GNU Linux-libre 5.10.217-gnu1
[releases.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 noinline void tls_err_abort(struct sock *sk, int err)
48 {
49         WARN_ON_ONCE(err >= 0);
50         /* sk->sk_err should contain a positive error code. */
51         sk->sk_err = -err;
52         sk->sk_error_report(sk);
53 }
54
55 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56                      unsigned int recursion_level)
57 {
58         int start = skb_headlen(skb);
59         int i, chunk = start - offset;
60         struct sk_buff *frag_iter;
61         int elt = 0;
62
63         if (unlikely(recursion_level >= 24))
64                 return -EMSGSIZE;
65
66         if (chunk > 0) {
67                 if (chunk > len)
68                         chunk = len;
69                 elt++;
70                 len -= chunk;
71                 if (len == 0)
72                         return elt;
73                 offset += chunk;
74         }
75
76         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
77                 int end;
78
79                 WARN_ON(start > offset + len);
80
81                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
82                 chunk = end - offset;
83                 if (chunk > 0) {
84                         if (chunk > len)
85                                 chunk = len;
86                         elt++;
87                         len -= chunk;
88                         if (len == 0)
89                                 return elt;
90                         offset += chunk;
91                 }
92                 start = end;
93         }
94
95         if (unlikely(skb_has_frag_list(skb))) {
96                 skb_walk_frags(skb, frag_iter) {
97                         int end, ret;
98
99                         WARN_ON(start > offset + len);
100
101                         end = start + frag_iter->len;
102                         chunk = end - offset;
103                         if (chunk > 0) {
104                                 if (chunk > len)
105                                         chunk = len;
106                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
107                                                 recursion_level + 1);
108                                 if (unlikely(ret < 0))
109                                         return ret;
110                                 elt += ret;
111                                 len -= chunk;
112                                 if (len == 0)
113                                         return elt;
114                                 offset += chunk;
115                         }
116                         start = end;
117                 }
118         }
119         BUG_ON(len);
120         return elt;
121 }
122
123 /* Return the number of scatterlist elements required to completely map the
124  * skb, or -EMSGSIZE if the recursion depth is exceeded.
125  */
126 static int skb_nsg(struct sk_buff *skb, int offset, int len)
127 {
128         return __skb_nsg(skb, offset, len, 0);
129 }
130
131 static int padding_length(struct tls_sw_context_rx *ctx,
132                           struct tls_prot_info *prot, struct sk_buff *skb)
133 {
134         struct strp_msg *rxm = strp_msg(skb);
135         int sub = 0;
136
137         /* Determine zero-padding length */
138         if (prot->version == TLS_1_3_VERSION) {
139                 char content_type = 0;
140                 int err;
141                 int back = 17;
142
143                 while (content_type == 0) {
144                         if (back > rxm->full_len - prot->prepend_size)
145                                 return -EBADMSG;
146                         err = skb_copy_bits(skb,
147                                             rxm->offset + rxm->full_len - back,
148                                             &content_type, 1);
149                         if (err)
150                                 return err;
151                         if (content_type)
152                                 break;
153                         sub++;
154                         back++;
155                 }
156                 ctx->control = content_type;
157         }
158         return sub;
159 }
160
161 static void tls_decrypt_done(struct crypto_async_request *req, int err)
162 {
163         struct aead_request *aead_req = (struct aead_request *)req;
164         struct scatterlist *sgout = aead_req->dst;
165         struct scatterlist *sgin = aead_req->src;
166         struct tls_sw_context_rx *ctx;
167         struct tls_context *tls_ctx;
168         struct tls_prot_info *prot;
169         struct scatterlist *sg;
170         struct sk_buff *skb;
171         unsigned int pages;
172         int pending;
173
174         skb = (struct sk_buff *)req->data;
175         tls_ctx = tls_get_ctx(skb->sk);
176         ctx = tls_sw_ctx_rx(tls_ctx);
177         prot = &tls_ctx->prot_info;
178
179         /* Propagate if there was an err */
180         if (err) {
181                 if (err == -EBADMSG)
182                         TLS_INC_STATS(sock_net(skb->sk),
183                                       LINUX_MIB_TLSDECRYPTERROR);
184                 ctx->async_wait.err = err;
185                 tls_err_abort(skb->sk, err);
186         } else {
187                 struct strp_msg *rxm = strp_msg(skb);
188                 int pad;
189
190                 pad = padding_length(ctx, prot, skb);
191                 if (pad < 0) {
192                         ctx->async_wait.err = pad;
193                         tls_err_abort(skb->sk, pad);
194                 } else {
195                         rxm->full_len -= pad;
196                         rxm->offset += prot->prepend_size;
197                         rxm->full_len -= prot->overhead_size;
198                 }
199         }
200
201         /* After using skb->sk to propagate sk through crypto async callback
202          * we need to NULL it again.
203          */
204         skb->sk = NULL;
205
206
207         /* Free the destination pages if skb was not decrypted inplace */
208         if (sgout != sgin) {
209                 /* Skip the first S/G entry as it points to AAD */
210                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211                         if (!sg)
212                                 break;
213                         put_page(sg_page(sg));
214                 }
215         }
216
217         kfree(aead_req);
218
219         spin_lock_bh(&ctx->decrypt_compl_lock);
220         pending = atomic_dec_return(&ctx->decrypt_pending);
221
222         if (!pending && ctx->async_notify)
223                 complete(&ctx->async_wait.completion);
224         spin_unlock_bh(&ctx->decrypt_compl_lock);
225 }
226
227 static int tls_do_decryption(struct sock *sk,
228                              struct sk_buff *skb,
229                              struct scatterlist *sgin,
230                              struct scatterlist *sgout,
231                              char *iv_recv,
232                              size_t data_len,
233                              struct aead_request *aead_req,
234                              bool async)
235 {
236         struct tls_context *tls_ctx = tls_get_ctx(sk);
237         struct tls_prot_info *prot = &tls_ctx->prot_info;
238         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
239         int ret;
240
241         aead_request_set_tfm(aead_req, ctx->aead_recv);
242         aead_request_set_ad(aead_req, prot->aad_size);
243         aead_request_set_crypt(aead_req, sgin, sgout,
244                                data_len + prot->tag_size,
245                                (u8 *)iv_recv);
246
247         if (async) {
248                 /* Using skb->sk to push sk through to crypto async callback
249                  * handler. This allows propagating errors up to the socket
250                  * if needed. It _must_ be cleared in the async handler
251                  * before consume_skb is called. We _know_ skb->sk is NULL
252                  * because it is a clone from strparser.
253                  */
254                 skb->sk = sk;
255                 aead_request_set_callback(aead_req,
256                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
257                                           tls_decrypt_done, skb);
258                 atomic_inc(&ctx->decrypt_pending);
259         } else {
260                 aead_request_set_callback(aead_req,
261                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
262                                           crypto_req_done, &ctx->async_wait);
263         }
264
265         ret = crypto_aead_decrypt(aead_req);
266         if (ret == -EINPROGRESS) {
267                 if (async)
268                         return ret;
269
270                 ret = crypto_wait_req(ret, &ctx->async_wait);
271         }
272
273         if (async)
274                 atomic_dec(&ctx->decrypt_pending);
275
276         return ret;
277 }
278
279 static void tls_trim_both_msgs(struct sock *sk, int target_size)
280 {
281         struct tls_context *tls_ctx = tls_get_ctx(sk);
282         struct tls_prot_info *prot = &tls_ctx->prot_info;
283         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284         struct tls_rec *rec = ctx->open_rec;
285
286         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
287         if (target_size > 0)
288                 target_size += prot->overhead_size;
289         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
290 }
291
292 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
293 {
294         struct tls_context *tls_ctx = tls_get_ctx(sk);
295         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
296         struct tls_rec *rec = ctx->open_rec;
297         struct sk_msg *msg_en = &rec->msg_encrypted;
298
299         return sk_msg_alloc(sk, msg_en, len, 0);
300 }
301
302 static int tls_clone_plaintext_msg(struct sock *sk, int required)
303 {
304         struct tls_context *tls_ctx = tls_get_ctx(sk);
305         struct tls_prot_info *prot = &tls_ctx->prot_info;
306         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
307         struct tls_rec *rec = ctx->open_rec;
308         struct sk_msg *msg_pl = &rec->msg_plaintext;
309         struct sk_msg *msg_en = &rec->msg_encrypted;
310         int skip, len;
311
312         /* We add page references worth len bytes from encrypted sg
313          * at the end of plaintext sg. It is guaranteed that msg_en
314          * has enough required room (ensured by caller).
315          */
316         len = required - msg_pl->sg.size;
317
318         /* Skip initial bytes in msg_en's data to be able to use
319          * same offset of both plain and encrypted data.
