GNU Linux-libre 4.19.245-gnu1
[releases.git] / net / vmw_vsock / af_vsock.c
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the TCP_LISTEN state.  When a
40  * connection request is received (the second kind of socket mentioned above),
41  * we create a new socket and refer to it as a pending socket.  These pending
42  * sockets are placed on the pending connection list of the listener socket.
43  * When future packets are received for the address the listener socket is
44  * bound to, we check if the source of the packet is from one that has an
45  * existing pending connection.  If it does, we process the packet for the
46  * pending socket.  When that socket reaches the connected state, it is removed
47  * from the listener socket's pending list and enqueued in the listener
48  * socket's accept queue.  Callers of accept(2) will accept connected sockets
49  * from the listener socket's accept queue.  If the socket cannot be accepted
50  * for some reason then it is marked rejected.  Once the connection is
51  * accepted, it is owned by the user process and the responsibility for cleanup
52  * falls with that user process.
53  *
54  * - It is possible that these pending sockets will never reach the connected
55  * state; in fact, we may never receive another packet after the connection
56  * request.  Because of this, we must schedule a cleanup function to run in the
57  * future, after some amount of time passes where a connection should have been
58  * established.  This function ensures that the socket is off all lists so it
59  * cannot be retrieved, then drops all references to the socket so it is cleaned
60  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
61  * function will also cleanup rejected sockets, those that reach the connected
62  * state but leave it before they have been accepted.
63  *
64  * - Lock ordering for pending or accept queue sockets is:
65  *
66  *     lock_sock(listener);
67  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68  *
69  * Using explicit nested locking keeps lockdep happy since normally only one
70  * lock of a given class may be taken at a time.
71  *
72  * - Sockets created by user action will be cleaned up when the user process
73  * calls close(2), causing our release implementation to be called. Our release
74  * implementation will perform some cleanup then drop the last reference so our
75  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
76  * perform additional cleanup that's common for both types of sockets.
77  *
78  * - A socket's reference count is what ensures that the structure won't be
79  * freed.  Each entry in a list (such as the "global" bound and connected tables
80  * and the listener socket's pending list and connected queue) ensures a
81  * reference.  When we defer work until process context and pass a socket as our
82  * argument, we must ensure the reference count is increased to ensure the
83  * socket isn't freed before the function is run; the deferred function will
84  * then drop the reference.
85  *
86  * - sk->sk_state uses the TCP state constants because they are widely used by
87  * other address families and exposed to userspace tools like ss(8):
88  *
89  *   TCP_CLOSE - unconnected
90  *   TCP_SYN_SENT - connecting
91  *   TCP_ESTABLISHED - connected
92  *   TCP_CLOSING - disconnecting
93  *   TCP_LISTEN - listening
94  */
95
96 #include <linux/types.h>
97 #include <linux/bitops.h>
98 #include <linux/cred.h>
99 #include <linux/init.h>
100 #include <linux/io.h>
101 #include <linux/kernel.h>
102 #include <linux/sched/signal.h>
103 #include <linux/kmod.h>
104 #include <linux/list.h>
105 #include <linux/miscdevice.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/net.h>
109 #include <linux/poll.h>
110 #include <linux/random.h>
111 #include <linux/skbuff.h>
112 #include <linux/smp.h>
113 #include <linux/socket.h>
114 #include <linux/stddef.h>
115 #include <linux/unistd.h>
116 #include <linux/wait.h>
117 #include <linux/workqueue.h>
118 #include <net/sock.h>
119 #include <net/af_vsock.h>
120
121 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
122 static void vsock_sk_destruct(struct sock *sk);
123 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
124
125 /* Protocol family. */
126 static struct proto vsock_proto = {
127         .name = "AF_VSOCK",
128         .owner = THIS_MODULE,
129         .obj_size = sizeof(struct vsock_sock),
130 };
131
132 /* The default peer timeout indicates how long we will wait for a peer response
133  * to a control message.
134  */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136
137 static const struct vsock_transport *transport;
138 static DEFINE_MUTEX(vsock_register_mutex);
139
140 /**** EXPORTS ****/
141
142 /* Get the ID of the local context.  This is transport dependent. */
143
144 int vm_sockets_get_local_cid(void)
145 {
146         return transport->get_local_cid();
147 }
148 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
149
150 /**** UTILS ****/
151
152 /* Each bound VSocket is stored in the bind hash table and each connected
153  * VSocket is stored in the connected hash table.
154  *
155  * Unbound sockets are all put on the same list attached to the end of the hash
156  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
157  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158  * represents the list that addr hashes to).
159  *
160  * Specifically, we initialize the vsock_bind_table array to a size of
161  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
164  * mods with VSOCK_HASH_SIZE to ensure this.
165  */
166 #define MAX_PORT_RETRIES        24
167
168 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
169 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
170 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
171
172 /* XXX This can probably be implemented in a better way. */
173 #define VSOCK_CONN_HASH(src, dst)                               \
174         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
175 #define vsock_connected_sockets(src, dst)               \
176         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
177 #define vsock_connected_sockets_vsk(vsk)                                \
178         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
179
180 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
181 EXPORT_SYMBOL_GPL(vsock_bind_table);
182 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183 EXPORT_SYMBOL_GPL(vsock_connected_table);
184 DEFINE_SPINLOCK(vsock_table_lock);
185 EXPORT_SYMBOL_GPL(vsock_table_lock);
186
187 /* Autobind this socket to the local address if necessary. */
188 static int vsock_auto_bind(struct vsock_sock *vsk)
189 {
190         struct sock *sk = sk_vsock(vsk);
191         struct sockaddr_vm local_addr;
192
193         if (vsock_addr_bound(&vsk->local_addr))
194                 return 0;
195         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
196         return __vsock_bind(sk, &local_addr);
197 }
198
199 static int __init vsock_init_tables(void)
200 {
201         int i;
202
203         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
204                 INIT_LIST_HEAD(&vsock_bind_table[i]);
205
206         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
207                 INIT_LIST_HEAD(&vsock_connected_table[i]);
208         return 0;
209 }
210
211 static void __vsock_insert_bound(struct list_head *list,
212                                  struct vsock_sock *vsk)
213 {
214         sock_hold(&vsk->sk);
215         list_add(&vsk->bound_table, list);
216 }
217
218 static void __vsock_insert_connected(struct list_head *list,
219                                      struct vsock_sock *vsk)
220 {
221         sock_hold(&vsk->sk);
222         list_add(&vsk->connected_table, list);
223 }
224
225 static void __vsock_remove_bound(struct vsock_sock *vsk)
226 {
227         list_del_init(&vsk->bound_table);
228         sock_put(&vsk->sk);
229 }
230
231 static void __vsock_remove_connected(struct vsock_sock *vsk)
232 {
233         list_del_init(&vsk->connected_table);
234         sock_put(&vsk->sk);
235 }
236
237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238 {
239         struct vsock_sock *vsk;
240
241         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
242                 if (addr->svm_port == vsk->local_addr.svm_port)
243                         return sk_vsock(vsk);
244
245         return NULL;
246 }
247
248 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
249                                                   struct sockaddr_vm *dst)
