GNU Linux-libre 5.10.153-gnu1
[releases.git] / net / vmw_vsock / af_vsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119         .name = "AF_VSOCK",
120         .owner = THIS_MODULE,
121         .obj_size = sizeof(struct vsock_sock),
122 };
123
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142
143 /**** UTILS ****/
144
145 /* Each bound VSocket is stored in the bind hash table and each connected
146  * VSocket is stored in the connected hash table.
147  *
148  * Unbound sockets are all put on the same list attached to the end of the hash
149  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151  * represents the list that addr hashes to).
152  *
153  * Specifically, we initialize the vsock_bind_table array to a size of
154  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157  * mods with VSOCK_HASH_SIZE to ensure this.
158  */
159 #define MAX_PORT_RETRIES        24
160
161 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst)                               \
167         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst)               \
169         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk)                                \
171         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183         struct sock *sk = sk_vsock(vsk);
184         struct sockaddr_vm local_addr;
185
186         if (vsock_addr_bound(&vsk->local_addr))
187                 return 0;
188         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189         return __vsock_bind(sk, &local_addr);
190 }
191
192 static void vsock_init_tables(void)
193 {
194         int i;
195
196         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197                 INIT_LIST_HEAD(&vsock_bind_table[i]);
198
199         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200                 INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202
203 static void __vsock_insert_bound(struct list_head *list,
204                                  struct vsock_sock *vsk)
205 {
206         sock_hold(&vsk->sk);
207         list_add(&vsk->bound_table, list);
208 }
209
210 static void __vsock_insert_connected(struct list_head *list,
211                                      struct vsock_sock *vsk)
212 {
213         sock_hold(&vsk->sk);
214         list_add(&vsk->connected_table, list);
215 }
216
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219         list_del_init(&vsk->bound_table);
220         sock_put(&vsk->sk);
221 }
222
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225         list_del_init(&vsk->connected_table);
226         sock_put(&vsk->sk);
227 }
228
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231         struct vsock_sock *vsk;
232
233         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234                 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235                         return sk_vsock(vsk);
236
237                 if (addr->svm_port == vsk->local_addr.svm_port &&
238                     (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239                      addr->svm_cid == VMADDR_CID_ANY))
240                         return sk_vsock(vsk);
241         }
242
243         return NULL;
244 }
245
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247                                                   struct sockaddr_vm *dst)
248 {
249         struct vsock_sock *vsk;
250
251         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252                             connected_table) {
253                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254                     dst->svm_port == vsk->local_addr.svm_port) {
255                         return sk_vsock(vsk);
256                 }
257         }
258
259         return NULL;
260 }
261
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264         spin_lock_bh(&vsock_table_lock);
265         __vsock_insert_bound(vsock_unbound_sockets, vsk);
266         spin_unlock_bh(&vsock_table_lock);
267 }
268
269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271         struct list_head *list = vsock_connected_sockets(
272                 &vsk->remote_addr, &vsk->local_addr);
273
274         spin_lock_bh(&vsock_table_lock);
275         __vsock_insert_connected(list, vsk);
276         spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279
280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282         spin_lock_bh(&vsock_table_lock);
283         if (__vsock_in_bound_table(vsk))
284                 __vsock_remove_bound(vsk);
285         spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291         spin_lock_bh(&vsock_table_lock);
292         if (__vsock_in_connected_table(vsk))
293                 __vsock_remove_connected(vsk);
294         spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300         struct sock *sk;
301
302         spin_lock_bh(&vsock_table_lock);
303         sk = __vsock_find_bound_socket(addr);
304         if (sk)
305                 sock_hold(sk);
306
307         spin_unlock_bh(&vsock_table_lock);
308
309         return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314                                          struct sockaddr_vm *dst)
315 {
316         struct sock *sk;
317
318         spin_lock_bh(&vsock_table_lock);
319         sk = __vsock_find_connected_socket(src, dst);
320         if (sk)
321                 sock_hold(sk);
322
323         spin_unlock_bh(&vsock_table_lock);
324
325         return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331         vsock_remove_bound(vsk);
332         vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335
336 void vsock_for_each_connected_socket(struct vsock_transport *transport,
337                                      void (*fn)(struct sock *sk))
338 {
339         int i;
340
341         spin_lock_bh(&vsock_table_lock);
342
343         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
344                 struct vsock_sock *vsk;
345                 list_for_each_entry(vsk, &vsock_connected_table[i],
346                                     connected_table) {
347                         if (vsk->transport != transport)
348                                 continue;
349
350                         fn(sk_vsock(vsk));
351                 }
352         }
353
354         spin_unlock_bh(&vsock_table_lock);
355 }
356 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
357
358 void vsock_add_pending(struct sock *listener, struct sock *pending)
359 {
360         struct vsock_sock *vlistener;
361         struct vsock_sock *vpending;
362
363         vlistener = vsock_sk(listener);
364         vpending = vsock_sk(pending);
365
366         sock_hold(pending);
367         sock_hold(listener);
368         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
369 }
370 EXPORT_SYMBOL_GPL(vsock_add_pending);
371
372 void vsock_remove_pending(struct sock *listener, struct sock *pending)
373 {
374         struct vsock_sock *vpending = vsock_sk(pending);
375
376         list_del_init(&vpending->pending_links);
377         sock_put(listener);
378         sock_put(pending);
379 }
380 EXPORT_SYMBOL_GPL(vsock_remove_pending);
381
382 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
383 {
384         struct vsock_sock *vlistener;
385         struct vsock_sock *vconnected;
386
387         vlistener = vsock_sk(listener);
388         vconnected = vsock_sk(connected);
389
390         sock_hold(connected);
391         sock_hold(listener);
392         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
393 }
394 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
395
396 static bool vsock_use_local_transport(unsigned int remote_cid)
397 {
398         if (!transport_local)
399                 return false;
400
401         if (remote_cid == VMADDR_CID_LOCAL)
402                 return true;
403
404         if (transport_g2h) {
405                 return remote_cid == transport_g2h->get_local_cid();
406         } else {
407                 return remote_cid == VMADDR_CID_HOST;
408         }
409 }
410
411 static void vsock_deassign_transport(struct vsock_sock *vsk)
412 {
413         if (!vsk->transport)
414                 return;
415
416         vsk->transport->destruct(vsk);
417         module_put(vsk->transport->module);
418         vsk->transport = NULL;
419 }
420
421 /* Assign a transport to a socket and call the .init transport callback.
422  *
423  * Note: for stream socket this must be called when vsk->remote_addr is set
424  * (e.g. during the connect() or when a connection request on a listener
425  * socket is received).
426  * The vsk->remote_addr is used to decide which transport to use:
427  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
428  *    g2h is not loaded, will use local transport;
429  *  - remote CID <= VMADDR_CID_HOST will use guest->host transport;
430  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
431  */
432 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
433 {
434         const struct vsock_transport *new_transport;
435         struct sock *sk = sk_vsock(vsk);
436         unsigned int remote_cid = vsk->remote_addr.svm_cid;
437         int ret;
438
439         switch (sk->sk_type) {
440         case SOCK_DGRAM:
441                 new_transport = transport_dgram;
442                 break;
443         case SOCK_STREAM:
444                 if (vsock_use_local_transport(remote_cid))
445                         new_transport = transport_local;
446                 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g)
447                         new_transport = transport_g2h;
448                 else
449                         new_transport = transport_h2g;
450                 break;
451         default:
452                 return -ESOCKTNOSUPPORT;
453         }
454
455         if (vsk->transport) {
456                 if (vsk->transport == new_transport)
457                         return 0;
458
459                 /* transport->release() must be called with sock lock acquired.