320          */
321         skip = prot->prepend_size + msg_pl->sg.size;
322
323         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
324 }
325
326 static struct tls_rec *tls_get_rec(struct sock *sk)
327 {
328         struct tls_context *tls_ctx = tls_get_ctx(sk);
329         struct tls_prot_info *prot = &tls_ctx->prot_info;
330         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
331         struct sk_msg *msg_pl, *msg_en;
332         struct tls_rec *rec;
333         int mem_size;
334
335         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
336
337         rec = kzalloc(mem_size, sk->sk_allocation);
338         if (!rec)
339                 return NULL;
340
341         msg_pl = &rec->msg_plaintext;
342         msg_en = &rec->msg_encrypted;
343
344         sk_msg_init(msg_pl);
345         sk_msg_init(msg_en);
346
347         sg_init_table(rec->sg_aead_in, 2);
348         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
349         sg_unmark_end(&rec->sg_aead_in[1]);
350
351         sg_init_table(rec->sg_aead_out, 2);
352         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
353         sg_unmark_end(&rec->sg_aead_out[1]);
354
355         return rec;
356 }
357
358 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
359 {
360         sk_msg_free(sk, &rec->msg_encrypted);
361         sk_msg_free(sk, &rec->msg_plaintext);
362         kfree(rec);
363 }
364
365 static void tls_free_open_rec(struct sock *sk)
366 {
367         struct tls_context *tls_ctx = tls_get_ctx(sk);
368         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369         struct tls_rec *rec = ctx->open_rec;
370
371         if (rec) {
372                 tls_free_rec(sk, rec);
373                 ctx->open_rec = NULL;
374         }
375 }
376
377 int tls_tx_records(struct sock *sk, int flags)
378 {
379         struct tls_context *tls_ctx = tls_get_ctx(sk);
380         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
381         struct tls_rec *rec, *tmp;
382         struct sk_msg *msg_en;
383         int tx_flags, rc = 0;
384
385         if (tls_is_partially_sent_record(tls_ctx)) {
386                 rec = list_first_entry(&ctx->tx_list,
387                                        struct tls_rec, list);
388
389                 if (flags == -1)
390                         tx_flags = rec->tx_flags;
391                 else
392                         tx_flags = flags;
393
394                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
395                 if (rc)
396                         goto tx_err;
397
398                 /* Full record has been transmitted.
399                  * Remove the head of tx_list
400                  */
401                 list_del(&rec->list);
402                 sk_msg_free(sk, &rec->msg_plaintext);
403                 kfree(rec);
404         }
405
406         /* Tx all ready records */
407         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
408                 if (READ_ONCE(rec->tx_ready)) {
409                         if (flags == -1)
410                                 tx_flags = rec->tx_flags;
411                         else
412                                 tx_flags = flags;
413
414                         msg_en = &rec->msg_encrypted;
415                         rc = tls_push_sg(sk, tls_ctx,
416                                          &msg_en->sg.data[msg_en->sg.curr],
417                                          0, tx_flags);
418                         if (rc)
419                                 goto tx_err;
420
421                         list_del(&rec->list);
422                         sk_msg_free(sk, &rec->msg_plaintext);
423                         kfree(rec);
424                 } else {
425                         break;
426                 }
427         }
428
429 tx_err:
430         if (rc < 0 && rc != -EAGAIN)
431                 tls_err_abort(sk, -EBADMSG);
432
433         return rc;
434 }
435
436 static void tls_encrypt_done(struct crypto_async_request *req, int err)
437 {
438         struct aead_request *aead_req = (struct aead_request *)req;
439         struct sock *sk = req->data;
440         struct tls_context *tls_ctx = tls_get_ctx(sk);
441         struct tls_prot_info *prot = &tls_ctx->prot_info;
442         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
443         struct scatterlist *sge;
444         struct sk_msg *msg_en;
445         struct tls_rec *rec;
446         bool ready = false;
447         int pending;
448
449         rec = container_of(aead_req, struct tls_rec, aead_req);
450         msg_en = &rec->msg_encrypted;
451
452         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
453         sge->offset -= prot->prepend_size;
454         sge->length += prot->prepend_size;
455
456         /* Check if error is previously set on socket */
457         if (err || sk->sk_err) {
458                 rec = NULL;
459
460                 /* If err is already set on socket, return the same code */
461                 if (sk->sk_err) {
462                         ctx->async_wait.err = -sk->sk_err;
463                 } else {
464                         ctx->async_wait.err = err;
465                         tls_err_abort(sk, err);
466                 }
467         }
468
469         if (rec) {
470                 struct tls_rec *first_rec;
471
472                 /* Mark the record as ready for transmission */
473                 smp_store_mb(rec->tx_ready, true);
474
475                 /* If received record is at head of tx_list, schedule tx */
476                 first_rec = list_first_entry(&ctx->tx_list,
477                                              struct tls_rec, list);
478                 if (rec == first_rec)
479                         ready = true;
480         }
481
482         spin_lock_bh(&ctx->encrypt_compl_lock);
483         pending = atomic_dec_return(&ctx->encrypt_pending);
484
485         if (!pending && ctx->async_notify)
486                 complete(&ctx->async_wait.completion);
487         spin_unlock_bh(&ctx->encrypt_compl_lock);
488
489         if (!ready)
490                 return;
491
492         /* Schedule the transmission */
493         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
494                 schedule_delayed_work(&ctx->tx_work.work, 1);
495 }
496
497 static int tls_do_encryption(struct sock *sk,
498                              struct tls_context *tls_ctx,
499                              struct tls_sw_context_tx *ctx,
500                              struct aead_request *aead_req,
501                              size_t data_len, u32 start)
502 {
503         struct tls_prot_info *prot = &tls_ctx->prot_info;
504         struct tls_rec *rec = ctx->open_rec;
505         struct sk_msg *msg_en = &rec->msg_encrypted;
506         struct scatterlist *sge = sk_msg_elem(msg_en, start);
507         int rc, iv_offset = 0;
508
509         /* For CCM based ciphers, first byte of IV is a constant */
510         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
511                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
512                 iv_offset = 1;
513         }
514
515         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
516                prot->iv_size + prot->salt_size);
517
518         xor_iv_with_seq(prot->version, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
519
520         sge->offset += prot->prepend_size;
521         sge->length -= prot->prepend_size;
522
523         msg_en->sg.curr = start;
524
525         aead_request_set_tfm(aead_req, ctx->aead_send);
526         aead_request_set_ad(aead_req, prot->aad_size);
527         aead_request_set_crypt(aead_req, rec->sg_aead_in,
528                                rec->sg_aead_out,
529                                data_len, rec->iv_data);
530
531         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
532                                   tls_encrypt_done, sk);
533
534         /* Add the record in tx_list */
535         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
536         atomic_inc(&ctx->encrypt_pending);
537
538         rc = crypto_aead_encrypt(aead_req);
539         if (!rc || rc != -EINPROGRESS) {
540                 atomic_dec(&ctx->encrypt_pending);
541                 sge->offset -= prot->prepend_size;
542                 sge->length += prot->prepend_size;
543         }
544
545         if (!rc) {
546                 WRITE_ONCE(rec->tx_ready, true);
547         } else if (rc != -EINPROGRESS) {
548                 list_del(&rec->list);
549                 return rc;
550         }
551
552         /* Unhook the record from context if encryption is not failure */
553         ctx->open_rec = NULL;
554         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
555         return rc;
556 }
557
558 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
559                                  struct tls_rec **to, struct sk_msg *msg_opl,
560                                  struct sk_msg *msg_oen, u32 split_point,
561                                  u32 tx_overhead_size, u32 *orig_end)
562 {
563         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
564         struct scatterlist *sge, *osge, *nsge;
565         u32 orig_size = msg_opl->sg.size;
566         struct scatterlist tmp = { };
567         struct sk_msg *msg_npl;
568         struct tls_rec *new;
569         int ret;
570
571         new = tls_get_rec(sk);
572         if (!new)
573                 return -ENOMEM;
574         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
575                            tx_overhead_size, 0);
576         if (ret < 0) {
577                 tls_free_rec(sk, new);
578                 return ret;
579         }
580
581         *orig_end = msg_opl->sg.end;
582         i = msg_opl->sg.start;
583         sge = sk_msg_elem(msg_opl, i);
584         while (apply && sge->length) {
585                 if (sge->length > apply) {
586                         u32 len = sge->length - apply;
587
588                         get_page(sg_page(sge));
589                         sg_set_page(&tmp, sg_page(sge), len,
590                                     sge->offset + apply);
591                         sge->length = apply;
592                         bytes += apply;
593                         apply = 0;
594                 } else {
595                         apply -= sge->length;
596                         bytes += sge->length;
597                 }
598
599                 sk_msg_iter_var_next(i);
600                 if (i == msg_opl->sg.end)
601                         break;
602                 sge = sk_msg_elem(msg_opl, i);
603         }
604
605         msg_opl->sg.end = i;
606         msg_opl->sg.curr = i;
607         msg_opl->sg.copybreak = 0;
608         msg_opl->apply_bytes = 0;
609         msg_opl->sg.size = bytes;
610
611         msg_npl = &new->msg_plaintext;
612         msg_npl->apply_bytes = apply;
613         msg_npl->sg.size = orig_size - bytes;
614
615         j = msg_npl->sg.start;
616         nsge = sk_msg_elem(msg_npl, j);
617         if (tmp.length) {
618                 memcpy(nsge, &tmp, sizeof(*nsge));
619                 sk_msg_iter_var_next(j);
620                 nsge = sk_msg_elem(msg_npl, j);
621         }
622
623         osge = sk_msg_elem(msg_opl, i);
624         while (osge->length) {
625                 memcpy(nsge, osge, sizeof(*nsge));
626                 sg_unmark_end(nsge);
627                 sk_msg_iter_var_next(i);
628                 sk_msg_iter_var_next(j);
629                 if (i == *orig_end)
630                         break;
631                 osge = sk_msg_elem(msg_opl, i);
632                 nsge = sk_msg_elem(msg_npl, j);
633         }
634
635         msg_npl->sg.end = j;
636         msg_npl->sg.curr = j;
637         msg_npl->sg.copybreak = 0;
638
639         *to = new;
640         return 0;
641 }
642
643 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
644                                   struct tls_rec *from, u32 orig_end)
645 {
646         struct sk_msg *msg_npl = &from->msg_plaintext;
647         struct sk_msg *msg_opl = &to->msg_plaintext;
648         struct scatterlist *osge, *nsge;
649         u32 i, j;
650
651         i = msg_opl->sg.end;
652         sk_msg_iter_var_prev(i);
653         j = msg_npl->sg.start;
654
655         osge = sk_msg_elem(msg_opl, i);
656         nsge = sk_msg_elem(msg_npl, j);
657
658         if (sg_page(osge) == sg_page(nsge) &&
659             osge->offset + osge->length == nsge->offset) {
660                 osge->length += nsge->length;
661                 put_page(sg_page(nsge));
662         }
663
664         msg_opl->sg.end = orig_end;
665         msg_opl->sg.curr = orig_end;
666         msg_opl->sg.copybreak = 0;
667         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
668         msg_opl->sg.size += msg_npl->sg.size;
669
670         sk_msg_free(sk, &to->msg_encrypted);
671         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
672
673         kfree(from);
674 }
675
676 static int tls_push_record(struct sock *sk, int flags,
677                            unsigned char record_type)
678 {
679         struct tls_context *tls_ctx = tls_get_ctx(sk);
680         struct tls_prot_info *prot = &tls_ctx->prot_info;
681         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
682         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
683         u32 i, split_point, orig_end;
684         struct sk_msg *msg_pl, *msg_en;
685         struct aead_request *req;
686         bool split;
687         int rc;
688
689         if (!rec)
690                 return 0;
691
692         msg_pl = &rec->msg_plaintext;
693         msg_en = &rec->msg_encrypted;
694
695         split_point = msg_pl->apply_bytes;
696         split = split_point && split_point < msg_pl->sg.size;
697         if (unlikely((!split &&
698                       msg_pl->sg.size +
699                       prot->overhead_size > msg_en->sg.size) ||
700                      (split &&
701                       split_point +
702                       prot->overhead_size > msg_en->sg.size))) {
703                 split = true;
704                 split_point = msg_en->sg.size;
705         }
706         if (split) {
707                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
708                                            split_point, prot->overhead_size,
709                                            &orig_end);
710                 if (rc < 0)
711                         return rc;
712                 /* This can happen if above tls_split_open_record allocates
713                  * a single large encryption buffer instead of two smaller
714                  * ones. In this case adjust pointers and continue without
715                  * split.