250 {
251         struct vsock_sock *vsk;
252
253         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
254                             connected_table) {
255                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
256                     dst->svm_port == vsk->local_addr.svm_port) {
257                         return sk_vsock(vsk);
258                 }
259         }
260
261         return NULL;
262 }
263
264 static void vsock_insert_unbound(struct vsock_sock *vsk)
265 {
266         spin_lock_bh(&vsock_table_lock);
267         __vsock_insert_bound(vsock_unbound_sockets, vsk);
268         spin_unlock_bh(&vsock_table_lock);
269 }
270
271 void vsock_insert_connected(struct vsock_sock *vsk)
272 {
273         struct list_head *list = vsock_connected_sockets(
274                 &vsk->remote_addr, &vsk->local_addr);
275
276         spin_lock_bh(&vsock_table_lock);
277         __vsock_insert_connected(list, vsk);
278         spin_unlock_bh(&vsock_table_lock);
279 }
280 EXPORT_SYMBOL_GPL(vsock_insert_connected);
281
282 void vsock_remove_bound(struct vsock_sock *vsk)
283 {
284         spin_lock_bh(&vsock_table_lock);
285         if (__vsock_in_bound_table(vsk))
286                 __vsock_remove_bound(vsk);
287         spin_unlock_bh(&vsock_table_lock);
288 }
289 EXPORT_SYMBOL_GPL(vsock_remove_bound);
290
291 void vsock_remove_connected(struct vsock_sock *vsk)
292 {
293         spin_lock_bh(&vsock_table_lock);
294         if (__vsock_in_connected_table(vsk))
295                 __vsock_remove_connected(vsk);
296         spin_unlock_bh(&vsock_table_lock);
297 }
298 EXPORT_SYMBOL_GPL(vsock_remove_connected);
299
300 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
301 {
302         struct sock *sk;
303
304         spin_lock_bh(&vsock_table_lock);
305         sk = __vsock_find_bound_socket(addr);
306         if (sk)
307                 sock_hold(sk);
308
309         spin_unlock_bh(&vsock_table_lock);
310
311         return sk;
312 }
313 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
314
315 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
316                                          struct sockaddr_vm *dst)
317 {
318         struct sock *sk;
319
320         spin_lock_bh(&vsock_table_lock);
321         sk = __vsock_find_connected_socket(src, dst);
322         if (sk)
323                 sock_hold(sk);
324
325         spin_unlock_bh(&vsock_table_lock);
326
327         return sk;
328 }
329 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
330
331 void vsock_remove_sock(struct vsock_sock *vsk)
332 {
333         vsock_remove_bound(vsk);
334         vsock_remove_connected(vsk);
335 }
336 EXPORT_SYMBOL_GPL(vsock_remove_sock);
337
338 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
339 {
340         int i;
341
342         spin_lock_bh(&vsock_table_lock);
343
344         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
345                 struct vsock_sock *vsk;
346                 list_for_each_entry(vsk, &vsock_connected_table[i],
347                                     connected_table)
348                         fn(sk_vsock(vsk));
349         }
350
351         spin_unlock_bh(&vsock_table_lock);
352 }
353 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
354
355 void vsock_add_pending(struct sock *listener, struct sock *pending)
356 {
357         struct vsock_sock *vlistener;
358         struct vsock_sock *vpending;
359
360         vlistener = vsock_sk(listener);
361         vpending = vsock_sk(pending);
362
363         sock_hold(pending);
364         sock_hold(listener);
365         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
366 }
367 EXPORT_SYMBOL_GPL(vsock_add_pending);
368
369 void vsock_remove_pending(struct sock *listener, struct sock *pending)
370 {
371         struct vsock_sock *vpending = vsock_sk(pending);
372
373         list_del_init(&vpending->pending_links);
374         sock_put(listener);
375         sock_put(pending);
376 }
377 EXPORT_SYMBOL_GPL(vsock_remove_pending);
378
379 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
380 {
381         struct vsock_sock *vlistener;
382         struct vsock_sock *vconnected;
383
384         vlistener = vsock_sk(listener);
385         vconnected = vsock_sk(connected);
386
387         sock_hold(connected);
388         sock_hold(listener);
389         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
390 }
391 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
392
393 static struct sock *vsock_dequeue_accept(struct sock *listener)
394 {
395         struct vsock_sock *vlistener;
396         struct vsock_sock *vconnected;
397
398         vlistener = vsock_sk(listener);
399
400         if (list_empty(&vlistener->accept_queue))
401                 return NULL;
402
403         vconnected = list_entry(vlistener->accept_queue.next,
404                                 struct vsock_sock, accept_queue);
405
406         list_del_init(&vconnected->accept_queue);
407         sock_put(listener);
408         /* The caller will need a reference on the connected socket so we let
409          * it call sock_put().
410          */
411
412         return sk_vsock(vconnected);
413 }
414
415 static bool vsock_is_accept_queue_empty(struct sock *sk)
416 {
417         struct vsock_sock *vsk = vsock_sk(sk);
418         return list_empty(&vsk->accept_queue);
419 }
420
421 static bool vsock_is_pending(struct sock *sk)
422 {
423         struct vsock_sock *vsk = vsock_sk(sk);
424         return !list_empty(&vsk->pending_links);
425 }
426
427 static int vsock_send_shutdown(struct sock *sk, int mode)
428 {
429         return transport->shutdown(vsock_sk(sk), mode);
430 }
431
432 static void vsock_pending_work(struct work_struct *work)
433 {
434         struct sock *sk;
435         struct sock *listener;
436         struct vsock_sock *vsk;
437         bool cleanup;
438
439         vsk = container_of(work, struct vsock_sock, pending_work.work);
440         sk = sk_vsock(vsk);
441         listener = vsk->listener;
442         cleanup = true;
443
444         lock_sock(listener);
445         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
446
447         if (vsock_is_pending(sk)) {
448                 vsock_remove_pending(listener, sk);
449
450                 listener->sk_ack_backlog--;
451         } else if (!vsk->rejected) {
452                 /* We are not on the pending list and accept() did not reject
453                  * us, so we must have been accepted by our user process.  We
454                  * just need to drop our references to the sockets and be on
455                  * our way.
456                  */
457                 cleanup = false;
458                 goto out;
459         }
460
461         /* We need to remove ourself from the global connected sockets list so
462          * incoming packets can't find this socket, and to reduce the reference
463          * count.
464          */
465         vsock_remove_connected(vsk);
466
467         sk->sk_state = TCP_CLOSE;
468
469 out:
470         release_sock(sk);
471         release_sock(listener);
472         if (cleanup)
473                 sock_put(sk);
474
475         sock_put(sk);
476         sock_put(listener);
477 }
478
479 /**** SOCKET OPERATIONS ****/
480
481 static int __vsock_bind_stream(struct vsock_sock *vsk,
482                                struct sockaddr_vm *addr)
483 {
484         static u32 port = 0;
485         struct sockaddr_vm new_addr;
486
487         if (!port)
488                 port = LAST_RESERVED_PORT + 1 +
489                         prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
490
491         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
492
493         if (addr->svm_port == VMADDR_PORT_ANY) {
494                 bool found = false;
495                 unsigned int i;
496
497                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
498                         if (port <= LAST_RESERVED_PORT)
499                                 port = LAST_RESERVED_PORT + 1;
500
501                         new_addr.svm_port = port++;
502
503                         if (!__vsock_find_bound_socket(&new_addr)) {
504                                 found = true;
505                                 break;
506                         }
507                 }
508
509                 if (!found)
510                         return -EADDRNOTAVAIL;
511         } else {
512                 /* If port is in reserved range, ensure caller
513                  * has necessary privileges.