460                  * This path can only be taken during vsock_stream_connect(),
461                  * where we have already held the sock lock.
462                  * In the other cases, this function is called on a new socket
463                  * which is not assigned to any transport.
464                  */
465                 vsk->transport->release(vsk);
466                 vsock_deassign_transport(vsk);
467         }
468
469         /* We increase the module refcnt to prevent the transport unloading
470          * while there are open sockets assigned to it.
471          */
472         if (!new_transport || !try_module_get(new_transport->module))
473                 return -ENODEV;
474
475         ret = new_transport->init(vsk, psk);
476         if (ret) {
477                 module_put(new_transport->module);
478                 return ret;
479         }
480
481         vsk->transport = new_transport;
482
483         return 0;
484 }
485 EXPORT_SYMBOL_GPL(vsock_assign_transport);
486
487 bool vsock_find_cid(unsigned int cid)
488 {
489         if (transport_g2h && cid == transport_g2h->get_local_cid())
490                 return true;
491
492         if (transport_h2g && cid == VMADDR_CID_HOST)
493                 return true;
494
495         if (transport_local && cid == VMADDR_CID_LOCAL)
496                 return true;
497
498         return false;
499 }
500 EXPORT_SYMBOL_GPL(vsock_find_cid);
501
502 static struct sock *vsock_dequeue_accept(struct sock *listener)
503 {
504         struct vsock_sock *vlistener;
505         struct vsock_sock *vconnected;
506
507         vlistener = vsock_sk(listener);
508
509         if (list_empty(&vlistener->accept_queue))
510                 return NULL;
511
512         vconnected = list_entry(vlistener->accept_queue.next,
513                                 struct vsock_sock, accept_queue);
514
515         list_del_init(&vconnected->accept_queue);
516         sock_put(listener);
517         /* The caller will need a reference on the connected socket so we let
518          * it call sock_put().
519          */
520
521         return sk_vsock(vconnected);
522 }
523
524 static bool vsock_is_accept_queue_empty(struct sock *sk)
525 {
526         struct vsock_sock *vsk = vsock_sk(sk);
527         return list_empty(&vsk->accept_queue);
528 }
529
530 static bool vsock_is_pending(struct sock *sk)
531 {
532         struct vsock_sock *vsk = vsock_sk(sk);
533         return !list_empty(&vsk->pending_links);
534 }
535
536 static int vsock_send_shutdown(struct sock *sk, int mode)
537 {
538         struct vsock_sock *vsk = vsock_sk(sk);
539
540         if (!vsk->transport)
541                 return -ENODEV;
542
543         return vsk->transport->shutdown(vsk, mode);
544 }
545
546 static void vsock_pending_work(struct work_struct *work)
547 {
548         struct sock *sk;
549         struct sock *listener;
550         struct vsock_sock *vsk;
551         bool cleanup;
552
553         vsk = container_of(work, struct vsock_sock, pending_work.work);
554         sk = sk_vsock(vsk);
555         listener = vsk->listener;
556         cleanup = true;
557
558         lock_sock(listener);
559         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
560
561         if (vsock_is_pending(sk)) {
562                 vsock_remove_pending(listener, sk);
563
564                 sk_acceptq_removed(listener);
565         } else if (!vsk->rejected) {
566                 /* We are not on the pending list and accept() did not reject
567                  * us, so we must have been accepted by our user process.  We
568                  * just need to drop our references to the sockets and be on
569                  * our way.
570                  */
571                 cleanup = false;
572                 goto out;
573         }
574
575         /* We need to remove ourself from the global connected sockets list so
576          * incoming packets can't find this socket, and to reduce the reference
577          * count.
578          */
579         vsock_remove_connected(vsk);
580
581         sk->sk_state = TCP_CLOSE;
582
583 out:
584         release_sock(sk);
585         release_sock(listener);
586         if (cleanup)
587                 sock_put(sk);
588
589         sock_put(sk);
590         sock_put(listener);
591 }
592
593 /**** SOCKET OPERATIONS ****/
594
595 static int __vsock_bind_stream(struct vsock_sock *vsk,
596                                struct sockaddr_vm *addr)
597 {
598         static u32 port;
599         struct sockaddr_vm new_addr;
600
601         if (!port)
602                 port = LAST_RESERVED_PORT + 1 +
603                         prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
604
605         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
606
607         if (addr->svm_port == VMADDR_PORT_ANY) {
608                 bool found = false;
609                 unsigned int i;
610
611                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
612                         if (port <= LAST_RESERVED_PORT)
613                                 port = LAST_RESERVED_PORT + 1;
614
615                         new_addr.svm_port = port++;
616
617                         if (!__vsock_find_bound_socket(&new_addr)) {
618                                 found = true;
619                                 break;
620                         }
621                 }
622
623                 if (!found)
624                         return -EADDRNOTAVAIL;
625         } else {
626                 /* If port is in reserved range, ensure caller
627                  * has necessary privileges.
628                  */
629                 if (addr->svm_port <= LAST_RESERVED_PORT &&
630                     !capable(CAP_NET_BIND_SERVICE)) {
631                         return -EACCES;
632                 }
633
634                 if (__vsock_find_bound_socket(&new_addr))
635                         return -EADDRINUSE;
636         }
637
638         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
639
640         /* Remove stream sockets from the unbound list and add them to the hash
641          * table for easy lookup by its address.  The unbound list is simply an
642          * extra entry at the end of the hash table, a trick used by AF_UNIX.
643          */
644         __vsock_remove_bound(vsk);
645         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
646
647         return 0;
648 }
649
650 static int __vsock_bind_dgram(struct vsock_sock *vsk,
651                               struct sockaddr_vm *addr)
652 {
653         return vsk->transport->dgram_bind(vsk, addr);
654 }
655
656 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
657 {
658         struct vsock_sock *vsk = vsock_sk(sk);
659         int retval;
660
661         /* First ensure this socket isn't already bound. */
662         if (vsock_addr_bound(&vsk->local_addr))
663                 return -EINVAL;
664
665         /* Now bind to the provided address or select appropriate values if
666          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
667          * like AF_INET prevents binding to a non-local IP address (in most
668          * cases), we only allow binding to a local CID.
669          */
670         if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
671                 return -EADDRNOTAVAIL;
672
673         switch (sk->sk_socket->type) {
674         case SOCK_STREAM:
675                 spin_lock_bh(&vsock_table_lock);
676                 retval = __vsock_bind_stream(vsk, addr);
677                 spin_unlock_bh(&vsock_table_lock);
678                 break;
679
680         case SOCK_DGRAM:
681                 retval = __vsock_bind_dgram(vsk, addr);
682                 break;
683
684         default:
685                 retval = -EINVAL;
686                 break;
687         }
688
689         return retval;
690 }
691
692 static void vsock_connect_timeout(struct work_struct *work);
693
694 static struct sock *__vsock_create(struct net *net,
695                                    struct socket *sock,
696                                    struct sock *parent,
697                                    gfp_t priority,
698                                    unsigned short type,
699                                    int kern)
700 {
701         struct sock *sk;
702         struct vsock_sock *psk;
703         struct vsock_sock *vsk;
704
705         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
706         if (!sk)
707                 return NULL;
708
709         sock_init_data(sock, sk);
710
711         /* sk->sk_type is normally set in sock_init_data, but only if sock is
712          * non-NULL. We make sure that our sockets always have a type by
713          * setting it here if needed.
