GNU Linux-libre 5.4.207-gnu1
[releases.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 noinline void tls_err_abort(struct sock *sk, int err)
48 {
49         WARN_ON_ONCE(err >= 0);
50         /* sk->sk_err should contain a positive error code. */
51         sk->sk_err = -err;
52         sk->sk_error_report(sk);
53 }
54
55 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56                      unsigned int recursion_level)
57 {
58         int start = skb_headlen(skb);
59         int i, chunk = start - offset;
60         struct sk_buff *frag_iter;
61         int elt = 0;
62
63         if (unlikely(recursion_level >= 24))
64                 return -EMSGSIZE;
65
66         if (chunk > 0) {
67                 if (chunk > len)
68                         chunk = len;
69                 elt++;
70                 len -= chunk;
71                 if (len == 0)
72                         return elt;
73                 offset += chunk;
74         }
75
76         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
77                 int end;
78
79                 WARN_ON(start > offset + len);
80
81                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
82                 chunk = end - offset;
83                 if (chunk > 0) {
84                         if (chunk > len)
85                                 chunk = len;
86                         elt++;
87                         len -= chunk;
88                         if (len == 0)
89                                 return elt;
90                         offset += chunk;
91                 }
92                 start = end;
93         }
94
95         if (unlikely(skb_has_frag_list(skb))) {
96                 skb_walk_frags(skb, frag_iter) {
97                         int end, ret;
98
99                         WARN_ON(start > offset + len);
100
101                         end = start + frag_iter->len;
102                         chunk = end - offset;
103                         if (chunk > 0) {
104                                 if (chunk > len)
105                                         chunk = len;
106                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
107                                                 recursion_level + 1);
108                                 if (unlikely(ret < 0))
109                                         return ret;
110                                 elt += ret;
111                                 len -= chunk;
112                                 if (len == 0)
113                                         return elt;
114                                 offset += chunk;
115                         }
116                         start = end;
117                 }
118         }
119         BUG_ON(len);
120         return elt;
121 }
122
123 /* Return the number of scatterlist elements required to completely map the
124  * skb, or -EMSGSIZE if the recursion depth is exceeded.
125  */
126 static int skb_nsg(struct sk_buff *skb, int offset, int len)
127 {
128         return __skb_nsg(skb, offset, len, 0);
129 }
130
131 static int padding_length(struct tls_sw_context_rx *ctx,
132                           struct tls_prot_info *prot, struct sk_buff *skb)
133 {
134         struct strp_msg *rxm = strp_msg(skb);
135         int sub = 0;
136
137         /* Determine zero-padding length */
138         if (prot->version == TLS_1_3_VERSION) {
139                 char content_type = 0;
140                 int err;
141                 int back = 17;
142
143                 while (content_type == 0) {
144                         if (back > rxm->full_len - prot->prepend_size)
145                                 return -EBADMSG;
146                         err = skb_copy_bits(skb,
147                                             rxm->offset + rxm->full_len - back,
148                                             &content_type, 1);
149                         if (err)
150                                 return err;
151                         if (content_type)
152                                 break;
153                         sub++;
154                         back++;
155                 }
156                 ctx->control = content_type;
157         }
158         return sub;
159 }
160
161 static void tls_decrypt_done(struct crypto_async_request *req, int err)
162 {
163         struct aead_request *aead_req = (struct aead_request *)req;
164         struct scatterlist *sgout = aead_req->dst;
165         struct scatterlist *sgin = aead_req->src;
166         struct tls_sw_context_rx *ctx;
167         struct tls_context *tls_ctx;
168         struct tls_prot_info *prot;
169         struct scatterlist *sg;
170         struct sk_buff *skb;
171         unsigned int pages;
172         int pending;
173
174         skb = (struct sk_buff *)req->data;
175         tls_ctx = tls_get_ctx(skb->sk);
176         ctx = tls_sw_ctx_rx(tls_ctx);
177         prot = &tls_ctx->prot_info;
178
179         /* Propagate if there was an err */
180         if (err) {
181                 ctx->async_wait.err = err;
182                 tls_err_abort(skb->sk, err);
183         } else {
184                 struct strp_msg *rxm = strp_msg(skb);
185                 int pad;
186
187                 pad = padding_length(ctx, prot, skb);
188                 if (pad < 0) {
189                         ctx->async_wait.err = pad;
190                         tls_err_abort(skb->sk, pad);
191                 } else {
192                         rxm->full_len -= pad;
193                         rxm->offset += prot->prepend_size;
194                         rxm->full_len -= prot->overhead_size;
195                 }
196         }
197
198         /* After using skb->sk to propagate sk through crypto async callback
199          * we need to NULL it again.
200          */
201         skb->sk = NULL;
202
203
204         /* Free the destination pages if skb was not decrypted inplace */
205         if (sgout != sgin) {
206                 /* Skip the first S/G entry as it points to AAD */
207                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
208                         if (!sg)
209                                 break;
210                         put_page(sg_page(sg));
211                 }
212         }
213
214         kfree(aead_req);
215
216         spin_lock_bh(&ctx->decrypt_compl_lock);
217         pending = atomic_dec_return(&ctx->decrypt_pending);
218
219         if (!pending && ctx->async_notify)
220                 complete(&ctx->async_wait.completion);
221         spin_unlock_bh(&ctx->decrypt_compl_lock);
222 }
223
224 static int tls_do_decryption(struct sock *sk,
225                              struct sk_buff *skb,
226                              struct scatterlist *sgin,
227                              struct scatterlist *sgout,
228                              char *iv_recv,
229                              size_t data_len,
230                              struct aead_request *aead_req,
231                              bool async)
232 {
233         struct tls_context *tls_ctx = tls_get_ctx(sk);
234         struct tls_prot_info *prot = &tls_ctx->prot_info;
235         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
236         int ret;
237
238         aead_request_set_tfm(aead_req, ctx->aead_recv);
239         aead_request_set_ad(aead_req, prot->aad_size);
240         aead_request_set_crypt(aead_req, sgin, sgout,
241                                data_len + prot->tag_size,
242                                (u8 *)iv_recv);
243
244         if (async) {
245                 /* Using skb->sk to push sk through to crypto async callback
246                  * handler. This allows propagating errors up to the socket
247                  * if needed. It _must_ be cleared in the async handler
248                  * before consume_skb is called. We _know_ skb->sk is NULL
249                  * because it is a clone from strparser.
250                  */
251                 skb->sk = sk;
252                 aead_request_set_callback(aead_req,
253                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
254                                           tls_decrypt_done, skb);
255                 atomic_inc(&ctx->decrypt_pending);
256         } else {
257                 aead_request_set_callback(aead_req,
258                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
259                                           crypto_req_done, &ctx->async_wait);
260         }
261
262         ret = crypto_aead_decrypt(aead_req);
263         if (ret == -EINPROGRESS) {
264                 if (async)
265                         return ret;
266
267                 ret = crypto_wait_req(ret, &ctx->async_wait);
268         }
269
270         if (async)
271                 atomic_dec(&ctx->decrypt_pending);
272
273         return ret;
274 }
275
276 static void tls_trim_both_msgs(struct sock *sk, int target_size)
277 {
278         struct tls_context *tls_ctx = tls_get_ctx(sk);
279         struct tls_prot_info *prot = &tls_ctx->prot_info;
280         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
281         struct tls_rec *rec = ctx->open_rec;
282
283         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
284         if (target_size > 0)
285                 target_size += prot->overhead_size;
286         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
287 }
288
289 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
290 {
291         struct tls_context *tls_ctx = tls_get_ctx(sk);
292         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
293         struct tls_rec *rec = ctx->open_rec;
294         struct sk_msg *msg_en = &rec->msg_encrypted;
295
296         return sk_msg_alloc(sk, msg_en, len, 0);
297 }
298
299 static int tls_clone_plaintext_msg(struct sock *sk, int required)
300 {
301         struct tls_context *tls_ctx = tls_get_ctx(sk);
302         struct tls_prot_info *prot = &tls_ctx->prot_info;
303         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
304         struct tls_rec *rec = ctx->open_rec;
305         struct sk_msg *msg_pl = &rec->msg_plaintext;
306         struct sk_msg *msg_en = &rec->msg_encrypted;
307         int skip, len;
308
309         /* We add page references worth len bytes from encrypted sg
310          * at the end of plaintext sg. It is guaranteed that msg_en
311          * has enough required room (ensured by caller).
312          */
313         len = required - msg_pl->sg.size;
314
315         /* Skip initial bytes in msg_en's data to be able to use
316          * same offset of both plain and encrypted data.