514                  */
515                 if (addr->svm_port <= LAST_RESERVED_PORT &&
516                     !capable(CAP_NET_BIND_SERVICE)) {
517                         return -EACCES;
518                 }
519
520                 if (__vsock_find_bound_socket(&new_addr))
521                         return -EADDRINUSE;
522         }
523
524         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
525
526         /* Remove stream sockets from the unbound list and add them to the hash
527          * table for easy lookup by its address.  The unbound list is simply an
528          * extra entry at the end of the hash table, a trick used by AF_UNIX.
529          */
530         __vsock_remove_bound(vsk);
531         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
532
533         return 0;
534 }
535
536 static int __vsock_bind_dgram(struct vsock_sock *vsk,
537                               struct sockaddr_vm *addr)
538 {
539         return transport->dgram_bind(vsk, addr);
540 }
541
542 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
543 {
544         struct vsock_sock *vsk = vsock_sk(sk);
545         u32 cid;
546         int retval;
547
548         /* First ensure this socket isn't already bound. */
549         if (vsock_addr_bound(&vsk->local_addr))
550                 return -EINVAL;
551
552         /* Now bind to the provided address or select appropriate values if
553          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
554          * like AF_INET prevents binding to a non-local IP address (in most
555          * cases), we only allow binding to the local CID.
556          */
557         cid = transport->get_local_cid();
558         if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
559                 return -EADDRNOTAVAIL;
560
561         switch (sk->sk_socket->type) {
562         case SOCK_STREAM:
563                 spin_lock_bh(&vsock_table_lock);
564                 retval = __vsock_bind_stream(vsk, addr);
565                 spin_unlock_bh(&vsock_table_lock);
566                 break;
567
568         case SOCK_DGRAM:
569                 retval = __vsock_bind_dgram(vsk, addr);
570                 break;
571
572         default:
573                 retval = -EINVAL;
574                 break;
575         }
576
577         return retval;
578 }
579
580 static void vsock_connect_timeout(struct work_struct *work);
581
582 struct sock *__vsock_create(struct net *net,
583                             struct socket *sock,
584                             struct sock *parent,
585                             gfp_t priority,
586                             unsigned short type,
587                             int kern)
588 {
589         struct sock *sk;
590         struct vsock_sock *psk;
591         struct vsock_sock *vsk;
592
593         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
594         if (!sk)
595                 return NULL;
596
597         sock_init_data(sock, sk);
598
599         /* sk->sk_type is normally set in sock_init_data, but only if sock is
600          * non-NULL. We make sure that our sockets always have a type by
601          * setting it here if needed.
602          */
603         if (!sock)
604                 sk->sk_type = type;
605
606         vsk = vsock_sk(sk);
607         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
608         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
609
610         sk->sk_destruct = vsock_sk_destruct;
611         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
612         sock_reset_flag(sk, SOCK_DONE);
613
614         INIT_LIST_HEAD(&vsk->bound_table);
615         INIT_LIST_HEAD(&vsk->connected_table);
616         vsk->listener = NULL;
617         INIT_LIST_HEAD(&vsk->pending_links);
618         INIT_LIST_HEAD(&vsk->accept_queue);
619         vsk->rejected = false;
620         vsk->sent_request = false;
621         vsk->ignore_connecting_rst = false;
622         vsk->peer_shutdown = 0;
623         INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
624         INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
625
626         psk = parent ? vsock_sk(parent) : NULL;
627         if (parent) {
628                 vsk->trusted = psk->trusted;
629                 vsk->owner = get_cred(psk->owner);
630                 vsk->connect_timeout = psk->connect_timeout;
631                 security_sk_clone(parent, sk);
632         } else {
633                 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
634                 vsk->owner = get_current_cred();
635                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
636         }
637
638         if (transport->init(vsk, psk) < 0) {
639                 sk_free(sk);
640                 return NULL;
641         }
642
643         if (sock)
644                 vsock_insert_unbound(vsk);
645
646         return sk;
647 }
648 EXPORT_SYMBOL_GPL(__vsock_create);
649
650 static void __vsock_release(struct sock *sk, int level)
651 {
652         if (sk) {
653                 struct sk_buff *skb;
654                 struct sock *pending;
655                 struct vsock_sock *vsk;
656
657                 vsk = vsock_sk(sk);
658                 pending = NULL; /* Compiler warning. */
659
660                 /* The release call is supposed to use lock_sock_nested()
661                  * rather than lock_sock(), if a sock lock should be acquired.
662                  */
663                 transport->release(vsk);
664
665                 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
666                  * version to avoid the warning "possible recursive locking
667                  * detected". When "level" is 0, lock_sock_nested(sk, level)
668                  * is the same as lock_sock(sk).
669                  */
670                 lock_sock_nested(sk, level);
671                 sock_orphan(sk);
672                 sk->sk_shutdown = SHUTDOWN_MASK;
673
674                 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
675                         kfree_skb(skb);
676
677                 /* Clean up any sockets that never were accepted. */
678                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
679                         __vsock_release(pending, SINGLE_DEPTH_NESTING);
680                         sock_put(pending);
681                 }
682
683                 release_sock(sk);
684                 sock_put(sk);
685         }
686 }
687
688 static void vsock_sk_destruct(struct sock *sk)
689 {
690         struct vsock_sock *vsk = vsock_sk(sk);
691
692         transport->destruct(vsk);
693
694         /* When clearing these addresses, there's no need to set the family and
695          * possibly register the address family with the kernel.
696          */
697         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
698         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
699
700         put_cred(vsk->owner);
701 }
702
703 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
704 {
705         int err;
706
707         err = sock_queue_rcv_skb(sk, skb);
708         if (err)
709                 kfree_skb(skb);
710
711         return err;
712 }
713
714 s64 vsock_stream_has_data(struct vsock_sock *vsk)
715 {
716         return transport->stream_has_data(vsk);
717 }
718 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
719
720 s64 vsock_stream_has_space(struct vsock_sock *vsk)
721 {
722         return transport->stream_has_space(vsk);
723 }
724 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
725
726 static int vsock_release(struct socket *sock)
727 {
728         __vsock_release(sock->sk, 0);
729         sock->sk = NULL;
730         sock->state = SS_FREE;
731
732         return 0;
733 }
734
735 static int
736 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
737 {
738         int err;
739         struct sock *sk;
740         struct sockaddr_vm *vm_addr;
741
742         sk = sock->sk;
743
744         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
745                 return -EINVAL;
746
747         lock_sock(sk);
748         err = __vsock_bind(sk, vm_addr);
749         release_sock(sk);
750
751         return err;
752 }
753
754 static int vsock_getname(struct socket *sock,
755                          struct sockaddr *addr, int peer)
756 {
757         int err;
758         struct sock *sk;
759         struct vsock_sock *vsk;
760         struct sockaddr_vm *vm_addr;
761
762         sk = sock->sk;
763         vsk = vsock_sk(sk);
764         err = 0;
765
766         lock_sock(sk);
767
768         if (peer) {
769                 if (sock->state != SS_CONNECTED) {
770                         err = -ENOTCONN;
771                         goto out;
772                 }
773                 vm_addr = &vsk->remote_addr;
774         } else {
775                 vm_addr = &vsk->local_addr;
776         }
777
778         if (!vm_addr) {
779                 err = -EINVAL;
780                 goto out;
781         }
782
783         /* sys_getsockname() and sys_getpeername() pass us a
784          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
785          * that macro is defined in socket.c instead of .h, so we hardcode its
786          * value here.