716                  */
717                 if (!msg_pl->sg.size) {
718                         tls_merge_open_record(sk, rec, tmp, orig_end);
719                         msg_pl = &rec->msg_plaintext;
720                         msg_en = &rec->msg_encrypted;
721                         split = false;
722                 }
723                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
724                             prot->overhead_size);
725         }
726
727         rec->tx_flags = flags;
728         req = &rec->aead_req;
729
730         i = msg_pl->sg.end;
731         sk_msg_iter_var_prev(i);
732
733         rec->content_type = record_type;
734         if (prot->version == TLS_1_3_VERSION) {
735                 /* Add content type to end of message.  No padding added */
736                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
737                 sg_mark_end(&rec->sg_content_type);
738                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
739                          &rec->sg_content_type);
740         } else {
741                 sg_mark_end(sk_msg_elem(msg_pl, i));
742         }
743
744         if (msg_pl->sg.end < msg_pl->sg.start) {
745                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
746                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
747                          msg_pl->sg.data);
748         }
749
750         i = msg_pl->sg.start;
751         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
752
753         i = msg_en->sg.end;
754         sk_msg_iter_var_prev(i);
755         sg_mark_end(sk_msg_elem(msg_en, i));
756
757         i = msg_en->sg.start;
758         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
759
760         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
761                      tls_ctx->tx.rec_seq, prot->rec_seq_size,
762                      record_type, prot->version);
763
764         tls_fill_prepend(tls_ctx,
765                          page_address(sg_page(&msg_en->sg.data[i])) +
766                          msg_en->sg.data[i].offset,
767                          msg_pl->sg.size + prot->tail_size,
768                          record_type, prot->version);
769
770         tls_ctx->pending_open_record_frags = false;
771
772         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
773                                msg_pl->sg.size + prot->tail_size, i);
774         if (rc < 0) {
775                 if (rc != -EINPROGRESS) {
776                         tls_err_abort(sk, -EBADMSG);
777                         if (split) {
778                                 tls_ctx->pending_open_record_frags = true;
779                                 tls_merge_open_record(sk, rec, tmp, orig_end);
780                         }
781                 }
782                 ctx->async_capable = 1;
783                 return rc;
784         } else if (split) {
785                 msg_pl = &tmp->msg_plaintext;
786                 msg_en = &tmp->msg_encrypted;
787                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
788                 tls_ctx->pending_open_record_frags = true;
789                 ctx->open_rec = tmp;
790         }
791
792         return tls_tx_records(sk, flags);
793 }
794
795 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
796                                bool full_record, u8 record_type,
797                                ssize_t *copied, int flags)
798 {
799         struct tls_context *tls_ctx = tls_get_ctx(sk);
800         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
801         struct sk_msg msg_redir = { };
802         struct sk_psock *psock;
803         struct sock *sk_redir;
804         struct tls_rec *rec;
805         bool enospc, policy;
806         int err = 0, send;
807         u32 delta = 0;
808
809         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
810         psock = sk_psock_get(sk);
811         if (!psock || !policy) {
812                 err = tls_push_record(sk, flags, record_type);
813                 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
814                         *copied -= sk_msg_free(sk, msg);
815                         tls_free_open_rec(sk);
816                         err = -sk->sk_err;
817                 }
818                 if (psock)
819                         sk_psock_put(sk, psock);
820                 return err;
821         }
822 more_data:
823         enospc = sk_msg_full(msg);
824         if (psock->eval == __SK_NONE) {
825                 delta = msg->sg.size;
826                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
827                 delta -= msg->sg.size;
828         }
829         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
830             !enospc && !full_record) {
831                 err = -ENOSPC;
832                 goto out_err;
833         }
834         msg->cork_bytes = 0;
835         send = msg->sg.size;
836         if (msg->apply_bytes && msg->apply_bytes < send)
837                 send = msg->apply_bytes;
838
839         switch (psock->eval) {
840         case __SK_PASS:
841                 err = tls_push_record(sk, flags, record_type);
842                 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
843                         *copied -= sk_msg_free(sk, msg);
844                         tls_free_open_rec(sk);
845                         err = -sk->sk_err;
846                         goto out_err;
847                 }
848                 break;
849         case __SK_REDIRECT:
850                 sk_redir = psock->sk_redir;
851                 memcpy(&msg_redir, msg, sizeof(*msg));
852                 if (msg->apply_bytes < send)
853                         msg->apply_bytes = 0;
854                 else
855                         msg->apply_bytes -= send;
856                 sk_msg_return_zero(sk, msg, send);
857                 msg->sg.size -= send;
858                 release_sock(sk);
859                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
860                 lock_sock(sk);
861                 if (err < 0) {
862                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
863                         msg->sg.size = 0;
864                 }
865                 if (msg->sg.size == 0)
866                         tls_free_open_rec(sk);
867                 break;
868         case __SK_DROP:
869         default:
870                 sk_msg_free_partial(sk, msg, send);
871                 if (msg->apply_bytes < send)
872                         msg->apply_bytes = 0;
873                 else
874                         msg->apply_bytes -= send;
875                 if (msg->sg.size == 0)
876                         tls_free_open_rec(sk);
877                 *copied -= (send + delta);
878                 err = -EACCES;
879         }
880
881         if (likely(!err)) {
882                 bool reset_eval = !ctx->open_rec;
883
884                 rec = ctx->open_rec;
885                 if (rec) {
886                         msg = &rec->msg_plaintext;
887                         if (!msg->apply_bytes)
888                                 reset_eval = true;
889                 }
890                 if (reset_eval) {
891                         psock->eval = __SK_NONE;
892                         if (psock->sk_redir) {
893                                 sock_put(psock->sk_redir);
894                                 psock->sk_redir = NULL;
895                         }
896                 }
897                 if (rec)
898                         goto more_data;
899         }
900  out_err:
901         sk_psock_put(sk, psock);
902         return err;
903 }
904
905 static int tls_sw_push_pending_record(struct sock *sk, int flags)
906 {
907         struct tls_context *tls_ctx = tls_get_ctx(sk);
908         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
909         struct tls_rec *rec = ctx->open_rec;
910         struct sk_msg *msg_pl;
911         size_t copied;
912
913         if (!rec)
914                 return 0;
915
916         msg_pl = &rec->msg_plaintext;
917         copied = msg_pl->sg.size;
918         if (!copied)
919                 return 0;
920
921         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
922                                    &copied, flags);
923 }
924
925 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
926 {
927         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
928         struct tls_context *tls_ctx = tls_get_ctx(sk);
929         struct tls_prot_info *prot = &tls_ctx->prot_info;
930         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
931         bool async_capable = ctx->async_capable;
932         unsigned char record_type = TLS_RECORD_TYPE_DATA;
933         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
934         bool eor = !(msg->msg_flags & MSG_MORE);
935         size_t try_to_copy;
936         ssize_t copied = 0;
937         struct sk_msg *msg_pl, *msg_en;
938         struct tls_rec *rec;
939         int required_size;
940         int num_async = 0;
941         bool full_record;
942         int record_room;
943         int num_zc = 0;
944         int orig_size;
945         int ret = 0;
946         int pending;
947
948         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
949                                MSG_CMSG_COMPAT))
950                 return -EOPNOTSUPP;
951
952         ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
953         if (ret)
954                 return ret;
955         lock_sock(sk);
956
957         if (unlikely(msg->msg_controllen)) {
958                 ret = tls_proccess_cmsg(sk, msg, &record_type);
959                 if (ret) {
960                         if (ret == -EINPROGRESS)
961                                 num_async++;
962                         else if (ret != -EAGAIN)
963                                 goto send_end;
964                 }
965         }
966
967         while (msg_data_left(msg)) {
968                 if (sk->sk_err) {
969                         ret = -sk->sk_err;
970                         goto send_end;
971                 }
972
973                 if (ctx->open_rec)
974                         rec = ctx->open_rec;
975                 else
976                         rec = ctx->open_rec = tls_get_rec(sk);
977                 if (!rec) {
978                         ret = -ENOMEM;
979                         goto send_end;
980                 }
981
982                 msg_pl = &rec->msg_plaintext;
983                 msg_en = &rec->msg_encrypted;
984
985                 orig_size = msg_pl->sg.size;
986                 full_record = false;
987                 try_to_copy = msg_data_left(msg);
988                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
989                 if (try_to_copy >= record_room) {
990                         try_to_copy = record_room;
991                         full_record = true;
992                 }
993
994                 required_size = msg_pl->sg.size + try_to_copy +
995                                 prot->overhead_size;
996
997                 if (!sk_stream_memory_free(sk))
998                         goto wait_for_sndbuf;
999
1000 alloc_encrypted:
1001                 ret = tls_alloc_encrypted_msg(sk, required_size);
1002                 if (ret) {
1003                         if (ret != -ENOSPC)
1004                                 goto wait_for_memory;
1005
1006                         /* Adjust try_to_copy according to the amount that was
1007                          * actually allocated. The difference is due
1008                          * to max sg elements limit
1009                          */
1010                         try_to_copy -= required_size - msg_en->sg.size;
1011                         full_record = true;
1012                 }
1013
1014                 if (!is_kvec && (full_record || eor) && !async_capable) {
1015                         u32 first = msg_pl->sg.end;
1016
1017                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1018                                                         msg_pl, try_to_copy);
1019                         if (ret)
1020                                 goto fallback_to_reg_send;
1021
1022                         num_zc++;
1023                         copied += try_to_copy;
1024
1025                         sk_msg_sg_copy_set(msg_pl, first);
1026                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1027                                                   record_type, &copied,
1028                                                   msg->msg_flags);
1029                         if (ret) {
