GNU Linux-libre 6.1.24-gnu
[releases.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56         TLSV4,
57         TLSV6,
58         TLS_NUM_PROTS,
59 };
60
61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \
62         .iv = cipher ## _IV_SIZE, \
63         .key = cipher ## _KEY_SIZE, \
64         .salt = cipher ## _SALT_SIZE, \
65         .tag = cipher ## _TAG_SIZE, \
66         .rec_seq = cipher ## _REC_SEQ_SIZE, \
67 }
68
69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
70         CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
71         CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
72         CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
73         CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
74         CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
75         CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
76 };
77
78 static const struct proto *saved_tcpv6_prot;
79 static DEFINE_MUTEX(tcpv6_prot_mutex);
80 static const struct proto *saved_tcpv4_prot;
81 static DEFINE_MUTEX(tcpv4_prot_mutex);
82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
85                          const struct proto *base);
86
87 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
88 {
89         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
90
91         WRITE_ONCE(sk->sk_prot,
92                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
93         WRITE_ONCE(sk->sk_socket->ops,
94                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
95 }
96
97 int wait_on_pending_writer(struct sock *sk, long *timeo)
98 {
99         int rc = 0;
100         DEFINE_WAIT_FUNC(wait, woken_wake_function);
101
102         add_wait_queue(sk_sleep(sk), &wait);
103         while (1) {
104                 if (!*timeo) {
105                         rc = -EAGAIN;
106                         break;
107                 }
108
109                 if (signal_pending(current)) {
110                         rc = sock_intr_errno(*timeo);
111                         break;
112                 }
113
114                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
115                         break;
116         }
117         remove_wait_queue(sk_sleep(sk), &wait);
118         return rc;
119 }
120
121 int tls_push_sg(struct sock *sk,
122                 struct tls_context *ctx,
123                 struct scatterlist *sg,
124                 u16 first_offset,
125                 int flags)
126 {
127         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
128         int ret = 0;
129         struct page *p;
130         size_t size;
131         int offset = first_offset;
132
133         size = sg->length - offset;
134         offset += sg->offset;
135
136         ctx->in_tcp_sendpages = true;
137         while (1) {
138                 if (sg_is_last(sg))
139                         sendpage_flags = flags;
140
141                 /* is sending application-limited? */
142                 tcp_rate_check_app_limited(sk);
143                 p = sg_page(sg);
144 retry:
145                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
146
147                 if (ret != size) {
148                         if (ret > 0) {
149                                 offset += ret;
150                                 size -= ret;
151                                 goto retry;
152                         }
153
154                         offset -= sg->offset;
155                         ctx->partially_sent_offset = offset;
156                         ctx->partially_sent_record = (void *)sg;
157                         ctx->in_tcp_sendpages = false;
158                         return ret;
159                 }
160
161                 put_page(p);
162                 sk_mem_uncharge(sk, sg->length);
163                 sg = sg_next(sg);
164                 if (!sg)
165                         break;
166
167                 offset = sg->offset;
168                 size = sg->length;
169         }
170
171         ctx->in_tcp_sendpages = false;
172
173         return 0;
174 }
175
176 static int tls_handle_open_record(struct sock *sk, int flags)
177 {
178         struct tls_context *ctx = tls_get_ctx(sk);
179
180         if (tls_is_pending_open_record(ctx))
181                 return ctx->push_pending_record(sk, flags);
182
183         return 0;
184 }
185
186 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
187                      unsigned char *record_type)
188 {
189         struct cmsghdr *cmsg;
190         int rc = -EINVAL;
191
192         for_each_cmsghdr(cmsg, msg) {
193                 if (!CMSG_OK(msg, cmsg))
194                         return -EINVAL;
195                 if (cmsg->cmsg_level != SOL_TLS)
196                         continue;
197
198                 switch (cmsg->cmsg_type) {
199                 case TLS_SET_RECORD_TYPE:
200                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
201                                 return -EINVAL;
202
203                         if (msg->msg_flags & MSG_MORE)
204                                 return -EINVAL;
205
206                         rc = tls_handle_open_record(sk, msg->msg_flags);
207                         if (rc)
208                                 return rc;
209
210                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
211                         rc = 0;
212                         break;
213                 default:
214                         return -EINVAL;
215                 }
216         }
217
218         return rc;
219 }
220
221 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
222                             int flags)
223 {
224         struct scatterlist *sg;
225         u16 offset;
226
227         sg = ctx->partially_sent_record;
228         offset = ctx->partially_sent_offset;
229
230         ctx->partially_sent_record = NULL;
231         return tls_push_sg(sk, ctx, sg, offset, flags);
232 }
233
234 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
235 {
236         struct scatterlist *sg;
237
238         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
239                 put_page(sg_page(sg));
240                 sk_mem_uncharge(sk, sg->length);
241         }
242         ctx->partially_sent_record = NULL;
243 }
244
245 static void tls_write_space(struct sock *sk)
246 {
247         struct tls_context *ctx = tls_get_ctx(sk);
248
249         /* If in_tcp_sendpages call lower protocol write space handler
250          * to ensure we wake up any waiting operations there. For example
251          * if do_tcp_sendpages where to call sk_wait_event.
