GNU Linux-libre 5.10.153-gnu1
[releases.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 noinline void tls_err_abort(struct sock *sk, int err)
48 {
49         WARN_ON_ONCE(err >= 0);
50         /* sk->sk_err should contain a positive error code. */
51         sk->sk_err = -err;
52         sk->sk_error_report(sk);
53 }
54
55 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56                      unsigned int recursion_level)
57 {
58         int start = skb_headlen(skb);
59         int i, chunk = start - offset;
60         struct sk_buff *frag_iter;
61         int elt = 0;
62
63         if (unlikely(recursion_level >= 24))
64                 return -EMSGSIZE;
65
66         if (chunk > 0) {
67                 if (chunk > len)
68                         chunk = len;
69                 elt++;
70                 len -= chunk;
71                 if (len == 0)
72                         return elt;
73                 offset += chunk;
74         }
75
76         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
77                 int end;
78
79                 WARN_ON(start > offset + len);
80
81                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
82                 chunk = end - offset;
83                 if (chunk > 0) {
84                         if (chunk > len)
85                                 chunk = len;
86                         elt++;
87                         len -= chunk;
88                         if (len == 0)
89                                 return elt;
90                         offset += chunk;
91                 }
92                 start = end;
93         }
94
95         if (unlikely(skb_has_frag_list(skb))) {
96                 skb_walk_frags(skb, frag_iter) {
97                         int end, ret;
98
99                         WARN_ON(start > offset + len);
100
101                         end = start + frag_iter->len;
102                         chunk = end - offset;
103                         if (chunk > 0) {
104                                 if (chunk > len)
105                                         chunk = len;
106                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
107                                                 recursion_level + 1);
108                                 if (unlikely(ret < 0))
109                                         return ret;
110                                 elt += ret;
111                                 len -= chunk;
112                                 if (len == 0)
113                                         return elt;
114                                 offset += chunk;
115                         }
116                         start = end;
117                 }
118         }
119         BUG_ON(len);
120         return elt;
121 }
122
123 /* Return the number of scatterlist elements required to completely map the
124  * skb, or -EMSGSIZE if the recursion depth is exceeded.
125  */
126 static int skb_nsg(struct sk_buff *skb, int offset, int len)
127 {
128         return __skb_nsg(skb, offset, len, 0);
129 }
130
131 static int padding_length(struct tls_sw_context_rx *ctx,
132                           struct tls_prot_info *prot, struct sk_buff *skb)
133 {
134         struct strp_msg *rxm = strp_msg(skb);
135         int sub = 0;
136
137         /* Determine zero-padding length */
138         if (prot->version == TLS_1_3_VERSION) {
139                 char content_type = 0;
140                 int err;
141                 int back = 17;
142
143                 while (content_type == 0) {
144                         if (back > rxm->full_len - prot->prepend_size)
145                                 return -EBADMSG;
146                         err = skb_copy_bits(skb,
147                                             rxm->offset + rxm->full_len - back,
148                                             &content_type, 1);
149                         if (err)
150                                 return err;
151                         if (content_type)
152                                 break;
153                         sub++;
154                         back++;
155                 }
156                 ctx->control = content_type;
157         }
158         return sub;
159 }
160
161 static void tls_decrypt_done(struct crypto_async_request *req, int err)
162 {
163         struct aead_request *aead_req = (struct aead_request *)req;
164         struct scatterlist *sgout = aead_req->dst;
165         struct scatterlist *sgin = aead_req->src;
166         struct tls_sw_context_rx *ctx;
167         struct tls_context *tls_ctx;
168         struct tls_prot_info *prot;
169         struct scatterlist *sg;
170         struct sk_buff *skb;
171         unsigned int pages;
172         int pending;
173
174         skb = (struct sk_buff *)req->data;
175         tls_ctx = tls_get_ctx(skb->sk);
176         ctx = tls_sw_ctx_rx(tls_ctx);
177         prot = &tls_ctx->prot_info;
178
179         /* Propagate if there was an err */
180         if (err) {
181                 if (err == -EBADMSG)
182                         TLS_INC_STATS(sock_net(skb->sk),
183                                       LINUX_MIB_TLSDECRYPTERROR);
184                 ctx->async_wait.err = err;
185                 tls_err_abort(skb->sk, err);
186         } else {
187                 struct strp_msg *rxm = strp_msg(skb);
188                 int pad;
189
190                 pad = padding_length(ctx, prot, skb);
191                 if (pad < 0) {
192                         ctx->async_wait.err = pad;
193                         tls_err_abort(skb->sk, pad);
194                 } else {
195                         rxm->full_len -= pad;
196                         rxm->offset += prot->prepend_size;
197                         rxm->full_len -= prot->overhead_size;
198                 }
199         }
200
201         /* After using skb->sk to propagate sk through crypto async callback
202          * we need to NULL it again.
203          */
204         skb->sk = NULL;
205
206
207         /* Free the destination pages if skb was not decrypted inplace */
208         if (sgout != sgin) {
209                 /* Skip the first S/G entry as it points to AAD */
210                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211                         if (!sg)
212                                 break;
213                         put_page(sg_page(sg));
214                 }
215         }
216
217         kfree(aead_req);
218
219         spin_lock_bh(&ctx->decrypt_compl_lock);
220         pending = atomic_dec_return(&ctx->decrypt_pending);
221
222         if (!pending && ctx->async_notify)
223                 complete(&ctx->async_wait.completion);
224         spin_unlock_bh(&ctx->decrypt_compl_lock);
225 }
226
227 static int tls_do_decryption(struct sock *sk,
228                              struct sk_buff *skb,
229                              struct scatterlist *sgin,
230                              struct scatterlist *sgout,
231                              char *iv_recv,
232                              size_t data_len,
233                              struct aead_request *aead_req,
234                              bool async)
235 {
236         struct tls_context *tls_ctx = tls_get_ctx(sk);
237         struct tls_prot_info *prot = &tls_ctx->prot_info;
238         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
239         int ret;
240
241         aead_request_set_tfm(aead_req, ctx->aead_recv);
242         aead_request_set_ad(aead_req, prot->aad_size);
243         aead_request_set_crypt(aead_req, sgin, sgout,
244                                data_len + prot->tag_size,
245                                (u8 *)iv_recv);
246
247         if (async) {
248                 /* Using skb->sk to push sk through to crypto async callback
249                  * handler. This allows propagating errors up to the socket
250                  * if needed. It _must_ be cleared in the async handler
251                  * before consume_skb is called. We _know_ skb->sk is NULL
252                  * because it is a clone from strparser.
253                  */
254                 skb->sk = sk;
255                 aead_request_set_callback(aead_req,
256                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
257                                           tls_decrypt_done, skb);
258                 atomic_inc(&ctx->decrypt_pending);
259         } else {
260                 aead_request_set_callback(aead_req,
261                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
262                                           crypto_req_done, &ctx->async_wait);
263         }
264
265         ret = crypto_aead_decrypt(aead_req);
266         if (ret == -EINPROGRESS) {
267                 if (async)
268                         return ret;
269
270                 ret = crypto_wait_req(ret, &ctx->async_wait);
271         }
272
273         if (async)
274                 atomic_dec(&ctx->decrypt_pending);
275
276         return ret;
277 }
278
279 static void tls_trim_both_msgs(struct sock *sk, int target_size)
280 {
281         struct tls_context *tls_ctx = tls_get_ctx(sk);
282         struct tls_prot_info *prot = &tls_ctx->prot_info;
283         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284         struct tls_rec *rec = ctx->open_rec;
285
286         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
287         if (target_size > 0)
288                 target_size += prot->overhead_size;
289         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
290 }
291
292 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
293 {
294         struct tls_context *tls_ctx = tls_get_ctx(sk);
295         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
296         struct tls_rec *rec = ctx->open_rec;
297         struct sk_msg *msg_en = &rec->msg_encrypted;
298
299         return sk_msg_alloc(sk, msg_en, len, 0);
300 }
301
302 static int tls_clone_plaintext_msg(struct sock *sk, int required)
303 {
304         struct tls_context *tls_ctx = tls_get_ctx(sk);
305         struct tls_prot_info *prot = &tls_ctx->prot_info;
306         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
307         struct tls_rec *rec = ctx->open_rec;
308         struct sk_msg *msg_pl = &rec->msg_plaintext;
309         struct sk_msg *msg_en = &rec->msg_encrypted;
310         int skip, len;
311
312         /* We add page references worth len bytes from encrypted sg
313          * at the end of plaintext sg. It is guaranteed that msg_en
314          * has enough required room (ensured by caller).
315          */
316         len = required - msg_pl->sg.size;
317
318         /* Skip initial bytes in msg_en's data to be able to use
319          * same offset of both plain and encrypted data.