787          */
788         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
789         memcpy(addr, vm_addr, sizeof(*vm_addr));
790         err = sizeof(*vm_addr);
791
792 out:
793         release_sock(sk);
794         return err;
795 }
796
797 static int vsock_shutdown(struct socket *sock, int mode)
798 {
799         int err;
800         struct sock *sk;
801
802         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
803          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
804          * here like the other address families do.  Note also that the
805          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
806          * which is what we want.
807          */
808         mode++;
809
810         if ((mode & ~SHUTDOWN_MASK) || !mode)
811                 return -EINVAL;
812
813         /* If this is a STREAM socket and it is not connected then bail out
814          * immediately.  If it is a DGRAM socket then we must first kick the
815          * socket so that it wakes up from any sleeping calls, for example
816          * recv(), and then afterwards return the error.
817          */
818
819         sk = sock->sk;
820
821         lock_sock(sk);
822         if (sock->state == SS_UNCONNECTED) {
823                 err = -ENOTCONN;
824                 if (sk->sk_type == SOCK_STREAM)
825                         goto out;
826         } else {
827                 sock->state = SS_DISCONNECTING;
828                 err = 0;
829         }
830
831         /* Receive and send shutdowns are treated alike. */
832         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
833         if (mode) {
834                 sk->sk_shutdown |= mode;
835                 sk->sk_state_change(sk);
836
837                 if (sk->sk_type == SOCK_STREAM) {
838                         sock_reset_flag(sk, SOCK_DONE);
839                         vsock_send_shutdown(sk, mode);
840                 }
841         }
842
843 out:
844         release_sock(sk);
845         return err;
846 }
847
848 static __poll_t vsock_poll(struct file *file, struct socket *sock,
849                                poll_table *wait)
850 {
851         struct sock *sk;
852         __poll_t mask;
853         struct vsock_sock *vsk;
854
855         sk = sock->sk;
856         vsk = vsock_sk(sk);
857
858         poll_wait(file, sk_sleep(sk), wait);
859         mask = 0;
860
861         if (sk->sk_err)
862                 /* Signify that there has been an error on this socket. */
863                 mask |= EPOLLERR;
864
865         /* INET sockets treat local write shutdown and peer write shutdown as a
866          * case of EPOLLHUP set.
867          */
868         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
869             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
870              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
871                 mask |= EPOLLHUP;
872         }
873
874         if (sk->sk_shutdown & RCV_SHUTDOWN ||
875             vsk->peer_shutdown & SEND_SHUTDOWN) {
876                 mask |= EPOLLRDHUP;
877         }
878
879         if (sock->type == SOCK_DGRAM) {
880                 /* For datagram sockets we can read if there is something in
881                  * the queue and write as long as the socket isn't shutdown for
882                  * sending.
883                  */
884                 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
885                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
886                         mask |= EPOLLIN | EPOLLRDNORM;
887                 }
888
889                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
890                         mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
891
892         } else if (sock->type == SOCK_STREAM) {
893                 lock_sock(sk);
894
895                 /* Listening sockets that have connections in their accept
896                  * queue can be read.
897                  */
898                 if (sk->sk_state == TCP_LISTEN
899                     && !vsock_is_accept_queue_empty(sk))
900                         mask |= EPOLLIN | EPOLLRDNORM;
901
902                 /* If there is something in the queue then we can read. */
903                 if (transport->stream_is_active(vsk) &&
904                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
905                         bool data_ready_now = false;
906                         int ret = transport->notify_poll_in(
907                                         vsk, 1, &data_ready_now);
908                         if (ret < 0) {
909                                 mask |= EPOLLERR;
910                         } else {
911                                 if (data_ready_now)
912                                         mask |= EPOLLIN | EPOLLRDNORM;
913
914                         }
915                 }
916
917                 /* Sockets whose connections have been closed, reset, or
918                  * terminated should also be considered read, and we check the
919                  * shutdown flag for that.
920                  */
921                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
922                     vsk->peer_shutdown & SEND_SHUTDOWN) {
923                         mask |= EPOLLIN | EPOLLRDNORM;
924                 }
925
926                 /* Connected sockets that can produce data can be written. */
927                 if (sk->sk_state == TCP_ESTABLISHED) {
928                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
929                                 bool space_avail_now = false;
930                                 int ret = transport->notify_poll_out(
931                                                 vsk, 1, &space_avail_now);
932                                 if (ret < 0) {
933                                         mask |= EPOLLERR;
934                                 } else {
935                                         if (space_avail_now)
936                                                 /* Remove EPOLLWRBAND since INET
937                                                  * sockets are not setting it.
938                                                  */
939                                                 mask |= EPOLLOUT | EPOLLWRNORM;
940
941                                 }
942                         }
943                 }
944
945                 /* Simulate INET socket poll behaviors, which sets
946                  * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
947                  * but local send is not shutdown.
948                  */
949                 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
950                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
951                                 mask |= EPOLLOUT | EPOLLWRNORM;
952
953                 }
954
955                 release_sock(sk);
956         }
957
958         return mask;
959 }
960
961 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
962                                size_t len)
963 {
964         int err;
965         struct sock *sk;
966         struct vsock_sock *vsk;
967         struct sockaddr_vm *remote_addr;
968
969         if (msg->msg_flags & MSG_OOB)
970                 return -EOPNOTSUPP;
971
972         /* For now, MSG_DONTWAIT is always assumed... */
973         err = 0;
974         sk = sock->sk;
975         vsk = vsock_sk(sk);
976
977         lock_sock(sk);
978
979         err = vsock_auto_bind(vsk);
980         if (err)
981                 goto out;
982
983
984         /* If the provided message contains an address, use that.  Otherwise
985          * fall back on the socket's remote handle (if it has been connected).
986          */
987         if (msg->msg_name &&
988             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
989                             &remote_addr) == 0) {
990                 /* Ensure this address is of the right type and is a valid
991                  * destination.
992                  */
993
994                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
995                         remote_addr->svm_cid = transport->get_local_cid();
996
997                 if (!vsock_addr_bound(remote_addr)) {
998                         err = -EINVAL;
999                         goto out;
1000                 }
1001         } else if (sock->state == SS_CONNECTED) {
1002                 remote_addr = &vsk->remote_addr;
1003
1004                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1005                         remote_addr->svm_cid = transport->get_local_cid();
1006
1007                 /* XXX Should connect() or this function ensure remote_addr is
1008                  * bound?