714          */
715         if (!sock)
716                 sk->sk_type = type;
717
718         vsk = vsock_sk(sk);
719         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
720         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
721
722         sk->sk_destruct = vsock_sk_destruct;
723         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
724         sock_reset_flag(sk, SOCK_DONE);
725
726         INIT_LIST_HEAD(&vsk->bound_table);
727         INIT_LIST_HEAD(&vsk->connected_table);
728         vsk->listener = NULL;
729         INIT_LIST_HEAD(&vsk->pending_links);
730         INIT_LIST_HEAD(&vsk->accept_queue);
731         vsk->rejected = false;
732         vsk->sent_request = false;
733         vsk->ignore_connecting_rst = false;
734         vsk->peer_shutdown = 0;
735         INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
736         INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
737
738         psk = parent ? vsock_sk(parent) : NULL;
739         if (parent) {
740                 vsk->trusted = psk->trusted;
741                 vsk->owner = get_cred(psk->owner);
742                 vsk->connect_timeout = psk->connect_timeout;
743                 vsk->buffer_size = psk->buffer_size;
744                 vsk->buffer_min_size = psk->buffer_min_size;
745                 vsk->buffer_max_size = psk->buffer_max_size;
746                 security_sk_clone(parent, sk);
747         } else {
748                 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
749                 vsk->owner = get_current_cred();
750                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
751                 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
752                 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
753                 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
754         }
755
756         return sk;
757 }
758
759 static void __vsock_release(struct sock *sk, int level)
760 {
761         if (sk) {
762                 struct sock *pending;
763                 struct vsock_sock *vsk;
764
765                 vsk = vsock_sk(sk);
766                 pending = NULL; /* Compiler warning. */
767
768                 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
769                  * version to avoid the warning "possible recursive locking
770                  * detected". When "level" is 0, lock_sock_nested(sk, level)
771                  * is the same as lock_sock(sk).
772                  */
773                 lock_sock_nested(sk, level);
774
775                 if (vsk->transport)
776                         vsk->transport->release(vsk);
777                 else if (sk->sk_type == SOCK_STREAM)
778                         vsock_remove_sock(vsk);
779
780                 sock_orphan(sk);
781                 sk->sk_shutdown = SHUTDOWN_MASK;
782
783                 skb_queue_purge(&sk->sk_receive_queue);
784
785                 /* Clean up any sockets that never were accepted. */
786                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
787                         __vsock_release(pending, SINGLE_DEPTH_NESTING);
788                         sock_put(pending);
789                 }
790
791                 release_sock(sk);
792                 sock_put(sk);
793         }
794 }
795
796 static void vsock_sk_destruct(struct sock *sk)
797 {
798         struct vsock_sock *vsk = vsock_sk(sk);
799
800         vsock_deassign_transport(vsk);
801
802         /* When clearing these addresses, there's no need to set the family and
803          * possibly register the address family with the kernel.
804          */
805         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
806         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
807
808         put_cred(vsk->owner);
809 }
810
811 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
812 {
813         int err;
814
815         err = sock_queue_rcv_skb(sk, skb);
816         if (err)
817                 kfree_skb(skb);
818
819         return err;
820 }
821
822 struct sock *vsock_create_connected(struct sock *parent)
823 {
824         return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
825                               parent->sk_type, 0);
826 }
827 EXPORT_SYMBOL_GPL(vsock_create_connected);
828
829 s64 vsock_stream_has_data(struct vsock_sock *vsk)
830 {
831         return vsk->transport->stream_has_data(vsk);
832 }
833 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
834
835 s64 vsock_stream_has_space(struct vsock_sock *vsk)
836 {
837         return vsk->transport->stream_has_space(vsk);
838 }
839 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
840
841 static int vsock_release(struct socket *sock)
842 {
843         __vsock_release(sock->sk, 0);
844         sock->sk = NULL;
845         sock->state = SS_FREE;
846
847         return 0;
848 }
849
850 static int
851 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
852 {
853         int err;
854         struct sock *sk;
855         struct sockaddr_vm *vm_addr;
856
857         sk = sock->sk;
858
859         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
860                 return -EINVAL;
861
862         lock_sock(sk);
863         err = __vsock_bind(sk, vm_addr);
864         release_sock(sk);
865
866         return err;
867 }
868
869 static int vsock_getname(struct socket *sock,
870                          struct sockaddr *addr, int peer)
871 {
872         int err;
873         struct sock *sk;
874         struct vsock_sock *vsk;
875         struct sockaddr_vm *vm_addr;
876
877         sk = sock->sk;
878         vsk = vsock_sk(sk);
879         err = 0;
880
881         lock_sock(sk);
882
883         if (peer) {
884                 if (sock->state != SS_CONNECTED) {
885                         err = -ENOTCONN;
886                         goto out;
887                 }
888                 vm_addr = &vsk->remote_addr;
889         } else {
890                 vm_addr = &vsk->local_addr;
891         }
892
893         if (!vm_addr) {
894                 err = -EINVAL;
895                 goto out;
896         }
897
898         /* sys_getsockname() and sys_getpeername() pass us a
899          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
900          * that macro is defined in socket.c instead of .h, so we hardcode its
901          * value here.
902          */
903         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
904         memcpy(addr, vm_addr, sizeof(*vm_addr));
905         err = sizeof(*vm_addr);
906
907 out:
908         release_sock(sk);
909         return err;
910 }
911
912 static int vsock_shutdown(struct socket *sock, int mode)
913 {
914         int err;
915         struct sock *sk;
916
917         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
918          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
919          * here like the other address families do.  Note also that the
920          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
921          * which is what we want.
922          */
923         mode++;
924
925         if ((mode & ~SHUTDOWN_MASK) || !mode)
926                 return -EINVAL;
927
928         /* If this is a STREAM socket and it is not connected then bail out
929          * immediately.  If it is a DGRAM socket then we must first kick the
930          * socket so that it wakes up from any sleeping calls, for example
931          * recv(), and then afterwards return the error.
932          */
933
934         sk = sock->sk;
935
936         lock_sock(sk);
937         if (sock->state == SS_UNCONNECTED) {
938                 err = -ENOTCONN;
939                 if (sk->sk_type == SOCK_STREAM)
940                         goto out;
941         } else {
942                 sock->state = SS_DISCONNECTING;
943                 err = 0;
944         }
945
946         /* Receive and send shutdowns are treated alike. */
947         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
948         if (mode) {
949                 sk->sk_shutdown |= mode;
950                 sk->sk_state_change(sk);
951
952                 if (sk->sk_type == SOCK_STREAM) {
953                         sock_reset_flag(sk, SOCK_DONE);
954                         vsock_send_shutdown(sk, mode);
955                 }
956         }
957
958 out:
959         release_sock(sk);
960         return err;
961 }
962
963 static __poll_t vsock_poll(struct file *file, struct socket *sock,
964                                poll_table *wait)
965 {
966         struct sock *sk;
967         __poll_t mask;
968         struct vsock_sock *vsk;
969
970         sk = sock->sk;
971         vsk = vsock_sk(sk);
972
973         poll_wait(file, sk_sleep(sk), wait);
974         mask = 0;
975
976         if (sk->sk_err)
977                 /* Signify that there has been an error on this socket. */
978                 mask |= EPOLLERR;
979
980         /* INET sockets treat local write shutdown and peer write shutdown as a
981          * case of EPOLLHUP set.
982          */
983         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
984             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
985              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
986                 mask |= EPOLLHUP;
987         }
988
989         if (sk->sk_shutdown & RCV_SHUTDOWN ||
990             vsk->peer_shutdown & SEND_SHUTDOWN) {
991                 mask |= EPOLLRDHUP;
992         }
993
994         if (sock->type == SOCK_DGRAM) {
995                 /* For datagram sockets we can read if there is something in
996                  * the queue and write as long as the socket isn't shutdown for
997                  * sending.