320          */
321         skip = prot->prepend_size + msg_pl->sg.size;
322
323         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
324 }
325
326 static struct tls_rec *tls_get_rec(struct sock *sk)
327 {
328         struct tls_context *tls_ctx = tls_get_ctx(sk);
329         struct tls_prot_info *prot = &tls_ctx->prot_info;
330         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
331         struct sk_msg *msg_pl, *msg_en;
332         struct tls_rec *rec;
333         int mem_size;
334
335         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
336
337         rec = kzalloc(mem_size, sk->sk_allocation);
338         if (!rec)
339                 return NULL;
340
341         msg_pl = &rec->msg_plaintext;
342         msg_en = &rec->msg_encrypted;
343
344         sk_msg_init(msg_pl);
345         sk_msg_init(msg_en);
346
347         sg_init_table(rec->sg_aead_in, 2);
348         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
349         sg_unmark_end(&rec->sg_aead_in[1]);
350
351         sg_init_table(rec->sg_aead_out, 2);
352         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
353         sg_unmark_end(&rec->sg_aead_out[1]);
354
355         return rec;
356 }
357
358 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
359 {
360         sk_msg_free(sk, &rec->msg_encrypted);
361         sk_msg_free(sk, &rec->msg_plaintext);
362         kfree(rec);
363 }
364
365 static void tls_free_open_rec(struct sock *sk)
366 {
367         struct tls_context *tls_ctx = tls_get_ctx(sk);
368         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369         struct tls_rec *rec = ctx->open_rec;
370
371         if (rec) {
372                 tls_free_rec(sk, rec);
373                 ctx->open_rec = NULL;
374         }
375 }
376
377 int tls_tx_records(struct sock *sk, int flags)
378 {
379         struct tls_context *tls_ctx = tls_get_ctx(sk);
380         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
381         struct tls_rec *rec, *tmp;
382         struct sk_msg *msg_en;
383         int tx_flags, rc = 0;
384
385         if (tls_is_partially_sent_record(tls_ctx)) {
386                 rec = list_first_entry(&ctx->tx_list,
387                                        struct tls_rec, list);
388
389                 if (flags == -1)
390                         tx_flags = rec->tx_flags;
391                 else
392                         tx_flags = flags;
393
394                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
395                 if (rc)
396                         goto tx_err;
397
398                 /* Full record has been transmitted.
399                  * Remove the head of tx_list
400                  */
401                 list_del(&rec->list);
402                 sk_msg_free(sk, &rec->msg_plaintext);
403                 kfree(rec);
404         }
405
406         /* Tx all ready records */
407         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
408                 if (READ_ONCE(rec->tx_ready)) {
409                         if (flags == -1)
410                                 tx_flags = rec->tx_flags;
411                         else
412                                 tx_flags = flags;
413
414                         msg_en = &rec->msg_encrypted;
415                         rc = tls_push_sg(sk, tls_ctx,
416                                          &msg_en->sg.data[msg_en->sg.curr],
417                                          0, tx_flags);
418                         if (rc)
419                                 goto tx_err;
420
421                         list_del(&rec->list);
422                         sk_msg_free(sk, &rec->msg_plaintext);
423                         kfree(rec);
424                 } else {
425                         break;
426                 }
427         }
428
429 tx_err:
430         if (rc < 0 && rc != -EAGAIN)
431                 tls_err_abort(sk, -EBADMSG);
432
433         return rc;
434 }
435
436 static void tls_encrypt_done(struct crypto_async_request *req, int err)
437 {
438         struct aead_request *aead_req = (struct aead_request *)req;
439         struct sock *sk = req->data;
440         struct tls_context *tls_ctx = tls_get_ctx(sk);
441         struct tls_prot_info *prot = &tls_ctx->prot_info;
442         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
443         struct scatterlist *sge;
444         struct sk_msg *msg_en;
445         struct tls_rec *rec;
446         bool ready = false;
447         int pending;
448
449         rec = container_of(aead_req, struct tls_rec, aead_req);
450         msg_en = &rec->msg_encrypted;
451
452         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
453         sge->offset -= prot->prepend_size;
454         sge->length += prot->prepend_size;
455
456         /* Check if error is previously set on socket */
457         if (err || sk->sk_err) {
458                 rec = NULL;
459
460                 /* If err is already set on socket, return the same code */
461                 if (sk->sk_err) {
462                         ctx->async_wait.err = -sk->sk_err;
463                 } else {
464                         ctx->async_wait.err = err;
465                         tls_err_abort(sk, err);
466                 }
467         }
468
469         if (rec) {
470                 struct tls_rec *first_rec;
471
472                 /* Mark the record as ready for transmission */
473                 smp_store_mb(rec->tx_ready, true);
474
475                 /* If received record is at head of tx_list, schedule tx */
476                 first_rec = list_first_entry(&ctx->tx_list,
477                                              struct tls_rec, list);
478                 if (rec == first_rec)
479                         ready = true;
480         }
481
482         spin_lock_bh(&ctx->encrypt_compl_lock);
483         pending = atomic_dec_return(&ctx->encrypt_pending);
484
485         if (!pending && ctx->async_notify)
486                 complete(&ctx->async_wait.completion);
487         spin_unlock_bh(&ctx->encrypt_compl_lock);
488
489         if (!ready)
490                 return;
491
492         /* Schedule the transmission */
493         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
494                 schedule_delayed_work(&ctx->tx_work.work, 1);
495 }
496
497 static int tls_do_encryption(struct sock *sk,
498                              struct tls_context *tls_ctx,
499                              struct tls_sw_context_tx *ctx,
500                              struct aead_request *aead_req,
501                              size_t data_len, u32 start)
502 {
503         struct tls_prot_info *prot = &tls_ctx->prot_info;
504         struct tls_rec *rec = ctx->open_rec;
505         struct sk_msg *msg_en = &rec->msg_encrypted;
506         struct scatterlist *sge = sk_msg_elem(msg_en, start);
507         int rc, iv_offset = 0;
508
509         /* For CCM based ciphers, first byte of IV is a constant */
510         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
511                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
512                 iv_offset = 1;
513         }
514
515         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
516                prot->iv_size + prot->salt_size);
517
518         xor_iv_with_seq(prot->version, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
519
520         sge->offset += prot->prepend_size;
521         sge->length -= prot->prepend_size;
522
523         msg_en->sg.curr = start;
524
525         aead_request_set_tfm(aead_req, ctx->aead_send);
526         aead_request_set_ad(aead_req, prot->aad_size);
527         aead_request_set_crypt(aead_req, rec->sg_aead_in,
528                                rec->sg_aead_out,
529                                data_len, rec->iv_data);
530
531         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
532                                   tls_encrypt_done, sk);
533
534         /* Add the record in tx_list */
535         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
536         atomic_inc(&ctx->encrypt_pending);
537
538         rc = crypto_aead_encrypt(aead_req);
539         if (!rc || rc != -EINPROGRESS) {
540                 atomic_dec(&ctx->encrypt_pending);
541                 sge->offset -= prot->prepend_size;
542                 sge->length += prot->prepend_size;
543         }
544
545         if (!rc) {
546                 WRITE_ONCE(rec->tx_ready, true);
547         } else if (rc != -EINPROGRESS) {
548                 list_del(&rec->list);
549                 return rc;
550         }
551
552         /* Unhook the record from context if encryption is not failure */
553         ctx->open_rec = NULL;
554         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
555         return rc;
556 }
557
558 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
559                                  struct tls_rec **to, struct sk_msg *msg_opl,
560                                  struct sk_msg *msg_oen, u32 split_point,
561                                  u32 tx_overhead_size, u32 *orig_end)
562 {
563         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
564         struct scatterlist *sge, *osge, *nsge;
565         u32 orig_size = msg_opl->sg.size;
566         struct scatterlist tmp = { };
567         struct sk_msg *msg_npl;
568         struct tls_rec *new;
569         int ret;
570
571         new = tls_get_rec(sk);
572         if (!new)
573                 return -ENOMEM;
574         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
575                            tx_overhead_size, 0);
576         if (ret < 0) {
577                 tls_free_rec(sk, new);
578                 return ret;
579         }
580
581         *orig_end = msg_opl->sg.end;
582         i = msg_opl->sg.start;
583         sge = sk_msg_elem(msg_opl, i);
584         while (apply && sge->length) {
585                 if (sge->length > apply) {
586                         u32 len = sge->length - apply;
587
588                         get_page(sg_page(sge));
589                         sg_set_page(&tmp, sg_page(sge), len,
590                                     sge->offset + apply);
591                         sge->length = apply;
592                         bytes += apply;
593                         apply = 0;
594                 } else {
595                         apply -= sge->length;
596                         bytes += sge->length;
597                 }
598
599                 sk_msg_iter_var_next(i);
600                 if (i == msg_opl->sg.end)
601                         break;
602                 sge = sk_msg_elem(msg_opl, i);
603         }
604
605         msg_opl->sg.end = i;
606         msg_opl->sg.curr = i;
607         msg_opl->sg.copybreak = 0;
608         msg_opl->apply_bytes = 0;
609         msg_opl->sg.size = bytes;
610
611         msg_npl = &new->msg_plaintext;
612         msg_npl->apply_bytes = apply;
613         msg_npl->sg.size = orig_size - bytes;
614
615         j = msg_npl->sg.start;
616         nsge = sk_msg_elem(msg_npl, j);
617         if (tmp.length) {
618                 memcpy(nsge, &tmp, sizeof(*nsge));
619                 sk_msg_iter_var_next(j);
620                 nsge = sk_msg_elem(msg_npl, j);
621         }
622
623         osge = sk_msg_elem(msg_opl, i);
624         while (osge->length) {
625                 memcpy(nsge, osge, sizeof(*nsge));
626                 sg_unmark_end(nsge);
627                 sk_msg_iter_var_next(i);
628                 sk_msg_iter_var_next(j);
629                 if (i == *orig_end)
630                         break;
631                 osge = sk_msg_elem(msg_opl, i);
632                 nsge = sk_msg_elem(msg_npl, j);
633         }
634
635         msg_npl->sg.end = j;
636         msg_npl->sg.curr = j;
637         msg_npl->sg.copybreak = 0;
638
639         *to = new;
640         return 0;
641 }
642
643 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
644                                   struct tls_rec *from, u32 orig_end)
645 {
646         struct sk_msg *msg_npl = &from->msg_plaintext;
647         struct sk_msg *msg_opl = &to->msg_plaintext;
648         struct scatterlist *osge, *nsge;
649         u32 i, j;
650
651         i = msg_opl->sg.end;
652         sk_msg_iter_var_prev(i);
653         j = msg_npl->sg.start;
654
655         osge = sk_msg_elem(msg_opl, i);
656         nsge = sk_msg_elem(msg_npl, j);
657
658         if (sg_page(osge) == sg_page(nsge) &&
659             osge->offset + osge->length == nsge->offset) {
660                 osge->length += nsge->length;
661                 put_page(sg_page(nsge));
662         }
663
664         msg_opl->sg.end = orig_end;
665         msg_opl->sg.curr = orig_end;
666         msg_opl->sg.copybreak = 0;
667         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
668         msg_opl->sg.size += msg_npl->sg.size;
669
670         sk_msg_free(sk, &to->msg_encrypted);
671         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
672
673         kfree(from);
674 }
675
676 static int tls_push_record(struct sock *sk, int flags,
677                            unsigned char record_type)
678 {
679         struct tls_context *tls_ctx = tls_get_ctx(sk);
680         struct tls_prot_info *prot = &tls_ctx->prot_info;
681         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
682         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
683         u32 i, split_point, orig_end;
684         struct sk_msg *msg_pl, *msg_en;
685         struct aead_request *req;
686         bool split;
687         int rc;
688
689         if (!rec)
690                 return 0;
691
692         msg_pl = &rec->msg_plaintext;
693         msg_en = &rec->msg_encrypted;
694
695         split_point = msg_pl->apply_bytes;
696         split = split_point && split_point < msg_pl->sg.size;
697         if (unlikely((!split &&
698                       msg_pl->sg.size +
699                       prot->overhead_size > msg_en->sg.size) ||
700                      (split &&
701                       split_point +
702                       prot->overhead_size > msg_en->sg.size))) {
703                 split = true;
704                 split_point = msg_en->sg.size;
705         }
706         if (split) {
707                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
708                                            split_point, prot->overhead_size,
709                                            &orig_end);
710                 if (rc < 0)
711                         return rc;
712                 /* This can happen if above tls_split_open_record allocates
713                  * a single large encryption buffer instead of two smaller
714                  * ones. In this case adjust pointers and continue without
715                  * split.