1030                                 if (ret == -EINPROGRESS)
1031                                         num_async++;
1032                                 else if (ret == -ENOMEM)
1033                                         goto wait_for_memory;
1034                                 else if (ctx->open_rec && ret == -ENOSPC)
1035                                         goto rollback_iter;
1036                                 else if (ret != -EAGAIN)
1037                                         goto send_end;
1038                         }
1039                         continue;
1040 rollback_iter:
1041                         copied -= try_to_copy;
1042                         sk_msg_sg_copy_clear(msg_pl, first);
1043                         iov_iter_revert(&msg->msg_iter,
1044                                         msg_pl->sg.size - orig_size);
1045 fallback_to_reg_send:
1046                         sk_msg_trim(sk, msg_pl, orig_size);
1047                 }
1048
1049                 required_size = msg_pl->sg.size + try_to_copy;
1050
1051                 ret = tls_clone_plaintext_msg(sk, required_size);
1052                 if (ret) {
1053                         if (ret != -ENOSPC)
1054                                 goto send_end;
1055
1056                         /* Adjust try_to_copy according to the amount that was
1057                          * actually allocated. The difference is due
1058                          * to max sg elements limit
1059                          */
1060                         try_to_copy -= required_size - msg_pl->sg.size;
1061                         full_record = true;
1062                         sk_msg_trim(sk, msg_en,
1063                                     msg_pl->sg.size + prot->overhead_size);
1064                 }
1065
1066                 if (try_to_copy) {
1067                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1068                                                        msg_pl, try_to_copy);
1069                         if (ret < 0)
1070                                 goto trim_sgl;
1071                 }
1072
1073                 /* Open records defined only if successfully copied, otherwise
1074                  * we would trim the sg but not reset the open record frags.
1075                  */
1076                 tls_ctx->pending_open_record_frags = true;
1077                 copied += try_to_copy;
1078                 if (full_record || eor) {
1079                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1080                                                   record_type, &copied,
1081                                                   msg->msg_flags);
1082                         if (ret) {
1083                                 if (ret == -EINPROGRESS)
1084                                         num_async++;
1085                                 else if (ret == -ENOMEM)
1086                                         goto wait_for_memory;
1087                                 else if (ret != -EAGAIN) {
1088                                         if (ret == -ENOSPC)
1089                                                 ret = 0;
1090                                         goto send_end;
1091                                 }
1092                         }
1093                 }
1094
1095                 continue;
1096
1097 wait_for_sndbuf:
1098                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1099 wait_for_memory:
1100                 ret = sk_stream_wait_memory(sk, &timeo);
1101                 if (ret) {
1102 trim_sgl:
1103                         if (ctx->open_rec)
1104                                 tls_trim_both_msgs(sk, orig_size);
1105                         goto send_end;
1106                 }
1107
1108                 if (ctx->open_rec && msg_en->sg.size < required_size)
1109                         goto alloc_encrypted;
1110         }
1111
1112         if (!num_async) {
1113                 goto send_end;
1114         } else if (num_zc) {
1115                 /* Wait for pending encryptions to get completed */
1116                 spin_lock_bh(&ctx->encrypt_compl_lock);
1117                 ctx->async_notify = true;
1118
1119                 pending = atomic_read(&ctx->encrypt_pending);
1120                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1121                 if (pending)
1122                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1123                 else
1124                         reinit_completion(&ctx->async_wait.completion);
1125
1126                 /* There can be no concurrent accesses, since we have no
1127                  * pending encrypt operations
1128                  */
1129                 WRITE_ONCE(ctx->async_notify, false);
1130
1131                 if (ctx->async_wait.err) {
1132                         ret = ctx->async_wait.err;
1133                         copied = 0;
1134                 }
1135         }
1136
1137         /* Transmit if any encryptions have completed */
1138         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1139                 cancel_delayed_work(&ctx->tx_work.work);
1140                 tls_tx_records(sk, msg->msg_flags);
1141         }
1142
1143 send_end:
1144         ret = sk_stream_error(sk, msg->msg_flags, ret);
1145
1146         release_sock(sk);
1147         mutex_unlock(&tls_ctx->tx_lock);
1148         return copied > 0 ? copied : ret;
1149 }
1150
1151 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1152                               int offset, size_t size, int flags)
1153 {
1154         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1155         struct tls_context *tls_ctx = tls_get_ctx(sk);
1156         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1157         struct tls_prot_info *prot = &tls_ctx->prot_info;
1158         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1159         struct sk_msg *msg_pl;
1160         struct tls_rec *rec;
1161         int num_async = 0;
1162         ssize_t copied = 0;
1163         bool full_record;
1164         int record_room;
1165         int ret = 0;
1166         bool eor;
1167
1168         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1169         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1170
1171         /* Call the sk_stream functions to manage the sndbuf mem. */
1172         while (size > 0) {
1173                 size_t copy, required_size;
1174
1175                 if (sk->sk_err) {
1176                         ret = -sk->sk_err;
1177                         goto sendpage_end;
1178                 }
1179
1180                 if (ctx->open_rec)
1181                         rec = ctx->open_rec;
1182                 else
1183                         rec = ctx->open_rec = tls_get_rec(sk);
1184                 if (!rec) {
1185                         ret = -ENOMEM;
1186                         goto sendpage_end;
1187                 }
1188
1189                 msg_pl = &rec->msg_plaintext;
1190
1191                 full_record = false;
1192                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1193                 copy = size;
1194                 if (copy >= record_room) {
1195                         copy = record_room;
1196                         full_record = true;
1197                 }
1198
1199                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1200
1201                 if (!sk_stream_memory_free(sk))
1202                         goto wait_for_sndbuf;
1203 alloc_payload:
1204                 ret = tls_alloc_encrypted_msg(sk, required_size);
1205                 if (ret) {
1206                         if (ret != -ENOSPC)
1207                                 goto wait_for_memory;
1208
1209                         /* Adjust copy according to the amount that was
1210                          * actually allocated. The difference is due
1211                          * to max sg elements limit
1212                          */
1213                         copy -= required_size - msg_pl->sg.size;
1214                         full_record = true;
1215                 }
1216
1217                 sk_msg_page_add(msg_pl, page, copy, offset);
1218                 msg_pl->sg.copybreak = 0;
1219                 msg_pl->sg.curr = msg_pl->sg.end;
1220                 sk_mem_charge(sk, copy);
1221
1222                 offset += copy;
1223                 size -= copy;
1224                 copied += copy;
1225
1226                 tls_ctx->pending_open_record_frags = true;
1227                 if (full_record || eor || sk_msg_full(msg_pl)) {
1228                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1229                                                   record_type, &copied, flags);
1230                         if (ret) {
1231                                 if (ret == -EINPROGRESS)
1232                                         num_async++;
1233                                 else if (ret == -ENOMEM)
1234                                         goto wait_for_memory;
1235                                 else if (ret != -EAGAIN) {
1236                                         if (ret == -ENOSPC)
1237                                                 ret = 0;
1238                                         goto sendpage_end;
1239                                 }
1240                         }
1241                 }
1242                 continue;
1243 wait_for_sndbuf:
1244                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1245 wait_for_memory:
1246                 ret = sk_stream_wait_memory(sk, &timeo);
1247                 if (ret) {
1248                         if (ctx->open_rec)
1249                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1250                         goto sendpage_end;
1251                 }
1252
1253                 if (ctx->open_rec)
1254                         goto alloc_payload;
1255         }
1256
1257         if (num_async) {
1258                 /* Transmit if any encryptions have completed */
1259                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1260                         cancel_delayed_work(&ctx->tx_work.work);
1261                         tls_tx_records(sk, flags);
1262                 }
1263         }
1264 sendpage_end:
1265         ret = sk_stream_error(sk, flags, ret);
1266         return copied > 0 ? copied : ret;
1267 }
1268
1269 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1270                            int offset, size_t size, int flags)
1271 {
1272         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1274                       MSG_NO_SHARED_FRAGS))
1275                 return -EOPNOTSUPP;
1276
1277         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1278 }
1279
1280 int tls_sw_sendpage(struct sock *sk, struct page *page,
1281                     int offset, size_t size, int flags)
1282 {
1283         struct tls_context *tls_ctx = tls_get_ctx(sk);
1284         int ret;
1285
1286         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1287                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1288                 return -EOPNOTSUPP;
1289
1290         ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1291         if (ret)
1292                 return ret;
1293         lock_sock(sk);
1294         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1295         release_sock(sk);
1296         mutex_unlock(&tls_ctx->tx_lock);
1297         return ret;
1298 }
1299
1300 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1301                                      bool nonblock, long timeo, int *err)
1302 {
1303         struct tls_context *tls_ctx = tls_get_ctx(sk);
1304         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1305         struct sk_buff *skb;
1306         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1307
1308         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1309                 if (sk->sk_err) {
1310                         *err = sock_error(sk);
1311                         return NULL;
1312                 }
1313
1314                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1315                         __strp_unpause(&ctx->strp);
1316                         if (ctx->recv_pkt)
1317                                 return ctx->recv_pkt;
1318                 }
1319
1320                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1321                         return NULL;
1322
1323                 if (sock_flag(sk, SOCK_DONE))
1324                         return NULL;
1325
1326                 if (nonblock || !timeo) {
1327                         *err = -EAGAIN;