252          */
253         if (ctx->in_tcp_sendpages) {
254                 ctx->sk_write_space(sk);
255                 return;
256         }
257
258 #ifdef CONFIG_TLS_DEVICE
259         if (ctx->tx_conf == TLS_HW)
260                 tls_device_write_space(sk, ctx);
261         else
262 #endif
263                 tls_sw_write_space(sk, ctx);
264
265         ctx->sk_write_space(sk);
266 }
267
268 /**
269  * tls_ctx_free() - free TLS ULP context
270  * @sk:  socket to with @ctx is attached
271  * @ctx: TLS context structure
272  *
273  * Free TLS context. If @sk is %NULL caller guarantees that the socket
274  * to which @ctx was attached has no outstanding references.
275  */
276 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
277 {
278         if (!ctx)
279                 return;
280
281         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
282         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
283         mutex_destroy(&ctx->tx_lock);
284
285         if (sk)
286                 kfree_rcu(ctx, rcu);
287         else
288                 kfree(ctx);
289 }
290
291 static void tls_sk_proto_cleanup(struct sock *sk,
292                                  struct tls_context *ctx, long timeo)
293 {
294         if (unlikely(sk->sk_write_pending) &&
295             !wait_on_pending_writer(sk, &timeo))
296                 tls_handle_open_record(sk, 0);
297
298         /* We need these for tls_sw_fallback handling of other packets */
299         if (ctx->tx_conf == TLS_SW) {
300                 kfree(ctx->tx.rec_seq);
301                 kfree(ctx->tx.iv);
302                 tls_sw_release_resources_tx(sk);
303                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
304         } else if (ctx->tx_conf == TLS_HW) {
305                 tls_device_free_resources_tx(sk);
306                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
307         }
308
309         if (ctx->rx_conf == TLS_SW) {
310                 tls_sw_release_resources_rx(sk);
311                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
312         } else if (ctx->rx_conf == TLS_HW) {
313                 tls_device_offload_cleanup_rx(sk);
314                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
315         }
316 }
317
318 static void tls_sk_proto_close(struct sock *sk, long timeout)
319 {
320         struct inet_connection_sock *icsk = inet_csk(sk);
321         struct tls_context *ctx = tls_get_ctx(sk);
322         long timeo = sock_sndtimeo(sk, 0);
323         bool free_ctx;
324
325         if (ctx->tx_conf == TLS_SW)
326                 tls_sw_cancel_work_tx(ctx);
327
328         lock_sock(sk);
329         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
330
331         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
332                 tls_sk_proto_cleanup(sk, ctx, timeo);
333
334         write_lock_bh(&sk->sk_callback_lock);
335         if (free_ctx)
336                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
337         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
338         if (sk->sk_write_space == tls_write_space)
339                 sk->sk_write_space = ctx->sk_write_space;
340         write_unlock_bh(&sk->sk_callback_lock);
341         release_sock(sk);
342         if (ctx->tx_conf == TLS_SW)
343                 tls_sw_free_ctx_tx(ctx);
344         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
345                 tls_sw_strparser_done(ctx);
346         if (ctx->rx_conf == TLS_SW)
347                 tls_sw_free_ctx_rx(ctx);
348         ctx->sk_proto->close(sk, timeout);
349
350         if (free_ctx)
351                 tls_ctx_free(sk, ctx);
352 }
353
354 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
355                                   int __user *optlen, int tx)
356 {
357         int rc = 0;
358         struct tls_context *ctx = tls_get_ctx(sk);
359         struct tls_crypto_info *crypto_info;
360         struct cipher_context *cctx;
361         int len;
362
363         if (get_user(len, optlen))
364                 return -EFAULT;
365
366         if (!optval || (len < sizeof(*crypto_info))) {
367                 rc = -EINVAL;
368                 goto out;
369         }
370
371         if (!ctx) {
372                 rc = -EBUSY;
373                 goto out;
374         }
375
376         /* get user crypto info */
377         if (tx) {
378                 crypto_info = &ctx->crypto_send.info;
379                 cctx = &ctx->tx;
380         } else {
381                 crypto_info = &ctx->crypto_recv.info;
382                 cctx = &ctx->rx;
383         }
384
385         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
386                 rc = -EBUSY;
387                 goto out;
388         }
389
390         if (len == sizeof(*crypto_info)) {
391                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
392                         rc = -EFAULT;
393                 goto out;
394         }
395
396         switch (crypto_info->cipher_type) {
397         case TLS_CIPHER_AES_GCM_128: {
398                 struct tls12_crypto_info_aes_gcm_128 *
399                   crypto_info_aes_gcm_128 =
400                   container_of(crypto_info,
401                                struct tls12_crypto_info_aes_gcm_128,
402                                info);