317          */
318         skip = prot->prepend_size + msg_pl->sg.size;
319
320         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
321 }
322
323 static struct tls_rec *tls_get_rec(struct sock *sk)
324 {
325         struct tls_context *tls_ctx = tls_get_ctx(sk);
326         struct tls_prot_info *prot = &tls_ctx->prot_info;
327         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
328         struct sk_msg *msg_pl, *msg_en;
329         struct tls_rec *rec;
330         int mem_size;
331
332         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
333
334         rec = kzalloc(mem_size, sk->sk_allocation);
335         if (!rec)
336                 return NULL;
337
338         msg_pl = &rec->msg_plaintext;
339         msg_en = &rec->msg_encrypted;
340
341         sk_msg_init(msg_pl);
342         sk_msg_init(msg_en);
343
344         sg_init_table(rec->sg_aead_in, 2);
345         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
346         sg_unmark_end(&rec->sg_aead_in[1]);
347
348         sg_init_table(rec->sg_aead_out, 2);
349         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
350         sg_unmark_end(&rec->sg_aead_out[1]);
351
352         return rec;
353 }
354
355 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
356 {
357         sk_msg_free(sk, &rec->msg_encrypted);
358         sk_msg_free(sk, &rec->msg_plaintext);
359         kfree(rec);
360 }
361
362 static void tls_free_open_rec(struct sock *sk)
363 {
364         struct tls_context *tls_ctx = tls_get_ctx(sk);
365         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
366         struct tls_rec *rec = ctx->open_rec;
367
368         if (rec) {
369                 tls_free_rec(sk, rec);
370                 ctx->open_rec = NULL;
371         }
372 }
373
374 int tls_tx_records(struct sock *sk, int flags)
375 {
376         struct tls_context *tls_ctx = tls_get_ctx(sk);
377         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
378         struct tls_rec *rec, *tmp;
379         struct sk_msg *msg_en;
380         int tx_flags, rc = 0;
381
382         if (tls_is_partially_sent_record(tls_ctx)) {
383                 rec = list_first_entry(&ctx->tx_list,
384                                        struct tls_rec, list);
385
386                 if (flags == -1)
387                         tx_flags = rec->tx_flags;
388                 else
389                         tx_flags = flags;
390
391                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
392                 if (rc)
393                         goto tx_err;
394
395                 /* Full record has been transmitted.
396                  * Remove the head of tx_list
397                  */
398                 list_del(&rec->list);
399                 sk_msg_free(sk, &rec->msg_plaintext);
400                 kfree(rec);
401         }
402
403         /* Tx all ready records */
404         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
405                 if (READ_ONCE(rec->tx_ready)) {
406                         if (flags == -1)
407                                 tx_flags = rec->tx_flags;
408                         else
409                                 tx_flags = flags;
410
411                         msg_en = &rec->msg_encrypted;
412                         rc = tls_push_sg(sk, tls_ctx,
413                                          &msg_en->sg.data[msg_en->sg.curr],
414                                          0, tx_flags);
415                         if (rc)
416                                 goto tx_err;
417
418                         list_del(&rec->list);
419                         sk_msg_free(sk, &rec->msg_plaintext);
420                         kfree(rec);
421                 } else {
422                         break;
423                 }
424         }
425
426 tx_err:
427         if (rc < 0 && rc != -EAGAIN)
428                 tls_err_abort(sk, -EBADMSG);
429
430         return rc;
431 }
432
433 static void tls_encrypt_done(struct crypto_async_request *req, int err)
434 {
435         struct aead_request *aead_req = (struct aead_request *)req;
436         struct sock *sk = req->data;
437         struct tls_context *tls_ctx = tls_get_ctx(sk);
438         struct tls_prot_info *prot = &tls_ctx->prot_info;
439         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
440         struct scatterlist *sge;
441         struct sk_msg *msg_en;
442         struct tls_rec *rec;
443         bool ready = false;
444         int pending;
445
446         rec = container_of(aead_req, struct tls_rec, aead_req);
447         msg_en = &rec->msg_encrypted;
448
449         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
450         sge->offset -= prot->prepend_size;
451         sge->length += prot->prepend_size;
452
453         /* Check if error is previously set on socket */
454         if (err || sk->sk_err) {
455                 rec = NULL;
456
457                 /* If err is already set on socket, return the same code */
458                 if (sk->sk_err) {
459                         ctx->async_wait.err = -sk->sk_err;
460                 } else {
461                         ctx->async_wait.err = err;
462                         tls_err_abort(sk, err);
463                 }
464         }
465
466         if (rec) {
467                 struct tls_rec *first_rec;
468
469                 /* Mark the record as ready for transmission */
470                 smp_store_mb(rec->tx_ready, true);
471
472                 /* If received record is at head of tx_list, schedule tx */
473                 first_rec = list_first_entry(&ctx->tx_list,
474                                              struct tls_rec, list);
475                 if (rec == first_rec)
476                         ready = true;
477         }
478
479         spin_lock_bh(&ctx->encrypt_compl_lock);
480         pending = atomic_dec_return(&ctx->encrypt_pending);
481
482         if (!pending && ctx->async_notify)
483                 complete(&ctx->async_wait.completion);
484         spin_unlock_bh(&ctx->encrypt_compl_lock);
485
486         if (!ready)
487                 return;
488
489         /* Schedule the transmission */
490         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
491                 schedule_delayed_work(&ctx->tx_work.work, 1);
492 }
493
494 static int tls_do_encryption(struct sock *sk,
495                              struct tls_context *tls_ctx,
496                              struct tls_sw_context_tx *ctx,
497                              struct aead_request *aead_req,
498                              size_t data_len, u32 start)
499 {
500         struct tls_prot_info *prot = &tls_ctx->prot_info;
501         struct tls_rec *rec = ctx->open_rec;
502         struct sk_msg *msg_en = &rec->msg_encrypted;
503         struct scatterlist *sge = sk_msg_elem(msg_en, start);
504         int rc, iv_offset = 0;
505
506         /* For CCM based ciphers, first byte of IV is a constant */
507         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
508                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
509                 iv_offset = 1;
510         }
511
512         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
513                prot->iv_size + prot->salt_size);
514
515         xor_iv_with_seq(prot->version, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
516
517         sge->offset += prot->prepend_size;
518         sge->length -= prot->prepend_size;
519
520         msg_en->sg.curr = start;
521
522         aead_request_set_tfm(aead_req, ctx->aead_send);
523         aead_request_set_ad(aead_req, prot->aad_size);
524         aead_request_set_crypt(aead_req, rec->sg_aead_in,
525                                rec->sg_aead_out,
526                                data_len, rec->iv_data);
527
528         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
529                                   tls_encrypt_done, sk);
530
531         /* Add the record in tx_list */
532         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
533         atomic_inc(&ctx->encrypt_pending);
534
535         rc = crypto_aead_encrypt(aead_req);
536         if (!rc || rc != -EINPROGRESS) {
537                 atomic_dec(&ctx->encrypt_pending);
538                 sge->offset -= prot->prepend_size;
539                 sge->length += prot->prepend_size;
540         }
541
542         if (!rc) {
543                 WRITE_ONCE(rec->tx_ready, true);
544         } else if (rc != -EINPROGRESS) {
545                 list_del(&rec->list);
546                 return rc;
547         }
548
549         /* Unhook the record from context if encryption is not failure */
550         ctx->open_rec = NULL;
551         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
552         return rc;
553 }
554
555 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
556                                  struct tls_rec **to, struct sk_msg *msg_opl,
557                                  struct sk_msg *msg_oen, u32 split_point,
558                                  u32 tx_overhead_size, u32 *orig_end)
559 {
560         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
561         struct scatterlist *sge, *osge, *nsge;
562         u32 orig_size = msg_opl->sg.size;
563         struct scatterlist tmp = { };
564         struct sk_msg *msg_npl;
565         struct tls_rec *new;
566         int ret;
567
568         new = tls_get_rec(sk);
569         if (!new)
570                 return -ENOMEM;
571         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
572                            tx_overhead_size, 0);
573         if (ret < 0) {
574                 tls_free_rec(sk, new);
575                 return ret;
576         }
577
578         *orig_end = msg_opl->sg.end;
579         i = msg_opl->sg.start;
580         sge = sk_msg_elem(msg_opl, i);
581         while (apply && sge->length) {
582                 if (sge->length > apply) {
583                         u32 len = sge->length - apply;
584
585                         get_page(sg_page(sge));
586                         sg_set_page(&tmp, sg_page(sge), len,
587                                     sge->offset + apply);
588                         sge->length = apply;
589                         bytes += apply;
590                         apply = 0;
591                 } else {
592                         apply -= sge->length;
593                         bytes += sge->length;
594                 }
595
596                 sk_msg_iter_var_next(i);
597                 if (i == msg_opl->sg.end)
598                         break;
599                 sge = sk_msg_elem(msg_opl, i);
600         }
601
602         msg_opl->sg.end = i;
603         msg_opl->sg.curr = i;
604         msg_opl->sg.copybreak = 0;
605         msg_opl->apply_bytes = 0;
606         msg_opl->sg.size = bytes;
607
608         msg_npl = &new->msg_plaintext;
609         msg_npl->apply_bytes = apply;
610         msg_npl->sg.size = orig_size - bytes;
611
612         j = msg_npl->sg.start;
613         nsge = sk_msg_elem(msg_npl, j);
614         if (tmp.length) {
615                 memcpy(nsge, &tmp, sizeof(*nsge));
616                 sk_msg_iter_var_next(j);
617                 nsge = sk_msg_elem(msg_npl, j);
618         }
619
620         osge = sk_msg_elem(msg_opl, i);
621         while (osge->length) {
622                 memcpy(nsge, osge, sizeof(*nsge));
623                 sg_unmark_end(nsge);
624                 sk_msg_iter_var_next(i);
625                 sk_msg_iter_var_next(j);
626                 if (i == *orig_end)
627                         break;
628                 osge = sk_msg_elem(msg_opl, i);
629                 nsge = sk_msg_elem(msg_npl, j);
630         }
631
632         msg_npl->sg.end = j;
633         msg_npl->sg.curr = j;
634         msg_npl->sg.copybreak = 0;
635
636         *to = new;
637         return 0;
638 }
639
640 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
641                                   struct tls_rec *from, u32 orig_end)
642 {
643         struct sk_msg *msg_npl = &from->msg_plaintext;
644         struct sk_msg *msg_opl = &to->msg_plaintext;
645         struct scatterlist *osge, *nsge;
646         u32 i, j;
647
648         i = msg_opl->sg.end;
649         sk_msg_iter_var_prev(i);
650         j = msg_npl->sg.start;
651
652         osge = sk_msg_elem(msg_opl, i);
653         nsge = sk_msg_elem(msg_npl, j);
654
655         if (sg_page(osge) == sg_page(nsge) &&
656             osge->offset + osge->length == nsge->offset) {
657                 osge->length += nsge->length;
658                 put_page(sg_page(nsge));
659         }
660
661         msg_opl->sg.end = orig_end;
662         msg_opl->sg.curr = orig_end;
663         msg_opl->sg.copybreak = 0;
664         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
665         msg_opl->sg.size += msg_npl->sg.size;
666
667         sk_msg_free(sk, &to->msg_encrypted);
668         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
669
670         kfree(from);
671 }
672
673 static int tls_push_record(struct sock *sk, int flags,
674                            unsigned char record_type)
675 {
676         struct tls_context *tls_ctx = tls_get_ctx(sk);
677         struct tls_prot_info *prot = &tls_ctx->prot_info;
678         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
679         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
680         u32 i, split_point, uninitialized_var(orig_end);
681         struct sk_msg *msg_pl, *msg_en;
682         struct aead_request *req;
683         bool split;
684         int rc;
685
686         if (!rec)
687                 return 0;
688
689         msg_pl = &rec->msg_plaintext;
690         msg_en = &rec->msg_encrypted;
691
692         split_point = msg_pl->apply_bytes;
693         split = split_point && split_point < msg_pl->sg.size;
694         if (unlikely((!split &&
695                       msg_pl->sg.size +
696                       prot->overhead_size > msg_en->sg.size) ||
697                      (split &&
698                       split_point +
699                       prot->overhead_size > msg_en->sg.size))) {
700                 split = true;
701                 split_point = msg_en->sg.size;
702         }
703         if (split) {
704                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
705                                            split_point, prot->overhead_size,
706                                            &orig_end);
707                 if (rc < 0)
708                         return rc;
709                 /* This can happen if above tls_split_open_record allocates
710                  * a single large encryption buffer instead of two smaller
711                  * ones. In this case adjust pointers and continue without
712                  * split.