716                  */
717                 if (!msg_pl->sg.size) {
718                         tls_merge_open_record(sk, rec, tmp, orig_end);
719                         msg_pl = &rec->msg_plaintext;
720                         msg_en = &rec->msg_encrypted;
721                         split = false;
722                 }
723                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
724                             prot->overhead_size);
725         }
726
727         rec->tx_flags = flags;
728         req = &rec->aead_req;
729
730         i = msg_pl->sg.end;
731         sk_msg_iter_var_prev(i);
732
733         rec->content_type = record_type;
734         if (prot->version == TLS_1_3_VERSION) {
735                 /* Add content type to end of message.  No padding added */
736                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
737                 sg_mark_end(&rec->sg_content_type);
738                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
739                          &rec->sg_content_type);
740         } else {
741                 sg_mark_end(sk_msg_elem(msg_pl, i));
742         }
743
744         if (msg_pl->sg.end < msg_pl->sg.start) {
745                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
746                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
747                          msg_pl->sg.data);
748         }
749
750         i = msg_pl->sg.start;
751         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
752
753         i = msg_en->sg.end;
754         sk_msg_iter_var_prev(i);
755         sg_mark_end(sk_msg_elem(msg_en, i));
756
757         i = msg_en->sg.start;
758         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
759
760         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
761                      tls_ctx->tx.rec_seq, prot->rec_seq_size,
762                      record_type, prot->version);
763
764         tls_fill_prepend(tls_ctx,
765                          page_address(sg_page(&msg_en->sg.data[i])) +
766                          msg_en->sg.data[i].offset,
767                          msg_pl->sg.size + prot->tail_size,
768                          record_type, prot->version);
769
770         tls_ctx->pending_open_record_frags = false;
771
772         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
773                                msg_pl->sg.size + prot->tail_size, i);
774         if (rc < 0) {
775                 if (rc != -EINPROGRESS) {
776                         tls_err_abort(sk, -EBADMSG);
777                         if (split) {
778                                 tls_ctx->pending_open_record_frags = true;
779                                 tls_merge_open_record(sk, rec, tmp, orig_end);
780                         }
781                 }
782                 ctx->async_capable = 1;
783                 return rc;
784         } else if (split) {
785                 msg_pl = &tmp->msg_plaintext;
786                 msg_en = &tmp->msg_encrypted;
787                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
788                 tls_ctx->pending_open_record_frags = true;
789                 ctx->open_rec = tmp;
790         }
791
792         return tls_tx_records(sk, flags);
793 }
794
795 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
796                                bool full_record, u8 record_type,
797                                ssize_t *copied, int flags)
798 {
799         struct tls_context *tls_ctx = tls_get_ctx(sk);
800         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
801         struct sk_msg msg_redir = { };
802         struct sk_psock *psock;
803         struct sock *sk_redir;
804         struct tls_rec *rec;
805         bool enospc, policy;
806         int err = 0, send;
807         u32 delta = 0;
808
809         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
810         psock = sk_psock_get(sk);
811         if (!psock || !policy) {
812                 err = tls_push_record(sk, flags, record_type);
813                 if (err && sk->sk_err == EBADMSG) {
814                         *copied -= sk_msg_free(sk, msg);
815                         tls_free_open_rec(sk);
816                         err = -sk->sk_err;
817                 }
818                 if (psock)
819                         sk_psock_put(sk, psock);
820                 return err;
821         }
822 more_data:
823         enospc = sk_msg_full(msg);
824         if (psock->eval == __SK_NONE) {
825                 delta = msg->sg.size;
826                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
827                 delta -= msg->sg.size;
828         }
829         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
830             !enospc && !full_record) {
831                 err = -ENOSPC;
832                 goto out_err;
833         }
834         msg->cork_bytes = 0;
835         send = msg->sg.size;
836         if (msg->apply_bytes && msg->apply_bytes < send)
837                 send = msg->apply_bytes;
838
839         switch (psock->eval) {
840         case __SK_PASS:
841                 err = tls_push_record(sk, flags, record_type);
842                 if (err && sk->sk_err == EBADMSG) {
843                         *copied -= sk_msg_free(sk, msg);
844                         tls_free_open_rec(sk);
845                         err = -sk->sk_err;
846                         goto out_err;
847                 }
848                 break;
849         case __SK_REDIRECT:
850                 sk_redir = psock->sk_redir;
851                 memcpy(&msg_redir, msg, sizeof(*msg));
852                 if (msg->apply_bytes < send)
853                         msg->apply_bytes = 0;
854                 else
855                         msg->apply_bytes -= send;
856                 sk_msg_return_zero(sk, msg, send);
857                 msg->sg.size -= send;
858                 release_sock(sk);
859                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
860                 lock_sock(sk);
861                 if (err < 0) {
862                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
863                         msg->sg.size = 0;
864                 }
865                 if (msg->sg.size == 0)
866                         tls_free_open_rec(sk);
867                 break;
868         case __SK_DROP:
869         default:
870                 sk_msg_free_partial(sk, msg, send);
871                 if (msg->apply_bytes < send)
872                         msg->apply_bytes = 0;
873                 else
874                         msg->apply_bytes -= send;
875                 if (msg->sg.size == 0)
876                         tls_free_open_rec(sk);
877                 *copied -= (send + delta);
878                 err = -EACCES;
879         }
880
881         if (likely(!err)) {
882                 bool reset_eval = !ctx->open_rec;
883
884                 rec = ctx->open_rec;
885                 if (rec) {
886                         msg = &rec->msg_plaintext;
887                         if (!msg->apply_bytes)
888                                 reset_eval = true;
889                 }
890                 if (reset_eval) {
891                         psock->eval = __SK_NONE;
892                         if (psock->sk_redir) {
893                                 sock_put(psock->sk_redir);
894                                 psock->sk_redir = NULL;
895                         }
896                 }
897                 if (rec)
898                         goto more_data;
899         }
900  out_err:
901         sk_psock_put(sk, psock);
902         return err;
903 }
904
905 static int tls_sw_push_pending_record(struct sock *sk, int flags)
906 {
907         struct tls_context *tls_ctx = tls_get_ctx(sk);
908         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
909         struct tls_rec *rec = ctx->open_rec;
910         struct sk_msg *msg_pl;
911         size_t copied;
912
913         if (!rec)
914                 return 0;
915
916         msg_pl = &rec->msg_plaintext;
917         copied = msg_pl->sg.size;
918         if (!copied)
919                 return 0;
920
921         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
922                                    &copied, flags);
923 }
924
925 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
926 {
927         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
928         struct tls_context *tls_ctx = tls_get_ctx(sk);
929         struct tls_prot_info *prot = &tls_ctx->prot_info;
930         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
931         bool async_capable = ctx->async_capable;
932         unsigned char record_type = TLS_RECORD_TYPE_DATA;
933         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
934         bool eor = !(msg->msg_flags & MSG_MORE);
935         size_t try_to_copy;
936         ssize_t copied = 0;
937         struct sk_msg *msg_pl, *msg_en;
938         struct tls_rec *rec;
939         int required_size;
940         int num_async = 0;
941         bool full_record;
942         int record_room;
943         int num_zc = 0;
944         int orig_size;
945         int ret = 0;
946         int pending;
947
948         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
949                                MSG_CMSG_COMPAT))
950                 return -EOPNOTSUPP;
951
952         mutex_lock(&tls_ctx->tx_lock);
953         lock_sock(sk);
954
955         if (unlikely(msg->msg_controllen)) {
956                 ret = tls_proccess_cmsg(sk, msg, &record_type);
957                 if (ret) {
958                         if (ret == -EINPROGRESS)
959                                 num_async++;
960                         else if (ret != -EAGAIN)
961                                 goto send_end;
962                 }
963         }
964
965         while (msg_data_left(msg)) {
966                 if (sk->sk_err) {
967                         ret = -sk->sk_err;
968                         goto send_end;
969                 }
970
971                 if (ctx->open_rec)
972                         rec = ctx->open_rec;
973                 else
974                         rec = ctx->open_rec = tls_get_rec(sk);
975                 if (!rec) {
976                         ret = -ENOMEM;
977                         goto send_end;
978                 }
979
980                 msg_pl = &rec->msg_plaintext;
981                 msg_en = &rec->msg_encrypted;
982
983                 orig_size = msg_pl->sg.size;
984                 full_record = false;
985                 try_to_copy = msg_data_left(msg);
986                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
987                 if (try_to_copy >= record_room) {
988                         try_to_copy = record_room;
989                         full_record = true;
990                 }
991
992                 required_size = msg_pl->sg.size + try_to_copy +
993                                 prot->overhead_size;
994
995                 if (!sk_stream_memory_free(sk))
996                         goto wait_for_sndbuf;
997
998 alloc_encrypted:
999                 ret = tls_alloc_encrypted_msg(sk, required_size);
1000                 if (ret) {
1001                         if (ret != -ENOSPC)
1002                                 goto wait_for_memory;
1003
1004                         /* Adjust try_to_copy according to the amount that was
1005                          * actually allocated. The difference is due
1006                          * to max sg elements limit
1007                          */
1008                         try_to_copy -= required_size - msg_en->sg.size;
1009                         full_record = true;
1010                 }
1011
1012                 if (!is_kvec && (full_record || eor) && !async_capable) {
1013                         u32 first = msg_pl->sg.end;
1014
1015                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1016                                                         msg_pl, try_to_copy);
1017                         if (ret)
1018                                 goto fallback_to_reg_send;
1019
1020                         num_zc++;
1021                         copied += try_to_copy;
1022
1023                         sk_msg_sg_copy_set(msg_pl, first);
1024                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1025                                                   record_type, &copied,
1026                                                   msg->msg_flags);
1027                         if (ret) {
1028                                 if (ret == -EINPROGRESS)