1328                         return NULL;
1329                 }
1330
1331                 add_wait_queue(sk_sleep(sk), &wait);
1332                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1333                 sk_wait_event(sk, &timeo,
1334                               ctx->recv_pkt != skb ||
1335                               !sk_psock_queue_empty(psock),
1336                               &wait);
1337                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1338                 remove_wait_queue(sk_sleep(sk), &wait);
1339
1340                 /* Handle signals */
1341                 if (signal_pending(current)) {
1342                         *err = sock_intr_errno(timeo);
1343                         return NULL;
1344                 }
1345         }
1346
1347         return skb;
1348 }
1349
1350 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1351                                int length, int *pages_used,
1352                                unsigned int *size_used,
1353                                struct scatterlist *to,
1354                                int to_max_pages)
1355 {
1356         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1357         struct page *pages[MAX_SKB_FRAGS];
1358         unsigned int size = *size_used;
1359         ssize_t copied, use;
1360         size_t offset;
1361
1362         while (length > 0) {
1363                 i = 0;
1364                 maxpages = to_max_pages - num_elem;
1365                 if (maxpages == 0) {
1366                         rc = -EFAULT;
1367                         goto out;
1368                 }
1369                 copied = iov_iter_get_pages(from, pages,
1370                                             length,
1371                                             maxpages, &offset);
1372                 if (copied <= 0) {
1373                         rc = -EFAULT;
1374                         goto out;
1375                 }
1376
1377                 iov_iter_advance(from, copied);
1378
1379                 length -= copied;
1380                 size += copied;
1381                 while (copied) {
1382                         use = min_t(int, copied, PAGE_SIZE - offset);
1383
1384                         sg_set_page(&to[num_elem],
1385                                     pages[i], use, offset);
1386                         sg_unmark_end(&to[num_elem]);
1387                         /* We do not uncharge memory from this API */
1388
1389                         offset = 0;
1390                         copied -= use;
1391
1392                         i++;
1393                         num_elem++;
1394                 }
1395         }
1396         /* Mark the end in the last sg entry if newly added */
1397         if (num_elem > *pages_used)
1398                 sg_mark_end(&to[num_elem - 1]);
1399 out:
1400         if (rc)
1401                 iov_iter_revert(from, size - *size_used);
1402         *size_used = size;
1403         *pages_used = num_elem;
1404
1405         return rc;
1406 }
1407
1408 /* This function decrypts the input skb into either out_iov or in out_sg
1409  * or in skb buffers itself. The input parameter 'zc' indicates if
1410  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1411  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1412  * NULL, then the decryption happens inside skb buffers itself, i.e.
1413  * zero-copy gets disabled and 'zc' is updated.
1414  */
1415
1416 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1417                             struct iov_iter *out_iov,
1418                             struct scatterlist *out_sg,
1419                             int *chunk, bool *zc, bool async)
1420 {
1421         struct tls_context *tls_ctx = tls_get_ctx(sk);
1422         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1423         struct tls_prot_info *prot = &tls_ctx->prot_info;
1424         struct strp_msg *rxm = strp_msg(skb);
1425         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1426         struct aead_request *aead_req;
1427         struct sk_buff *unused;
1428         u8 *aad, *iv, *mem = NULL;
1429         struct scatterlist *sgin = NULL;
1430         struct scatterlist *sgout = NULL;
1431         const int data_len = rxm->full_len - prot->overhead_size +
1432                              prot->tail_size;
1433         int iv_offset = 0;
1434
1435         if (*zc && (out_iov || out_sg)) {
1436                 if (out_iov)
1437                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1438                 else
1439                         n_sgout = sg_nents(out_sg);
1440                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1441                                  rxm->full_len - prot->prepend_size);
1442         } else {
1443                 n_sgout = 0;
1444                 *zc = false;
1445                 n_sgin = skb_cow_data(skb, 0, &unused);
1446         }
1447
1448         if (n_sgin < 1)
1449                 return -EBADMSG;
1450
1451         /* Increment to accommodate AAD */
1452         n_sgin = n_sgin + 1;
1453
1454         nsg = n_sgin + n_sgout;
1455
1456         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1457         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1458         mem_size = mem_size + prot->aad_size;
1459         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1460
1461         /* Allocate a single block of memory which contains
1462          * aead_req || sgin[] || sgout[] || aad || iv.
1463          * This order achieves correct alignment for aead_req, sgin, sgout.
1464          */
1465         mem = kmalloc(mem_size, sk->sk_allocation);
1466         if (!mem)
1467                 return -ENOMEM;
1468
1469         /* Segment the allocated memory */
1470         aead_req = (struct aead_request *)mem;
1471         sgin = (struct scatterlist *)(mem + aead_size);
1472         sgout = sgin + n_sgin;
1473         aad = (u8 *)(sgout + n_sgout);
1474         iv = aad + prot->aad_size;
1475
1476         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1477         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1478                 iv[0] = 2;
1479                 iv_offset = 1;
1480         }
1481
1482         /* Prepare IV */
1483         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1484                             iv + iv_offset + prot->salt_size,
1485                             prot->iv_size);
1486         if (err < 0) {
1487                 kfree(mem);
1488                 return err;
1489         }
1490         if (prot->version == TLS_1_3_VERSION)
1491                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1492                        prot->iv_size + prot->salt_size);
1493         else
1494                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1495
1496         xor_iv_with_seq(prot->version, iv + iv_offset, tls_ctx->rx.rec_seq);
1497
1498         /* Prepare AAD */
1499         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1500                      prot->tail_size,
1501                      tls_ctx->rx.rec_seq, prot->rec_seq_size,
1502                      ctx->control, prot->version);
1503
1504         /* Prepare sgin */
1505         sg_init_table(sgin, n_sgin);
1506         sg_set_buf(&sgin[0], aad, prot->aad_size);
1507         err = skb_to_sgvec(skb, &sgin[1],
1508                            rxm->offset + prot->prepend_size,
1509                            rxm->full_len - prot->prepend_size);
1510         if (err < 0) {
1511                 kfree(mem);
1512                 return err;
1513         }
1514
1515         if (n_sgout) {
1516                 if (out_iov) {
1517                         sg_init_table(sgout, n_sgout);
1518                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1519
1520                         *chunk = 0;
1521                         err = tls_setup_from_iter(sk, out_iov, data_len,
1522                                                   &pages, chunk, &sgout[1],
1523                                                   (n_sgout - 1));
1524                         if (err < 0)
1525                                 goto fallback_to_reg_recv;
1526                 } else if (out_sg) {
1527                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1528                 } else {
1529                         goto fallback_to_reg_recv;
1530                 }
1531         } else {
1532 fallback_to_reg_recv:
1533                 sgout = sgin;
1534                 pages = 0;
1535                 *chunk = data_len;
1536                 *zc = false;
1537         }
1538
1539         /* Prepare and submit AEAD request */
1540         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1541                                 data_len, aead_req, async);
1542         if (err == -EINPROGRESS)
1543                 return err;
1544
1545         /* Release the pages in case iov was mapped to pages */
1546         for (; pages > 0; pages--)
1547                 put_page(sg_page(&sgout[pages]));
1548
1549         kfree(mem);
1550         return err;
1551 }
1552
1553 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1554                               struct iov_iter *dest, int *chunk, bool *zc,
1555                               bool async)
1556 {
1557         struct tls_context *tls_ctx = tls_get_ctx(sk);
1558         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1559         struct tls_prot_info *prot = &tls_ctx->prot_info;
1560         struct strp_msg *rxm = strp_msg(skb);
1561         int pad, err = 0;
1562
1563         if (!ctx->decrypted) {
1564                 if (tls_ctx->rx_conf == TLS_HW) {
1565                         err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1566                         if (err < 0)
1567                                 return err;
1568                 }
1569
1570                 /* Still not decrypted after tls_device */
1571                 if (!ctx->decrypted) {
1572                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1573                                                async);
1574                         if (err < 0) {
1575                                 if (err == -EINPROGRESS)
1576                                         tls_advance_record_sn(sk, prot,
1577                                                               &tls_ctx->rx);
1578                                 else if (err == -EBADMSG)
1579                                         TLS_INC_STATS(sock_net(sk),
1580                                                       LINUX_MIB_TLSDECRYPTERROR);
1581                                 return err;
1582                         }
1583                 } else {
1584                         *zc = false;
1585                 }
1586
1587                 pad = padding_length(ctx, prot, skb);
1588                 if (pad < 0)
1589                         return pad;
1590
1591                 rxm->full_len -= pad;
1592                 rxm->offset += prot->prepend_size;
1593                 rxm->full_len -= prot->overhead_size;
1594                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1595                 ctx->decrypted = 1;
1596                 ctx->saved_data_ready(sk);
1597         } else {
1598                 *zc = false;
1599         }
1600
1601         return err;
1602 }
1603
1604 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1605                 struct scatterlist *sgout)
1606 {
1607         bool zc = true;
1608         int chunk;
1609
1610         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1611 }
1612
1613 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1614                                unsigned int len)
1615 {
1616         struct tls_context *tls_ctx = tls_get_ctx(sk);
1617         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1618
1619         if (skb) {
1620                 struct strp_msg *rxm = strp_msg(skb);
1621
1622                 if (len < rxm->full_len) {
1623                         rxm->offset += len;
1624                         rxm->full_len -= len;
1625                         return false;
1626                 }
1627                 consume_skb(skb);
1628         }
1629
1630         /* Finished with message */
1631         ctx->recv_pkt = NULL;
1632         __strp_unpause(&ctx->strp);
1633
1634         return true;
1635 }
1636
1637 /* This function traverses the rx_list in tls receive context to copies the
1638  * decrypted records into the buffer provided by caller zero copy is not
1639  * true. Further, the records are removed from the rx_list if it is not a peek
1640  * case and the record has been consumed completely.