713                  */
714                 if (!msg_pl->sg.size) {
715                         tls_merge_open_record(sk, rec, tmp, orig_end);
716                         msg_pl = &rec->msg_plaintext;
717                         msg_en = &rec->msg_encrypted;
718                         split = false;
719                 }
720                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
721                             prot->overhead_size);
722         }
723
724         rec->tx_flags = flags;
725         req = &rec->aead_req;
726
727         i = msg_pl->sg.end;
728         sk_msg_iter_var_prev(i);
729
730         rec->content_type = record_type;
731         if (prot->version == TLS_1_3_VERSION) {
732                 /* Add content type to end of message.  No padding added */
733                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
734                 sg_mark_end(&rec->sg_content_type);
735                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
736                          &rec->sg_content_type);
737         } else {
738                 sg_mark_end(sk_msg_elem(msg_pl, i));
739         }
740
741         if (msg_pl->sg.end < msg_pl->sg.start) {
742                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
743                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
744                          msg_pl->sg.data);
745         }
746
747         i = msg_pl->sg.start;
748         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
749
750         i = msg_en->sg.end;
751         sk_msg_iter_var_prev(i);
752         sg_mark_end(sk_msg_elem(msg_en, i));
753
754         i = msg_en->sg.start;
755         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
756
757         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
758                      tls_ctx->tx.rec_seq, prot->rec_seq_size,
759                      record_type, prot->version);
760
761         tls_fill_prepend(tls_ctx,
762                          page_address(sg_page(&msg_en->sg.data[i])) +
763                          msg_en->sg.data[i].offset,
764                          msg_pl->sg.size + prot->tail_size,
765                          record_type, prot->version);
766
767         tls_ctx->pending_open_record_frags = false;
768
769         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
770                                msg_pl->sg.size + prot->tail_size, i);
771         if (rc < 0) {
772                 if (rc != -EINPROGRESS) {
773                         tls_err_abort(sk, -EBADMSG);
774                         if (split) {
775                                 tls_ctx->pending_open_record_frags = true;
776                                 tls_merge_open_record(sk, rec, tmp, orig_end);
777                         }
778                 }
779                 ctx->async_capable = 1;
780                 return rc;
781         } else if (split) {
782                 msg_pl = &tmp->msg_plaintext;
783                 msg_en = &tmp->msg_encrypted;
784                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
785                 tls_ctx->pending_open_record_frags = true;
786                 ctx->open_rec = tmp;
787         }
788
789         return tls_tx_records(sk, flags);
790 }
791
792 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
793                                bool full_record, u8 record_type,
794                                ssize_t *copied, int flags)
795 {
796         struct tls_context *tls_ctx = tls_get_ctx(sk);
797         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
798         struct sk_msg msg_redir = { };
799         struct sk_psock *psock;
800         struct sock *sk_redir;
801         struct tls_rec *rec;
802         bool enospc, policy;
803         int err = 0, send;
804         u32 delta = 0;
805
806         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
807         psock = sk_psock_get(sk);
808         if (!psock || !policy) {
809                 err = tls_push_record(sk, flags, record_type);
810                 if (err && sk->sk_err == EBADMSG) {
811                         *copied -= sk_msg_free(sk, msg);
812                         tls_free_open_rec(sk);
813                         err = -sk->sk_err;
814                 }
815                 if (psock)
816                         sk_psock_put(sk, psock);
817                 return err;
818         }
819 more_data:
820         enospc = sk_msg_full(msg);
821         if (psock->eval == __SK_NONE) {
822                 delta = msg->sg.size;
823                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
824                 delta -= msg->sg.size;
825         }
826         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
827             !enospc && !full_record) {
828                 err = -ENOSPC;
829                 goto out_err;
830         }
831         msg->cork_bytes = 0;
832         send = msg->sg.size;
833         if (msg->apply_bytes && msg->apply_bytes < send)
834                 send = msg->apply_bytes;
835
836         switch (psock->eval) {
837         case __SK_PASS:
838                 err = tls_push_record(sk, flags, record_type);
839                 if (err && sk->sk_err == EBADMSG) {
840                         *copied -= sk_msg_free(sk, msg);
841                         tls_free_open_rec(sk);
842                         err = -sk->sk_err;
843                         goto out_err;
844                 }
845                 break;
846         case __SK_REDIRECT:
847                 sk_redir = psock->sk_redir;
848                 memcpy(&msg_redir, msg, sizeof(*msg));
849                 if (msg->apply_bytes < send)
850                         msg->apply_bytes = 0;
851                 else
852                         msg->apply_bytes -= send;
853                 sk_msg_return_zero(sk, msg, send);
854                 msg->sg.size -= send;
855                 release_sock(sk);
856                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
857                 lock_sock(sk);
858                 if (err < 0) {
859                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
860                         msg->sg.size = 0;
861                 }
862                 if (msg->sg.size == 0)
863                         tls_free_open_rec(sk);
864                 break;
865         case __SK_DROP:
866         default:
867                 sk_msg_free_partial(sk, msg, send);
868                 if (msg->apply_bytes < send)
869                         msg->apply_bytes = 0;
870                 else
871                         msg->apply_bytes -= send;
872                 if (msg->sg.size == 0)
873                         tls_free_open_rec(sk);
874                 *copied -= (send + delta);
875                 err = -EACCES;
876         }
877
878         if (likely(!err)) {
879                 bool reset_eval = !ctx->open_rec;
880
881                 rec = ctx->open_rec;
882                 if (rec) {
883                         msg = &rec->msg_plaintext;
884                         if (!msg->apply_bytes)
885                                 reset_eval = true;
886                 }
887                 if (reset_eval) {
888                         psock->eval = __SK_NONE;
889                         if (psock->sk_redir) {
890                                 sock_put(psock->sk_redir);
891                                 psock->sk_redir = NULL;
892                         }
893                 }
894                 if (rec)
895                         goto more_data;
896         }
897  out_err:
898         sk_psock_put(sk, psock);
899         return err;
900 }
901
902 static int tls_sw_push_pending_record(struct sock *sk, int flags)
903 {
904         struct tls_context *tls_ctx = tls_get_ctx(sk);
905         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
906         struct tls_rec *rec = ctx->open_rec;
907         struct sk_msg *msg_pl;
908         size_t copied;
909
910         if (!rec)
911                 return 0;
912
913         msg_pl = &rec->msg_plaintext;
914         copied = msg_pl->sg.size;
915         if (!copied)
916                 return 0;
917
918         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
919                                    &copied, flags);
920 }
921
922 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
923 {
924         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
925         struct tls_context *tls_ctx = tls_get_ctx(sk);
926         struct tls_prot_info *prot = &tls_ctx->prot_info;
927         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
928         bool async_capable = ctx->async_capable;
929         unsigned char record_type = TLS_RECORD_TYPE_DATA;
930         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
931         bool eor = !(msg->msg_flags & MSG_MORE);
932         size_t try_to_copy;
933         ssize_t copied = 0;
934         struct sk_msg *msg_pl, *msg_en;
935         struct tls_rec *rec;
936         int required_size;
937         int num_async = 0;
938         bool full_record;
939         int record_room;
940         int num_zc = 0;
941         int orig_size;
942         int ret = 0;
943         int pending;
944
945         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
946                 return -EOPNOTSUPP;
947
948         mutex_lock(&tls_ctx->tx_lock);
949         lock_sock(sk);
950
951         if (unlikely(msg->msg_controllen)) {
952                 ret = tls_proccess_cmsg(sk, msg, &record_type);
953                 if (ret) {
954                         if (ret == -EINPROGRESS)
955                                 num_async++;
956                         else if (ret != -EAGAIN)
957                                 goto send_end;
958                 }
959         }
960
961         while (msg_data_left(msg)) {
962                 if (sk->sk_err) {
963                         ret = -sk->sk_err;
964                         goto send_end;
965                 }
966
967                 if (ctx->open_rec)
968                         rec = ctx->open_rec;
969                 else
970                         rec = ctx->open_rec = tls_get_rec(sk);
971                 if (!rec) {
972                         ret = -ENOMEM;
973                         goto send_end;
974                 }
975
976                 msg_pl = &rec->msg_plaintext;
977                 msg_en = &rec->msg_encrypted;
978
979                 orig_size = msg_pl->sg.size;
980                 full_record = false;
981                 try_to_copy = msg_data_left(msg);
982                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
983                 if (try_to_copy >= record_room) {
984                         try_to_copy = record_room;
985                         full_record = true;
986                 }
987
988                 required_size = msg_pl->sg.size + try_to_copy +
989                                 prot->overhead_size;
990
991                 if (!sk_stream_memory_free(sk))
992                         goto wait_for_sndbuf;
993
994 alloc_encrypted:
995                 ret = tls_alloc_encrypted_msg(sk, required_size);
996                 if (ret) {
997                         if (ret != -ENOSPC)
998                                 goto wait_for_memory;
999
1000                         /* Adjust try_to_copy according to the amount that was
1001                          * actually allocated. The difference is due
1002                          * to max sg elements limit
1003                          */
1004                         try_to_copy -= required_size - msg_en->sg.size;
1005                         full_record = true;
1006                 }
1007
1008                 if (!is_kvec && (full_record || eor) && !async_capable) {
1009                         u32 first = msg_pl->sg.end;
1010
1011                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1012                                                         msg_pl, try_to_copy);
1013                         if (ret)
1014                                 goto fallback_to_reg_send;
1015
1016                         num_zc++;
1017                         copied += try_to_copy;
1018
1019                         sk_msg_sg_copy_set(msg_pl, first);
1020                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1021                                                   record_type, &copied,
1022                                                   msg->msg_flags);
1023                         if (ret) {
