GNU Linux-libre 5.10.153-gnu1
[releases.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54         TLSV4,
55         TLSV6,
56         TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          const struct proto *base);
67
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         WRITE_ONCE(sk->sk_prot,
73                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74         WRITE_ONCE(sk->sk_socket->ops,
75                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
76 }
77
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80         int rc = 0;
81         DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83         add_wait_queue(sk_sleep(sk), &wait);
84         while (1) {
85                 if (!*timeo) {
86                         rc = -EAGAIN;
87                         break;
88                 }
89
90                 if (signal_pending(current)) {
91                         rc = sock_intr_errno(*timeo);
92                         break;
93                 }
94
95                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96                         break;
97         }
98         remove_wait_queue(sk_sleep(sk), &wait);
99         return rc;
100 }
101
102 int tls_push_sg(struct sock *sk,
103                 struct tls_context *ctx,
104                 struct scatterlist *sg,
105                 u16 first_offset,
106                 int flags)
107 {
108         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109         int ret = 0;
110         struct page *p;
111         size_t size;
112         int offset = first_offset;
113
114         size = sg->length - offset;
115         offset += sg->offset;
116
117         ctx->in_tcp_sendpages = true;
118         while (1) {
119                 if (sg_is_last(sg))
120                         sendpage_flags = flags;
121
122                 /* is sending application-limited? */
123                 tcp_rate_check_app_limited(sk);
124                 p = sg_page(sg);
125 retry:
126                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127
128                 if (ret != size) {
129                         if (ret > 0) {
130                                 offset += ret;
131                                 size -= ret;
132                                 goto retry;
133                         }
134
135                         offset -= sg->offset;
136                         ctx->partially_sent_offset = offset;
137                         ctx->partially_sent_record = (void *)sg;
138                         ctx->in_tcp_sendpages = false;
139                         return ret;
140                 }
141
142                 put_page(p);
143                 sk_mem_uncharge(sk, sg->length);
144                 sg = sg_next(sg);
145                 if (!sg)
146                         break;
147
148                 offset = sg->offset;
149                 size = sg->length;
150         }
151
152         ctx->in_tcp_sendpages = false;
153
154         return 0;
155 }
156
157 static int tls_handle_open_record(struct sock *sk, int flags)
158 {
159         struct tls_context *ctx = tls_get_ctx(sk);
160
161         if (tls_is_pending_open_record(ctx))
162                 return ctx->push_pending_record(sk, flags);
163
164         return 0;
165 }
166
167 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
168                       unsigned char *record_type)
169 {
170         struct cmsghdr *cmsg;
171         int rc = -EINVAL;
172
173         for_each_cmsghdr(cmsg, msg) {
174                 if (!CMSG_OK(msg, cmsg))
175                         return -EINVAL;
176                 if (cmsg->cmsg_level != SOL_TLS)
177                         continue;
178
179                 switch (cmsg->cmsg_type) {
180                 case TLS_SET_RECORD_TYPE:
181                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
182                                 return -EINVAL;
183
184                         if (msg->msg_flags & MSG_MORE)
185                                 return -EINVAL;
186
187                         rc = tls_handle_open_record(sk, msg->msg_flags);
188                         if (rc)
189                                 return rc;
190
191                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
192                         rc = 0;
193                         break;
194                 default:
195                         return -EINVAL;
196                 }
197         }
198
199         return rc;
200 }
201
202 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
203                             int flags)
204 {
205         struct scatterlist *sg;
206         u16 offset;
207
208         sg = ctx->partially_sent_record;
209         offset = ctx->partially_sent_offset;
210
211         ctx->partially_sent_record = NULL;
212         return tls_push_sg(sk, ctx, sg, offset, flags);
213 }
214
215 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
216 {
217         struct scatterlist *sg;
218
219         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
220                 put_page(sg_page(sg));
221                 sk_mem_uncharge(sk, sg->length);
222         }
223         ctx->partially_sent_record = NULL;
224 }
225
226 static void tls_write_space(struct sock *sk)
227 {
228         struct tls_context *ctx = tls_get_ctx(sk);
229
230         /* If in_tcp_sendpages call lower protocol write space handler
231          * to ensure we wake up any waiting operations there. For example
232          * if do_tcp_sendpages where to call sk_wait_event.
233          */
234         if (ctx->in_tcp_sendpages) {
235                 ctx->sk_write_space(sk);
236                 return;
237         }
238
239 #ifdef CONFIG_TLS_DEVICE
240         if (ctx->tx_conf == TLS_HW)
241                 tls_device_write_space(sk, ctx);
242         else
243 #endif
244                 tls_sw_write_space(sk, ctx);
245
246         ctx->sk_write_space(sk);
247 }
248
249 /**
250  * tls_ctx_free() - free TLS ULP context
251  * @sk:  socket to with @ctx is attached
252  * @ctx: TLS context structure
253  *
254  * Free TLS context. If @sk is %NULL caller guarantees that the socket
255  * to which @ctx was attached has no outstanding references.