998                  */
999                 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1000                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
1001                         mask |= EPOLLIN | EPOLLRDNORM;
1002                 }
1003
1004                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1005                         mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1006
1007         } else if (sock->type == SOCK_STREAM) {
1008                 const struct vsock_transport *transport;
1009
1010                 lock_sock(sk);
1011
1012                 transport = vsk->transport;
1013
1014                 /* Listening sockets that have connections in their accept
1015                  * queue can be read.
1016                  */
1017                 if (sk->sk_state == TCP_LISTEN
1018                     && !vsock_is_accept_queue_empty(sk))
1019                         mask |= EPOLLIN | EPOLLRDNORM;
1020
1021                 /* If there is something in the queue then we can read. */
1022                 if (transport && transport->stream_is_active(vsk) &&
1023                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1024                         bool data_ready_now = false;
1025                         int ret = transport->notify_poll_in(
1026                                         vsk, 1, &data_ready_now);
1027                         if (ret < 0) {
1028                                 mask |= EPOLLERR;
1029                         } else {
1030                                 if (data_ready_now)
1031                                         mask |= EPOLLIN | EPOLLRDNORM;
1032
1033                         }
1034                 }
1035
1036                 /* Sockets whose connections have been closed, reset, or
1037                  * terminated should also be considered read, and we check the
1038                  * shutdown flag for that.
1039                  */
1040                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1041                     vsk->peer_shutdown & SEND_SHUTDOWN) {
1042                         mask |= EPOLLIN | EPOLLRDNORM;
1043                 }
1044
1045                 /* Connected sockets that can produce data can be written. */
1046                 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1047                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1048                                 bool space_avail_now = false;
1049                                 int ret = transport->notify_poll_out(
1050                                                 vsk, 1, &space_avail_now);
1051                                 if (ret < 0) {
1052                                         mask |= EPOLLERR;
1053                                 } else {
1054                                         if (space_avail_now)
1055                                                 /* Remove EPOLLWRBAND since INET
1056                                                  * sockets are not setting it.
1057                                                  */
1058                                                 mask |= EPOLLOUT | EPOLLWRNORM;
1059
1060                                 }
1061                         }
1062                 }
1063
1064                 /* Simulate INET socket poll behaviors, which sets
1065                  * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1066                  * but local send is not shutdown.
1067                  */
1068                 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1069                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1070                                 mask |= EPOLLOUT | EPOLLWRNORM;
1071
1072                 }
1073
1074                 release_sock(sk);
1075         }
1076
1077         return mask;
1078 }
1079
1080 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1081                                size_t len)
1082 {
1083         int err;
1084         struct sock *sk;
1085         struct vsock_sock *vsk;
1086         struct sockaddr_vm *remote_addr;
1087         const struct vsock_transport *transport;
1088
1089         if (msg->msg_flags & MSG_OOB)
1090                 return -EOPNOTSUPP;
1091
1092         /* For now, MSG_DONTWAIT is always assumed... */
1093         err = 0;
1094         sk = sock->sk;
1095         vsk = vsock_sk(sk);
1096
1097         lock_sock(sk);
1098
1099         transport = vsk->transport;
1100
1101         err = vsock_auto_bind(vsk);
1102         if (err)
1103                 goto out;
1104
1105
1106         /* If the provided message contains an address, use that.  Otherwise
1107          * fall back on the socket's remote handle (if it has been connected).
1108          */
1109         if (msg->msg_name &&
1110             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1111                             &remote_addr) == 0) {
1112                 /* Ensure this address is of the right type and is a valid
1113                  * destination.
1114                  */
1115
1116                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1117                         remote_addr->svm_cid = transport->get_local_cid();
1118
1119                 if (!vsock_addr_bound(remote_addr)) {
1120                         err = -EINVAL;
1121                         goto out;
1122                 }
1123         } else if (sock->state == SS_CONNECTED) {
1124                 remote_addr = &vsk->remote_addr;
1125
1126                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1127                         remote_addr->svm_cid = transport->get_local_cid();
1128
1129                 /* XXX Should connect() or this function ensure remote_addr is
1130                  * bound?
1131                  */
1132                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1133                         err = -EINVAL;
1134                         goto out;
1135                 }
1136         } else {
1137                 err = -EINVAL;
1138                 goto out;
1139         }
1140
1141         if (!transport->dgram_allow(remote_addr->svm_cid,
1142                                     remote_addr->svm_port)) {
1143                 err = -EINVAL;
1144                 goto out;
1145         }
1146
1147         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1148
1149 out:
1150         release_sock(sk);
1151         return err;
1152 }
1153
1154 static int vsock_dgram_connect(struct socket *sock,
1155                                struct sockaddr *addr, int addr_len, int flags)
1156 {
1157         int err;
1158         struct sock *sk;
1159         struct vsock_sock *vsk;
1160         struct sockaddr_vm *remote_addr;
1161
1162         sk = sock->sk;
1163         vsk = vsock_sk(sk);
1164
1165         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1166         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1167                 lock_sock(sk);
1168                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1169                                 VMADDR_PORT_ANY);
1170                 sock->state = SS_UNCONNECTED;
1171                 release_sock(sk);
1172                 return 0;
1173         } else if (err != 0)
1174                 return -EINVAL;
1175
1176         lock_sock(sk);
1177
1178         err = vsock_auto_bind(vsk);
1179         if (err)
1180                 goto out;
1181
1182         if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1183                                          remote_addr->svm_port)) {
1184                 err = -EINVAL;
1185                 goto out;
1186         }
1187
1188         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1189         sock->state = SS_CONNECTED;
1190
1191 out:
1192         release_sock(sk);
1193         return err;
1194 }
1195
1196 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1197                                size_t len, int flags)
1198 {
1199         struct vsock_sock *vsk = vsock_sk(sock->sk);
1200
1201         return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1202 }
1203
1204 static const struct proto_ops vsock_dgram_ops = {
1205         .family = PF_VSOCK,
1206         .owner = THIS_MODULE,
1207         .release = vsock_release,
1208         .bind = vsock_bind,
1209         .connect = vsock_dgram_connect,
1210         .socketpair = sock_no_socketpair,
1211         .accept = sock_no_accept,
1212         .getname = vsock_getname,
1213         .poll = vsock_poll,
1214         .ioctl = sock_no_ioctl,
1215         .listen = sock_no_listen,
1216         .shutdown = vsock_shutdown,
1217         .sendmsg = vsock_dgram_sendmsg,
1218         .recvmsg = vsock_dgram_recvmsg,
1219         .mmap = sock_no_mmap,
1220         .sendpage = sock_no_sendpage,
1221 };
1222
1223 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1224 {
1225         const struct vsock_transport *transport = vsk->transport;
1226
1227         if (!transport || !transport->cancel_pkt)
1228                 return -EOPNOTSUPP;
1229
1230         return transport->cancel_pkt(vsk);
1231 }
1232
1233 static void vsock_connect_timeout(struct work_struct *work)
1234 {
1235         struct sock *sk;
1236         struct vsock_sock *vsk;
1237
1238         vsk = container_of(work, struct vsock_sock, connect_work.work);
1239         sk = sk_vsock(vsk);
1240
1241         lock_sock(sk);
1242         if (sk->sk_state == TCP_SYN_SENT &&
1243             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1244                 sk->sk_state = TCP_CLOSE;
1245                 sk->sk_socket->state = SS_UNCONNECTED;
1246                 sk->sk_err = ETIMEDOUT;
1247                 sk->sk_error_report(sk);
1248                 vsock_transport_cancel_pkt(vsk);
1249         }
1250         release_sock(sk);
1251
1252         sock_put(sk);
1253 }
1254
1255 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1256                                 int addr_len, int flags)
1257 {
1258         int err;
1259         struct sock *sk;
1260         struct vsock_sock *vsk;
1261         const struct vsock_transport *transport;
1262         struct sockaddr_vm *remote_addr;
1263         long timeout;
1264         DEFINE_WAIT(wait);
1265
1266         err = 0;
1267         sk = sock->sk;
1268         vsk = vsock_sk(sk);
1269
1270         lock_sock(sk);
1271
1272         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1273         switch (sock->state) {
1274         case SS_CONNECTED:
1275                 err = -EISCONN;
1276                 goto out;
1277         case SS_DISCONNECTING:
1278                 err = -EINVAL;
1279                 goto out;
1280         case SS_CONNECTING:
1281                 /* This continues on so we can move sock into the SS_CONNECTED
1282                  * state once the connection has completed (at which point err
1283                  * will be set to zero also).  Otherwise, we will either wait
1284                  * for the connection or return -EALREADY should this be a
1285                  * non-blocking call.