1024                                 if (ret == -EINPROGRESS)
1025                                         num_async++;
1026                                 else if (ret == -ENOMEM)
1027                                         goto wait_for_memory;
1028                                 else if (ctx->open_rec && ret == -ENOSPC)
1029                                         goto rollback_iter;
1030                                 else if (ret != -EAGAIN)
1031                                         goto send_end;
1032                         }
1033                         continue;
1034 rollback_iter:
1035                         copied -= try_to_copy;
1036                         sk_msg_sg_copy_clear(msg_pl, first);
1037                         iov_iter_revert(&msg->msg_iter,
1038                                         msg_pl->sg.size - orig_size);
1039 fallback_to_reg_send:
1040                         sk_msg_trim(sk, msg_pl, orig_size);
1041                 }
1042
1043                 required_size = msg_pl->sg.size + try_to_copy;
1044
1045                 ret = tls_clone_plaintext_msg(sk, required_size);
1046                 if (ret) {
1047                         if (ret != -ENOSPC)
1048                                 goto send_end;
1049
1050                         /* Adjust try_to_copy according to the amount that was
1051                          * actually allocated. The difference is due
1052                          * to max sg elements limit
1053                          */
1054                         try_to_copy -= required_size - msg_pl->sg.size;
1055                         full_record = true;
1056                         sk_msg_trim(sk, msg_en,
1057                                     msg_pl->sg.size + prot->overhead_size);
1058                 }
1059
1060                 if (try_to_copy) {
1061                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1062                                                        msg_pl, try_to_copy);
1063                         if (ret < 0)
1064                                 goto trim_sgl;
1065                 }
1066
1067                 /* Open records defined only if successfully copied, otherwise
1068                  * we would trim the sg but not reset the open record frags.
1069                  */
1070                 tls_ctx->pending_open_record_frags = true;
1071                 copied += try_to_copy;
1072                 if (full_record || eor) {
1073                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1074                                                   record_type, &copied,
1075                                                   msg->msg_flags);
1076                         if (ret) {
1077                                 if (ret == -EINPROGRESS)
1078                                         num_async++;
1079                                 else if (ret == -ENOMEM)
1080                                         goto wait_for_memory;
1081                                 else if (ret != -EAGAIN) {
1082                                         if (ret == -ENOSPC)
1083                                                 ret = 0;
1084                                         goto send_end;
1085                                 }
1086                         }
1087                 }
1088
1089                 continue;
1090
1091 wait_for_sndbuf:
1092                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1093 wait_for_memory:
1094                 ret = sk_stream_wait_memory(sk, &timeo);
1095                 if (ret) {
1096 trim_sgl:
1097                         if (ctx->open_rec)
1098                                 tls_trim_both_msgs(sk, orig_size);
1099                         goto send_end;
1100                 }
1101
1102                 if (ctx->open_rec && msg_en->sg.size < required_size)
1103                         goto alloc_encrypted;
1104         }
1105
1106         if (!num_async) {
1107                 goto send_end;
1108         } else if (num_zc) {
1109                 /* Wait for pending encryptions to get completed */
1110                 spin_lock_bh(&ctx->encrypt_compl_lock);
1111                 ctx->async_notify = true;
1112
1113                 pending = atomic_read(&ctx->encrypt_pending);
1114                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1115                 if (pending)
1116                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1117                 else
1118                         reinit_completion(&ctx->async_wait.completion);
1119
1120                 /* There can be no concurrent accesses, since we have no
1121                  * pending encrypt operations
1122                  */
1123                 WRITE_ONCE(ctx->async_notify, false);
1124
1125                 if (ctx->async_wait.err) {
1126                         ret = ctx->async_wait.err;
1127                         copied = 0;
1128                 }
1129         }
1130
1131         /* Transmit if any encryptions have completed */
1132         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1133                 cancel_delayed_work(&ctx->tx_work.work);
1134                 tls_tx_records(sk, msg->msg_flags);
1135         }
1136
1137 send_end:
1138         ret = sk_stream_error(sk, msg->msg_flags, ret);
1139
1140         release_sock(sk);
1141         mutex_unlock(&tls_ctx->tx_lock);
1142         return copied > 0 ? copied : ret;
1143 }
1144
1145 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1146                               int offset, size_t size, int flags)
1147 {
1148         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1149         struct tls_context *tls_ctx = tls_get_ctx(sk);
1150         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1151         struct tls_prot_info *prot = &tls_ctx->prot_info;
1152         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1153         struct sk_msg *msg_pl;
1154         struct tls_rec *rec;
1155         int num_async = 0;
1156         ssize_t copied = 0;
1157         bool full_record;
1158         int record_room;
1159         int ret = 0;
1160         bool eor;
1161
1162         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1163         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1164
1165         /* Call the sk_stream functions to manage the sndbuf mem. */
1166         while (size > 0) {
1167                 size_t copy, required_size;
1168
1169                 if (sk->sk_err) {
1170                         ret = -sk->sk_err;
1171                         goto sendpage_end;
1172                 }
1173
1174                 if (ctx->open_rec)
1175                         rec = ctx->open_rec;
1176                 else
1177                         rec = ctx->open_rec = tls_get_rec(sk);
1178                 if (!rec) {
1179                         ret = -ENOMEM;
1180                         goto sendpage_end;
1181                 }
1182
1183                 msg_pl = &rec->msg_plaintext;
1184
1185                 full_record = false;
1186                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1187                 copy = size;
1188                 if (copy >= record_room) {
1189                         copy = record_room;
1190                         full_record = true;
1191                 }
1192
1193                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1194
1195                 if (!sk_stream_memory_free(sk))
1196                         goto wait_for_sndbuf;
1197 alloc_payload:
1198                 ret = tls_alloc_encrypted_msg(sk, required_size);
1199                 if (ret) {
1200                         if (ret != -ENOSPC)
1201                                 goto wait_for_memory;
1202
1203                         /* Adjust copy according to the amount that was
1204                          * actually allocated. The difference is due
1205                          * to max sg elements limit
1206                          */
1207                         copy -= required_size - msg_pl->sg.size;
1208                         full_record = true;
1209                 }
1210
1211                 sk_msg_page_add(msg_pl, page, copy, offset);
1212                 sk_mem_charge(sk, copy);
1213
1214                 offset += copy;
1215                 size -= copy;
1216                 copied += copy;
1217
1218                 tls_ctx->pending_open_record_frags = true;
1219                 if (full_record || eor || sk_msg_full(msg_pl)) {
1220                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1221                                                   record_type, &copied, flags);
1222                         if (ret) {
1223                                 if (ret == -EINPROGRESS)
1224                                         num_async++;
1225                                 else if (ret == -ENOMEM)
1226                                         goto wait_for_memory;
1227                                 else if (ret != -EAGAIN) {
1228                                         if (ret == -ENOSPC)
1229                                                 ret = 0;
1230                                         goto sendpage_end;
1231                                 }
1232                         }
1233                 }
1234                 continue;
1235 wait_for_sndbuf:
1236                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1237 wait_for_memory:
1238                 ret = sk_stream_wait_memory(sk, &timeo);
1239                 if (ret) {
1240                         if (ctx->open_rec)
1241                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1242                         goto sendpage_end;
1243                 }
1244
1245                 if (ctx->open_rec)
1246                         goto alloc_payload;
1247         }
1248
1249         if (num_async) {
1250                 /* Transmit if any encryptions have completed */
1251                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1252                         cancel_delayed_work(&ctx->tx_work.work);
1253                         tls_tx_records(sk, flags);
1254                 }
1255         }
1256 sendpage_end:
1257         ret = sk_stream_error(sk, flags, ret);
1258         return copied > 0 ? copied : ret;
1259 }
1260
1261 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1262                            int offset, size_t size, int flags)
1263 {
1264         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1265                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1266                       MSG_NO_SHARED_FRAGS))
1267                 return -EOPNOTSUPP;
1268
1269         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1270 }
1271
1272 int tls_sw_sendpage(struct sock *sk, struct page *page,
1273                     int offset, size_t size, int flags)
1274 {
1275         struct tls_context *tls_ctx = tls_get_ctx(sk);
1276         int ret;
1277
1278         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1279                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1280                 return -EOPNOTSUPP;
1281
1282         mutex_lock(&tls_ctx->tx_lock);
1283         lock_sock(sk);
1284         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1285         release_sock(sk);
1286         mutex_unlock(&tls_ctx->tx_lock);
1287         return ret;
1288 }
1289
1290 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1291                                      bool nonblock, long timeo, int *err)
1292 {
1293         struct tls_context *tls_ctx = tls_get_ctx(sk);
1294         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1295         struct sk_buff *skb;
1296         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1297
1298         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1299                 if (sk->sk_err) {
1300                         *err = sock_error(sk);
1301                         return NULL;
1302                 }
1303
1304                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1305                         __strp_unpause(&ctx->strp);
1306                         if (ctx->recv_pkt)
1307                                 return ctx->recv_pkt;
1308                 }
1309
1310                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1311                         return NULL;
1312
1313                 if (sock_flag(sk, SOCK_DONE))
1314                         return NULL;
1315
1316                 if (nonblock || !timeo) {