1641  */
1642 static int process_rx_list(struct tls_sw_context_rx *ctx,
1643                            struct msghdr *msg,
1644                            u8 *control,
1645                            bool *cmsg,
1646                            size_t skip,
1647                            size_t len,
1648                            bool zc,
1649                            bool is_peek)
1650 {
1651         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1652         u8 ctrl = *control;
1653         u8 msgc = *cmsg;
1654         struct tls_msg *tlm;
1655         ssize_t copied = 0;
1656
1657         /* Set the record type in 'control' if caller didn't pass it */
1658         if (!ctrl && skb) {
1659                 tlm = tls_msg(skb);
1660                 ctrl = tlm->control;
1661         }
1662
1663         while (skip && skb) {
1664                 struct strp_msg *rxm = strp_msg(skb);
1665                 tlm = tls_msg(skb);
1666
1667                 /* Cannot process a record of different type */
1668                 if (ctrl != tlm->control)
1669                         return 0;
1670
1671                 if (skip < rxm->full_len)
1672                         break;
1673
1674                 skip = skip - rxm->full_len;
1675                 skb = skb_peek_next(skb, &ctx->rx_list);
1676         }
1677
1678         while (len && skb) {
1679                 struct sk_buff *next_skb;
1680                 struct strp_msg *rxm = strp_msg(skb);
1681                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1682
1683                 tlm = tls_msg(skb);
1684
1685                 /* Cannot process a record of different type */
1686                 if (ctrl != tlm->control)
1687                         return 0;
1688
1689                 /* Set record type if not already done. For a non-data record,
1690                  * do not proceed if record type could not be copied.
1691                  */
1692                 if (!msgc) {
1693                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1694                                             sizeof(ctrl), &ctrl);
1695                         msgc = true;
1696                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1697                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1698                                         return -EIO;
1699
1700                                 *cmsg = msgc;
1701                         }
1702                 }
1703
1704                 if (!zc || (rxm->full_len - skip) > len) {
1705                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1706                                                     msg, chunk);
1707                         if (err < 0)
1708                                 return err;
1709                 }
1710
1711                 len = len - chunk;
1712                 copied = copied + chunk;
1713
1714                 /* Consume the data from record if it is non-peek case*/
1715                 if (!is_peek) {
1716                         rxm->offset = rxm->offset + chunk;
1717                         rxm->full_len = rxm->full_len - chunk;
1718
1719                         /* Return if there is unconsumed data in the record */
1720                         if (rxm->full_len - skip)
1721                                 break;
1722                 }
1723
1724                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1725                  * So from the 2nd record, 'skip' should be 0.
1726                  */
1727                 skip = 0;
1728
1729                 if (msg)
1730                         msg->msg_flags |= MSG_EOR;
1731
1732                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1733
1734                 if (!is_peek) {
1735                         skb_unlink(skb, &ctx->rx_list);
1736                         consume_skb(skb);
1737                 }
1738
1739                 skb = next_skb;
1740         }
1741
1742         *control = ctrl;
1743         return copied;
1744 }
1745
1746 int tls_sw_recvmsg(struct sock *sk,
1747                    struct msghdr *msg,
1748                    size_t len,
1749                    int nonblock,
1750                    int flags,
1751                    int *addr_len)
1752 {
1753         struct tls_context *tls_ctx = tls_get_ctx(sk);
1754         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1755         struct tls_prot_info *prot = &tls_ctx->prot_info;
1756         struct sk_psock *psock;
1757         int num_async, pending;
1758         unsigned char control = 0;
1759         ssize_t decrypted = 0;
1760         struct strp_msg *rxm;
1761         struct tls_msg *tlm;
1762         struct sk_buff *skb;
1763         ssize_t copied = 0;
1764         bool cmsg = false;
1765         int target, err = 0;
1766         long timeo;
1767         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1768         bool is_peek = flags & MSG_PEEK;
1769         bool bpf_strp_enabled;
1770
1771         flags |= nonblock;
1772
1773         if (unlikely(flags & MSG_ERRQUEUE))
1774                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1775
1776         psock = sk_psock_get(sk);
1777         lock_sock(sk);
1778         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1779
1780         /* Process pending decrypted records. It must be non-zero-copy */
1781         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1782                               is_peek);
1783         if (err < 0) {
1784                 tls_err_abort(sk, err);
1785                 goto end;
1786         }
1787
1788         copied = err;
1789         if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA))
1790                 goto end;
1791
1792         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1793         len = len - copied;
1794         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1795
1796         decrypted = 0;
1797         num_async = 0;
1798         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1799                 bool retain_skb = false;
1800                 bool zc = false;
1801                 int to_decrypt;
1802                 int chunk = 0;
1803                 bool async_capable;
1804                 bool async = false;
1805
1806                 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1807                 if (!skb) {
1808                         if (psock) {
1809                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1810                                                             msg, len, flags);
1811
1812                                 if (ret > 0) {
1813                                         decrypted += ret;
1814                                         len -= ret;
1815                                         continue;
1816                                 }
1817                         }
1818                         goto recv_end;
1819                 } else {
1820                         tlm = tls_msg(skb);
1821                         if (prot->version == TLS_1_3_VERSION)
1822                                 tlm->control = 0;
1823                         else
1824                                 tlm->control = ctx->control;
1825                 }
1826
1827                 rxm = strp_msg(skb);
1828
1829                 to_decrypt = rxm->full_len - prot->overhead_size;
1830
1831                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1832                     ctx->control == TLS_RECORD_TYPE_DATA &&
1833                     prot->version != TLS_1_3_VERSION &&
1834                     !bpf_strp_enabled)
1835                         zc = true;
1836
1837                 /* Do not use async mode if record is non-data */
1838                 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1839                         async_capable = ctx->async_capable;
1840                 else
1841                         async_capable = false;
1842
1843                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1844                                          &chunk, &zc, async_capable);
1845                 if (err < 0 && err != -EINPROGRESS) {
1846                         tls_err_abort(sk, -EBADMSG);
1847                         goto recv_end;
1848                 }
1849
1850                 if (err == -EINPROGRESS) {
1851                         async = true;
1852                         num_async++;
1853                 } else if (prot->version == TLS_1_3_VERSION) {
1854                         tlm->control = ctx->control;
1855                 }
1856
1857                 /* If the type of records being processed is not known yet,
1858                  * set it to record type just dequeued. If it is already known,
1859                  * but does not match the record type just dequeued, go to end.
1860                  * We always get record type here since for tls1.2, record type
1861                  * is known just after record is dequeued from stream parser.
1862                  * For tls1.3, we disable async.
