport;
2296         }
2297
2298         err = proto_register(&vsock_proto, 1);  /* we want our slab */
2299         if (err) {
2300                 pr_err("Cannot register vsock protocol\n");
2301                 goto err_deregister_misc;
2302         }
2303
2304         err = sock_register(&vsock_family_ops);
2305         if (err) {
2306                 pr_err("could not register af_vsock (%d) address family: %d\n",
2307                        AF_VSOCK, err);
2308                 goto err_unregister_proto;
2309         }
2310
2311         return 0;
2312
2313 err_unregister_proto:
2314         proto_unregister(&vsock_proto);
2315 err_deregister_misc:
2316         misc_deregister(&vsock_device);
2317 err_reset_transport:
2318         return err;
2319 }
2320
2321 static void __exit vsock_exit(void)
2322 {
2323         misc_deregister(&vsock_device);
2324         sock_unregister(AF_VSOCK);
2325         proto_unregister(&vsock_proto);
2326 }
2327
2328 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2329 {
2330         return vsk->transport;
2331 }
2332 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2333
2334 int vsock_core_register(const struct vsock_transport *t, int features)
2335 {
2336         const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2337         int err = mutex_lock_interruptible(&vsock_register_mutex);
2338
2339         if (err)
2340                 return err;
2341
2342         t_h2g = transport_h2g;
2343         t_g2h = transport_g2h;
2344         t_dgram = transport_dgram;
2345         t_local = transport_local;
2346
2347         if (features & VSOCK_TRANSPORT_F_H2G) {
2348                 if (t_h2g) {
2349                         err = -EBUSY;
2350                         goto err_busy;
2351                 }
2352                 t_h2g = t;
2353         }
2354
2355         if (features & VSOCK_TRANSPORT_F_G2H) {
2356                 if (t_g2h) {
2357                         err = -EBUSY;
2358                         goto err_busy;
2359                 }
2360                 t_g2h = t;
2361         }
2362
2363         if (features & VSOCK_TRANSPORT_F_DGRAM) {
2364                 if (t_dgram) {
2365                         err = -EBUSY;
2366                         goto err_busy;
2367                 }
2368                 t_dgram = t;
2369         }
2370
2371         if (features & VSOCK_TRANSPORT_F_LOCAL) {
2372                 if (t_local) {
2373                         err = -EBUSY;
2374                         goto err_busy;
2375                 }
2376                 t_local = t;
2377         }
2378
2379         transport_h2g = t_h2g;
2380         transport_g2h = t_g2h;
2381         transport_dgram = t_dgram;
2382         transport_local = t_local;
2383
2384 err_busy:
2385         mutex_unlock(&vsock_register_mutex);
2386         return err;
2387 }
2388 EXPORT_SYMBOL_GPL(vsock_core_register);
2389
2390 void vsock_core_unregister(const struct vsock_transport *t)
2391 {
2392         mutex_lock(&vsock_register_mutex);
2393
2394         if (transport_h2g == t)
2395                 transport_h2g = NULL;
2396
2397         if (transport_g2h == t)
2398                 transport_g2h = NULL;
2399
2400         if (transport_dgram == t)
2401                 transport_dgram = NULL;
2402
2403         if (transport_local == t)
2404                 transport_local = NULL;
2405
2406         mutex_unlock(&vsock_register_mutex);
2407 }
2408 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2409
2410 module_init(vsock_init);
2411 module_exit(vsock_exit);
2412
2413 MODULE_AUTHOR("VMware, Inc.");
2414 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2415 MODULE_VERSION("1.0.2.0-k");
2416 MODULE_LICENSE("GPL v2");