1317                         *err = -EAGAIN;
1318                         return NULL;
1319                 }
1320
1321                 add_wait_queue(sk_sleep(sk), &wait);
1322                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1323                 sk_wait_event(sk, &timeo,
1324                               ctx->recv_pkt != skb ||
1325                               !sk_psock_queue_empty(psock),
1326                               &wait);
1327                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1328                 remove_wait_queue(sk_sleep(sk), &wait);
1329
1330                 /* Handle signals */
1331                 if (signal_pending(current)) {
1332                         *err = sock_intr_errno(timeo);
1333                         return NULL;
1334                 }
1335         }
1336
1337         return skb;
1338 }
1339
1340 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1341                                int length, int *pages_used,
1342                                unsigned int *size_used,
1343                                struct scatterlist *to,
1344                                int to_max_pages)
1345 {
1346         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1347         struct page *pages[MAX_SKB_FRAGS];
1348         unsigned int size = *size_used;
1349         ssize_t copied, use;
1350         size_t offset;
1351
1352         while (length > 0) {
1353                 i = 0;
1354                 maxpages = to_max_pages - num_elem;
1355                 if (maxpages == 0) {
1356                         rc = -EFAULT;
1357                         goto out;
1358                 }
1359                 copied = iov_iter_get_pages(from, pages,
1360                                             length,
1361                                             maxpages, &offset);
1362                 if (copied <= 0) {
1363                         rc = -EFAULT;
1364                         goto out;
1365                 }
1366
1367                 iov_iter_advance(from, copied);
1368
1369                 length -= copied;
1370                 size += copied;
1371                 while (copied) {
1372                         use = min_t(int, copied, PAGE_SIZE - offset);
1373
1374                         sg_set_page(&to[num_elem],
1375                                     pages[i], use, offset);
1376                         sg_unmark_end(&to[num_elem]);
1377                         /* We do not uncharge memory from this API */
1378
1379                         offset = 0;
1380                         copied -= use;
1381
1382                         i++;
1383                         num_elem++;
1384                 }
1385         }
1386         /* Mark the end in the last sg entry if newly added */
1387         if (num_elem > *pages_used)
1388                 sg_mark_end(&to[num_elem - 1]);
1389 out:
1390         if (rc)
1391                 iov_iter_revert(from, size - *size_used);
1392         *size_used = size;
1393         *pages_used = num_elem;
1394
1395         return rc;
1396 }
1397
1398 /* This function decrypts the input skb into either out_iov or in out_sg
1399  * or in skb buffers itself. The input parameter 'zc' indicates if
1400  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1401  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1402  * NULL, then the decryption happens inside skb buffers itself, i.e.
1403  * zero-copy gets disabled and 'zc' is updated.
1404  */
1405
1406 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1407                             struct iov_iter *out_iov,
1408                             struct scatterlist *out_sg,
1409                             int *chunk, bool *zc, bool async)
1410 {
1411         struct tls_context *tls_ctx = tls_get_ctx(sk);
1412         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1413         struct tls_prot_info *prot = &tls_ctx->prot_info;
1414         struct strp_msg *rxm = strp_msg(skb);
1415         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1416         struct aead_request *aead_req;
1417         struct sk_buff *unused;
1418         u8 *aad, *iv, *mem = NULL;
1419         struct scatterlist *sgin = NULL;
1420         struct scatterlist *sgout = NULL;
1421         const int data_len = rxm->full_len - prot->overhead_size +
1422                              prot->tail_size;
1423         int iv_offset = 0;
1424
1425         if (*zc && (out_iov || out_sg)) {
1426                 if (out_iov)
1427                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1428                 else
1429                         n_sgout = sg_nents(out_sg);
1430                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1431                                  rxm->full_len - prot->prepend_size);
1432         } else {
1433                 n_sgout = 0;
1434                 *zc = false;
1435                 n_sgin = skb_cow_data(skb, 0, &unused);
1436         }
1437
1438         if (n_sgin < 1)
1439                 return -EBADMSG;
1440
1441         /* Increment to accommodate AAD */
1442         n_sgin = n_sgin + 1;
1443
1444         nsg = n_sgin + n_sgout;
1445
1446         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1447         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1448         mem_size = mem_size + prot->aad_size;
1449         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1450
1451         /* Allocate a single block of memory which contains
1452          * aead_req || sgin[] || sgout[] || aad || iv.
1453          * This order achieves correct alignment for aead_req, sgin, sgout.
1454          */
1455         mem = kmalloc(mem_size, sk->sk_allocation);
1456         if (!mem)
1457                 return -ENOMEM;
1458
1459         /* Segment the allocated memory */
1460         aead_req = (struct aead_request *)mem;
1461         sgin = (struct scatterlist *)(mem + aead_size);
1462         sgout = sgin + n_sgin;
1463         aad = (u8 *)(sgout + n_sgout);
1464         iv = aad + prot->aad_size;
1465
1466         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1467         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1468                 iv[0] = 2;
1469                 iv_offset = 1;
1470         }
1471
1472         /* Prepare IV */
1473         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1474                             iv + iv_offset + prot->salt_size,
1475                             prot->iv_size);
1476         if (err < 0) {
1477                 kfree(mem);
1478                 return err;
1479         }
1480         if (prot->version == TLS_1_3_VERSION)
1481                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1482                        prot->iv_size + prot->salt_size);
1483         else
1484                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1485
1486         xor_iv_with_seq(prot->version, iv + iv_offset, tls_ctx->rx.rec_seq);
1487
1488         /* Prepare AAD */
1489         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1490                      prot->tail_size,
1491                      tls_ctx->rx.rec_seq, prot->rec_seq_size,
1492                      ctx->control, prot->version);
1493
1494         /* Prepare sgin */
1495         sg_init_table(sgin, n_sgin);
1496         sg_set_buf(&sgin[0], aad, prot->aad_size);
1497         err = skb_to_sgvec(skb, &sgin[1],
1498                            rxm->offset + prot->prepend_size,
1499                            rxm->full_len - prot->prepend_size);
1500         if (err < 0) {
1501                 kfree(mem);
1502                 return err;
1503         }
1504
1505         if (n_sgout) {
1506                 if (out_iov) {
1507                         sg_init_table(sgout, n_sgout);
1508                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1509
1510                         *chunk = 0;
1511                         err = tls_setup_from_iter(sk, out_iov, data_len,
1512                                                   &pages, chunk, &sgout[1],
1513                                                   (n_sgout - 1));
1514                         if (err < 0)
1515                                 goto fallback_to_reg_recv;
1516                 } else if (out_sg) {
1517                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1518                 } else {
1519                         goto fallback_to_reg_recv;
1520                 }
1521         } else {
1522 fallback_to_reg_recv:
1523                 sgout = sgin;
1524                 pages = 0;
1525                 *chunk = data_len;
1526                 *zc = false;
1527         }
1528
1529         /* Prepare and submit AEAD request */
1530         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1531                                 data_len, aead_req, async);
1532         if (err == -EINPROGRESS)
1533                 return err;
1534
1535         /* Release the pages in case iov was mapped to pages */
1536         for (; pages > 0; pages--)
1537                 put_page(sg_page(&sgout[pages]));
1538
1539         kfree(mem);
1540         return err;
1541 }
1542
1543 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1544                               struct iov_iter *dest, int *chunk, bool *zc,
1545                               bool async)
1546 {
1547         struct tls_context *tls_ctx = tls_get_ctx(sk);
1548         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1549         struct tls_prot_info *prot = &tls_ctx->prot_info;
1550         struct strp_msg *rxm = strp_msg(skb);
1551         int pad, err = 0;
1552
1553         if (!ctx->decrypted) {
1554                 if (tls_ctx->rx_conf == TLS_HW) {
1555                         err = tls_device_decrypted(sk, skb);
1556                         if (err < 0)
1557                                 return err;
1558                 }
1559
1560                 /* Still not decrypted after tls_device */
1561                 if (!ctx->decrypted) {
1562                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1563                                                async);
1564                         if (err < 0) {
1565                                 if (err == -EINPROGRESS)
1566                                         tls_advance_record_sn(sk, prot,
1567                                                               &tls_ctx->rx);
1568
1569                                 return err;
1570                         }
1571                 } else {
1572                         *zc = false;
1573                 }
1574
1575                 pad = padding_length(ctx, prot, skb);
1576                 if (pad < 0)
1577                         return pad;
1578
1579                 rxm->full_len -= pad;
1580                 rxm->offset += prot->prepend_size;
1581                 rxm->full_len -= prot->overhead_size;
1582                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1583                 ctx->decrypted = true;
1584                 ctx->saved_data_ready(sk);
1585         } else {
1586                 *zc = false;
1587         }
1588
1589         return err;
1590 }
1591
1592 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1593                 struct scatterlist *sgout)
1594 {
1595         bool zc = true;
1596         int chunk;
1597
1598         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1599 }
1600
1601 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1602                                unsigned int len)
1603 {
1604         struct tls_context *tls_ctx = tls_get_ctx(sk);
1605         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1606
1607         if (skb) {
1608                 struct strp_msg *rxm = strp_msg(skb);
1609
1610                 if (len < rxm->full_len) {
1611                         rxm->offset += len;
1612                         rxm->full_len -= len;
1613                         return false;
1614                 }
1615                 consume_skb(skb);
1616         }
1617
1618         /* Finished with message */
1619         ctx->recv_pkt = NULL;
1620         __strp_unpause(&ctx->strp);
1621
1622         return true;
1623 }
1624
1625 /* This function traverses the rx_list in tls receive context to copies the
1626  * decrypted records into the buffer provided by caller zero copy is not
1627  * true. Further, the records are removed from the rx_list if it is not a peek
1628  * case and the record has been consumed completely.