1029                                         num_async++;
1030                                 else if (ret == -ENOMEM)
1031                                         goto wait_for_memory;
1032                                 else if (ctx->open_rec && ret == -ENOSPC)
1033                                         goto rollback_iter;
1034                                 else if (ret != -EAGAIN)
1035                                         goto send_end;
1036                         }
1037                         continue;
1038 rollback_iter:
1039                         copied -= try_to_copy;
1040                         sk_msg_sg_copy_clear(msg_pl, first);
1041                         iov_iter_revert(&msg->msg_iter,
1042                                         msg_pl->sg.size - orig_size);
1043 fallback_to_reg_send:
1044                         sk_msg_trim(sk, msg_pl, orig_size);
1045                 }
1046
1047                 required_size = msg_pl->sg.size + try_to_copy;
1048
1049                 ret = tls_clone_plaintext_msg(sk, required_size);
1050                 if (ret) {
1051                         if (ret != -ENOSPC)
1052                                 goto send_end;
1053
1054                         /* Adjust try_to_copy according to the amount that was
1055                          * actually allocated. The difference is due
1056                          * to max sg elements limit
1057                          */
1058                         try_to_copy -= required_size - msg_pl->sg.size;
1059                         full_record = true;
1060                         sk_msg_trim(sk, msg_en,
1061                                     msg_pl->sg.size + prot->overhead_size);
1062                 }
1063
1064                 if (try_to_copy) {
1065                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1066                                                        msg_pl, try_to_copy);
1067                         if (ret < 0)
1068                                 goto trim_sgl;
1069                 }
1070
1071                 /* Open records defined only if successfully copied, otherwise
1072                  * we would trim the sg but not reset the open record frags.
1073                  */
1074                 tls_ctx->pending_open_record_frags = true;
1075                 copied += try_to_copy;
1076                 if (full_record || eor) {
1077                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1078                                                   record_type, &copied,
1079                                                   msg->msg_flags);
1080                         if (ret) {
1081                                 if (ret == -EINPROGRESS)
1082                                         num_async++;
1083                                 else if (ret == -ENOMEM)
1084                                         goto wait_for_memory;
1085                                 else if (ret != -EAGAIN) {
1086                                         if (ret == -ENOSPC)
1087                                                 ret = 0;
1088                                         goto send_end;
1089                                 }
1090                         }
1091                 }
1092
1093                 continue;
1094
1095 wait_for_sndbuf:
1096                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1097 wait_for_memory:
1098                 ret = sk_stream_wait_memory(sk, &timeo);
1099                 if (ret) {
1100 trim_sgl:
1101                         if (ctx->open_rec)
1102                                 tls_trim_both_msgs(sk, orig_size);
1103                         goto send_end;
1104                 }
1105
1106                 if (ctx->open_rec && msg_en->sg.size < required_size)
1107                         goto alloc_encrypted;
1108         }
1109
1110         if (!num_async) {
1111                 goto send_end;
1112         } else if (num_zc) {
1113                 /* Wait for pending encryptions to get completed */
1114                 spin_lock_bh(&ctx->encrypt_compl_lock);
1115                 ctx->async_notify = true;
1116
1117                 pending = atomic_read(&ctx->encrypt_pending);
1118                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1119                 if (pending)
1120                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1121                 else
1122                         reinit_completion(&ctx->async_wait.completion);
1123
1124                 /* There can be no concurrent accesses, since we have no
1125                  * pending encrypt operations
1126                  */
1127                 WRITE_ONCE(ctx->async_notify, false);
1128
1129                 if (ctx->async_wait.err) {
1130                         ret = ctx->async_wait.err;
1131                         copied = 0;
1132                 }
1133         }
1134
1135         /* Transmit if any encryptions have completed */
1136         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1137                 cancel_delayed_work(&ctx->tx_work.work);
1138                 tls_tx_records(sk, msg->msg_flags);
1139         }
1140
1141 send_end:
1142         ret = sk_stream_error(sk, msg->msg_flags, ret);
1143
1144         release_sock(sk);
1145         mutex_unlock(&tls_ctx->tx_lock);
1146         return copied > 0 ? copied : ret;
1147 }
1148
1149 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1150                               int offset, size_t size, int flags)
1151 {
1152         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1153         struct tls_context *tls_ctx = tls_get_ctx(sk);
1154         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1155         struct tls_prot_info *prot = &tls_ctx->prot_info;
1156         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1157         struct sk_msg *msg_pl;
1158         struct tls_rec *rec;
1159         int num_async = 0;
1160         ssize_t copied = 0;
1161         bool full_record;
1162         int record_room;
1163         int ret = 0;
1164         bool eor;
1165
1166         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1167         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1168
1169         /* Call the sk_stream functions to manage the sndbuf mem. */
1170         while (size > 0) {
1171                 size_t copy, required_size;
1172
1173                 if (sk->sk_err) {
1174                         ret = -sk->sk_err;
1175                         goto sendpage_end;
1176                 }
1177
1178                 if (ctx->open_rec)
1179                         rec = ctx->open_rec;
1180                 else
1181                         rec = ctx->open_rec = tls_get_rec(sk);
1182                 if (!rec) {
1183                         ret = -ENOMEM;
1184                         goto sendpage_end;
1185                 }
1186
1187                 msg_pl = &rec->msg_plaintext;
1188
1189                 full_record = false;
1190                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1191                 copy = size;
1192                 if (copy >= record_room) {
1193                         copy = record_room;
1194                         full_record = true;
1195                 }
1196
1197                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1198
1199                 if (!sk_stream_memory_free(sk))
1200                         goto wait_for_sndbuf;
1201 alloc_payload:
1202                 ret = tls_alloc_encrypted_msg(sk, required_size);
1203                 if (ret) {
1204                         if (ret != -ENOSPC)
1205                                 goto wait_for_memory;
1206
1207                         /* Adjust copy according to the amount that was
1208                          * actually allocated. The difference is due
1209                          * to max sg elements limit
1210                          */
1211                         copy -= required_size - msg_pl->sg.size;
1212                         full_record = true;
1213                 }
1214
1215                 sk_msg_page_add(msg_pl, page, copy, offset);
1216                 sk_mem_charge(sk, copy);
1217
1218                 offset += copy;
1219                 size -= copy;
1220                 copied += copy;
1221
1222                 tls_ctx->pending_open_record_frags = true;
1223                 if (full_record || eor || sk_msg_full(msg_pl)) {
1224                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1225                                                   record_type, &copied, flags);
1226                         if (ret) {
1227                                 if (ret == -EINPROGRESS)
1228                                         num_async++;
1229                                 else if (ret == -ENOMEM)
1230                                         goto wait_for_memory;
1231                                 else if (ret != -EAGAIN) {
1232                                         if (ret == -ENOSPC)
1233                                                 ret = 0;
1234                                         goto sendpage_end;
1235                                 }
1236                         }
1237                 }
1238                 continue;
1239 wait_for_sndbuf:
1240                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1241 wait_for_memory:
1242                 ret = sk_stream_wait_memory(sk, &timeo);
1243                 if (ret) {
1244                         if (ctx->open_rec)
1245                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1246                         goto sendpage_end;
1247                 }
1248
1249                 if (ctx->open_rec)
1250                         goto alloc_payload;
1251         }
1252
1253         if (num_async) {
1254                 /* Transmit if any encryptions have completed */
1255                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1256                         cancel_delayed_work(&ctx->tx_work.work);
1257                         tls_tx_records(sk, flags);
1258                 }
1259         }
1260 sendpage_end:
1261         ret = sk_stream_error(sk, flags, ret);
1262         return copied > 0 ? copied : ret;
1263 }
1264
1265 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1266                            int offset, size_t size, int flags)
1267 {
1268         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1269                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1270                       MSG_NO_SHARED_FRAGS))
1271                 return -EOPNOTSUPP;
1272
1273         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1274 }
1275
1276 int tls_sw_sendpage(struct sock *sk, struct page *page,
1277                     int offset, size_t size, int flags)
1278 {
1279         struct tls_context *tls_ctx = tls_get_ctx(sk);
1280         int ret;
1281
1282         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1283                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1284                 return -EOPNOTSUPP;
1285
1286         mutex_lock(&tls_ctx->tx_lock);
1287         lock_sock(sk);
1288         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1289         release_sock(sk);
1290         mutex_unlock(&tls_ctx->tx_lock);
1291         return ret;
1292 }
1293
1294 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1295                                      bool nonblock, long timeo, int *err)
1296 {
1297         struct tls_context *tls_ctx = tls_get_ctx(sk);
1298         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1299         struct sk_buff *skb;
1300         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1301
1302         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1303                 if (sk->sk_err) {
1304                         *err = sock_error(sk);
1305                         return NULL;
1306                 }
1307
1308                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1309                         __strp_unpause(&ctx->strp);
1310                         if (ctx->recv_pkt)
1311                                 return ctx->recv_pkt;
1312                 }
1313
1314                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1315                         return NULL;
1316
1317                 if (sock_flag(sk, SOCK_DONE))
1318                         return NULL;
1319
1320                 if (nonblock || !timeo) {
1321                         *err = -EAGAIN;
1322                         return NULL;
1323                 }
1324