403
404                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
405                         rc = -EINVAL;
406                         goto out;
407                 }
408                 memcpy(crypto_info_aes_gcm_128->iv,
409                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
410                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
411                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
412                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
413                 if (copy_to_user(optval,
414                                  crypto_info_aes_gcm_128,
415                                  sizeof(*crypto_info_aes_gcm_128)))
416                         rc = -EFAULT;
417                 break;
418         }
419         case TLS_CIPHER_AES_GCM_256: {
420                 struct tls12_crypto_info_aes_gcm_256 *
421                   crypto_info_aes_gcm_256 =
422                   container_of(crypto_info,
423                                struct tls12_crypto_info_aes_gcm_256,
424                                info);
425
426                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
427                         rc = -EINVAL;
428                         goto out;
429                 }
430                 memcpy(crypto_info_aes_gcm_256->iv,
431                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
432                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
433                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
434                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
435                 if (copy_to_user(optval,
436                                  crypto_info_aes_gcm_256,
437                                  sizeof(*crypto_info_aes_gcm_256)))
438                         rc = -EFAULT;
439                 break;
440         }
441         case TLS_CIPHER_AES_CCM_128: {
442                 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
443                         container_of(crypto_info,
444                                 struct tls12_crypto_info_aes_ccm_128, info);
445
446                 if (len != sizeof(*aes_ccm_128)) {
447                         rc = -EINVAL;
448                         goto out;
449                 }
450                 memcpy(aes_ccm_128->iv,
451                        cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
452                        TLS_CIPHER_AES_CCM_128_IV_SIZE);
453                 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
454                        TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
455                 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
456                         rc = -EFAULT;
457                 break;
458         }
459         case TLS_CIPHER_CHACHA20_POLY1305: {
460                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
461                         container_of(crypto_info,
462                                 struct tls12_crypto_info_chacha20_poly1305,
463                                 info);
464
465                 if (len != sizeof(*chacha20_poly1305)) {
466                         rc = -EINVAL;
467                         goto out;
468                 }
469                 memcpy(chacha20_poly1305->iv,
470                        cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
471                        TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
472                 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
473                        TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
474                 if (copy_to_user(optval, chacha20_poly1305,
475                                 sizeof(*chacha20_poly1305)))
476                         rc = -EFAULT;
477                 break;
478         }
479         case TLS_CIPHER_SM4_GCM: {
480                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
481                         container_of(crypto_info,
482                                 struct tls12_crypto_info_sm4_gcm, info);
483
484                 if (len != sizeof(*sm4_gcm_info)) {
485                         rc = -EINVAL;
486                         goto out;
487                 }
488                 memcpy(sm4_gcm_info->iv,
489                        cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
490                        TLS_CIPHER_SM4_GCM_IV_SIZE);
491                 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
492                        TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
493                 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
494                         rc = -EFAULT;
495                 break;
496         }
497         case TLS_CIPHER_SM4_CCM: {
498                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
499                         container_of(crypto_info,
500                                 struct tls12_crypto_info_sm4_ccm, info);
501
502                 if (len != sizeof(*sm4_ccm_info)) {
503                         rc = -EINVAL;
504                         goto out;
505                 }
506                 memcpy(sm4_ccm_info->iv,
507                        cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
508                        TLS_CIPHER_SM4_CCM_IV_SIZE);