256  */
257 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
258 {
259         if (!ctx)
260                 return;
261
262         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
263         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
264         mutex_destroy(&ctx->tx_lock);
265
266         if (sk)
267                 kfree_rcu(ctx, rcu);
268         else
269                 kfree(ctx);
270 }
271
272 static void tls_sk_proto_cleanup(struct sock *sk,
273                                  struct tls_context *ctx, long timeo)
274 {
275         if (unlikely(sk->sk_write_pending) &&
276             !wait_on_pending_writer(sk, &timeo))
277                 tls_handle_open_record(sk, 0);
278
279         /* We need these for tls_sw_fallback handling of other packets */
280         if (ctx->tx_conf == TLS_SW) {
281                 kfree(ctx->tx.rec_seq);
282                 kfree(ctx->tx.iv);
283                 tls_sw_release_resources_tx(sk);
284                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
285         } else if (ctx->tx_conf == TLS_HW) {
286                 tls_device_free_resources_tx(sk);
287                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
288         }
289
290         if (ctx->rx_conf == TLS_SW) {
291                 tls_sw_release_resources_rx(sk);
292                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
293         } else if (ctx->rx_conf == TLS_HW) {
294                 tls_device_offload_cleanup_rx(sk);
295                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
296         }
297 }
298
299 static void tls_sk_proto_close(struct sock *sk, long timeout)
300 {
301         struct inet_connection_sock *icsk = inet_csk(sk);
302         struct tls_context *ctx = tls_get_ctx(sk);
303         long timeo = sock_sndtimeo(sk, 0);
304         bool free_ctx;
305
306         if (ctx->tx_conf == TLS_SW)
307                 tls_sw_cancel_work_tx(ctx);
308
309         lock_sock(sk);
310         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
311
312         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
313                 tls_sk_proto_cleanup(sk, ctx, timeo);
314
315         write_lock_bh(&sk->sk_callback_lock);
316         if (free_ctx)
317                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
318         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
319         if (sk->sk_write_space == tls_write_space)
320                 sk->sk_write_space = ctx->sk_write_space;
321         write_unlock_bh(&sk->sk_callback_lock);
322         release_sock(sk);
323         if (ctx->tx_conf == TLS_SW)
324                 tls_sw_free_ctx_tx(ctx);
325         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
326                 tls_sw_strparser_done(ctx);
327         if (ctx->rx_conf == TLS_SW)
328                 tls_sw_free_ctx_rx(ctx);
329         ctx->sk_proto->close(sk, timeout);
330
331         if (free_ctx)
332                 tls_ctx_free(sk, ctx);
333 }
334
335 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
336                                   int __user *optlen, int tx)
337 {
338         int rc = 0;
339         struct tls_context *ctx = tls_get_ctx(sk);
340         struct tls_crypto_info *crypto_info;
341         struct cipher_context *cctx;
342         int len;
343
344         if (get_user(len, optlen))
345                 return -EFAULT;
346
347         if (!optval || (len < sizeof(*crypto_info))) {
348                 rc = -EINVAL;
349                 goto out;
350         }
351
352         if (!ctx) {
353                 rc = -EBUSY;
354                 goto out;
355         }
356
357         /* get user crypto info */
358         if (tx) {
359                 crypto_info = &ctx->crypto_send.info;
360                 cctx = &ctx->tx;
361         } else {
362                 crypto_info = &ctx->crypto_recv.info;
363                 cctx = &ctx->rx;
364         }
365
366         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
367                 rc = -EBUSY;
368                 goto out;
369         }
370
371         if (len == sizeof(*crypto_info)) {
372                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
373                         rc = -EFAULT;
374                 goto out;
375         }
376
377         switch (crypto_info->cipher_type) {
378         case TLS_CIPHER_AES_GCM_128: {
379                 struct tls12_crypto_info_aes_gcm_128 *
380                   crypto_info_aes_gcm_128 =
381                   container_of(crypto_info,
382                                struct tls12_crypto_info_aes_gcm_128,
383                                info);
384
385                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
386                         rc = -EINVAL;
387                         goto out;
388                 }
389                 lock_sock(sk);
390                 memcpy(crypto_info_aes_gcm_128->iv,
391                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
392                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
393                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
394                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
395                 release_sock(sk);
396                 if (copy_to_user(optval,
397                                  crypto_info_aes_gcm_128,
398                                  sizeof(*crypto_info_aes_gcm_128)))
399                         rc = -EFAULT;
400                 break;
401         }
402         case TLS_CIPHER_AES_GCM_256: {
403                 struct tls12_crypto_info_aes_gcm_256 *
404                   crypto_info_aes_gcm_256 =
405                   container_of(crypto_info,
406                                struct tls12_crypto_info_aes_gcm_256,
407                                info);
408
409                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
410                         rc = -EINVAL;
411                         goto out;
412                 }
413                 lock_sock(sk);
414                 memcpy(crypto_info_aes_gcm_256->iv,
415                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
416                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
417                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
418                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
419                 release_sock(sk);
420                 if (copy_to_user(optval,