1629  */
1630 static int process_rx_list(struct tls_sw_context_rx *ctx,
1631                            struct msghdr *msg,
1632                            u8 *control,
1633                            bool *cmsg,
1634                            size_t skip,
1635                            size_t len,
1636                            bool zc,
1637                            bool is_peek)
1638 {
1639         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1640         u8 ctrl = *control;
1641         u8 msgc = *cmsg;
1642         struct tls_msg *tlm;
1643         ssize_t copied = 0;
1644
1645         /* Set the record type in 'control' if caller didn't pass it */
1646         if (!ctrl && skb) {
1647                 tlm = tls_msg(skb);
1648                 ctrl = tlm->control;
1649         }
1650
1651         while (skip && skb) {
1652                 struct strp_msg *rxm = strp_msg(skb);
1653                 tlm = tls_msg(skb);
1654
1655                 /* Cannot process a record of different type */
1656                 if (ctrl != tlm->control)
1657                         return 0;
1658
1659                 if (skip < rxm->full_len)
1660                         break;
1661
1662                 skip = skip - rxm->full_len;
1663                 skb = skb_peek_next(skb, &ctx->rx_list);
1664         }
1665
1666         while (len && skb) {
1667                 struct sk_buff *next_skb;
1668                 struct strp_msg *rxm = strp_msg(skb);
1669                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1670
1671                 tlm = tls_msg(skb);
1672
1673                 /* Cannot process a record of different type */
1674                 if (ctrl != tlm->control)
1675                         return 0;
1676
1677                 /* Set record type if not already done. For a non-data record,
1678                  * do not proceed if record type could not be copied.
1679                  */
1680                 if (!msgc) {
1681                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1682                                             sizeof(ctrl), &ctrl);
1683                         msgc = true;
1684                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1685                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1686                                         return -EIO;
1687
1688                                 *cmsg = msgc;
1689                         }
1690                 }
1691
1692                 if (!zc || (rxm->full_len - skip) > len) {
1693                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1694                                                     msg, chunk);
1695                         if (err < 0)
1696                                 return err;
1697                 }
1698
1699                 len = len - chunk;
1700                 copied = copied + chunk;
1701
1702                 /* Consume the data from record if it is non-peek case*/
1703                 if (!is_peek) {
1704                         rxm->offset = rxm->offset + chunk;
1705                         rxm->full_len = rxm->full_len - chunk;
1706
1707                         /* Return if there is unconsumed data in the record */
1708                         if (rxm->full_len - skip)
1709                                 break;
1710                 }
1711
1712                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1713                  * So from the 2nd record, 'skip' should be 0.
1714                  */
1715                 skip = 0;
1716
1717                 if (msg)
1718                         msg->msg_flags |= MSG_EOR;
1719
1720                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1721
1722                 if (!is_peek) {
1723                         skb_unlink(skb, &ctx->rx_list);
1724                         consume_skb(skb);
1725                 }
1726
1727                 skb = next_skb;
1728         }
1729
1730         *control = ctrl;
1731         return copied;
1732 }
1733
1734 int tls_sw_recvmsg(struct sock *sk,
1735                    struct msghdr *msg,
1736                    size_t len,
1737                    int nonblock,
1738                    int flags,
1739                    int *addr_len)
1740 {
1741         struct tls_context *tls_ctx = tls_get_ctx(sk);
1742         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1743         struct tls_prot_info *prot = &tls_ctx->prot_info;
1744         struct sk_psock *psock;
1745         unsigned char control = 0;
1746         ssize_t decrypted = 0;
1747         struct strp_msg *rxm;
1748         struct tls_msg *tlm;
1749         struct sk_buff *skb;
1750         ssize_t copied = 0;
1751         bool cmsg = false;
1752         int target, err = 0;
1753         long timeo;
1754         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1755         bool is_peek = flags & MSG_PEEK;
1756         bool bpf_strp_enabled;
1757         int num_async = 0;
1758         int pending;
1759
1760         flags |= nonblock;
1761
1762         if (unlikely(flags & MSG_ERRQUEUE))
1763                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1764
1765         psock = sk_psock_get(sk);
1766         lock_sock(sk);
1767         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1768
1769         /* Process pending decrypted records. It must be non-zero-copy */
1770         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1771                               is_peek);
1772         if (err < 0) {
1773                 tls_err_abort(sk, err);
1774                 goto end;
1775         } else {
1776                 copied = err;
1777         }
1778
1779         if (len <= copied)
1780                 goto recv_end;
1781
1782         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1783         len = len - copied;
1784         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1785
1786         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1787                 bool retain_skb = false;
1788                 bool zc = false;
1789                 int to_decrypt;
1790                 int chunk = 0;
1791                 bool async_capable;
1792                 bool async = false;
1793
1794                 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1795                 if (!skb) {
1796                         if (psock) {
1797                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1798                                                             msg, len, flags);
1799
1800                                 if (ret > 0) {
1801                                         decrypted += ret;
1802                                         len -= ret;
1803                                         continue;
1804                                 }
1805                         }
1806                         goto recv_end;
1807                 } else {
1808                         tlm = tls_msg(skb);
1809                         if (prot->version == TLS_1_3_VERSION)
1810                                 tlm->control = 0;
1811                         else
1812                                 tlm->control = ctx->control;
1813                 }
1814
1815                 rxm = strp_msg(skb);
1816
1817                 to_decrypt = rxm->full_len - prot->overhead_size;
1818
1819                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1820                     ctx->control == TLS_RECORD_TYPE_DATA &&
1821                     prot->version != TLS_1_3_VERSION &&
1822                     !bpf_strp_enabled)
1823                         zc = true;
1824
1825                 /* Do not use async mode if record is non-data */
1826                 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1827                         async_capable = ctx->async_capable;
1828                 else
1829                         async_capable = false;
1830
1831                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1832                                          &chunk, &zc, async_capable);
1833                 if (err < 0 && err != -EINPROGRESS) {
1834                         tls_err_abort(sk, -EBADMSG);
1835                         goto recv_end;
1836                 }
1837
1838                 if (err == -EINPROGRESS) {
1839                         async = true;
1840                         num_async++;
1841                 } else if (prot->version == TLS_1_3_VERSION) {
1842                         tlm->control = ctx->control;
1843                 }
1844
1845                 /* If the type of records being processed is not known yet,
1846                  * set it to record type just dequeued. If it is already known,
1847                  * but does not match the record type just dequeued, go to end.
1848                  * We always get record type here since for tls1.2, record type
1849                  * is known just after record is dequeued from stream parser.
1850                  * For tls1.3, we disable async.