509                 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
510                        TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
511                 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
512                         rc = -EFAULT;
513                 break;
514         }
515         case TLS_CIPHER_ARIA_GCM_128: {
516                 struct tls12_crypto_info_aria_gcm_128 *
517                   crypto_info_aria_gcm_128 =
518                   container_of(crypto_info,
519                                struct tls12_crypto_info_aria_gcm_128,
520                                info);
521
522                 if (len != sizeof(*crypto_info_aria_gcm_128)) {
523                         rc = -EINVAL;
524                         goto out;
525                 }
526                 memcpy(crypto_info_aria_gcm_128->iv,
527                        cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
528                        TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
529                 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
530                        TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
531                 if (copy_to_user(optval,
532                                  crypto_info_aria_gcm_128,
533                                  sizeof(*crypto_info_aria_gcm_128)))
534                         rc = -EFAULT;
535                 break;
536         }
537         case TLS_CIPHER_ARIA_GCM_256: {
538                 struct tls12_crypto_info_aria_gcm_256 *
539                   crypto_info_aria_gcm_256 =
540                   container_of(crypto_info,
541                                struct tls12_crypto_info_aria_gcm_256,
542                                info);
543
544                 if (len != sizeof(*crypto_info_aria_gcm_256)) {
545                         rc = -EINVAL;
546                         goto out;
547                 }
548                 memcpy(crypto_info_aria_gcm_256->iv,
549                        cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
550                        TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
551                 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
552                        TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
553                 if (copy_to_user(optval,
554                                  crypto_info_aria_gcm_256,
555                                  sizeof(*crypto_info_aria_gcm_256)))
556                         rc = -EFAULT;
557                 break;
558         }
559         default:
560                 rc = -EINVAL;
561         }
562
563 out:
564         return rc;
565 }
566
567 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
568                                    int __user *optlen)
569 {
570         struct tls_context *ctx = tls_get_ctx(sk);
571         unsigned int value;
572         int len;
573
574         if (get_user(len, optlen))
575                 return -EFAULT;
576
577         if (len != sizeof(value))
578                 return -EINVAL;
579
580         value = ctx->zerocopy_sendfile;
581         if (copy_to_user(optval, &value, sizeof(value)))
582                 return -EFAULT;
583
584         return 0;
585 }
586
587 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
588                                     int __user *optlen)
589 {
590         struct tls_context *ctx = tls_get_ctx(sk);
591         int value, len;
592
593         if (ctx->prot_info.version != TLS_1_3_VERSION)
594                 return -EINVAL;
595
596         if (get_user(len, optlen))
597                 return -EFAULT;
598         if (len < sizeof(value))
599                 return -EINVAL;
600
601         value = -EINVAL;
602         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
603                 value = ctx->rx_no_pad;
604         if (value < 0)
605                 return value;
606
607         if (put_user(sizeof(value), optlen))
608                 return -EFAULT;
609         if (copy_to_user(optval, &value, sizeof(value)))
610                 return -EFAULT;
611
612         return 0;
613 }
614
615 static int do_tls_getsockopt(struct sock *sk, int optname,
616                              char __user *optval, int __user *optlen)
617 {
618         int rc = 0;
619
620         lock_sock(sk);
621
622         switch (optname) {
623         case TLS_TX:
624         case TLS_RX:
625                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
626                                             optname == TLS_TX);
627                 break;
628         case TLS_TX_ZEROCOPY_RO:
629                 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
630                 break;
631         case TLS_RX_EXPECT_NO_PAD:
632                 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
633                 break;
634         default:
635                 rc = -ENOPROTOOPT;
636                 break;
637         }
638
639         release_sock(sk);
640
641         return rc;
642 }
643
644 static int tls_getsockopt(struct sock *sk, int level, int optname,
645                           char __user *optval, int __user *optlen)
646 {
647         struct tls_context *ctx = tls_get_ctx(sk);
648
649         if (level != SOL_TLS)
650                 return ctx->sk_proto->getsockopt(sk, level,