421                                  crypto_info_aes_gcm_256,
422                                  sizeof(*crypto_info_aes_gcm_256)))
423                         rc = -EFAULT;
424                 break;
425         }
426         default:
427                 rc = -EINVAL;
428         }
429
430 out:
431         return rc;
432 }
433
434 static int do_tls_getsockopt(struct sock *sk, int optname,
435                              char __user *optval, int __user *optlen)
436 {
437         int rc = 0;
438
439         switch (optname) {
440         case TLS_TX:
441         case TLS_RX:
442                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
443                                             optname == TLS_TX);
444                 break;
445         default:
446                 rc = -ENOPROTOOPT;
447                 break;
448         }
449         return rc;
450 }
451
452 static int tls_getsockopt(struct sock *sk, int level, int optname,
453                           char __user *optval, int __user *optlen)
454 {
455         struct tls_context *ctx = tls_get_ctx(sk);
456
457         if (level != SOL_TLS)
458                 return ctx->sk_proto->getsockopt(sk, level,
459                                                  optname, optval, optlen);
460
461         return do_tls_getsockopt(sk, optname, optval, optlen);
462 }
463
464 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
465                                   unsigned int optlen, int tx)
466 {
467         struct tls_crypto_info *crypto_info;
468         struct tls_crypto_info *alt_crypto_info;
469         struct tls_context *ctx = tls_get_ctx(sk);
470         size_t optsize;
471         int rc = 0;
472         int conf;
473
474         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
475                 rc = -EINVAL;
476                 goto out;
477         }
478
479         if (tx) {
480                 crypto_info = &ctx->crypto_send.info;
481                 alt_crypto_info = &ctx->crypto_recv.info;
482         } else {
483                 crypto_info = &ctx->crypto_recv.info;
484                 alt_crypto_info = &ctx->crypto_send.info;
485         }
486
487         /* Currently we don't support set crypto info more than one time */
488         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
489                 rc = -EBUSY;
490                 goto out;
491         }
492
493         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
494         if (rc) {
495                 rc = -EFAULT;
496                 goto err_crypto_info;
497         }
498
499         /* check version */
500         if (crypto_info->version != TLS_1_2_VERSION &&
501             crypto_info->version != TLS_1_3_VERSION) {
502                 rc = -EINVAL;
503                 goto err_crypto_info;
504         }
505
506         /* Ensure that TLS version and ciphers are same in both directions */
507         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
508                 if (alt_crypto_info->version != crypto_info->version ||
509                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
510                         rc = -EINVAL;
511                         goto err_crypto_info;
512                 }
513         }
514
515         switch (crypto_info->cipher_type) {
516         case TLS_CIPHER_AES_GCM_128:
517                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
518                 break;
519         case TLS_CIPHER_AES_GCM_256: {
520                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
521                 break;
522         }
523         case TLS_CIPHER_AES_CCM_128:
524                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
525                 break;
526         default:
527                 rc = -EINVAL;
528                 goto err_crypto_info;
529         }
530
531         if (optlen != optsize) {
532                 rc = -EINVAL;
533                 goto err_crypto_info;
534         }
535
536         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
537                                       sizeof(*crypto_info),
538                                       optlen - sizeof(*crypto_info));
539         if (rc) {
540                 rc = -EFAULT;
541                 goto err_crypto_info;
542         }
543
544         if (tx) {
545                 rc = tls_set_device_offload(sk, ctx);
546                 conf = TLS_HW;
547                 if (!rc) {
548                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
549                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
550                 } else {
551                         rc = tls_set_sw_offload(sk, ctx, 1);
552                         if (rc)
553                                 goto err_crypto_info;
554                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
555                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
556                         conf = TLS_SW;
557                 }
558         } else {
559                 rc = tls_set_device_offload_rx(sk, ctx);
560                 conf = TLS_HW;
561                 if (!rc) {
562                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
563                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
564                 } else {
565                         rc = tls_set_sw_offload(sk, ctx, 0);
566                         if (rc)
567                                 goto err_crypto_info;
568                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
569                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
570                         conf = TLS_SW;
571                 }
572                 tls_sw_strparser_arm(sk, ctx);
573         }
574
575         if (tx)
576                 ctx->tx_conf = conf;
577         else
578                 ctx->rx_conf = conf;
579         update_sk_prot(sk, ctx);
580         if (tx) {
581                 ctx->sk_write_space = sk->sk_write_space;
582                 sk->sk_write_space = tls_write_space;
583         }
584         goto out;
585
586 err_crypto_info:
587         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
588 out:
589         return rc;
590 }
591
592 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
593                              unsigned int optlen)
594 {
595         int rc = 0;
596
597         switch (optname) {
598         case TLS_TX:
599         case TLS_RX:
600                 lock_sock(sk);