1009                  */
1010                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1011                         err = -EINVAL;
1012                         goto out;
1013                 }
1014         } else {
1015                 err = -EINVAL;
1016                 goto out;
1017         }
1018
1019         if (!transport->dgram_allow(remote_addr->svm_cid,
1020                                     remote_addr->svm_port)) {
1021                 err = -EINVAL;
1022                 goto out;
1023         }
1024
1025         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1026
1027 out:
1028         release_sock(sk);
1029         return err;
1030 }
1031
1032 static int vsock_dgram_connect(struct socket *sock,
1033                                struct sockaddr *addr, int addr_len, int flags)
1034 {
1035         int err;
1036         struct sock *sk;
1037         struct vsock_sock *vsk;
1038         struct sockaddr_vm *remote_addr;
1039
1040         sk = sock->sk;
1041         vsk = vsock_sk(sk);
1042
1043         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1044         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1045                 lock_sock(sk);
1046                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1047                                 VMADDR_PORT_ANY);
1048                 sock->state = SS_UNCONNECTED;
1049                 release_sock(sk);
1050                 return 0;
1051         } else if (err != 0)
1052                 return -EINVAL;
1053
1054         lock_sock(sk);
1055
1056         err = vsock_auto_bind(vsk);
1057         if (err)
1058                 goto out;
1059
1060         if (!transport->dgram_allow(remote_addr->svm_cid,
1061                                     remote_addr->svm_port)) {
1062                 err = -EINVAL;
1063                 goto out;
1064         }
1065
1066         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1067         sock->state = SS_CONNECTED;
1068
1069 out:
1070         release_sock(sk);
1071         return err;
1072 }
1073
1074 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1075                                size_t len, int flags)
1076 {
1077         return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1078 }
1079
1080 static const struct proto_ops vsock_dgram_ops = {
1081         .family = PF_VSOCK,
1082         .owner = THIS_MODULE,
1083         .release = vsock_release,
1084         .bind = vsock_bind,
1085         .connect = vsock_dgram_connect,
1086         .socketpair = sock_no_socketpair,
1087         .accept = sock_no_accept,
1088         .getname = vsock_getname,
1089         .poll = vsock_poll,
1090         .ioctl = sock_no_ioctl,
1091         .listen = sock_no_listen,
1092         .shutdown = vsock_shutdown,
1093         .setsockopt = sock_no_setsockopt,
1094         .getsockopt = sock_no_getsockopt,
1095         .sendmsg = vsock_dgram_sendmsg,
1096         .recvmsg = vsock_dgram_recvmsg,
1097         .mmap = sock_no_mmap,
1098         .sendpage = sock_no_sendpage,
1099 };
1100
1101 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1102 {
1103         if (!transport->cancel_pkt)
1104                 return -EOPNOTSUPP;
1105
1106         return transport->cancel_pkt(vsk);
1107 }
1108
1109 static void vsock_connect_timeout(struct work_struct *work)
1110 {
1111         struct sock *sk;
1112         struct vsock_sock *vsk;
1113
1114         vsk = container_of(work, struct vsock_sock, connect_work.work);
1115         sk = sk_vsock(vsk);
1116
1117         lock_sock(sk);
1118         if (sk->sk_state == TCP_SYN_SENT &&
1119             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1120                 sk->sk_state = TCP_CLOSE;
1121                 sk->sk_err = ETIMEDOUT;
1122                 sk->sk_error_report(sk);
1123                 vsock_transport_cancel_pkt(vsk);
1124         }
1125         release_sock(sk);
1126
1127         sock_put(sk);
1128 }
1129
1130 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1131                                 int addr_len, int flags)
1132 {
1133         int err;
1134         struct sock *sk;
1135         struct vsock_sock *vsk;
1136         struct sockaddr_vm *remote_addr;
1137         long timeout;
1138         DEFINE_WAIT(wait);
1139
1140         err = 0;
1141         sk = sock->sk;
1142         vsk = vsock_sk(sk);
1143
1144         lock_sock(sk);
1145
1146         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1147         switch (sock->state) {
1148         case SS_CONNECTED:
1149                 err = -EISCONN;
1150                 goto out;
1151         case SS_DISCONNECTING:
1152                 err = -EINVAL;
1153                 goto out;
1154         case SS_CONNECTING:
1155                 /* This continues on so we can move sock into the SS_CONNECTED
1156                  * state once the connection has completed (at which point err
1157                  * will be set to zero also).  Otherwise, we will either wait
1158                  * for the connection or return -EALREADY should this be a
1159                  * non-blocking call.
1160                  */
1161                 err = -EALREADY;
1162                 if (flags & O_NONBLOCK)
1163                         goto out;
1164                 break;
1165         default:
1166                 if ((sk->sk_state == TCP_LISTEN) ||
1167                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1168                         err = -EINVAL;
1169                         goto out;
1170                 }
1171
1172                 /* The hypervisor and well-known contexts do not have socket
1173                  * endpoints.
1174                  */
1175                 if (!transport->stream_allow(remote_addr->svm_cid,
1176                                              remote_addr->svm_port)) {
1177                         err = -ENETUNREACH;
1178                         goto out;
1179                 }
1180
1181                 /* Set the remote address that we are connecting to. */
1182                 memcpy(&vsk->remote_addr, remote_addr,
1183                        sizeof(vsk->remote_addr));
1184
1185                 err = vsock_auto_bind(vsk);
1186                 if (err)
1187                         goto out;
1188
1189                 sk->sk_state = TCP_SYN_SENT;
1190
1191                 err = transport->connect(vsk);
1192                 if (err < 0)
1193                         goto out;
1194
1195                 /* Mark sock as connecting and set the error code to in
1196                  * progress in case this is a non-blocking connect.
1197                  */
1198                 sock->state = SS_CONNECTING;
1199                 err = -EINPROGRESS;
1200         }
1201
1202         /* The receive path will handle all communication until we are able to
1203          * enter the connected state.  Here we wait for the connection to be
1204          * completed or a notification of an error.
1205          */
1206         timeout = vsk->connect_timeout;
1207         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1208
1209         while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1210                 if (flags & O_NONBLOCK) {
1211                         /* If we're not going to block, we schedule a timeout
1212                          * function to generate a timeout on the connection
1213                          * attempt, in case the peer doesn't respond in a
1214                          * timely manner. We hold on to the socket until the
1215                          * timeout fires.
1216                          */
1217                         sock_hold(sk);
1218                         schedule_delayed_work(&vsk->connect_work, timeout);
1219
1220                         /* Skip ahead to preserve error code set above. */
1221                         goto out_wait;
1222                 }
1223
1224                 release_sock(sk);
1225                 timeout = schedule_timeout(timeout);
1226                 lock_sock(sk);
1227
1228                 if (signal_pending(current)) {
1229                         err = sock_intr_errno(timeout);
1230                         sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1231                         sock->state = SS_UNCONNECTED;
1232                         vsock_transport_cancel_pkt(vsk);
1233                         vsock_remove_connected(vsk);
1234                         goto out_wait;
1235                 } else if (timeout == 0) {
1236                         err = -ETIMEDOUT;
1237                         sk->sk_state = TCP_CLOSE;
1238                         sock->state = SS_UNCONNECTED;
1239                         vsock_transport_cancel_pkt(vsk);
1240                         goto out_wait;
1241                 }
1242
1243                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1244         }
1245
1246         if (sk->sk_err) {
1247                 err = -sk->sk_err;
1248                 sk->sk_state = TCP_CLOSE;
1249                 sock->state = SS_UNCONNECTED;
1250         } else {
1251                 err = 0;
1252         }
1253
1254 out_wait:
1255         finish_wait(sk_sleep(sk), &wait);
1256 out:
1257         release_sock(sk);
1258         return err;
1259 }
1260
1261 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1262                         bool kern)
1263 {
1264         struct sock *listener;
1265         int err;
1266         struct sock *connected;
1267         struct vsock_sock *vconnected;
1268         long timeout;
1269         DEFINE_WAIT(wait);
1270
1271         err = 0;
1272         listener = sock->sk;
1273
1274         lock_sock(listener);
1275
1276         if (sock->type != SOCK_STREAM) {
1277                 err = -EOPNOTSUPP;
1278                 goto out;
1279         }
1280
1281         if (listener->sk_state != TCP_LISTEN) {
1282                 err = -EINVAL;
1283                 goto out;
1284         }
1285
1286         /* Wait for children sockets to appear; these are the new sockets
1287          * created upon connection establishment.