651                                                  optname, optval, optlen);
652
653         return do_tls_getsockopt(sk, optname, optval, optlen);
654 }
655
656 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
657                                   unsigned int optlen, int tx)
658 {
659         struct tls_crypto_info *crypto_info;
660         struct tls_crypto_info *alt_crypto_info;
661         struct tls_context *ctx = tls_get_ctx(sk);
662         size_t optsize;
663         int rc = 0;
664         int conf;
665
666         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
667                 return -EINVAL;
668
669         if (tx) {
670                 crypto_info = &ctx->crypto_send.info;
671                 alt_crypto_info = &ctx->crypto_recv.info;
672         } else {
673                 crypto_info = &ctx->crypto_recv.info;
674                 alt_crypto_info = &ctx->crypto_send.info;
675         }
676
677         /* Currently we don't support set crypto info more than one time */
678         if (TLS_CRYPTO_INFO_READY(crypto_info))
679                 return -EBUSY;
680
681         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
682         if (rc) {
683                 rc = -EFAULT;
684                 goto err_crypto_info;
685         }
686
687         /* check version */
688         if (crypto_info->version != TLS_1_2_VERSION &&
689             crypto_info->version != TLS_1_3_VERSION) {
690                 rc = -EINVAL;
691                 goto err_crypto_info;
692         }
693
694         /* Ensure that TLS version and ciphers are same in both directions */
695         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
696                 if (alt_crypto_info->version != crypto_info->version ||
697                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
698                         rc = -EINVAL;
699                         goto err_crypto_info;
700                 }
701         }
702
703         switch (crypto_info->cipher_type) {
704         case TLS_CIPHER_AES_GCM_128:
705                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
706                 break;
707         case TLS_CIPHER_AES_GCM_256: {
708                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
709                 break;
710         }
711         case TLS_CIPHER_AES_CCM_128:
712                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
713                 break;
714         case TLS_CIPHER_CHACHA20_POLY1305:
715                 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
716                 break;
717         case TLS_CIPHER_SM4_GCM:
718                 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
719                 break;
720         case TLS_CIPHER_SM4_CCM:
721                 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
722                 break;
723         case TLS_CIPHER_ARIA_GCM_128:
724                 if (crypto_info->version != TLS_1_2_VERSION) {
725                         rc = -EINVAL;
726                         goto err_crypto_info;
727                 }
728                 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
729                 break;
730         case TLS_CIPHER_ARIA_GCM_256:
731                 if (crypto_info->version != TLS_1_2_VERSION) {
732                         rc = -EINVAL;
733                         goto err_crypto_info;
734                 }
735                 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
736                 break;
737         default:
738                 rc = -EINVAL;
739                 goto err_crypto_info;
740         }
741
742         if (optlen != optsize) {
743                 rc = -EINVAL;
744                 goto err_crypto_info;
745         }
746
747         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
748                                       sizeof(*crypto_info),
749                                       optlen - sizeof(*crypto_info));
750         if (rc) {
751                 rc = -EFAULT;
752                 goto err_crypto_info;
753         }
754
755         if (tx) {
756                 rc = tls_set_device_offload(sk, ctx);
757                 conf = TLS_HW;
758                 if (!rc) {
759                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
760                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
761                 } else {
762                         rc = tls_set_sw_offload(sk, ctx, 1);
763                         if (rc)
764                                 goto err_crypto_info;
765                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
766                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
767                         conf = TLS_SW;
768                 }
769         } else {
770                 rc = tls_set_device_offload_rx(sk, ctx);
771                 conf = TLS_HW;
772                 if (!rc) {
773                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
774                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
775                 } else {
776                         rc = tls_set_sw_offload(sk, ctx, 0);
777                         if (rc)
778                                 goto err_crypto_info;
779                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