1286                  */
1287                 err = -EALREADY;
1288                 if (flags & O_NONBLOCK)
1289                         goto out;
1290                 break;
1291         default:
1292                 if ((sk->sk_state == TCP_LISTEN) ||
1293                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1294                         err = -EINVAL;
1295                         goto out;
1296                 }
1297
1298                 /* Set the remote address that we are connecting to. */
1299                 memcpy(&vsk->remote_addr, remote_addr,
1300                        sizeof(vsk->remote_addr));
1301
1302                 err = vsock_assign_transport(vsk, NULL);
1303                 if (err)
1304                         goto out;
1305
1306                 transport = vsk->transport;
1307
1308                 /* The hypervisor and well-known contexts do not have socket
1309                  * endpoints.
1310                  */
1311                 if (!transport ||
1312                     !transport->stream_allow(remote_addr->svm_cid,
1313                                              remote_addr->svm_port)) {
1314                         err = -ENETUNREACH;
1315                         goto out;
1316                 }
1317
1318                 err = vsock_auto_bind(vsk);
1319                 if (err)
1320                         goto out;
1321
1322                 sk->sk_state = TCP_SYN_SENT;
1323
1324                 err = transport->connect(vsk);
1325                 if (err < 0)
1326                         goto out;
1327
1328                 /* Mark sock as connecting and set the error code to in
1329                  * progress in case this is a non-blocking connect.
1330                  */
1331                 sock->state = SS_CONNECTING;
1332                 err = -EINPROGRESS;
1333         }
1334
1335         /* The receive path will handle all communication until we are able to
1336          * enter the connected state.  Here we wait for the connection to be
1337          * completed or a notification of an error.
1338          */
1339         timeout = vsk->connect_timeout;
1340         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1341
1342         while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1343                 if (flags & O_NONBLOCK) {
1344                         /* If we're not going to block, we schedule a timeout
1345                          * function to generate a timeout on the connection
1346                          * attempt, in case the peer doesn't respond in a
1347                          * timely manner. We hold on to the socket until the
1348                          * timeout fires.
1349                          */
1350                         sock_hold(sk);
1351
1352                         /* If the timeout function is already scheduled,
1353                          * reschedule it, then ungrab the socket refcount to
1354                          * keep it balanced.
1355                          */
1356                         if (mod_delayed_work(system_wq, &vsk->connect_work,
1357                                              timeout))
1358                                 sock_put(sk);
1359
1360                         /* Skip ahead to preserve error code set above. */
1361                         goto out_wait;
1362                 }
1363
1364                 release_sock(sk);
1365                 timeout = schedule_timeout(timeout);
1366                 lock_sock(sk);
1367
1368                 if (signal_pending(current)) {
1369                         err = sock_intr_errno(timeout);
1370                         sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1371                         sock->state = SS_UNCONNECTED;
1372                         vsock_transport_cancel_pkt(vsk);
1373                         vsock_remove_connected(vsk);
1374                         goto out_wait;
1375                 } else if (timeout == 0) {
1376                         err = -ETIMEDOUT;
1377                         sk->sk_state = TCP_CLOSE;
1378                         sock->state = SS_UNCONNECTED;
1379                         vsock_transport_cancel_pkt(vsk);
1380                         goto out_wait;
1381                 }
1382
1383                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1384         }
1385
1386         if (sk->sk_err) {
1387                 err = -sk->sk_err;
1388                 sk->sk_state = TCP_CLOSE;
1389                 sock->state = SS_UNCONNECTED;
1390         } else {
1391                 err = 0;
1392         }
1393
1394 out_wait:
1395         finish_wait(sk_sleep(sk), &wait);
1396 out:
1397         release_sock(sk);
1398         return err;
1399 }
1400
1401 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1402                         bool kern)
1403 {
1404         struct sock *listener;
1405         int err;
1406         struct sock *connected;
1407         struct vsock_sock *vconnected;
1408         long timeout;
1409         DEFINE_WAIT(wait);
1410
1411         err = 0;
1412         listener = sock->sk;
1413
1414         lock_sock(listener);
1415
1416         if (sock->type != SOCK_STREAM) {
1417                 err = -EOPNOTSUPP;
1418                 goto out;
1419         }
1420
1421         if (listener->sk_state != TCP_LISTEN) {
1422                 err = -EINVAL;
1423                 goto out;
1424         }
1425
1426         /* Wait for children sockets to appear; these are the new sockets
1427          * created upon connection establishment.
1428          */
1429         timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1430         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1431
1432         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1433                listener->sk_err == 0) {
1434                 release_sock(listener);
1435                 timeout = schedule_timeout(timeout);
1436                 finish_wait(sk_sleep(listener), &wait);
1437                 lock_sock(listener);
1438
1439                 if (signal_pending(current)) {
1440                         err = sock_intr_errno(timeout);
1441                         goto out;
1442                 } else if (timeout == 0) {
1443                         err = -EAGAIN;
1444                         goto out;
1445                 }
1446
1447                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1448         }
1449         finish_wait(sk_sleep(listener), &wait);
1450
1451         if (listener->sk_err)
1452                 err = -listener->sk_err;
1453
1454         if (connected) {
1455                 sk_acceptq_removed(listener);
1456
1457                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1458                 vconnected = vsock_sk(connected);
1459
1460                 /* If the listener socket has received an error, then we should
1461                  * reject this socket and return.  Note that we simply mark the
1462                  * socket rejected, drop our reference, and let the cleanup
1463                  * function handle the cleanup; the fact that we found it in
1464                  * the listener's accept queue guarantees that the cleanup
1465                  * function hasn't run yet.