1851                  */
1852
1853                 if (!control)
1854                         control = tlm->control;
1855                 else if (control != tlm->control)
1856                         goto recv_end;
1857
1858                 if (!cmsg) {
1859                         int cerr;
1860
1861                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1862                                         sizeof(control), &control);
1863                         cmsg = true;
1864                         if (control != TLS_RECORD_TYPE_DATA) {
1865                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1866                                         err = -EIO;
1867                                         goto recv_end;
1868                                 }
1869                         }
1870                 }
1871
1872                 if (async)
1873                         goto pick_next_record;
1874
1875                 if (!zc) {
1876                         if (bpf_strp_enabled) {
1877                                 err = sk_psock_tls_strp_read(psock, skb);
1878                                 if (err != __SK_PASS) {
1879                                         rxm->offset = rxm->offset + rxm->full_len;
1880                                         rxm->full_len = 0;
1881                                         if (err == __SK_DROP)
1882                                                 consume_skb(skb);
1883                                         ctx->recv_pkt = NULL;
1884                                         __strp_unpause(&ctx->strp);
1885                                         continue;
1886                                 }
1887                         }
1888
1889                         if (rxm->full_len > len) {
1890                                 retain_skb = true;
1891                                 chunk = len;
1892                         } else {
1893                                 chunk = rxm->full_len;
1894                         }
1895
1896                         err = skb_copy_datagram_msg(skb, rxm->offset,
1897                                                     msg, chunk);
1898                         if (err < 0)
1899                                 goto recv_end;
1900
1901                         if (!is_peek) {
1902                                 rxm->offset = rxm->offset + chunk;
1903                                 rxm->full_len = rxm->full_len - chunk;
1904                         }
1905                 }
1906
1907 pick_next_record:
1908                 if (chunk > len)
1909                         chunk = len;
1910
1911                 decrypted += chunk;
1912                 len -= chunk;
1913
1914                 /* For async or peek case, queue the current skb */
1915                 if (async || is_peek || retain_skb) {
1916                         skb_queue_tail(&ctx->rx_list, skb);
1917                         skb = NULL;
1918                 }
1919
1920                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1921                         /* Return full control message to
1922                          * userspace before trying to parse
1923                          * another message type
1924                          */
1925                         msg->msg_flags |= MSG_EOR;
1926                         if (control != TLS_RECORD_TYPE_DATA)
1927                                 goto recv_end;
1928                 } else {
1929                         break;
1930                 }
1931         }
1932
1933 recv_end:
1934         if (num_async) {
1935                 /* Wait for all previously submitted records to be decrypted */
1936                 spin_lock_bh(&ctx->decrypt_compl_lock);
1937                 ctx->async_notify = true;
1938                 pending = atomic_read(&ctx->decrypt_pending);
1939                 spin_unlock_bh(&ctx->decrypt_compl_lock);
1940                 if (pending) {
1941                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1942                         if (err) {
1943                                 /* one of async decrypt failed */
1944                                 tls_err_abort(sk, err);
1945                                 copied = 0;
1946                                 decrypted = 0;
1947                                 goto end;
1948                         }
1949                 } else {
1950                         reinit_completion(&ctx->async_wait.completion);
1951                 }
1952
1953                 /* There can be no concurrent accesses, since we have no
1954                  * pending decrypt operations
1955                  */
1956                 WRITE_ONCE(ctx->async_notify, false);
1957
1958                 /* Drain records from the rx_list & copy if required */
1959                 if (is_peek || is_kvec)
1960                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1961                                               decrypted, false, is_peek);
1962                 else
1963                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1964                                               decrypted, true, is_peek);
1965                 if (err < 0) {
1966                         tls_err_abort(sk, err);
1967                         copied = 0;
1968                         goto end;
1969                 }
1970         }
1971
1972         copied += decrypted;
1973
1974 end:
1975         release_sock(sk);
1976         if (psock)
1977                 sk_psock_put(sk, psock);
1978         return copied ? : err;
1979 }
1980
1981 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1982                            struct pipe_inode_info *pipe,
1983                            size_t len, unsigned int flags)
1984 {
1985         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1986         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1987         struct strp_msg *rxm = NULL;
1988         struct sock *sk = sock->sk;
1989         struct sk_buff *skb;
1990         ssize_t copied = 0;
1991         int err = 0;
1992         long timeo;
1993         int chunk;
1994         bool zc = false;
1995
1996         lock_sock(sk);
1997
1998         timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
1999
2000         skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2001         if (!skb)
2002                 goto splice_read_end;
2003
2004         if (!ctx->decrypted) {
2005                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2006
2007                 /* splice does not support reading control messages */
2008                 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2009                         err = -EINVAL;
2010                         goto splice_read_end;
2011                 }
2012
2013                 if (err < 0) {
2014                         tls_err_abort(sk, -EBADMSG);
2015                         goto splice_read_end;
2016                 }
2017                 ctx->decrypted = true;
2018         }
2019         rxm = strp_msg(skb);
2020
2021         chunk = min_t(unsigned int, rxm->full_len, len);
2022         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2023         if (copied < 0)
2024                 goto splice_read_end;
2025
2026         if (likely(!(flags & MSG_PEEK)))
2027                 tls_sw_advance_skb(sk, skb, copied);
2028
2029 splice_read_end:
2030         release_sock(sk);
2031         return copied ? : err;
2032 }
2033
2034 bool tls_sw_stream_read(const struct sock *sk)
2035 {
2036         struct tls_context *tls_ctx = tls_get_ctx(sk);
2037         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2038         bool ingress_empty = true;
2039         struct sk_psock *psock;
2040
2041         rcu_read_lock();
2042         psock = sk_psock(sk);
2043         if (psock)
2044                 ingress_empty = list_empty(&psock->ingress_msg);
2045         rcu_read_unlock();
2046
2047         return !ingress_empty || ctx->recv_pkt ||
2048                 !skb_queue_empty(&ctx->rx_list);
2049 }
2050
2051 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2052 {
2053         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2054         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2055         struct tls_prot_info *prot = &tls_ctx->prot_info;
2056         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2057         struct strp_msg *rxm = strp_msg(skb);
2058         size_t cipher_overhead;
2059         size_t data_len = 0;
2060         int ret;
2061
2062         /* Verify that we have a full TLS header, or wait for more data */
2063         if (rxm->offset + prot->prepend_size > skb->len)
2064                 return 0;
2065
2066         /* Sanity-check size of on-stack buffer. */
2067         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2068                 ret = -EINVAL;
2069                 goto read_failure;
2070         }
2071
2072         /* Linearize header to local buffer */
2073         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2074
2075         if (ret < 0)
2076                 goto read_failure;
2077
2078         ctx->control = header[0];
2079
2080         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2081
2082         cipher_overhead = prot->tag_size;
2083         if (prot->version != TLS_1_3_VERSION)
2084                 cipher_overhead += prot->iv_size;
2085
2086         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2087             prot->tail_size) {
2088                 ret = -EMSGSIZE;
2089                 goto read_failure;
2090         }
2091         if (data_len < cipher_overhead) {
2092                 ret = -EBADMSG;
2093                 goto read_failure;
2094         }
2095
2096         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2097         if (header[1] != TLS_1_2_VERSION_MINOR ||
2098             header[2] != TLS_1_2_VERSION_MAJOR) {
2099                 ret = -EINVAL;
2100                 goto read_failure;
2101         }
2102
2103         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2104                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2105         return data_len + TLS_HEADER_SIZE;
2106
2107 read_failure:
2108         tls_err_abort(strp->sk, ret);
2109
2110         return ret;
2111 }
2112
2113 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2114 {
2115         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2116         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2117
2118         ctx->decrypted = false;
2119
2120         ctx->recv_pkt = skb;
2121         strp_pause(strp);
2122
2123         ctx->saved_data_ready(strp->sk);
2124 }
2125
2126 static void tls_data_ready(struct sock *sk)
2127 {
2128         struct tls_context *tls_ctx = tls_get_ctx(sk);
2129         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2130         struct sk_psock *psock;
2131
2132         strp_data_ready(&ctx->strp);
2133
2134         psock = sk_psock_get(sk);
2135         if (psock) {
2136                 if (!list_empty(&psock->ingress_msg))
2137                         ctx->saved_data_ready(sk);
2138                 sk_psock_put(sk, psock);
2139         }
2140 }
2141
2142 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2143 {
2144         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2145
2146         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2147         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2148         cancel_delayed_work_sync(&ctx->tx_work.work);
2149 }
2150
2151 void tls_sw_release_resources_tx(struct sock *sk)
2152 {
2153         struct tls_context *tls_ctx = tls_get_ctx(sk);
2154         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2155         struct tls_rec *rec, *tmp;
2156         int pending;
2157
2158         /* Wait for any pending async encryptions to complete */
2159         spin_lock_bh(&ctx->encrypt_compl_lock);
2160         ctx->async_notify = true;
2161         pending = atomic_read(&ctx->encrypt_pending);
2162         spin_unlock_bh(&ctx->encrypt_compl_lock);
2163
2164         if (pending)
2165                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2166
2167         tls_tx_records(sk, -1);
2168
2169         /* Free up un-sent records in tx_list. First, free
2170          * the partially sent record if any at head of tx_list.
2171          */
2172         if (tls_ctx->partially_sent_record) {
2173                 tls_free_partial_record(sk, tls_ctx);
2174                 rec = list_first_entry(&ctx->tx_list,
2175                                        struct tls_rec, list);
2176                 list_del(&rec->list);
2177                 sk_msg_free(sk, &rec->msg_plaintext);
2178                 kfree(rec);
2179         }
2180
2181         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2182                 list_del(&rec->list);
2183                 sk_msg_free(sk, &rec->msg_encrypted);
2184                 sk_msg_free(sk, &rec->msg_plaintext);
2185                 kfree(rec);
2186         }
2187
2188         crypto_free_aead(ctx->aead_send);
2189         tls_free_open_rec(sk);
2190 }
2191
2192 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2193 {
2194         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2195
2196         kfree(ctx);
2197 }
2198
2199 void tls_sw_release_resources_rx(struct sock *sk)
2200 {
2201         struct tls_context *tls_ctx = tls_get_ctx(sk);
2202         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2203
2204         kfree(tls_ctx->rx.rec_seq);
2205         kfree(tls_ctx->rx.iv);
2206
2207         if (ctx->aead_recv) {
2208                 kfree_skb(ctx->recv_pkt);
2209                 ctx->recv_pkt = NULL;
2210                 skb_queue_purge(&ctx->rx_list);
2211                 crypto_free_aead(ctx->aead_recv);
2212                 strp_stop(&ctx->strp);
2213                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2214                  * we still want to strp_stop(), but sk->sk_data_ready was
2215                  * never swapped.