780                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
781                         conf = TLS_SW;
782                 }
783                 tls_sw_strparser_arm(sk, ctx);
784         }
785
786         if (tx)
787                 ctx->tx_conf = conf;
788         else
789                 ctx->rx_conf = conf;
790         update_sk_prot(sk, ctx);
791         if (tx) {
792                 ctx->sk_write_space = sk->sk_write_space;
793                 sk->sk_write_space = tls_write_space;
794         } else {
795                 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
796
797                 tls_strp_check_rcv(&rx_ctx->strp);
798         }
799         return 0;
800
801 err_crypto_info:
802         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
803         return rc;
804 }
805
806 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
807                                    unsigned int optlen)
808 {
809         struct tls_context *ctx = tls_get_ctx(sk);
810         unsigned int value;
811
812         if (sockptr_is_null(optval) || optlen != sizeof(value))
813                 return -EINVAL;
814
815         if (copy_from_sockptr(&value, optval, sizeof(value)))
816                 return -EFAULT;
817
818         if (value > 1)
819                 return -EINVAL;
820
821         ctx->zerocopy_sendfile = value;
822
823         return 0;
824 }
825
826 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
827                                     unsigned int optlen)
828 {
829         struct tls_context *ctx = tls_get_ctx(sk);
830         u32 val;
831         int rc;
832
833         if (ctx->prot_info.version != TLS_1_3_VERSION ||
834             sockptr_is_null(optval) || optlen < sizeof(val))
835                 return -EINVAL;
836
837         rc = copy_from_sockptr(&val, optval, sizeof(val));
838         if (rc)
839                 return -EFAULT;
840         if (val > 1)
841                 return -EINVAL;
842         rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
843         if (rc < 1)
844                 return rc == 0 ? -EINVAL : rc;
845
846         lock_sock(sk);
847         rc = -EINVAL;
848         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
849                 ctx->rx_no_pad = val;
850                 tls_update_rx_zc_capable(ctx);
851                 rc = 0;
852         }
853         release_sock(sk);
854
855         return rc;
856 }
857
858 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
859                              unsigned int optlen)
860 {
861         int rc = 0;
862
863         switch (optname) {
864         case TLS_TX:
865         case TLS_RX:
866                 lock_sock(sk);
867                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
868                                             optname == TLS_TX);
869                 release_sock(sk);
870                 break;
871         case TLS_TX_ZEROCOPY_RO:
872                 lock_sock(sk);
873                 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
874                 release_sock(sk);
875                 break;
876         case TLS_RX_EXPECT_NO_PAD:
877                 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
878                 break;
879         default:
880                 rc = -ENOPROTOOPT;
881                 break;
882         }
883         return rc;
884 }
885
886 static int tls_setsockopt(struct sock *sk, int level, int optname,
887                           sockptr_t optval, unsigned int optlen)
888 {
889         struct tls_context *ctx = tls_get_ctx(sk);
890
891         if (level != SOL_TLS)
892                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
893                                                  optlen);
894
895         return do_tls_setsockopt(sk, optname, optval, optlen);
896 }
897
898 struct tls_context *tls_ctx_create(struct sock *sk)
899 {
900         struct inet_connection_sock *icsk = inet_csk(sk);
901         struct tls_context *ctx;
902
903         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
904         if (!ctx)
905                 return NULL;
906
907         mutex_init(&ctx->tx_lock);
908         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
909         ctx->sk_proto = READ_ONCE(sk->sk_prot);
910         ctx->sk = sk;
911         return ctx;
912 }
913
914 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
915                             const struct proto_ops *base)
916 {
917         ops[TLS_BASE][TLS_BASE] = *base;
918
919         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
920         ops[TLS_SW  ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
921
922         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
923         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
924
925         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
926         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
927
928 #ifdef CONFIG_TLS_DEVICE
929         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
930         ops[TLS_HW  ][TLS_BASE].sendpage_locked = NULL;
931
932         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
933         ops[TLS_HW  ][TLS_SW  ].sendpage_locked = NULL;
934
935         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
936
937         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