1466                  */
1467                 if (err) {
1468                         vconnected->rejected = true;
1469                 } else {
1470                         newsock->state = SS_CONNECTED;
1471                         sock_graft(connected, newsock);
1472                 }
1473
1474                 release_sock(connected);
1475                 sock_put(connected);
1476         }
1477
1478 out:
1479         release_sock(listener);
1480         return err;
1481 }
1482
1483 static int vsock_listen(struct socket *sock, int backlog)
1484 {
1485         int err;
1486         struct sock *sk;
1487         struct vsock_sock *vsk;
1488
1489         sk = sock->sk;
1490
1491         lock_sock(sk);
1492
1493         if (sock->type != SOCK_STREAM) {
1494                 err = -EOPNOTSUPP;
1495                 goto out;
1496         }
1497
1498         if (sock->state != SS_UNCONNECTED) {
1499                 err = -EINVAL;
1500                 goto out;
1501         }
1502
1503         vsk = vsock_sk(sk);
1504
1505         if (!vsock_addr_bound(&vsk->local_addr)) {
1506                 err = -EINVAL;
1507                 goto out;
1508         }
1509
1510         sk->sk_max_ack_backlog = backlog;
1511         sk->sk_state = TCP_LISTEN;
1512
1513         err = 0;
1514
1515 out:
1516         release_sock(sk);
1517         return err;
1518 }
1519
1520 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1521                                      const struct vsock_transport *transport,
1522                                      u64 val)
1523 {
1524         if (val > vsk->buffer_max_size)
1525                 val = vsk->buffer_max_size;
1526
1527         if (val < vsk->buffer_min_size)
1528                 val = vsk->buffer_min_size;
1529
1530         if (val != vsk->buffer_size &&
1531             transport && transport->notify_buffer_size)
1532                 transport->notify_buffer_size(vsk, &val);
1533
1534         vsk->buffer_size = val;
1535 }
1536
1537 static int vsock_stream_setsockopt(struct socket *sock,
1538                                    int level,
1539                                    int optname,
1540                                    sockptr_t optval,
1541                                    unsigned int optlen)
1542 {
1543         int err;
1544         struct sock *sk;
1545         struct vsock_sock *vsk;
1546         const struct vsock_transport *transport;
1547         u64 val;
1548
1549         if (level != AF_VSOCK)
1550                 return -ENOPROTOOPT;
1551
1552 #define COPY_IN(_v)                                       \
1553         do {                                              \
1554                 if (optlen < sizeof(_v)) {                \
1555                         err = -EINVAL;                    \
1556                         goto exit;                        \
1557                 }                                         \
1558                 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1559                         err = -EFAULT;                                  \
1560                         goto exit;                                      \
1561                 }                                                       \
1562         } while (0)
1563
1564         err = 0;
1565         sk = sock->sk;
1566         vsk = vsock_sk(sk);
1567
1568         lock_sock(sk);
1569
1570         transport = vsk->transport;
1571
1572         switch (optname) {
1573         case SO_VM_SOCKETS_BUFFER_SIZE:
1574                 COPY_IN(val);
1575                 vsock_update_buffer_size(vsk, transport, val);
1576                 break;
1577
1578         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1579                 COPY_IN(val);
1580                 vsk->buffer_max_size = val;
1581                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1582                 break;
1583
1584         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1585                 COPY_IN(val);
1586                 vsk->buffer_min_size = val;
1587                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1588                 break;
1589
1590         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1591                 struct __kernel_old_timeval tv;
1592                 COPY_IN(tv);
1593                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1594                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1595                         vsk->connect_timeout = tv.tv_sec * HZ +
1596                             DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1597                         if (vsk->connect_timeout == 0)
1598                                 vsk->connect_timeout =
1599                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1600
1601                 } else {
1602                         err = -ERANGE;
1603                 }
1604                 break;
1605         }
1606
1607         default:
1608                 err = -ENOPROTOOPT;
1609                 break;
1610         }
1611
1612 #undef COPY_IN
1613
1614 exit:
1615         release_sock(sk);
1616         return err;
1617 }
1618
1619 static int vsock_stream_getsockopt(struct socket *sock,
1620                                    int level, int optname,
1621                                    char __user *optval,
1622                                    int __user *optlen)
1623 {
1624         int err;
1625         int len;
1626         struct sock *sk;
1627         struct vsock_sock *vsk;
1628         u64 val;
1629
1630         if (level != AF_VSOCK)
1631                 return -ENOPROTOOPT;
1632
1633         err = get_user(len, optlen);
1634         if (err != 0)
1635                 return err;
1636
1637 #define COPY_OUT(_v)                            \
1638         do {                                    \
1639                 if (len < sizeof(_v))           \
1640                         return -EINVAL;         \
1641                                                 \
1642                 len = sizeof(_v);               \
1643                 if (copy_to_user(optval, &_v, len) != 0)        \
1644                         return -EFAULT;                         \
1645                                                                 \
1646         } while (0)
1647
1648         err = 0;
1649         sk = sock->sk;
1650         vsk = vsock_sk(sk);
1651
1652         switch (optname) {
1653         case SO_VM_SOCKETS_BUFFER_SIZE:
1654                 val = vsk->buffer_size;
1655                 COPY_OUT(val);
1656                 break;
1657
1658         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1659                 val = vsk->buffer_max_size;
1660                 COPY_OUT(val);
1661                 break;
1662
1663         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1664                 val = vsk->buffer_min_size;
1665                 COPY_OUT(val);
1666                 break;
1667
1668         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1669                 struct __kernel_old_timeval tv;
1670                 tv.tv_sec = vsk->connect_timeout / HZ;
1671                 tv.tv_usec =
1672                     (vsk->connect_timeout -
1673                      tv.tv_sec * HZ) * (1000000 / HZ);
1674                 COPY_OUT(tv);
1675                 break;
1676         }
1677         default:
1678                 return -ENOPROTOOPT;
1679         }
1680
1681         err = put_user(len, optlen);
1682         if (err != 0)
1683                 return -EFAULT;
1684
1685 #undef COPY_OUT
1686
1687         return 0;
1688 }
1689
1690 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1691                                 size_t len)
1692 {
1693         struct sock *sk;
1694         struct vsock_sock *vsk;
1695         const struct vsock_transport *transport;
1696         ssize_t total_written;
1697         long timeout;
1698         int err;
1699         struct vsock_transport_send_notify_data send_data;
1700         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1701
1702         sk = sock->sk;
1703         vsk = vsock_sk(sk);
1704         total_written = 0;
1705         err = 0;
1706
1707         if (msg->msg_flags & MSG_OOB)
1708                 return -EOPNOTSUPP;
1709
1710         lock_sock(sk);
1711
1712         transport = vsk->transport;
1713
1714         /* Callers should not provide a destination with stream sockets. */
1715         if (msg->msg_namelen) {
1716                 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1717                 goto out;
1718         }
1719
1720         /* Send data only if both sides are not shutdown in the direction. */
1721         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1722             vsk->peer_shutdown & RCV_SHUTDOWN) {
1723                 err = -EPIPE;
1724                 goto out;
1725         }
1726
1727         if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1728             !vsock_addr_bound(&vsk->local_addr)) {
1729                 err = -ENOTCONN;
1730                 goto out;
1731         }
1732
1733         if (!vsock_addr_bound(&vsk->remote_addr)) {
1734                 err = -EDESTADDRREQ;
1735                 goto out;
1736         }
1737
1738         /* Wait for room in the produce queue to enqueue our user's data. */
1739         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1740
1741         err = transport->notify_send_init(vsk, &send_data);
1742         if (err < 0)
1743                 goto out;
1744
1745         while (total_written < len) {
1746                 ssize_t written;
1747
1748                 add_wait_queue(sk_sleep(sk), &wait);
1749                 while (vsock_stream_has_space(vsk) == 0 &&
1750                        sk->sk_err == 0 &&
1751                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1752                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1753
1754                         /* Don't wait for non-blocking sockets. */
1755                         if (timeout == 0) {
1756                                 err = -EAGAIN;
1757                                 remove_wait_queue(sk_sleep(sk), &wait);
1758                                 goto out_err;
1759                         }
1760
1761                         err = transport->notify_send_pre_block(vsk, &send_data);
1762                         if (err < 0) {
1763                                 remove_wait_queue(sk_sleep(sk), &wait);
1764                                 goto out_err;
1765                         }
1766
1767                         release_sock(sk);
1768                         timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1769                         lock_sock(sk);
1770                         if (signal_pending(current)) {
1771                                 err = sock_intr_errno(timeout);
1772                                 remove_wait_queue(sk_sleep(sk), &wait);
1773                                 goto out_err;
1774                         } else if (timeout == 0) {
1775                                 err = -EAGAIN;
1776                                 remove_wait_queue(sk_sleep(sk), &wait);
1777                                 goto out_err;
1778                         }
1779                 }
1780                 remove_wait_queue(sk_sleep(sk), &wait);
1781
1782                 /* These checks occur both as part of and after the loop
1783                  * conditional since we need to check before and after
1784                  * sleeping.