1325                 add_wait_queue(sk_sleep(sk), &wait);
1326                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1327                 sk_wait_event(sk, &timeo,
1328                               ctx->recv_pkt != skb ||
1329                               !sk_psock_queue_empty(psock),
1330                               &wait);
1331                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1332                 remove_wait_queue(sk_sleep(sk), &wait);
1333
1334                 /* Handle signals */
1335                 if (signal_pending(current)) {
1336                         *err = sock_intr_errno(timeo);
1337                         return NULL;
1338                 }
1339         }
1340
1341         return skb;
1342 }
1343
1344 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1345                                int length, int *pages_used,
1346                                unsigned int *size_used,
1347                                struct scatterlist *to,
1348                                int to_max_pages)
1349 {
1350         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1351         struct page *pages[MAX_SKB_FRAGS];
1352         unsigned int size = *size_used;
1353         ssize_t copied, use;
1354         size_t offset;
1355
1356         while (length > 0) {
1357                 i = 0;
1358                 maxpages = to_max_pages - num_elem;
1359                 if (maxpages == 0) {
1360                         rc = -EFAULT;
1361                         goto out;
1362                 }
1363                 copied = iov_iter_get_pages(from, pages,
1364                                             length,
1365                                             maxpages, &offset);
1366                 if (copied <= 0) {
1367                         rc = -EFAULT;
1368                         goto out;
1369                 }
1370
1371                 iov_iter_advance(from, copied);
1372
1373                 length -= copied;
1374                 size += copied;
1375                 while (copied) {
1376                         use = min_t(int, copied, PAGE_SIZE - offset);
1377
1378                         sg_set_page(&to[num_elem],
1379                                     pages[i], use, offset);
1380                         sg_unmark_end(&to[num_elem]);
1381                         /* We do not uncharge memory from this API */
1382
1383                         offset = 0;
1384                         copied -= use;
1385
1386                         i++;
1387                         num_elem++;
1388                 }
1389         }
1390         /* Mark the end in the last sg entry if newly added */
1391         if (num_elem > *pages_used)
1392                 sg_mark_end(&to[num_elem - 1]);
1393 out:
1394         if (rc)
1395                 iov_iter_revert(from, size - *size_used);
1396         *size_used = size;
1397         *pages_used = num_elem;
1398
1399         return rc;
1400 }
1401
1402 /* This function decrypts the input skb into either out_iov or in out_sg
1403  * or in skb buffers itself. The input parameter 'zc' indicates if
1404  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1405  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1406  * NULL, then the decryption happens inside skb buffers itself, i.e.
1407  * zero-copy gets disabled and 'zc' is updated.
1408  */
1409
1410 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1411                             struct iov_iter *out_iov,
1412                             struct scatterlist *out_sg,
1413                             int *chunk, bool *zc, bool async)
1414 {
1415         struct tls_context *tls_ctx = tls_get_ctx(sk);
1416         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1417         struct tls_prot_info *prot = &tls_ctx->prot_info;
1418         struct strp_msg *rxm = strp_msg(skb);
1419         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1420         struct aead_request *aead_req;
1421         struct sk_buff *unused;
1422         u8 *aad, *iv, *mem = NULL;
1423         struct scatterlist *sgin = NULL;
1424         struct scatterlist *sgout = NULL;
1425         const int data_len = rxm->full_len - prot->overhead_size +
1426                              prot->tail_size;
1427         int iv_offset = 0;
1428
1429         if (*zc && (out_iov || out_sg)) {
1430                 if (out_iov)
1431                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1432                 else
1433                         n_sgout = sg_nents(out_sg);
1434                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1435                                  rxm->full_len - prot->prepend_size);
1436         } else {
1437                 n_sgout = 0;
1438                 *zc = false;
1439                 n_sgin = skb_cow_data(skb, 0, &unused);
1440         }
1441
1442         if (n_sgin < 1)
1443                 return -EBADMSG;
1444
1445         /* Increment to accommodate AAD */
1446         n_sgin = n_sgin + 1;
1447
1448         nsg = n_sgin + n_sgout;
1449
1450         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1451         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1452         mem_size = mem_size + prot->aad_size;
1453         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1454
1455         /* Allocate a single block of memory which contains
1456          * aead_req || sgin[] || sgout[] || aad || iv.
1457          * This order achieves correct alignment for aead_req, sgin, sgout.
1458          */
1459         mem = kmalloc(mem_size, sk->sk_allocation);
1460         if (!mem)
1461                 return -ENOMEM;
1462
1463         /* Segment the allocated memory */
1464         aead_req = (struct aead_request *)mem;
1465         sgin = (struct scatterlist *)(mem + aead_size);
1466         sgout = sgin + n_sgin;
1467         aad = (u8 *)(sgout + n_sgout);
1468         iv = aad + prot->aad_size;
1469
1470         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1471         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1472                 iv[0] = 2;
1473                 iv_offset = 1;
1474         }
1475
1476         /* Prepare IV */
1477         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1478                             iv + iv_offset + prot->salt_size,
1479                             prot->iv_size);
1480         if (err < 0) {
1481                 kfree(mem);
1482                 return err;
1483         }
1484         if (prot->version == TLS_1_3_VERSION)
1485                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1486                        prot->iv_size + prot->salt_size);
1487         else
1488                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1489
1490         xor_iv_with_seq(prot->version, iv + iv_offset, tls_ctx->rx.rec_seq);
1491
1492         /* Prepare AAD */
1493         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1494                      prot->tail_size,
1495                      tls_ctx->rx.rec_seq, prot->rec_seq_size,
1496                      ctx->control, prot->version);
1497
1498         /* Prepare sgin */
1499         sg_init_table(sgin, n_sgin);
1500         sg_set_buf(&sgin[0], aad, prot->aad_size);
1501         err = skb_to_sgvec(skb, &sgin[1],
1502                            rxm->offset + prot->prepend_size,
1503                            rxm->full_len - prot->prepend_size);
1504         if (err < 0) {
1505                 kfree(mem);
1506                 return err;
1507         }
1508
1509         if (n_sgout) {
1510                 if (out_iov) {
1511                         sg_init_table(sgout, n_sgout);
1512                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1513
1514                         *chunk = 0;
1515                         err = tls_setup_from_iter(sk, out_iov, data_len,
1516                                                   &pages, chunk, &sgout[1],
1517                                                   (n_sgout - 1));
1518                         if (err < 0)
1519                                 goto fallback_to_reg_recv;
1520                 } else if (out_sg) {
1521                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1522                 } else {
1523                         goto fallback_to_reg_recv;
1524                 }
1525         } else {
1526 fallback_to_reg_recv:
1527                 sgout = sgin;
1528                 pages = 0;
1529                 *chunk = data_len;
1530                 *zc = false;
1531         }
1532
1533         /* Prepare and submit AEAD request */
1534         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1535                                 data_len, aead_req, async);
1536         if (err == -EINPROGRESS)
1537                 return err;
1538
1539         /* Release the pages in case iov was mapped to pages */
1540         for (; pages > 0; pages--)
1541                 put_page(sg_page(&sgout[pages]));
1542
1543         kfree(mem);
1544         return err;
1545 }
1546
1547 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1548                               struct iov_iter *dest, int *chunk, bool *zc,
1549                               bool async)
1550 {
1551         struct tls_context *tls_ctx = tls_get_ctx(sk);
1552         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1553         struct tls_prot_info *prot = &tls_ctx->prot_info;
1554         struct strp_msg *rxm = strp_msg(skb);
1555         int pad, err = 0;
1556
1557         if (!ctx->decrypted) {
1558                 if (tls_ctx->rx_conf == TLS_HW) {
1559                         err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1560                         if (err < 0)
1561                                 return err;
1562                 }
1563
1564                 /* Still not decrypted after tls_device */
1565                 if (!ctx->decrypted) {
1566                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1567                                                async);
1568                         if (err < 0) {
1569                                 if (err == -EINPROGRESS)
1570                                         tls_advance_record_sn(sk, prot,
1571                                                               &tls_ctx->rx);
1572                                 else if (err == -EBADMSG)
1573                                         TLS_INC_STATS(sock_net(sk),
1574                                                       LINUX_MIB_TLSDECRYPTERROR);
1575                                 return err;
1576                         }
1577                 } else {
1578                         *zc = false;
1579                 }
1580
1581                 pad = padding_length(ctx, prot, skb);
1582                 if (pad < 0)
1583                         return pad;
1584
1585                 rxm->full_len -= pad;
1586                 rxm->offset += prot->prepend_size;
1587                 rxm->full_len -= prot->overhead_size;
1588                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1589                 ctx->decrypted = 1;
1590                 ctx->saved_data_ready(sk);
1591         } else {
1592                 *zc = false;
1593         }
1594
1595         return err;
1596 }
1597
1598 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1599                 struct scatterlist *sgout)
1600 {
1601         bool zc = true;
1602         int chunk;
1603
1604         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1605 }
1606
1607 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1608                                unsigned int len)
1609 {
1610         struct tls_context *tls_ctx = tls_get_ctx(sk);
1611         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1612
1613         if (skb) {
1614                 struct strp_msg *rxm = strp_msg(skb);
1615
1616                 if (len < rxm->full_len) {
1617                         rxm->offset += len;
1618                         rxm->full_len -= len;
1619                         return false;
1620                 }
1621                 consume_skb(skb);
1622         }
1623
1624         /* Finished with message */
1625         ctx->recv_pkt = NULL;
1626         __strp_unpause(&ctx->strp);
1627
1628         return true;
1629 }
1630
1631 /* This function traverses the rx_list in tls receive context to copies the
1632  * decrypted records into the buffer provided by caller zero copy is not
1633  * true. Further, the records are removed from the rx_list if it is not a peek
1634  * case and the record has been consumed completely.