2216                  */
2217                 if (ctx->saved_data_ready) {
2218                         write_lock_bh(&sk->sk_callback_lock);
2219                         sk->sk_data_ready = ctx->saved_data_ready;
2220                         write_unlock_bh(&sk->sk_callback_lock);
2221                 }
2222         }
2223 }
2224
2225 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2226 {
2227         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2228
2229         strp_done(&ctx->strp);
2230 }
2231
2232 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2233 {
2234         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2235
2236         kfree(ctx);
2237 }
2238
2239 void tls_sw_free_resources_rx(struct sock *sk)
2240 {
2241         struct tls_context *tls_ctx = tls_get_ctx(sk);
2242
2243         tls_sw_release_resources_rx(sk);
2244         tls_sw_free_ctx_rx(tls_ctx);
2245 }
2246
2247 /* The work handler to transmitt the encrypted records in tx_list */
2248 static void tx_work_handler(struct work_struct *work)
2249 {
2250         struct delayed_work *delayed_work = to_delayed_work(work);
2251         struct tx_work *tx_work = container_of(delayed_work,
2252                                                struct tx_work, work);
2253         struct sock *sk = tx_work->sk;
2254         struct tls_context *tls_ctx = tls_get_ctx(sk);
2255         struct tls_sw_context_tx *ctx;
2256
2257         if (unlikely(!tls_ctx))
2258                 return;
2259
2260         ctx = tls_sw_ctx_tx(tls_ctx);
2261         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2262                 return;
2263
2264         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2265                 return;
2266         mutex_lock(&tls_ctx->tx_lock);
2267         lock_sock(sk);
2268         tls_tx_records(sk, -1);
2269         release_sock(sk);
2270         mutex_unlock(&tls_ctx->tx_lock);
2271 }
2272
2273 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2274 {
2275         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2276
2277         /* Schedule the transmission if tx list is ready */
2278         if (is_tx_ready(tx_ctx) &&
2279             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2280                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2281 }
2282
2283 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2284 {
2285         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2286
2287         write_lock_bh(&sk->sk_callback_lock);
2288         rx_ctx->saved_data_ready = sk->sk_data_ready;
2289         sk->sk_data_ready = tls_data_ready;
2290         write_unlock_bh(&sk->sk_callback_lock);
2291
2292         strp_check_rcv(&rx_ctx->strp);
2293 }
2294
2295 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2296 {
2297         struct tls_context *tls_ctx = tls_get_ctx(sk);
2298         struct tls_prot_info *prot = &tls_ctx->prot_info;
2299         struct tls_crypto_info *crypto_info;
2300         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2301         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2302         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2303         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2304         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2305         struct cipher_context *cctx;
2306         struct crypto_aead **aead;
2307         struct strp_callbacks cb;
2308         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2309         struct crypto_tfm *tfm;
2310         char *iv, *rec_seq, *key, *salt, *cipher_name;
2311         size_t keysize;
2312         int rc = 0;
2313
2314         if (!ctx) {
2315                 rc = -EINVAL;
2316                 goto out;
2317         }
2318
2319         if (tx) {
2320                 if (!ctx->priv_ctx_tx) {
2321                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2322                         if (!sw_ctx_tx) {
2323                                 rc = -ENOMEM;
2324                                 goto out;
2325                         }
2326                         ctx->priv_ctx_tx = sw_ctx_tx;
2327                 } else {
2328                         sw_ctx_tx =
2329                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2330                 }
2331         } else {
2332                 if (!ctx->priv_ctx_rx) {
2333                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2334                         if (!sw_ctx_rx) {
2335                                 rc = -ENOMEM;
2336                                 goto out;
2337                         }
2338                         ctx->priv_ctx_rx = sw_ctx_rx;
2339                 } else {
2340                         sw_ctx_rx =
2341                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2342                 }
2343         }
2344
2345         if (tx) {
2346                 crypto_init_wait(&sw_ctx_tx->async_wait);
2347                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2348                 crypto_info = &ctx->crypto_send.info;
2349                 cctx = &ctx->tx;
2350                 aead = &sw_ctx_tx->aead_send;
2351                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2352                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2353                 sw_ctx_tx->tx_work.sk = sk;
2354         } else {
2355                 crypto_init_wait(&sw_ctx_rx->async_wait);
2356                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2357                 crypto_info = &ctx->crypto_recv.info;
2358                 cctx = &ctx->rx;
2359                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2360                 aead = &sw_ctx_rx->aead_recv;
2361         }
2362
2363         switch (crypto_info->cipher_type) {
2364         case TLS_CIPHER_AES_GCM_128: {
2365                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2366                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2367                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2368                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2369                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2370                 rec_seq =
2371                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2372                 gcm_128_info =
2373                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2374                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2375                 key = gcm_128_info->key;
2376                 salt = gcm_128_info->salt;
2377                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2378                 cipher_name = "gcm(aes)";
2379                 break;
2380         }
2381         case TLS_CIPHER_AES_GCM_256: {
2382                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2383                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2384                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2385                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2386                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2387                 rec_seq =
2388                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2389                 gcm_256_info =
2390                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2391                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2392                 key = gcm_256_info->key;
2393                 salt = gcm_256_info->salt;
2394                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2395                 cipher_name = "gcm(aes)";
2396                 break;
2397         }
2398         case TLS_CIPHER_AES_CCM_128: {
2399                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2400                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2401                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2402                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2403                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2404                 rec_seq =
2405                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2406                 ccm_128_info =
2407                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2408                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2409                 key = ccm_128_info->key;
2410                 salt = ccm_128_info->salt;
2411                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2412                 cipher_name = "ccm(aes)";
2413                 break;
2414         }
2415         default:
2416                 rc = -EINVAL;
2417                 goto free_priv;
2418         }
2419
2420         /* Sanity-check the sizes for stack allocations. */
2421         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2422             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2423                 rc = -EINVAL;
2424                 goto free_priv;
2425         }
2426
2427         if (crypto_info->version == TLS_1_3_VERSION) {
2428                 nonce_size = 0;
2429                 prot->aad_size = TLS_HEADER_SIZE;
2430                 prot->tail_size = 1;
2431         } else {
2432                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2433                 prot->tail_size = 0;
2434         }
2435
2436         prot->version = crypto_info->version;
2437         prot->cipher_type = crypto_info->cipher_type;
2438         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2439         prot->tag_size = tag_size;
2440         prot->overhead_size = prot->prepend_size +
2441                               prot->tag_size + prot->tail_size;
2442         prot->iv_size = iv_size;
2443         prot->salt_size = salt_size;
2444         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2445         if (!cctx->iv) {
2446                 rc = -ENOMEM;
2447                 goto free_priv;
2448         }
2449         /* Note: 128 & 256 bit salt are the same size */
2450         prot->rec_seq_size = rec_seq_size;
2451         memcpy(cctx->iv, salt, salt_size);
2452         memcpy(cctx->iv + salt_size, iv, iv_size);
2453         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2454         if (!cctx->rec_seq) {
2455                 rc = -ENOMEM;
2456                 goto free_iv;
2457         }
2458
2459         if (!*aead) {
2460                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2461                 if (IS_ERR(*aead)) {
2462                         rc = PTR_ERR(*aead);
2463                         *aead = NULL;
2464                         goto free_rec_seq;
2465                 }
2466         }
2467
2468         ctx->push_pending_record = tls_sw_push_pending_record;
2469
2470         rc = crypto_aead_setkey(*aead, key, keysize);
2471
2472         if (rc)
2473                 goto free_aead;
2474
2475         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2476         if (rc)
2477                 goto free_aead;
2478
2479         if (sw_ctx_rx) {
2480                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2481
2482                 if (crypto_info->version == TLS_1_3_VERSION)
2483                         sw_ctx_rx->async_capable = false;
2484                 else
2485                         sw_ctx_rx->async_capable =
2486                                 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2487
2488                 /* Set up strparser */
2489                 memset(&cb, 0, sizeof(cb));
2490                 cb.rcv_msg = tls_queue;
2491                 cb.parse_msg = tls_read_size;
2492
2493                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2494         }
2495
2496         goto out;
2497
2498 free_aead:
2499         crypto_free_aead(*aead);
2500         *aead = NULL;
2501 free_rec_seq:
2502         kfree(cctx->rec_seq);
2503         cctx->rec_seq = NULL;
2504 free_iv:
2505         kfree(cctx->iv);
2506         cctx->iv = NULL;
2507 free_priv:
2508         if (tx) {
2509                 kfree(ctx->priv_ctx_tx);
2510                 ctx->priv_ctx_tx = NULL;
2511         } else {
2512                 kfree(ctx->priv_ctx_rx);
2513                 ctx->priv_ctx_rx = NULL;
2514         }
2515 out:
2516         return rc;
2517 }