938
939         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
940         ops[TLS_HW  ][TLS_HW  ].sendpage_locked = NULL;
941 #endif
942 #ifdef CONFIG_TLS_TOE
943         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
944 #endif
945 }
946
947 static void tls_build_proto(struct sock *sk)
948 {
949         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
950         struct proto *prot = READ_ONCE(sk->sk_prot);
951
952         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
953         if (ip_ver == TLSV6 &&
954             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
955                 mutex_lock(&tcpv6_prot_mutex);
956                 if (likely(prot != saved_tcpv6_prot)) {
957                         build_protos(tls_prots[TLSV6], prot);
958                         build_proto_ops(tls_proto_ops[TLSV6],
959                                         sk->sk_socket->ops);
960                         smp_store_release(&saved_tcpv6_prot, prot);
961                 }
962                 mutex_unlock(&tcpv6_prot_mutex);
963         }
964
965         if (ip_ver == TLSV4 &&
966             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
967                 mutex_lock(&tcpv4_prot_mutex);
968                 if (likely(prot != saved_tcpv4_prot)) {
969                         build_protos(tls_prots[TLSV4], prot);
970                         build_proto_ops(tls_proto_ops[TLSV4],
971                                         sk->sk_socket->ops);
972                         smp_store_release(&saved_tcpv4_prot, prot);
973                 }
974                 mutex_unlock(&tcpv4_prot_mutex);
975         }
976 }
977
978 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
979                          const struct proto *base)
980 {
981         prot[TLS_BASE][TLS_BASE] = *base;
982         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
983         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
984         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
985
986         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
987         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
988         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
989
990         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
991         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
992         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
993         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
994
995         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
996         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
997         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
998         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
999
1000 #ifdef CONFIG_TLS_DEVICE
1001         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1002         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
1003         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
1004
1005         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1006         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
1007         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
1008
1009         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1010
1011         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1012
1013         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1014 #endif
1015 #ifdef CONFIG_TLS_TOE
1016         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1017         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
1018         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
1019 #endif
1020 }
1021
1022 static int tls_init(struct sock *sk)
1023 {
1024         struct tls_context *ctx;
1025         int rc = 0;
1026
1027         tls_build_proto(sk);
1028
1029 #ifdef CONFIG_TLS_TOE
1030         if (tls_toe_bypass(sk))
1031                 return 0;
1032 #endif
1033
1034         /* The TLS ulp is currently supported only for TCP sockets
1035          * in ESTABLISHED state.
1036          * Supporting sockets in LISTEN state will require us
1037          * to modify the accept implementation to clone rather then
1038          * share the ulp context.
1039          */
1040         if (sk->sk_state != TCP_ESTABLISHED)
1041                 return -ENOTCONN;
1042
1043         /* allocate tls context */
1044         write_lock_bh(&sk->sk_callback_lock);
1045         ctx = tls_ctx_create(sk);
1046         if (!ctx) {
1047                 rc = -ENOMEM;
1048                 goto out;
1049         }
1050
1051         ctx->tx_conf = TLS_BASE;
1052         ctx->rx_conf = TLS_BASE;
1053         update_sk_prot(sk, ctx);
1054 out:
1055         write_unlock_bh(&sk->sk_callback_lock);
1056         return rc;
1057 }
1058
1059 static void tls_update(struct sock *sk, struct proto *p,
1060                        void (*write_space)(struct sock *sk))
1061 {
1062         struct tls_context *ctx;
1063
1064         WARN_ON_ONCE(sk->sk_prot == p);
1065
1066         ctx = tls_get_ctx(sk);
1067         if (likely(ctx)) {
1068                 ctx->sk_write_space = write_space;
1069                 ctx->sk_proto = p;
1070         } else {
1071                 /* Pairs with lockless read in sk_clone_lock(). */
1072                 WRITE_ONCE(sk->sk_prot, p);