1635  */
1636 static int process_rx_list(struct tls_sw_context_rx *ctx,
1637                            struct msghdr *msg,
1638                            u8 *control,
1639                            bool *cmsg,
1640                            size_t skip,
1641                            size_t len,
1642                            bool zc,
1643                            bool is_peek)
1644 {
1645         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1646         u8 ctrl = *control;
1647         u8 msgc = *cmsg;
1648         struct tls_msg *tlm;
1649         ssize_t copied = 0;
1650
1651         /* Set the record type in 'control' if caller didn't pass it */
1652         if (!ctrl && skb) {
1653                 tlm = tls_msg(skb);
1654                 ctrl = tlm->control;
1655         }
1656
1657         while (skip && skb) {
1658                 struct strp_msg *rxm = strp_msg(skb);
1659                 tlm = tls_msg(skb);
1660
1661                 /* Cannot process a record of different type */
1662                 if (ctrl != tlm->control)
1663                         return 0;
1664
1665                 if (skip < rxm->full_len)
1666                         break;
1667
1668                 skip = skip - rxm->full_len;
1669                 skb = skb_peek_next(skb, &ctx->rx_list);
1670         }
1671
1672         while (len && skb) {
1673                 struct sk_buff *next_skb;
1674                 struct strp_msg *rxm = strp_msg(skb);
1675                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1676
1677                 tlm = tls_msg(skb);
1678
1679                 /* Cannot process a record of different type */
1680                 if (ctrl != tlm->control)
1681                         return 0;
1682
1683                 /* Set record type if not already done. For a non-data record,
1684                  * do not proceed if record type could not be copied.
1685                  */
1686                 if (!msgc) {
1687                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1688                                             sizeof(ctrl), &ctrl);
1689                         msgc = true;
1690                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1691                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1692                                         return -EIO;
1693
1694                                 *cmsg = msgc;
1695                         }
1696                 }
1697
1698                 if (!zc || (rxm->full_len - skip) > len) {
1699                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1700                                                     msg, chunk);
1701                         if (err < 0)
1702                                 return err;
1703                 }
1704
1705                 len = len - chunk;
1706                 copied = copied + chunk;
1707
1708                 /* Consume the data from record if it is non-peek case*/
1709                 if (!is_peek) {
1710                         rxm->offset = rxm->offset + chunk;
1711                         rxm->full_len = rxm->full_len - chunk;
1712
1713                         /* Return if there is unconsumed data in the record */
1714                         if (rxm->full_len - skip)
1715                                 break;
1716                 }
1717
1718                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1719                  * So from the 2nd record, 'skip' should be 0.
1720                  */
1721                 skip = 0;
1722
1723                 if (msg)
1724                         msg->msg_flags |= MSG_EOR;
1725
1726                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1727
1728                 if (!is_peek) {
1729                         skb_unlink(skb, &ctx->rx_list);
1730                         consume_skb(skb);
1731                 }
1732
1733                 skb = next_skb;
1734         }
1735
1736         *control = ctrl;
1737         return copied;
1738 }
1739
1740 int tls_sw_recvmsg(struct sock *sk,
1741                    struct msghdr *msg,
1742                    size_t len,
1743                    int nonblock,
1744                    int flags,
1745                    int *addr_len)
1746 {
1747         struct tls_context *tls_ctx = tls_get_ctx(sk);
1748         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1749         struct tls_prot_info *prot = &tls_ctx->prot_info;
1750         struct sk_psock *psock;
1751         unsigned char control = 0;
1752         ssize_t decrypted = 0;
1753         struct strp_msg *rxm;
1754         struct tls_msg *tlm;
1755         struct sk_buff *skb;
1756         ssize_t copied = 0;
1757         bool cmsg = false;
1758         int target, err = 0;
1759         long timeo;
1760         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1761         bool is_peek = flags & MSG_PEEK;
1762         bool bpf_strp_enabled;
1763         int num_async = 0;
1764         int pending;
1765
1766         flags |= nonblock;
1767
1768         if (unlikely(flags & MSG_ERRQUEUE))
1769                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1770
1771         psock = sk_psock_get(sk);
1772         lock_sock(sk);
1773         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1774
1775         /* Process pending decrypted records. It must be non-zero-copy */
1776         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1777                               is_peek);
1778         if (err < 0) {
1779                 tls_err_abort(sk, err);
1780                 goto end;
1781         } else {
1782                 copied = err;
1783         }
1784
1785         if (len <= copied)
1786                 goto recv_end;
1787
1788         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1789         len = len - copied;
1790         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1791
1792         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1793                 bool retain_skb = false;
1794                 bool zc = false;
1795                 int to_decrypt;
1796                 int chunk = 0;
1797                 bool async_capable;
1798                 bool async = false;
1799
1800                 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1801                 if (!skb) {
1802                         if (psock) {
1803                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1804                                                             msg, len, flags);
1805
1806                                 if (ret > 0) {
1807                                         decrypted += ret;
1808                                         len -= ret;
1809                                         continue;
1810                                 }
1811                         }
1812                         goto recv_end;
1813                 } else {
1814                         tlm = tls_msg(skb);
1815                         if (prot->version == TLS_1_3_VERSION)
1816                                 tlm->control = 0;
1817                         else
1818                                 tlm->control = ctx->control;
1819                 }
1820
1821                 rxm = strp_msg(skb);
1822
1823                 to_decrypt = rxm->full_len - prot->overhead_size;
1824
1825                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1826                     ctx->control == TLS_RECORD_TYPE_DATA &&
1827                     prot->version != TLS_1_3_VERSION &&
1828                     !bpf_strp_enabled)
1829                         zc = true;
1830
1831                 /* Do not use async mode if record is non-data */
1832                 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1833                         async_capable = ctx->async_capable;
1834                 else
1835                         async_capable = false;
1836
1837                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1838                                          &chunk, &zc, async_capable);
1839                 if (err < 0 && err != -EINPROGRESS) {
1840                         tls_err_abort(sk, -EBADMSG);
1841                         goto recv_end;
1842                 }
1843
1844                 if (err == -EINPROGRESS) {
1845                         async = true;
1846                         num_async++;
1847                 } else if (prot->version == TLS_1_3_VERSION) {
1848                         tlm->control = ctx->control;
1849                 }
1850
1851                 /* If the type of records being processed is not known yet,
1852                  * set it to record type just dequeued. If it is already known,
1853                  * but does not match the record type just dequeued, go to end.
1854                  * We always get record type here since for tls1.2, record type
1855                  * is known just after record is dequeued from stream parser.
1856                  * For tls1.3, we disable async.