1863                  */
1864
1865                 if (!control)
1866                         control = tlm->control;
1867                 else if (control != tlm->control)
1868                         goto recv_end;
1869
1870                 if (!cmsg) {
1871                         int cerr;
1872
1873                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1874                                         sizeof(control), &control);
1875                         cmsg = true;
1876                         if (control != TLS_RECORD_TYPE_DATA) {
1877                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1878                                         err = -EIO;
1879                                         goto recv_end;
1880                                 }
1881                         }
1882                 }
1883
1884                 if (async)
1885                         goto pick_next_record;
1886
1887                 if (!zc) {
1888                         if (bpf_strp_enabled) {
1889                                 err = sk_psock_tls_strp_read(psock, skb);
1890                                 if (err != __SK_PASS) {
1891                                         rxm->offset = rxm->offset + rxm->full_len;
1892                                         rxm->full_len = 0;
1893                                         if (err == __SK_DROP)
1894                                                 consume_skb(skb);
1895                                         ctx->recv_pkt = NULL;
1896                                         __strp_unpause(&ctx->strp);
1897                                         continue;
1898                                 }
1899                         }
1900
1901                         if (rxm->full_len > len) {
1902                                 retain_skb = true;
1903                                 chunk = len;
1904                         } else {
1905                                 chunk = rxm->full_len;
1906                         }
1907
1908                         err = skb_copy_datagram_msg(skb, rxm->offset,
1909                                                     msg, chunk);
1910                         if (err < 0)
1911                                 goto recv_end;
1912
1913                         if (!is_peek) {
1914                                 rxm->offset = rxm->offset + chunk;
1915                                 rxm->full_len = rxm->full_len - chunk;
1916                         }
1917                 }
1918
1919 pick_next_record:
1920                 if (chunk > len)
1921                         chunk = len;
1922
1923                 decrypted += chunk;
1924                 len -= chunk;
1925
1926                 /* For async or peek case, queue the current skb */
1927                 if (async || is_peek || retain_skb) {
1928                         skb_queue_tail(&ctx->rx_list, skb);
1929                         skb = NULL;
1930                 }
1931
1932                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1933                         /* Return full control message to
1934                          * userspace before trying to parse
1935                          * another message type
1936                          */
1937                         msg->msg_flags |= MSG_EOR;
1938                         if (control != TLS_RECORD_TYPE_DATA)
1939                                 goto recv_end;
1940                 } else {
1941                         break;
1942                 }
1943         }
1944
1945 recv_end:
1946         if (num_async) {
1947                 /* Wait for all previously submitted records to be decrypted */
1948                 spin_lock_bh(&ctx->decrypt_compl_lock);
1949                 ctx->async_notify = true;
1950                 pending = atomic_read(&ctx->decrypt_pending);
1951                 spin_unlock_bh(&ctx->decrypt_compl_lock);
1952                 if (pending) {
1953                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1954                         if (err) {
1955                                 /* one of async decrypt failed */
1956                                 tls_err_abort(sk, err);
1957                                 copied = 0;
1958                                 decrypted = 0;
1959                                 goto end;
1960                         }
1961                 } else {
1962                         reinit_completion(&ctx->async_wait.completion);
1963                 }
1964
1965                 /* There can be no concurrent accesses, since we have no
1966                  * pending decrypt operations
1967                  */
1968                 WRITE_ONCE(ctx->async_notify, false);
1969
1970                 /* Drain records from the rx_list & copy if required */
1971                 if (is_peek || is_kvec)
1972                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1973                                               decrypted, false, is_peek);
1974                 else
1975                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1976                                               decrypted, true, is_peek);
1977                 if (err < 0) {
1978                         tls_err_abort(sk, err);
1979                         copied = 0;
1980                         goto end;
1981                 }
1982         }
1983
1984         copied += decrypted;
1985
1986 end:
1987         release_sock(sk);
1988         if (psock)
1989                 sk_psock_put(sk, psock);
1990         return copied ? : err;
1991 }
1992
1993 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1994                            struct pipe_inode_info *pipe,
1995                            size_t len, unsigned int flags)
1996 {
1997         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1998         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1999         struct strp_msg *rxm = NULL;
2000         struct sock *sk = sock->sk;
2001         struct sk_buff *skb;
2002         ssize_t copied = 0;
2003         int err = 0;
2004         long timeo;
2005         int chunk;
2006         bool zc = false;
2007
2008         lock_sock(sk);
2009
2010         timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2011
2012         skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2013         if (!skb)
2014                 goto splice_read_end;
2015
2016         err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2017         if (err < 0) {
2018                 tls_err_abort(sk, -EBADMSG);
2019                 goto splice_read_end;
2020         }
2021
2022         /* splice does not support reading control messages */
2023         if (ctx->control != TLS_RECORD_TYPE_DATA) {
2024                 err = -EINVAL;
2025                 goto splice_read_end;
2026         }
2027
2028         rxm = strp_msg(skb);
2029
2030         chunk = min_t(unsigned int, rxm->full_len, len);
2031         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2032         if (copied < 0)
2033                 goto splice_read_end;
2034
2035         if (likely(!(flags & MSG_PEEK)))
2036                 tls_sw_advance_skb(sk, skb, copied);
2037
2038 splice_read_end:
2039         release_sock(sk);
2040         return copied ? : err;
2041 }
2042
2043 bool tls_sw_stream_read(const struct sock *sk)
2044 {
2045         struct tls_context *tls_ctx = tls_get_ctx(sk);
2046         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2047         bool ingress_empty = true;
2048         struct sk_psock *psock;
2049
2050         rcu_read_lock();
2051         psock = sk_psock(sk);
2052         if (psock)
2053                 ingress_empty = list_empty(&psock->ingress_msg);
2054         rcu_read_unlock();
2055
2056         return !ingress_empty || ctx->recv_pkt ||
2057                 !skb_queue_empty(&ctx->rx_list);
2058 }
2059
2060 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2061 {
2062         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2063         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2064         struct tls_prot_info *prot = &tls_ctx->prot_info;
2065         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2066         struct strp_msg *rxm = strp_msg(skb);
2067         size_t cipher_overhead;
2068         size_t data_len = 0;
2069         int ret;
2070
2071         /* Verify that we have a full TLS header, or wait for more data */
2072         if (rxm->offset + prot->prepend_size > skb->len)
2073                 return 0;
2074
2075         /* Sanity-check size of on-stack buffer. */
2076         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2077                 ret = -EINVAL;
2078                 goto read_failure;
2079         }
2080
2081         /* Linearize header to local buffer */
2082         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2083
2084         if (ret < 0)
2085                 goto read_failure;
2086
2087         ctx->control = header[0];
2088
2089         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2090
2091         cipher_overhead = prot->tag_size;
2092         if (prot->version != TLS_1_3_VERSION)
2093                 cipher_overhead += prot->iv_size;
2094
2095         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2096             prot->tail_size) {
2097                 ret = -EMSGSIZE;
2098                 goto read_failure;
2099         }
2100         if (data_len < cipher_overhead) {
2101                 ret = -EBADMSG;
2102                 goto read_failure;
2103         }
2104
2105         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2106         if (header[1] != TLS_1_2_VERSION_MINOR ||
2107             header[2] != TLS_1_2_VERSION_MAJOR) {
2108                 ret = -EINVAL;
2109                 goto read_failure;
2110         }
2111
2112         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2113                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2114         return data_len + TLS_HEADER_SIZE;
2115
2116 read_failure:
2117         tls_err_abort(strp->sk, ret);
2118
2119         return ret;
2120 }
2121
2122 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2123 {
2124         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2125         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2126
2127         ctx->decrypted = 0;
2128
2129         ctx->recv_pkt = skb;
2130         strp_pause(strp);
2131
2132         ctx->saved_data_ready(strp->sk);
2133 }
2134
2135 static void tls_data_ready(struct sock *sk)
2136 {
2137         struct tls_context *tls_ctx = tls_get_ctx(sk);
2138         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2139         struct sk_psock *psock;
2140
2141         strp_data_ready(&ctx->strp);
2142
2143         psock = sk_psock_get(sk);
2144         if (psock) {
2145                 if (!list_empty(&psock->ingress_msg))
2146                         ctx->saved_data_ready(sk);
2147                 sk_psock_put(sk, psock);
2148         }
2149 }
2150
2151 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2152 {
2153         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2154
2155         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2156         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2157         cancel_delayed_work_sync(&ctx->tx_work.work);
2158 }
2159
2160 void tls_sw_release_resources_tx(struct sock *sk)
2161 {
2162         struct tls_context *tls_ctx = tls_get_ctx(sk);
2163         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2164         struct tls_rec *rec, *tmp;
2165         int pending;
2166
2167         /* Wait for any pending async encryptions to complete */
2168         spin_lock_bh(&ctx->encrypt_compl_lock);
2169         ctx->async_notify = true;
2170         pending = atomic_read(&ctx->encrypt_pending);
2171         spin_unlock_bh(&ctx->encrypt_compl_lock);
2172
2173         if (pending)
2174                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2175
2176         tls_tx_records(sk, -1);
2177
2178         /* Free up un-sent records in tx_list. First, free
2179          * the partially sent record if any at head of tx_list.
2180          */
2181         if (tls_ctx->partially_sent_record) {
2182                 tls_free_partial_record(sk, tls_ctx);
2183                 rec = list_first_entry(&ctx->tx_list,
2184                                        struct tls_rec, list);
2185                 list_del(&rec->list);
2186                 sk_msg_free(sk, &rec->msg_plaintext);
2187                 kfree(rec);
2188         }
2189
2190         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2191                 list_del(&rec->list);
2192                 sk_msg_free(sk, &rec->msg_encrypted);
2193                 sk_msg_free(sk, &rec->msg_plaintext);
2194                 kfree(rec);
2195         }
2196
2197         crypto_free_aead(ctx->aead_send);
2198         tls_free_open_rec(sk);
2199 }
2200
2201 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2202 {
2203         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2204
2205         kfree(ctx);
2206 }
2207
2208 void tls_sw_release_resources_rx(struct sock *sk)
2209 {
2210         struct tls_context *tls_ctx = tls_get_ctx(sk);
2211         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2212
2213         kfree(tls_ctx->rx.rec_seq);
2214         kfree(tls_ctx->rx.iv);
2215
2216         if (ctx->aead_recv) {
2217                 kfree_skb(ctx->recv_pkt);
2218                 ctx->recv_pkt = NULL;
2219                 skb_queue_purge(&ctx->rx_list);
2220                 crypto_free_aead(ctx->aead_recv);
2221                 strp_stop(&ctx->strp);
2222                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2223                  * we still want to strp_stop(), but sk->sk_data_ready was
2224                  * never swapped.