1073                 sk->sk_write_space = write_space;
1074         }
1075 }
1076
1077 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1078 {
1079         u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1080
1081         switch (config) {
1082         case TLS_BASE:
1083                 return TLS_CONF_BASE;
1084         case TLS_SW:
1085                 return TLS_CONF_SW;
1086         case TLS_HW:
1087                 return TLS_CONF_HW;
1088         case TLS_HW_RECORD:
1089                 return TLS_CONF_HW_RECORD;
1090         }
1091         return 0;
1092 }
1093
1094 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1095 {
1096         u16 version, cipher_type;
1097         struct tls_context *ctx;
1098         struct nlattr *start;
1099         int err;
1100
1101         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1102         if (!start)
1103                 return -EMSGSIZE;
1104
1105         rcu_read_lock();
1106         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1107         if (!ctx) {
1108                 err = 0;
1109                 goto nla_failure;
1110         }
1111         version = ctx->prot_info.version;
1112         if (version) {
1113                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1114                 if (err)
1115                         goto nla_failure;
1116         }
1117         cipher_type = ctx->prot_info.cipher_type;
1118         if (cipher_type) {
1119                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1120                 if (err)
1121                         goto nla_failure;
1122         }
1123         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1124         if (err)
1125                 goto nla_failure;
1126
1127         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1128         if (err)
1129                 goto nla_failure;
1130
1131         if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1132                 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1133                 if (err)
1134                         goto nla_failure;
1135         }
1136         if (ctx->rx_no_pad) {
1137                 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1138                 if (err)
1139                         goto nla_failure;
1140         }
1141
1142         rcu_read_unlock();
1143         nla_nest_end(skb, start);
1144         return 0;
1145
1146 nla_failure:
1147         rcu_read_unlock();
1148         nla_nest_cancel(skb, start);
1149         return err;
1150 }
1151
1152 static size_t tls_get_info_size(const struct sock *sk)
1153 {
1154         size_t size = 0;
1155
1156         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
1157                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
1158                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
1159                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
1160                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
1161                 nla_total_size(0) +             /* TLS_INFO_ZC_RO_TX */
1162                 nla_total_size(0) +             /* TLS_INFO_RX_NO_PAD */
1163                 0;
1164
1165         return size;
1166 }
1167
1168 static int __net_init tls_init_net(struct net *net)
1169 {
1170         int err;
1171
1172         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1173         if (!net->mib.tls_statistics)
1174                 return -ENOMEM;
1175
1176         err = tls_proc_init(net);
1177         if (err)
1178                 goto err_free_stats;
1179
1180         return 0;
1181 err_free_stats:
1182         free_percpu(net->mib.tls_statistics);
1183         return err;
1184 }
1185
1186 static void __net_exit tls_exit_net(struct net *net)
1187 {
1188         tls_proc_fini(net);
1189         free_percpu(net->mib.tls_statistics);
1190 }
1191
1192 static struct pernet_operations tls_proc_ops = {
1193         .init = tls_init_net,
1194         .exit = tls_exit_net,
1195 };
1196
1197 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1198         .name                   = "tls",
1199         .owner                  = THIS_MODULE,
1200         .init                   = tls_init,
1201         .update                 = tls_update,
1202         .get_info               = tls_get_info,
1203         .get_info_size          = tls_get_info_size,
1204 };
1205
1206 static int __init tls_register(void)
1207 {
1208         int err;
1209
1210         err = register_pernet_subsys(&tls_proc_ops);
1211         if (err)
1212                 return err;
1213
1214         err = tls_strp_dev_init();
1215         if (err)
1216                 goto err_pernet;
1217
1218         err = tls_device_init();
1219         if (err)
1220                 goto err_strp;
1221
1222         tcp_register_ulp(&tcp_tls_ulp_ops);
1223
1224         return 0;
1225 err_strp:
1226         tls_strp_dev_exit();
1227 err_pernet:
1228         unregister_pernet_subsys(&tls_proc_ops);
1229         return err;
1230 }
1231
1232 static void __exit tls_unregister(void)
1233 {
1234         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1235         tls_strp_dev_exit();
1236         tls_device_cleanup();
1237         unregister_pernet_subsys(&tls_proc_ops);
1238 }
1239
1240 module_init(tls_register);
1241 module_exit(tls_unregister);