1857                  */
1858
1859                 if (!control)
1860                         control = tlm->control;
1861                 else if (control != tlm->control)
1862                         goto recv_end;
1863
1864                 if (!cmsg) {
1865                         int cerr;
1866
1867                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1868                                         sizeof(control), &control);
1869                         cmsg = true;
1870                         if (control != TLS_RECORD_TYPE_DATA) {
1871                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1872                                         err = -EIO;
1873                                         goto recv_end;
1874                                 }
1875                         }
1876                 }
1877
1878                 if (async)
1879                         goto pick_next_record;
1880
1881                 if (!zc) {
1882                         if (bpf_strp_enabled) {
1883                                 err = sk_psock_tls_strp_read(psock, skb);
1884                                 if (err != __SK_PASS) {
1885                                         rxm->offset = rxm->offset + rxm->full_len;
1886                                         rxm->full_len = 0;
1887                                         if (err == __SK_DROP)
1888                                                 consume_skb(skb);
1889                                         ctx->recv_pkt = NULL;
1890                                         __strp_unpause(&ctx->strp);
1891                                         continue;
1892                                 }
1893                         }
1894
1895                         if (rxm->full_len > len) {
1896                                 retain_skb = true;
1897                                 chunk = len;
1898                         } else {
1899                                 chunk = rxm->full_len;
1900                         }
1901
1902                         err = skb_copy_datagram_msg(skb, rxm->offset,
1903                                                     msg, chunk);
1904                         if (err < 0)
1905                                 goto recv_end;
1906
1907                         if (!is_peek) {
1908                                 rxm->offset = rxm->offset + chunk;
1909                                 rxm->full_len = rxm->full_len - chunk;
1910                         }
1911                 }
1912
1913 pick_next_record:
1914                 if (chunk > len)
1915                         chunk = len;
1916
1917                 decrypted += chunk;
1918                 len -= chunk;
1919
1920                 /* For async or peek case, queue the current skb */
1921                 if (async || is_peek || retain_skb) {
1922                         skb_queue_tail(&ctx->rx_list, skb);
1923                         skb = NULL;
1924                 }
1925
1926                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1927                         /* Return full control message to
1928                          * userspace before trying to parse
1929                          * another message type
1930                          */
1931                         msg->msg_flags |= MSG_EOR;
1932                         if (control != TLS_RECORD_TYPE_DATA)
1933                                 goto recv_end;
1934                 } else {
1935                         break;
1936                 }
1937         }
1938
1939 recv_end:
1940         if (num_async) {
1941                 /* Wait for all previously submitted records to be decrypted */
1942                 spin_lock_bh(&ctx->decrypt_compl_lock);
1943                 ctx->async_notify = true;
1944                 pending = atomic_read(&ctx->decrypt_pending);
1945                 spin_unlock_bh(&ctx->decrypt_compl_lock);
1946                 if (pending) {
1947                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1948                         if (err) {
1949                                 /* one of async decrypt failed */
1950                                 tls_err_abort(sk, err);
1951                                 copied = 0;
1952                                 decrypted = 0;
1953                                 goto end;
1954                         }
1955                 } else {
1956                         reinit_completion(&ctx->async_wait.completion);
1957                 }
1958
1959                 /* There can be no concurrent accesses, since we have no
1960                  * pending decrypt operations
1961                  */
1962                 WRITE_ONCE(ctx->async_notify, false);
1963
1964                 /* Drain records from the rx_list & copy if required */
1965                 if (is_peek || is_kvec)
1966                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1967                                               decrypted, false, is_peek);
1968                 else
1969                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1970                                               decrypted, true, is_peek);
1971                 if (err < 0) {
1972                         tls_err_abort(sk, err);
1973                         copied = 0;
1974                         goto end;
1975                 }
1976         }
1977
1978         copied += decrypted;
1979
1980 end:
1981         release_sock(sk);
1982         if (psock)
1983                 sk_psock_put(sk, psock);
1984         return copied ? : err;
1985 }
1986
1987 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1988                            struct pipe_inode_info *pipe,
1989                            size_t len, unsigned int flags)
1990 {
1991         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1992         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1993         struct strp_msg *rxm = NULL;
1994         struct sock *sk = sock->sk;
1995         struct sk_buff *skb;
1996         ssize_t copied = 0;
1997         int err = 0;
1998         long timeo;
1999         int chunk;
2000         bool zc = false;
2001
2002         lock_sock(sk);
2003
2004         timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2005
2006         skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2007         if (!skb)
2008                 goto splice_read_end;
2009
2010         err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2011         if (err < 0) {
2012                 tls_err_abort(sk, -EBADMSG);
2013                 goto splice_read_end;
2014         }
2015
2016         /* splice does not support reading control messages */
2017         if (ctx->control != TLS_RECORD_TYPE_DATA) {
2018                 err = -EINVAL;
2019                 goto splice_read_end;
2020         }
2021
2022         rxm = strp_msg(skb);
2023
2024         chunk = min_t(unsigned int, rxm->full_len, len);
2025         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2026         if (copied < 0)
2027                 goto splice_read_end;
2028
2029         if (likely(!(flags & MSG_PEEK)))
2030                 tls_sw_advance_skb(sk, skb, copied);
2031
2032 splice_read_end:
2033         release_sock(sk);
2034         return copied ? : err;
2035 }
2036
2037 bool tls_sw_stream_read(const struct sock *sk)
2038 {
2039         struct tls_context *tls_ctx = tls_get_ctx(sk);
2040         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2041         bool ingress_empty = true;
2042         struct sk_psock *psock;
2043
2044         rcu_read_lock();
2045         psock = sk_psock(sk);
2046         if (psock)
2047                 ingress_empty = list_empty(&psock->ingress_msg);
2048         rcu_read_unlock();
2049
2050         return !ingress_empty || ctx->recv_pkt ||
2051                 !skb_queue_empty(&ctx->rx_list);
2052 }
2053
2054 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2055 {
2056         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2057         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2058         struct tls_prot_info *prot = &tls_ctx->prot_info;
2059         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2060         struct strp_msg *rxm = strp_msg(skb);
2061         size_t cipher_overhead;
2062         size_t data_len = 0;
2063         int ret;
2064
2065         /* Verify that we have a full TLS header, or wait for more data */
2066         if (rxm->offset + prot->prepend_size > skb->len)
2067                 return 0;
2068
2069         /* Sanity-check size of on-stack buffer. */
2070         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2071                 ret = -EINVAL;
2072                 goto read_failure;
2073         }
2074
2075         /* Linearize header to local buffer */
2076         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2077
2078         if (ret < 0)
2079                 goto read_failure;
2080
2081         ctx->control = header[0];
2082
2083         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2084
2085         cipher_overhead = prot->tag_size;
2086         if (prot->version != TLS_1_3_VERSION)
2087                 cipher_overhead += prot->iv_size;
2088
2089         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2090             prot->tail_size) {
2091                 ret = -EMSGSIZE;
2092                 goto read_failure;
2093         }
2094         if (data_len < cipher_overhead) {
2095                 ret = -EBADMSG;
2096                 goto read_failure;
2097         }
2098
2099         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2100         if (header[1] != TLS_1_2_VERSION_MINOR ||
2101             header[2] != TLS_1_2_VERSION_MAJOR) {
2102                 ret = -EINVAL;
2103                 goto read_failure;
2104         }
2105
2106         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2107                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2108         return data_len + TLS_HEADER_SIZE;
2109
2110 read_failure:
2111         tls_err_abort(strp->sk, ret);
2112
2113         return ret;
2114 }
2115
2116 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2117 {
2118         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2119         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2120
2121         ctx->decrypted = 0;
2122
2123         ctx->recv_pkt = skb;
2124         strp_pause(strp);
2125
2126         ctx->saved_data_ready(strp->sk);
2127 }
2128
2129 static void tls_data_ready(struct sock *sk)
2130 {
2131         struct tls_context *tls_ctx = tls_get_ctx(sk);
2132         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2133         struct sk_psock *psock;
2134
2135         strp_data_ready(&ctx->strp);
2136
2137         psock = sk_psock_get(sk);
2138         if (psock) {
2139                 if (!list_empty(&psock->ingress_msg))
2140                         ctx->saved_data_ready(sk);
2141                 sk_psock_put(sk, psock);
2142         }
2143 }
2144
2145 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2146 {
2147         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2148
2149         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2150         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2151         cancel_delayed_work_sync(&ctx->tx_work.work);
2152 }
2153
2154 void tls_sw_release_resources_tx(struct sock *sk)
2155 {
2156         struct tls_context *tls_ctx = tls_get_ctx(sk);
2157         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2158         struct tls_rec *rec, *tmp;
2159         int pending;
2160
2161         /* Wait for any pending async encryptions to complete */
2162         spin_lock_bh(&ctx->encrypt_compl_lock);
2163         ctx->async_notify = true;
2164         pending = atomic_read(&ctx->encrypt_pending);
2165         spin_unlock_bh(&ctx->encrypt_compl_lock);
2166
2167         if (pending)
2168                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2169
2170         tls_tx_records(sk, -1);
2171
2172         /* Free up un-sent records in tx_list. First, free
2173          * the partially sent record if any at head of tx_list.
2174          */
2175         if (tls_ctx->partially_sent_record) {
2176                 tls_free_partial_record(sk, tls_ctx);
2177                 rec = list_first_entry(&ctx->tx_list,
2178                                        struct tls_rec, list);
2179                 list_del(&rec->list);
2180                 sk_msg_free(sk, &rec->msg_plaintext);
2181                 kfree(rec);
2182         }
2183
2184         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2185                 list_del(&rec->list);
2186                 sk_msg_free(sk, &rec->msg_encrypted);
2187                 sk_msg_free(sk, &rec->msg_plaintext);
2188                 kfree(rec);
2189         }
2190
2191         crypto_free_aead(ctx->aead_send);
2192         tls_free_open_rec(sk);
2193 }
2194
2195 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2196 {
2197         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2198
2199         kfree(ctx);
2200 }
2201
2202 void tls_sw_release_resources_rx(struct sock *sk)
2203 {
2204         struct tls_context *tls_ctx = tls_get_ctx(sk);
2205         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2206
2207         kfree(tls_ctx->rx.rec_seq);
2208         kfree(tls_ctx->rx.iv);
2209
2210         if (ctx->aead_recv) {
2211                 kfree_skb(ctx->recv_pkt);
2212                 ctx->recv_pkt = NULL;
2213                 skb_queue_purge(&ctx->rx_list);
2214                 crypto_free_aead(ctx->aead_recv);
2215                 strp_stop(&ctx->strp);
2216                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2217                  * we still want to strp_stop(), but sk->sk_data_ready was
2218                  * never swapped.