1785                  */
1786                 if (sk->sk_err) {
1787                         err = -sk->sk_err;
1788                         goto out_err;
1789                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1790                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1791                         err = -EPIPE;
1792                         goto out_err;
1793                 }
1794
1795                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1796                 if (err < 0)
1797                         goto out_err;
1798
1799                 /* Note that enqueue will only write as many bytes as are free
1800                  * in the produce queue, so we don't need to ensure len is
1801                  * smaller than the queue size.  It is the caller's
1802                  * responsibility to check how many bytes we were able to send.
1803                  */
1804
1805                 written = transport->stream_enqueue(
1806                                 vsk, msg,
1807                                 len - total_written);
1808                 if (written < 0) {
1809                         err = -ENOMEM;
1810                         goto out_err;
1811                 }
1812
1813                 total_written += written;
1814
1815                 err = transport->notify_send_post_enqueue(
1816                                 vsk, written, &send_data);
1817                 if (err < 0)
1818                         goto out_err;
1819
1820         }
1821
1822 out_err:
1823         if (total_written > 0)
1824                 err = total_written;
1825 out:
1826         release_sock(sk);
1827         return err;
1828 }
1829
1830
1831 static int
1832 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1833                      int flags)
1834 {
1835         struct sock *sk;
1836         struct vsock_sock *vsk;
1837         const struct vsock_transport *transport;
1838         int err;
1839         size_t target;
1840         ssize_t copied;
1841         long timeout;
1842         struct vsock_transport_recv_notify_data recv_data;
1843
1844         DEFINE_WAIT(wait);
1845
1846         sk = sock->sk;
1847         vsk = vsock_sk(sk);
1848         err = 0;
1849
1850         lock_sock(sk);
1851
1852         transport = vsk->transport;
1853
1854         if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1855                 /* Recvmsg is supposed to return 0 if a peer performs an
1856                  * orderly shutdown. Differentiate between that case and when a
1857                  * peer has not connected or a local shutdown occured with the
1858                  * SOCK_DONE flag.
1859                  */
1860                 if (sock_flag(sk, SOCK_DONE))
1861                         err = 0;
1862                 else
1863                         err = -ENOTCONN;
1864
1865                 goto out;
1866         }
1867
1868         if (flags & MSG_OOB) {
1869                 err = -EOPNOTSUPP;
1870                 goto out;
1871         }
1872
1873         /* We don't check peer_shutdown flag here since peer may actually shut
1874          * down, but there can be data in the queue that a local socket can
1875          * receive.
1876          */
1877         if (sk->sk_shutdown & RCV_SHUTDOWN) {
1878                 err = 0;
1879                 goto out;
1880         }
1881
1882         /* It is valid on Linux to pass in a zero-length receive buffer.  This
1883          * is not an error.  We may as well bail out now.
1884          */
1885         if (!len) {
1886                 err = 0;
1887                 goto out;
1888         }
1889
1890         /* We must not copy less than target bytes into the user's buffer
1891          * before returning successfully, so we wait for the consume queue to
1892          * have that much data to consume before dequeueing.  Note that this
1893          * makes it impossible to handle cases where target is greater than the
1894          * queue size.
1895          */
1896         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1897         if (target >= transport->stream_rcvhiwat(vsk)) {
1898                 err = -ENOMEM;
1899                 goto out;
1900         }
1901         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1902         copied = 0;
1903
1904         err = transport->notify_recv_init(vsk, target, &recv_data);
1905         if (err < 0)
1906                 goto out;
1907
1908
1909         while (1) {
1910                 s64 ready;
1911
1912                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1913                 ready = vsock_stream_has_data(vsk);
1914
1915                 if (ready == 0) {
1916                         if (sk->sk_err != 0 ||
1917                             (sk->sk_shutdown & RCV_SHUTDOWN) ||
1918                             (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1919                                 finish_wait(sk_sleep(sk), &wait);
1920                                 break;
1921                         }
1922                         /* Don't wait for non-blocking sockets. */
1923                         if (timeout == 0) {
1924                                 err = -EAGAIN;
1925                                 finish_wait(sk_sleep(sk), &wait);
1926                                 break;
1927                         }
1928
1929                         err = transport->notify_recv_pre_block(
1930                                         vsk, target, &recv_data);
1931                         if (err < 0) {
1932                                 finish_wait(sk_sleep(sk), &wait);
1933                                 break;
1934                         }
1935                         release_sock(sk);
1936                         timeout = schedule_timeout(timeout);
1937                         lock_sock(sk);
1938
1939                         if (signal_pending(current)) {
1940                                 err = sock_intr_errno(timeout);
1941                                 finish_wait(sk_sleep(sk), &wait);
1942                                 break;
1943                         } else if (timeout == 0) {
1944                                 err = -EAGAIN;
1945                                 finish_wait(sk_sleep(sk), &wait);
1946                                 break;
1947                         }
1948                 } else {
1949                         ssize_t read;
1950
1951                         finish_wait(sk_sleep(sk), &wait);
1952
1953                         if (ready < 0) {
1954                                 /* Invalid queue pair content. XXX This should
1955                                 * be changed to a connection reset in a later
1956                                 * change.