1288          */
1289         timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1290         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1291
1292         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1293                listener->sk_err == 0) {
1294                 release_sock(listener);
1295                 timeout = schedule_timeout(timeout);
1296                 finish_wait(sk_sleep(listener), &wait);
1297                 lock_sock(listener);
1298
1299                 if (signal_pending(current)) {
1300                         err = sock_intr_errno(timeout);
1301                         goto out;
1302                 } else if (timeout == 0) {
1303                         err = -EAGAIN;
1304                         goto out;
1305                 }
1306
1307                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1308         }
1309         finish_wait(sk_sleep(listener), &wait);
1310
1311         if (listener->sk_err)
1312                 err = -listener->sk_err;
1313
1314         if (connected) {
1315                 listener->sk_ack_backlog--;
1316
1317                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1318                 vconnected = vsock_sk(connected);
1319
1320                 /* If the listener socket has received an error, then we should
1321                  * reject this socket and return.  Note that we simply mark the
1322                  * socket rejected, drop our reference, and let the cleanup
1323                  * function handle the cleanup; the fact that we found it in
1324                  * the listener's accept queue guarantees that the cleanup
1325                  * function hasn't run yet.
1326                  */
1327                 if (err) {
1328                         vconnected->rejected = true;
1329                 } else {
1330                         newsock->state = SS_CONNECTED;
1331                         sock_graft(connected, newsock);
1332                 }
1333
1334                 release_sock(connected);
1335                 sock_put(connected);
1336         }
1337
1338 out:
1339         release_sock(listener);
1340         return err;
1341 }
1342
1343 static int vsock_listen(struct socket *sock, int backlog)
1344 {
1345         int err;
1346         struct sock *sk;
1347         struct vsock_sock *vsk;
1348
1349         sk = sock->sk;
1350
1351         lock_sock(sk);
1352
1353         if (sock->type != SOCK_STREAM) {
1354                 err = -EOPNOTSUPP;
1355                 goto out;
1356         }
1357
1358         if (sock->state != SS_UNCONNECTED) {
1359                 err = -EINVAL;
1360                 goto out;
1361         }
1362
1363         vsk = vsock_sk(sk);
1364
1365         if (!vsock_addr_bound(&vsk->local_addr)) {
1366                 err = -EINVAL;
1367                 goto out;
1368         }
1369
1370         sk->sk_max_ack_backlog = backlog;
1371         sk->sk_state = TCP_LISTEN;
1372
1373         err = 0;
1374
1375 out:
1376         release_sock(sk);
1377         return err;
1378 }
1379
1380 static int vsock_stream_setsockopt(struct socket *sock,
1381                                    int level,
1382                                    int optname,
1383                                    char __user *optval,
1384                                    unsigned int optlen)
1385 {
1386         int err;
1387         struct sock *sk;
1388         struct vsock_sock *vsk;
1389         u64 val;
1390
1391         if (level != AF_VSOCK)
1392                 return -ENOPROTOOPT;
1393
1394 #define COPY_IN(_v)                                       \
1395         do {                                              \
1396                 if (optlen < sizeof(_v)) {                \
1397                         err = -EINVAL;                    \
1398                         goto exit;                        \
1399                 }                                         \
1400                 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1401                         err = -EFAULT;                                  \
1402                         goto exit;                                      \
1403                 }                                                       \
1404         } while (0)
1405
1406         err = 0;
1407         sk = sock->sk;
1408         vsk = vsock_sk(sk);
1409
1410         lock_sock(sk);
1411
1412         switch (optname) {
1413         case SO_VM_SOCKETS_BUFFER_SIZE:
1414                 COPY_IN(val);
1415                 transport->set_buffer_size(vsk, val);
1416                 break;
1417
1418         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1419                 COPY_IN(val);
1420                 transport->set_max_buffer_size(vsk, val);
1421                 break;
1422
1423         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1424                 COPY_IN(val);
1425                 transport->set_min_buffer_size(vsk, val);
1426                 break;
1427
1428         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1429                 struct timeval tv;
1430                 COPY_IN(tv);
1431                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1432                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1433                         vsk->connect_timeout = tv.tv_sec * HZ +
1434                             DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1435                         if (vsk->connect_timeout == 0)
1436                                 vsk->connect_timeout =
1437                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1438
1439                 } else {
1440                         err = -ERANGE;
1441                 }
1442                 break;
1443         }
1444
1445         default:
1446                 err = -ENOPROTOOPT;
1447                 break;
1448         }
1449
1450 #undef COPY_IN
1451
1452 exit:
1453         release_sock(sk);
1454         return err;
1455 }
1456
1457 static int vsock_stream_getsockopt(struct socket *sock,
1458                                    int level, int optname,
1459                                    char __user *optval,
1460                                    int __user *optlen)
1461 {
1462         int err;
1463         int len;
1464         struct sock *sk;
1465         struct vsock_sock *vsk;
1466         u64 val;
1467
1468         if (level != AF_VSOCK)
1469                 return -ENOPROTOOPT;
1470
1471         err = get_user(len, optlen);
1472         if (err != 0)
1473                 return err;
1474
1475 #define COPY_OUT(_v)                            \
1476         do {                                    \
1477                 if (len < sizeof(_v))           \
1478                         return -EINVAL;         \
1479                                                 \
1480                 len = sizeof(_v);               \
1481                 if (copy_to_user(optval, &_v, len) != 0)        \
1482                         return -EFAULT;                         \
1483                                                                 \
1484         } while (0)
1485
1486         err = 0;
1487         sk = sock->sk;
1488         vsk = vsock_sk(sk);
1489
1490         switch (optname) {
1491         case SO_VM_SOCKETS_BUFFER_SIZE:
1492                 val = transport->get_buffer_size(vsk);
1493                 COPY_OUT(val);
1494                 break;
1495
1496         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1497                 val = transport->get_max_buffer_size(vsk);
1498                 COPY_OUT(val);
1499                 break;
1500
1501         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1502                 val = transport->get_min_buffer_size(vsk);
1503                 COPY_OUT(val);
1504                 break;
1505
1506         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1507                 struct timeval tv;
1508                 tv.tv_sec = vsk->connect_timeout / HZ;
1509                 tv.tv_usec =
1510                     (vsk->connect_timeout -
1511                      tv.tv_sec * HZ) * (1000000 / HZ);
1512                 COPY_OUT(tv);
1513                 break;
1514         }
1515         default:
1516                 return -ENOPROTOOPT;
1517         }
1518
1519         err = put_user(len, optlen);
1520         if (err != 0)
1521                 return -EFAULT;
1522
1523 #undef COPY_OUT
1524
1525         return 0;
1526 }
1527
1528 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1529                                 size_t len)
1530 {
1531         struct sock *sk;
1532         struct vsock_sock *vsk;
1533         ssize_t total_written;
1534         long timeout;
1535         int err;
1536         struct vsock_transport_send_notify_data send_data;
1537         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1538
1539         sk = sock->sk;
1540         vsk = vsock_sk(sk);
1541         total_written = 0;
1542         err = 0;
1543
1544         if (msg->msg_flags & MSG_OOB)
1545                 return -EOPNOTSUPP;
1546
1547         lock_sock(sk);
1548
1549         /* Callers should not provide a destination with stream sockets. */
1550         if (msg->msg_namelen) {
1551                 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1552                 goto out;
1553         }
1554
1555         /* Send data only if both sides are not shutdown in the direction. */