2225                  */
2226                 if (ctx->saved_data_ready) {
2227                         write_lock_bh(&sk->sk_callback_lock);
2228                         sk->sk_data_ready = ctx->saved_data_ready;
2229                         write_unlock_bh(&sk->sk_callback_lock);
2230                 }
2231         }
2232 }
2233
2234 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2235 {
2236         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2237
2238         strp_done(&ctx->strp);
2239 }
2240
2241 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2242 {
2243         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2244
2245         kfree(ctx);
2246 }
2247
2248 void tls_sw_free_resources_rx(struct sock *sk)
2249 {
2250         struct tls_context *tls_ctx = tls_get_ctx(sk);
2251
2252         tls_sw_release_resources_rx(sk);
2253         tls_sw_free_ctx_rx(tls_ctx);
2254 }
2255
2256 /* The work handler to transmitt the encrypted records in tx_list */
2257 static void tx_work_handler(struct work_struct *work)
2258 {
2259         struct delayed_work *delayed_work = to_delayed_work(work);
2260         struct tx_work *tx_work = container_of(delayed_work,
2261                                                struct tx_work, work);
2262         struct sock *sk = tx_work->sk;
2263         struct tls_context *tls_ctx = tls_get_ctx(sk);
2264         struct tls_sw_context_tx *ctx;
2265
2266         if (unlikely(!tls_ctx))
2267                 return;
2268
2269         ctx = tls_sw_ctx_tx(tls_ctx);
2270         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2271                 return;
2272
2273         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2274                 return;
2275
2276         if (mutex_trylock(&tls_ctx->tx_lock)) {
2277                 lock_sock(sk);
2278                 tls_tx_records(sk, -1);
2279                 release_sock(sk);
2280                 mutex_unlock(&tls_ctx->tx_lock);
2281         } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2282                 /* Someone is holding the tx_lock, they will likely run Tx
2283                  * and cancel the work on their way out of the lock section.
2284                  * Schedule a long delay just in case.
2285                  */
2286                 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2287         }
2288 }
2289
2290 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2291 {
2292         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2293
2294         /* Schedule the transmission if tx list is ready */
2295         if (is_tx_ready(tx_ctx) &&
2296             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2297                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2298 }
2299
2300 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2301 {
2302         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2303
2304         write_lock_bh(&sk->sk_callback_lock);
2305         rx_ctx->saved_data_ready = sk->sk_data_ready;
2306         sk->sk_data_ready = tls_data_ready;
2307         write_unlock_bh(&sk->sk_callback_lock);
2308
2309         strp_check_rcv(&rx_ctx->strp);
2310 }
2311
2312 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2313 {
2314         struct tls_context *tls_ctx = tls_get_ctx(sk);
2315         struct tls_prot_info *prot = &tls_ctx->prot_info;
2316         struct tls_crypto_info *crypto_info;
2317         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2318         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2319         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2320         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2321         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2322         struct cipher_context *cctx;
2323         struct crypto_aead **aead;
2324         struct strp_callbacks cb;
2325         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2326         struct crypto_tfm *tfm;
2327         char *iv, *rec_seq, *key, *salt, *cipher_name;
2328         size_t keysize;
2329         int rc = 0;
2330
2331         if (!ctx) {
2332                 rc = -EINVAL;
2333                 goto out;
2334         }
2335
2336         if (tx) {
2337                 if (!ctx->priv_ctx_tx) {
2338                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2339                         if (!sw_ctx_tx) {
2340                                 rc = -ENOMEM;
2341                                 goto out;
2342                         }
2343                         ctx->priv_ctx_tx = sw_ctx_tx;
2344                 } else {
2345                         sw_ctx_tx =
2346                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2347                 }
2348         } else {
2349                 if (!ctx->priv_ctx_rx) {
2350                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2351                         if (!sw_ctx_rx) {
2352                                 rc = -ENOMEM;
2353                                 goto out;
2354                         }
2355                         ctx->priv_ctx_rx = sw_ctx_rx;
2356                 } else {
2357                         sw_ctx_rx =
2358                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2359                 }
2360         }
2361
2362         if (tx) {
2363                 crypto_init_wait(&sw_ctx_tx->async_wait);
2364                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2365                 crypto_info = &ctx->crypto_send.info;
2366                 cctx = &ctx->tx;
2367                 aead = &sw_ctx_tx->aead_send;
2368                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2369                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2370                 sw_ctx_tx->tx_work.sk = sk;
2371         } else {
2372                 crypto_init_wait(&sw_ctx_rx->async_wait);
2373                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2374                 crypto_info = &ctx->crypto_recv.info;
2375                 cctx = &ctx->rx;
2376                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2377                 aead = &sw_ctx_rx->aead_recv;
2378         }
2379
2380         switch (crypto_info->cipher_type) {
2381         case TLS_CIPHER_AES_GCM_128: {
2382                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2383                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2384                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2385                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2386                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2387                 rec_seq =
2388                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2389                 gcm_128_info =
2390                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2391                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2392                 key = gcm_128_info->key;
2393                 salt = gcm_128_info->salt;
2394                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2395                 cipher_name = "gcm(aes)";
2396                 break;
2397         }
2398         case TLS_CIPHER_AES_GCM_256: {
2399                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2400                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2401                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2402                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2403                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2404                 rec_seq =
2405                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2406                 gcm_256_info =
2407                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2408                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2409                 key = gcm_256_info->key;
2410                 salt = gcm_256_info->salt;
2411                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2412                 cipher_name = "gcm(aes)";
2413                 break;
2414         }
2415         case TLS_CIPHER_AES_CCM_128: {
2416                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2417                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2418                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2419                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2420                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2421                 rec_seq =
2422                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2423                 ccm_128_info =
2424                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2425                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2426                 key = ccm_128_info->key;
2427                 salt = ccm_128_info->salt;
2428                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2429                 cipher_name = "ccm(aes)";
2430                 break;
2431         }
2432         default:
2433                 rc = -EINVAL;
2434                 goto free_priv;
2435         }
2436
2437         /* Sanity-check the sizes for stack allocations. */
2438         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2439             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2440                 rc = -EINVAL;
2441                 goto free_priv;
2442         }
2443
2444         if (crypto_info->version == TLS_1_3_VERSION) {
2445                 nonce_size = 0;
2446                 prot->aad_size = TLS_HEADER_SIZE;
2447                 prot->tail_size = 1;
2448         } else {
2449                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2450                 prot->tail_size = 0;
2451         }
2452
2453         prot->version = crypto_info->version;
2454         prot->cipher_type = crypto_info->cipher_type;
2455         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2456         prot->tag_size = tag_size;
2457         prot->overhead_size = prot->prepend_size +
2458                               prot->tag_size + prot->tail_size;
2459         prot->iv_size = iv_size;
2460         prot->salt_size = salt_size;
2461         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2462         if (!cctx->iv) {
2463                 rc = -ENOMEM;
2464                 goto free_priv;
2465         }
2466         /* Note: 128 & 256 bit salt are the same size */
2467         prot->rec_seq_size = rec_seq_size;
2468         memcpy(cctx->iv, salt, salt_size);
2469         memcpy(cctx->iv + salt_size, iv, iv_size);
2470         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2471         if (!cctx->rec_seq) {
2472                 rc = -ENOMEM;
2473                 goto free_iv;
2474         }
2475
2476         if (!*aead) {
2477                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2478                 if (IS_ERR(*aead)) {
2479                         rc = PTR_ERR(*aead);
2480                         *aead = NULL;
2481                         goto free_rec_seq;
2482                 }
2483         }
2484
2485         ctx->push_pending_record = tls_sw_push_pending_record;
2486
2487         rc = crypto_aead_setkey(*aead, key, keysize);
2488
2489         if (rc)
2490                 goto free_aead;
2491
2492         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2493         if (rc)
2494                 goto free_aead;
2495
2496         if (sw_ctx_rx) {
2497                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2498
2499                 if (crypto_info->version == TLS_1_3_VERSION)
2500                         sw_ctx_rx->async_capable = 0;
2501                 else
2502                         sw_ctx_rx->async_capable =
2503                                 !!(tfm->__crt_alg->cra_flags &
2504                                    CRYPTO_ALG_ASYNC);
2505
2506                 /* Set up strparser */
2507                 memset(&cb, 0, sizeof(cb));
2508                 cb.rcv_msg = tls_queue;
2509                 cb.parse_msg = tls_read_size;
2510
2511                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2512         }
2513
2514         goto out;
2515
2516 free_aead:
2517         crypto_free_aead(*aead);
2518         *aead = NULL;
2519 free_rec_seq:
2520         kfree(cctx->rec_seq);
2521         cctx->rec_seq = NULL;
2522 free_iv:
2523         kfree(cctx->iv);
2524         cctx->iv = NULL;
2525 free_priv:
2526         if (tx) {
2527                 kfree(ctx->priv_ctx_tx);
2528                 ctx->priv_ctx_tx = NULL;
2529         } else {
2530                 kfree(ctx->priv_ctx_rx);
2531                 ctx->priv_ctx_rx = NULL;
2532         }
2533 out:
2534         return rc;
2535 }