1957                                 */
1958
1959                                 err = -ENOMEM;
1960                                 goto out;
1961                         }
1962
1963                         err = transport->notify_recv_pre_dequeue(
1964                                         vsk, target, &recv_data);
1965                         if (err < 0)
1966                                 break;
1967
1968                         read = transport->stream_dequeue(
1969                                         vsk, msg,
1970                                         len - copied, flags);
1971                         if (read < 0) {
1972                                 err = -ENOMEM;
1973                                 break;
1974                         }
1975
1976                         copied += read;
1977
1978                         err = transport->notify_recv_post_dequeue(
1979                                         vsk, target, read,
1980                                         !(flags & MSG_PEEK), &recv_data);
1981                         if (err < 0)
1982                                 goto out;
1983
1984                         if (read >= target || flags & MSG_PEEK)
1985                                 break;
1986
1987                         target -= read;
1988                 }
1989         }
1990
1991         if (sk->sk_err)
1992                 err = -sk->sk_err;
1993         else if (sk->sk_shutdown & RCV_SHUTDOWN)
1994                 err = 0;
1995
1996         if (copied > 0)
1997                 err = copied;
1998
1999 out:
2000         release_sock(sk);
2001         return err;
2002 }
2003
2004 static const struct proto_ops vsock_stream_ops = {
2005         .family = PF_VSOCK,
2006         .owner = THIS_MODULE,
2007         .release = vsock_release,
2008         .bind = vsock_bind,
2009         .connect = vsock_stream_connect,
2010         .socketpair = sock_no_socketpair,
2011         .accept = vsock_accept,
2012         .getname = vsock_getname,
2013         .poll = vsock_poll,
2014         .ioctl = sock_no_ioctl,
2015         .listen = vsock_listen,
2016         .shutdown = vsock_shutdown,
2017         .setsockopt = vsock_stream_setsockopt,
2018         .getsockopt = vsock_stream_getsockopt,
2019         .sendmsg = vsock_stream_sendmsg,
2020         .recvmsg = vsock_stream_recvmsg,
2021         .mmap = sock_no_mmap,
2022         .sendpage = sock_no_sendpage,
2023 };
2024
2025 static int vsock_create(struct net *net, struct socket *sock,
2026                         int protocol, int kern)
2027 {
2028         struct vsock_sock *vsk;
2029         struct sock *sk;
2030         int ret;
2031
2032         if (!sock)
2033                 return -EINVAL;
2034
2035         if (protocol && protocol != PF_VSOCK)
2036                 return -EPROTONOSUPPORT;
2037
2038         switch (sock->type) {
2039         case SOCK_DGRAM:
2040                 sock->ops = &vsock_dgram_ops;
2041                 break;
2042         case SOCK_STREAM:
2043                 sock->ops = &vsock_stream_ops;
2044                 break;
2045         default:
2046                 return -ESOCKTNOSUPPORT;
2047         }
2048
2049         sock->state = SS_UNCONNECTED;
2050
2051         sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2052         if (!sk)
2053                 return -ENOMEM;
2054
2055         vsk = vsock_sk(sk);
2056
2057         if (sock->type == SOCK_DGRAM) {
2058                 ret = vsock_assign_transport(vsk, NULL);
2059                 if (ret < 0) {
2060                         sock_put(sk);
2061                         return ret;
2062                 }
2063         }
2064
2065         vsock_insert_unbound(vsk);
2066
2067         return 0;
2068 }
2069
2070 static const struct net_proto_family vsock_family_ops = {
2071         .family = AF_VSOCK,
2072         .create = vsock_create,
2073         .owner = THIS_MODULE,
2074 };
2075
2076 static long vsock_dev_do_ioctl(struct file *filp,
2077                                unsigned int cmd, void __user *ptr)
2078 {
2079         u32 __user *p = ptr;
2080         u32 cid = VMADDR_CID_ANY;
2081         int retval = 0;
2082
2083         switch (cmd) {
2084         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2085                 /* To be compatible with the VMCI behavior, we prioritize the
2086                  * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2087                  */
2088                 if (transport_g2h)
2089                         cid = transport_g2h->get_local_cid();
2090                 else if (transport_h2g)
2091                         cid = transport_h2g->get_local_cid();
2092
2093                 if (put_user(cid, p) != 0)
2094                         retval = -EFAULT;
2095                 break;
2096
2097         default:
2098                 pr_err("Unknown ioctl %d\n", cmd);
2099                 retval = -EINVAL;
2100         }
2101
2102         return retval;
2103 }
2104
2105 static long vsock_dev_ioctl(struct file *filp,
2106                             unsigned int cmd, unsigned long arg)
2107 {
2108         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2109 }
2110
2111 #ifdef CONFIG_COMPAT
2112 static long vsock_dev_compat_ioctl(struct file *filp,
2113                                    unsigned int cmd, unsigned long arg)
2114 {
2115         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2116 }
2117 #endif
2118
2119 static const struct file_operations vsock_device_ops = {
2120         .owner          = THIS_MODULE,
2121         .unlocked_ioctl = vsock_dev_ioctl,
2122 #ifdef CONFIG_COMPAT
2123         .compat_ioctl   = vsock_dev_compat_ioctl,
2124 #endif
2125         .open           = nonseekable_open,
2126 };
2127
2128 static struct miscdevice vsock_device = {
2129         .name           = "vsock",
2130         .fops           = &vsock_device_ops,
2131 };
2132
2133 static int __init vsock_init(void)
2134 {
2135         int err = 0;
2136
2137         vsock_init_tables();
2138
2139         vsock_proto.owner = THIS_MODULE;
2140         vsock_device.minor = MISC_DYNAMIC_MINOR;
2141         err = misc_register(&vsock_device);
2142         if (err) {
2143                 pr_err("Failed to register misc device\n");
2144                 goto err_reset_transport;
2145         }
2146
2147         err = proto_register(&vsock_proto, 1);  /* we want our slab */
2148         if (err) {
2149                 pr_err("Cannot register vsock protocol\n");
2150                 goto err_deregister_misc;
2151         }
2152
2153         err = sock_register(&vsock_family_ops);
2154         if (err) {
2155                 pr_err("could not register af_vsock (%d) address family: %d\n",
2156                        AF_VSOCK, err);
2157                 goto err_unregister_proto;
2158         }
2159
2160         return 0;
2161
2162 err_unregister_proto:
2163         proto_unregister(&vsock_proto);
2164 err_deregister_misc:
2165         misc_deregister(&vsock_device);
2166 err_reset_transport:
2167         return err;
2168 }
2169
2170 static void __exit vsock_exit(void)
2171 {
2172         misc_deregister(&vsock_device);
2173         sock_unregister(AF_VSOCK);
2174         proto_unregister(&vsock_proto);
2175 }
2176
2177 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2178 {
2179         return vsk->transport;
2180 }
2181 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2182
2183 int vsock_core_register(const struct vsock_transport *t, int features)
2184 {
2185         const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2186         int err = mutex_lock_interruptible(&vsock_register_mutex);
2187
2188         if (err)
2189                 return err;
2190
2191         t_h2g = transport_h2g;
2192         t_g2h = transport_g2h;
2193         t_dgram = transport_dgram;
2194         t_local = transport_local;
2195
2196         if (features & VSOCK_TRANSPORT_F_H2G) {
2197                 if (t_h2g) {
2198                         err = -EBUSY;
2199                         goto err_busy;
2200                 }
2201                 t_h2g = t;
2202         }
2203
2204         if (features & VSOCK_TRANSPORT_F_G2H) {
2205                 if (t_g2h) {
2206                         err = -EBUSY;
2207                         goto err_busy;
2208                 }
2209                 t_g2h = t;
2210         }
2211
2212         if (features & VSOCK_TRANSPORT_F_DGRAM) {
2213                 if (t_dgram) {
2214                         err = -EBUSY;
2215                         goto err_busy;
2216                 }
2217                 t_dgram = t;
2218         }
2219
2220         if (features & VSOCK_TRANSPORT_F_LOCAL) {
2221                 if (t_local) {
2222                         err = -EBUSY;
2223                         goto err_busy;
2224                 }
2225                 t_local = t;
2226         }
2227
2228         transport_h2g = t_h2g;
2229         transport_g2h = t_g2h;
2230         transport_dgram = t_dgram;
2231         transport_local = t_local;
2232
2233 err_busy:
2234         mutex_unlock(&vsock_register_mutex);
2235         return err;
2236 }
2237 EXPORT_SYMBOL_GPL(vsock_core_register);
2238
2239 void vsock_core_unregister(const struct vsock_transport *t)
2240 {
2241         mutex_lock(&vsock_register_mutex);
2242
2243         if (transport_h2g == t)
2244                 transport_h2g = NULL;
2245
2246         if (transport_g2h == t)
2247                 transport_g2h = NULL;
2248
2249         if (transport_dgram == t)
2250                 transport_dgram = NULL;
2251
2252         if (transport_local == t)
2253                 transport_local = NULL;
2254
2255         mutex_unlock(&vsock_register_mutex);
2256 }
2257 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2258
2259 module_init(vsock_init);
2260 module_exit(vsock_exit);
2261
2262 MODULE_AUTHOR("VMware, Inc.");
2263 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2264 MODULE_VERSION("1.0.2.0-k");
2265 MODULE_LICENSE("GPL v2");