1556         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1557             vsk->peer_shutdown & RCV_SHUTDOWN) {
1558                 err = -EPIPE;
1559                 goto out;
1560         }
1561
1562         if (sk->sk_state != TCP_ESTABLISHED ||
1563             !vsock_addr_bound(&vsk->local_addr)) {
1564                 err = -ENOTCONN;
1565                 goto out;
1566         }
1567
1568         if (!vsock_addr_bound(&vsk->remote_addr)) {
1569                 err = -EDESTADDRREQ;
1570                 goto out;
1571         }
1572
1573         /* Wait for room in the produce queue to enqueue our user's data. */
1574         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1575
1576         err = transport->notify_send_init(vsk, &send_data);
1577         if (err < 0)
1578                 goto out;
1579
1580         while (total_written < len) {
1581                 ssize_t written;
1582
1583                 add_wait_queue(sk_sleep(sk), &wait);
1584                 while (vsock_stream_has_space(vsk) == 0 &&
1585                        sk->sk_err == 0 &&
1586                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1587                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1588
1589                         /* Don't wait for non-blocking sockets. */
1590                         if (timeout == 0) {
1591                                 err = -EAGAIN;
1592                                 remove_wait_queue(sk_sleep(sk), &wait);
1593                                 goto out_err;
1594                         }
1595
1596                         err = transport->notify_send_pre_block(vsk, &send_data);
1597                         if (err < 0) {
1598                                 remove_wait_queue(sk_sleep(sk), &wait);
1599                                 goto out_err;
1600                         }
1601
1602                         release_sock(sk);
1603                         timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1604                         lock_sock(sk);
1605                         if (signal_pending(current)) {
1606                                 err = sock_intr_errno(timeout);
1607                                 remove_wait_queue(sk_sleep(sk), &wait);
1608                                 goto out_err;
1609                         } else if (timeout == 0) {
1610                                 err = -EAGAIN;
1611                                 remove_wait_queue(sk_sleep(sk), &wait);
1612                                 goto out_err;
1613                         }
1614                 }
1615                 remove_wait_queue(sk_sleep(sk), &wait);
1616
1617                 /* These checks occur both as part of and after the loop
1618                  * conditional since we need to check before and after
1619                  * sleeping.
1620                  */
1621                 if (sk->sk_err) {
1622                         err = -sk->sk_err;
1623                         goto out_err;
1624                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1625                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1626                         err = -EPIPE;
1627                         goto out_err;
1628                 }
1629
1630                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1631                 if (err < 0)
1632                         goto out_err;
1633
1634                 /* Note that enqueue will only write as many bytes as are free
1635                  * in the produce queue, so we don't need to ensure len is
1636                  * smaller than the queue size.  It is the caller's
1637                  * responsibility to check how many bytes we were able to send.
1638                  */
1639
1640                 written = transport->stream_enqueue(
1641                                 vsk, msg,
1642                                 len - total_written);
1643                 if (written < 0) {
1644                         err = -ENOMEM;
1645                         goto out_err;
1646                 }
1647
1648                 total_written += written;
1649
1650                 err = transport->notify_send_post_enqueue(
1651                                 vsk, written, &send_data);
1652                 if (err < 0)
1653                         goto out_err;
1654
1655         }
1656
1657 out_err:
1658         if (total_written > 0)
1659                 err = total_written;
1660 out:
1661         release_sock(sk);
1662         return err;
1663 }
1664
1665
1666 static int
1667 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1668                      int flags)
1669 {
1670         struct sock *sk;
1671         struct vsock_sock *vsk;
1672         int err;
1673         size_t target;
1674         ssize_t copied;
1675         long timeout;
1676         struct vsock_transport_recv_notify_data recv_data;
1677
1678         DEFINE_WAIT(wait);
1679
1680         sk = sock->sk;
1681         vsk = vsock_sk(sk);
1682         err = 0;
1683
1684         lock_sock(sk);
1685
1686         if (sk->sk_state != TCP_ESTABLISHED) {
1687                 /* Recvmsg is supposed to return 0 if a peer performs an
1688                  * orderly shutdown. Differentiate between that case and when a
1689                  * peer has not connected or a local shutdown occured with the
1690                  * SOCK_DONE flag.
1691                  */
1692                 if (sock_flag(sk, SOCK_DONE))
1693                         err = 0;
1694                 else
1695                         err = -ENOTCONN;
1696
1697                 goto out;
1698         }
1699
1700         if (flags & MSG_OOB) {
1701                 err = -EOPNOTSUPP;
1702                 goto out;
1703         }
1704
1705         /* We don't check peer_shutdown flag here since peer may actually shut
1706          * down, but there can be data in the queue that a local socket can
1707          * receive.
1708          */
1709         if (sk->sk_shutdown & RCV_SHUTDOWN) {
1710                 err = 0;
1711                 goto out;
1712         }
1713
1714         /* It is valid on Linux to pass in a zero-length receive buffer.  This
1715          * is not an error.  We may as well bail out now.
1716          */
1717         if (!len) {
1718                 err = 0;
1719                 goto out;
1720         }
1721
1722         /* We must not copy less than target bytes into the user's buffer
1723          * before returning successfully, so we wait for the consume queue to
1724          * have that much data to consume before dequeueing.  Note that this
1725          * makes it impossible to handle cases where target is greater than the
1726          * queue size.
1727          */
1728         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1729         if (target >= transport->stream_rcvhiwat(vsk)) {
1730                 err = -ENOMEM;
1731                 goto out;
1732         }
1733         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1734         copied = 0;
1735
1736         err = transport->notify_recv_init(vsk, target, &recv_data);
1737         if (err < 0)
1738                 goto out;
1739
1740
1741         while (1) {
1742                 s64 ready;
1743
1744                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1745                 ready = vsock_stream_has_data(vsk);
1746
1747                 if (ready == 0) {
1748                         if (sk->sk_err != 0 ||
1749                             (sk->sk_shutdown & RCV_SHUTDOWN) ||
1750                             (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1751                                 finish_wait(sk_sleep(sk), &wait);
1752                                 break;
1753                         }
1754                         /* Don't wait for non-blocking sockets. */
1755                         if (timeout == 0) {
1756                                 err = -EAGAIN;
1757                                 finish_wait(sk_sleep(sk), &wait);
1758                                 break;
1759                         }
1760
1761                         err = transport->notify_recv_pre_block(
1762                                         vsk, target, &recv_data);
1763                         if (err < 0) {
1764                                 finish_wait(sk_sleep(sk), &wait);
1765                                 break;
1766                         }
1767                         release_sock(sk);
1768                         timeout = schedule_timeout(timeout);
1769                         lock_sock(sk);
1770
1771                         if (signal_pending(current)) {
1772                                 err = sock_intr_errno(timeout);
1773                                 finish_wait(sk_sleep(sk), &wait);
1774                                 break;
1775                         } else if (timeout == 0) {
1776                                 err = -EAGAIN;
1777                                 finish_wait(sk_sleep(sk), &wait);
1778                                 break;
1779                         }
1780                 } else {
1781                         ssize_t read;
1782
1783                         finish_wait(sk_sleep(sk), &wait);
1784
1785                         if (ready < 0) {
1786                                 /* Invalid queue pair content. XXX This should
1787                                 * be changed to a connection reset in a later
1788                                 * change.