2219                  */
2220                 if (ctx->saved_data_ready) {
2221                         write_lock_bh(&sk->sk_callback_lock);
2222                         sk->sk_data_ready = ctx->saved_data_ready;
2223                         write_unlock_bh(&sk->sk_callback_lock);
2224                 }
2225         }
2226 }
2227
2228 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2229 {
2230         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2231
2232         strp_done(&ctx->strp);
2233 }
2234
2235 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2236 {
2237         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2238
2239         kfree(ctx);
2240 }
2241
2242 void tls_sw_free_resources_rx(struct sock *sk)
2243 {
2244         struct tls_context *tls_ctx = tls_get_ctx(sk);
2245
2246         tls_sw_release_resources_rx(sk);
2247         tls_sw_free_ctx_rx(tls_ctx);
2248 }
2249
2250 /* The work handler to transmitt the encrypted records in tx_list */
2251 static void tx_work_handler(struct work_struct *work)
2252 {
2253         struct delayed_work *delayed_work = to_delayed_work(work);
2254         struct tx_work *tx_work = container_of(delayed_work,
2255                                                struct tx_work, work);
2256         struct sock *sk = tx_work->sk;
2257         struct tls_context *tls_ctx = tls_get_ctx(sk);
2258         struct tls_sw_context_tx *ctx;
2259
2260         if (unlikely(!tls_ctx))
2261                 return;
2262
2263         ctx = tls_sw_ctx_tx(tls_ctx);
2264         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2265                 return;
2266
2267         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2268                 return;
2269         mutex_lock(&tls_ctx->tx_lock);
2270         lock_sock(sk);
2271         tls_tx_records(sk, -1);
2272         release_sock(sk);
2273         mutex_unlock(&tls_ctx->tx_lock);
2274 }
2275
2276 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2277 {
2278         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2279
2280         /* Schedule the transmission if tx list is ready */
2281         if (is_tx_ready(tx_ctx) &&
2282             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2283                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2284 }
2285
2286 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2287 {
2288         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2289
2290         write_lock_bh(&sk->sk_callback_lock);
2291         rx_ctx->saved_data_ready = sk->sk_data_ready;
2292         sk->sk_data_ready = tls_data_ready;
2293         write_unlock_bh(&sk->sk_callback_lock);
2294
2295         strp_check_rcv(&rx_ctx->strp);
2296 }
2297
2298 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2299 {
2300         struct tls_context *tls_ctx = tls_get_ctx(sk);
2301         struct tls_prot_info *prot = &tls_ctx->prot_info;
2302         struct tls_crypto_info *crypto_info;
2303         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2304         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2305         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2306         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2307         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2308         struct cipher_context *cctx;
2309         struct crypto_aead **aead;
2310         struct strp_callbacks cb;
2311         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2312         struct crypto_tfm *tfm;
2313         char *iv, *rec_seq, *key, *salt, *cipher_name;
2314         size_t keysize;
2315         int rc = 0;
2316
2317         if (!ctx) {
2318                 rc = -EINVAL;
2319                 goto out;
2320         }
2321
2322         if (tx) {
2323                 if (!ctx->priv_ctx_tx) {
2324                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2325                         if (!sw_ctx_tx) {
2326                                 rc = -ENOMEM;
2327                                 goto out;
2328                         }
2329                         ctx->priv_ctx_tx = sw_ctx_tx;
2330                 } else {
2331                         sw_ctx_tx =
2332                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2333                 }
2334         } else {
2335                 if (!ctx->priv_ctx_rx) {
2336                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2337                         if (!sw_ctx_rx) {
2338                                 rc = -ENOMEM;
2339                                 goto out;
2340                         }
2341                         ctx->priv_ctx_rx = sw_ctx_rx;
2342                 } else {
2343                         sw_ctx_rx =
2344                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2345                 }
2346         }
2347
2348         if (tx) {
2349                 crypto_init_wait(&sw_ctx_tx->async_wait);
2350                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2351                 crypto_info = &ctx->crypto_send.info;
2352                 cctx = &ctx->tx;
2353                 aead = &sw_ctx_tx->aead_send;
2354                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2355                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2356                 sw_ctx_tx->tx_work.sk = sk;
2357         } else {
2358                 crypto_init_wait(&sw_ctx_rx->async_wait);
2359                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2360                 crypto_info = &ctx->crypto_recv.info;
2361                 cctx = &ctx->rx;
2362                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2363                 aead = &sw_ctx_rx->aead_recv;
2364         }
2365
2366         switch (crypto_info->cipher_type) {
2367         case TLS_CIPHER_AES_GCM_128: {
2368                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2369                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2370                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2371                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2372                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2373                 rec_seq =
2374                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2375                 gcm_128_info =
2376                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2377                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2378                 key = gcm_128_info->key;
2379                 salt = gcm_128_info->salt;
2380                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2381                 cipher_name = "gcm(aes)";
2382                 break;
2383         }
2384         case TLS_CIPHER_AES_GCM_256: {
2385                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2386                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2387                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2388                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2389                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2390                 rec_seq =
2391                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2392                 gcm_256_info =
2393                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2394                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2395                 key = gcm_256_info->key;
2396                 salt = gcm_256_info->salt;
2397                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2398                 cipher_name = "gcm(aes)";
2399                 break;
2400         }
2401         case TLS_CIPHER_AES_CCM_128: {
2402                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2403                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2404                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2405                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2406                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2407                 rec_seq =
2408                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2409                 ccm_128_info =
2410                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2411                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2412                 key = ccm_128_info->key;
2413                 salt = ccm_128_info->salt;
2414                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2415                 cipher_name = "ccm(aes)";
2416                 break;
2417         }
2418         default:
2419                 rc = -EINVAL;
2420                 goto free_priv;
2421         }
2422
2423         /* Sanity-check the sizes for stack allocations. */
2424         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2425             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2426                 rc = -EINVAL;
2427                 goto free_priv;
2428         }
2429
2430         if (crypto_info->version == TLS_1_3_VERSION) {
2431                 nonce_size = 0;
2432                 prot->aad_size = TLS_HEADER_SIZE;
2433                 prot->tail_size = 1;
2434         } else {
2435                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2436                 prot->tail_size = 0;
2437         }
2438
2439         prot->version = crypto_info->version;
2440         prot->cipher_type = crypto_info->cipher_type;
2441         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2442         prot->tag_size = tag_size;
2443         prot->overhead_size = prot->prepend_size +
2444                               prot->tag_size + prot->tail_size;
2445         prot->iv_size = iv_size;
2446         prot->salt_size = salt_size;
2447         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2448         if (!cctx->iv) {
2449                 rc = -ENOMEM;
2450                 goto free_priv;
2451         }
2452         /* Note: 128 & 256 bit salt are the same size */
2453         prot->rec_seq_size = rec_seq_size;
2454         memcpy(cctx->iv, salt, salt_size);
2455         memcpy(cctx->iv + salt_size, iv, iv_size);
2456         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2457         if (!cctx->rec_seq) {
2458                 rc = -ENOMEM;
2459                 goto free_iv;
2460         }
2461
2462         if (!*aead) {
2463                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2464                 if (IS_ERR(*aead)) {
2465                         rc = PTR_ERR(*aead);
2466                         *aead = NULL;
2467                         goto free_rec_seq;
2468                 }
2469         }
2470
2471         ctx->push_pending_record = tls_sw_push_pending_record;
2472
2473         rc = crypto_aead_setkey(*aead, key, keysize);
2474
2475         if (rc)
2476                 goto free_aead;
2477
2478         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2479         if (rc)
2480                 goto free_aead;
2481
2482         if (sw_ctx_rx) {
2483                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2484
2485                 if (crypto_info->version == TLS_1_3_VERSION)
2486                         sw_ctx_rx->async_capable = 0;
2487                 else
2488                         sw_ctx_rx->async_capable =
2489                                 !!(tfm->__crt_alg->cra_flags &
2490                                    CRYPTO_ALG_ASYNC);
2491
2492                 /* Set up strparser */
2493                 memset(&cb, 0, sizeof(cb));
2494                 cb.rcv_msg = tls_queue;
2495                 cb.parse_msg = tls_read_size;
2496
2497                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2498         }
2499
2500         goto out;
2501
2502 free_aead:
2503         crypto_free_aead(*aead);
2504         *aead = NULL;
2505 free_rec_seq:
2506         kfree(cctx->rec_seq);
2507         cctx->rec_seq = NULL;
2508 free_iv:
2509         kfree(cctx->iv);
2510         cctx->iv = NULL;
2511 free_priv:
2512         if (tx) {
2513                 kfree(ctx->priv_ctx_tx);
2514                 ctx->priv_ctx_tx = NULL;
2515         } else {
2516                 kfree(ctx->priv_ctx_rx);
2517                 ctx->priv_ctx_rx = NULL;
2518         }
2519 out:
2520         return rc;
2521 }