1789                                 */
1790
1791                                 err = -ENOMEM;
1792                                 goto out;
1793                         }
1794
1795                         err = transport->notify_recv_pre_dequeue(
1796                                         vsk, target, &recv_data);
1797                         if (err < 0)
1798                                 break;
1799
1800                         read = transport->stream_dequeue(
1801                                         vsk, msg,
1802                                         len - copied, flags);
1803                         if (read < 0) {
1804                                 err = -ENOMEM;
1805                                 break;
1806                         }
1807
1808                         copied += read;
1809
1810                         err = transport->notify_recv_post_dequeue(
1811                                         vsk, target, read,
1812                                         !(flags & MSG_PEEK), &recv_data);
1813                         if (err < 0)
1814                                 goto out;
1815
1816                         if (read >= target || flags & MSG_PEEK)
1817                                 break;
1818
1819                         target -= read;
1820                 }
1821         }
1822
1823         if (sk->sk_err)
1824                 err = -sk->sk_err;
1825         else if (sk->sk_shutdown & RCV_SHUTDOWN)
1826                 err = 0;
1827
1828         if (copied > 0)
1829                 err = copied;
1830
1831 out:
1832         release_sock(sk);
1833         return err;
1834 }
1835
1836 static const struct proto_ops vsock_stream_ops = {
1837         .family = PF_VSOCK,
1838         .owner = THIS_MODULE,
1839         .release = vsock_release,
1840         .bind = vsock_bind,
1841         .connect = vsock_stream_connect,
1842         .socketpair = sock_no_socketpair,
1843         .accept = vsock_accept,
1844         .getname = vsock_getname,
1845         .poll = vsock_poll,
1846         .ioctl = sock_no_ioctl,
1847         .listen = vsock_listen,
1848         .shutdown = vsock_shutdown,
1849         .setsockopt = vsock_stream_setsockopt,
1850         .getsockopt = vsock_stream_getsockopt,
1851         .sendmsg = vsock_stream_sendmsg,
1852         .recvmsg = vsock_stream_recvmsg,
1853         .mmap = sock_no_mmap,
1854         .sendpage = sock_no_sendpage,
1855 };
1856
1857 static int vsock_create(struct net *net, struct socket *sock,
1858                         int protocol, int kern)
1859 {
1860         if (!sock)
1861                 return -EINVAL;
1862
1863         if (protocol && protocol != PF_VSOCK)
1864                 return -EPROTONOSUPPORT;
1865
1866         switch (sock->type) {
1867         case SOCK_DGRAM:
1868                 sock->ops = &vsock_dgram_ops;
1869                 break;
1870         case SOCK_STREAM:
1871                 sock->ops = &vsock_stream_ops;
1872                 break;
1873         default:
1874                 return -ESOCKTNOSUPPORT;
1875         }
1876
1877         sock->state = SS_UNCONNECTED;
1878
1879         return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1880 }
1881
1882 static const struct net_proto_family vsock_family_ops = {
1883         .family = AF_VSOCK,
1884         .create = vsock_create,
1885         .owner = THIS_MODULE,
1886 };
1887
1888 static long vsock_dev_do_ioctl(struct file *filp,
1889                                unsigned int cmd, void __user *ptr)
1890 {
1891         u32 __user *p = ptr;
1892         int retval = 0;
1893
1894         switch (cmd) {
1895         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1896                 if (put_user(transport->get_local_cid(), p) != 0)
1897                         retval = -EFAULT;
1898                 break;
1899
1900         default:
1901                 pr_err("Unknown ioctl %d\n", cmd);
1902                 retval = -EINVAL;
1903         }
1904
1905         return retval;
1906 }
1907
1908 static long vsock_dev_ioctl(struct file *filp,
1909                             unsigned int cmd, unsigned long arg)
1910 {
1911         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1912 }
1913
1914 #ifdef CONFIG_COMPAT
1915 static long vsock_dev_compat_ioctl(struct file *filp,
1916                                    unsigned int cmd, unsigned long arg)
1917 {
1918         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1919 }
1920 #endif
1921
1922 static const struct file_operations vsock_device_ops = {
1923         .owner          = THIS_MODULE,
1924         .unlocked_ioctl = vsock_dev_ioctl,
1925 #ifdef CONFIG_COMPAT
1926         .compat_ioctl   = vsock_dev_compat_ioctl,
1927 #endif
1928         .open           = nonseekable_open,
1929 };
1930
1931 static struct miscdevice vsock_device = {
1932         .name           = "vsock",
1933         .fops           = &vsock_device_ops,
1934 };
1935
1936 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1937 {
1938         int err = mutex_lock_interruptible(&vsock_register_mutex);
1939
1940         if (err)
1941                 return err;
1942
1943         if (transport) {
1944                 err = -EBUSY;
1945                 goto err_busy;
1946         }
1947
1948         /* Transport must be the owner of the protocol so that it can't
1949          * unload while there are open sockets.
1950          */
1951         vsock_proto.owner = owner;
1952         transport = t;
1953
1954         vsock_device.minor = MISC_DYNAMIC_MINOR;
1955         err = misc_register(&vsock_device);
1956         if (err) {
1957                 pr_err("Failed to register misc device\n");
1958                 goto err_reset_transport;
1959         }
1960
1961         err = proto_register(&vsock_proto, 1);  /* we want our slab */
1962         if (err) {
1963                 pr_err("Cannot register vsock protocol\n");
1964                 goto err_deregister_misc;
1965         }
1966
1967         err = sock_register(&vsock_family_ops);
1968         if (err) {
1969                 pr_err("could not register af_vsock (%d) address family: %d\n",
1970                        AF_VSOCK, err);
1971                 goto err_unregister_proto;
1972         }
1973
1974         mutex_unlock(&vsock_register_mutex);
1975         return 0;
1976
1977 err_unregister_proto:
1978         proto_unregister(&vsock_proto);
1979 err_deregister_misc:
1980         misc_deregister(&vsock_device);
1981 err_reset_transport:
1982         transport = NULL;
1983 err_busy:
1984         mutex_unlock(&vsock_register_mutex);
1985         return err;
1986 }
1987 EXPORT_SYMBOL_GPL(__vsock_core_init);
1988
1989 void vsock_core_exit(void)
1990 {
1991         mutex_lock(&vsock_register_mutex);
1992
1993         misc_deregister(&vsock_device);
1994         sock_unregister(AF_VSOCK);
1995         proto_unregister(&vsock_proto);
1996
1997         /* We do not want the assignment below re-ordered. */
1998         mb();
1999         transport = NULL;
2000
2001         mutex_unlock(&vsock_register_mutex);
2002 }
2003 EXPORT_SYMBOL_GPL(vsock_core_exit);
2004
2005 const struct vsock_transport *vsock_core_get_transport(void)
2006 {
2007         /* vsock_register_mutex not taken since only the transport uses this
2008          * function and only while registered.
2009          */
2010         return transport;
2011 }
2012 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2013
2014 static void __exit vsock_exit(void)
2015 {
2016         /* Do nothing.  This function makes this module removable. */
2017 }
2018
2019 module_init(vsock_init_tables);
2020 module_exit(vsock_exit);
2021
2022 MODULE_AUTHOR("VMware, Inc.");
2023 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2024 MODULE_VERSION("1.0.2.0-k");
2025 MODULE_LICENSE("GPL v2");