601                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
602                                             optname == TLS_TX);
603                 release_sock(sk);
604                 break;
605         default:
606                 rc = -ENOPROTOOPT;
607                 break;
608         }
609         return rc;
610 }
611
612 static int tls_setsockopt(struct sock *sk, int level, int optname,
613                           sockptr_t optval, unsigned int optlen)
614 {
615         struct tls_context *ctx = tls_get_ctx(sk);
616
617         if (level != SOL_TLS)
618                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
619                                                  optlen);
620
621         return do_tls_setsockopt(sk, optname, optval, optlen);
622 }
623
624 struct tls_context *tls_ctx_create(struct sock *sk)
625 {
626         struct inet_connection_sock *icsk = inet_csk(sk);
627         struct tls_context *ctx;
628
629         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
630         if (!ctx)
631                 return NULL;
632
633         mutex_init(&ctx->tx_lock);
634         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
635         ctx->sk_proto = READ_ONCE(sk->sk_prot);
636         ctx->sk = sk;
637         return ctx;
638 }
639
640 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
641                             const struct proto_ops *base)
642 {
643         ops[TLS_BASE][TLS_BASE] = *base;
644
645         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
646         ops[TLS_SW  ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
647
648         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
649         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
650
651         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
652         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
653
654 #ifdef CONFIG_TLS_DEVICE
655         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
656         ops[TLS_HW  ][TLS_BASE].sendpage_locked = NULL;
657
658         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
659         ops[TLS_HW  ][TLS_SW  ].sendpage_locked = NULL;
660
661         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
662
663         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
664
665         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
666         ops[TLS_HW  ][TLS_HW  ].sendpage_locked = NULL;
667 #endif
668 #ifdef CONFIG_TLS_TOE
669         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
670 #endif
671 }
672
673 static void tls_build_proto(struct sock *sk)
674 {
675         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
676         struct proto *prot = READ_ONCE(sk->sk_prot);
677
678         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
679         if (ip_ver == TLSV6 &&
680             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
681                 mutex_lock(&tcpv6_prot_mutex);
682                 if (likely(prot != saved_tcpv6_prot)) {
683                         build_protos(tls_prots[TLSV6], prot);
684                         build_proto_ops(tls_proto_ops[TLSV6],
685                                         sk->sk_socket->ops);
686                         smp_store_release(&saved_tcpv6_prot, prot);
687                 }
688                 mutex_unlock(&tcpv6_prot_mutex);
689         }
690
691         if (ip_ver == TLSV4 &&
692             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
693                 mutex_lock(&tcpv4_prot_mutex);
694                 if (likely(prot != saved_tcpv4_prot)) {
695                         build_protos(tls_prots[TLSV4], prot);
696                         build_proto_ops(tls_proto_ops[TLSV4],
697                                         sk->sk_socket->ops);
698                         smp_store_release(&saved_tcpv4_prot, prot);
699                 }
700                 mutex_unlock(&tcpv4_prot_mutex);
701         }
702 }
703
704 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
705                          const struct proto *base)
706 {
707         prot[TLS_BASE][TLS_BASE] = *base;
708         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
709         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
710         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
711
712         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
713         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
714         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
715
716         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
717         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
718         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
719         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
720
721         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
722         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
723         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
724         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
725
726 #ifdef CONFIG_TLS_DEVICE
727         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
728         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
729         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
730
731         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
732         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
733         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
734
735         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
736
737         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
738
739         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
740 #endif
741 #ifdef CONFIG_TLS_TOE
742         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
743         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
744         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
745 #endif
746 }
747
748 static int tls_init(struct sock *sk)
749 {
750         struct tls_context *ctx;
751         int rc = 0;
752
753         tls_build_proto(sk);
754
755 #ifdef CONFIG_TLS_TOE
756         if (tls_toe_bypass(sk))
757                 return 0;
758 #endif
759
760         /* The TLS ulp is currently supported only for TCP sockets
761          * in ESTABLISHED state.
762          * Supporting sockets in LISTEN state will require us
763          * to modify the accept implementation to clone rather then
764          * share the ulp context.
765          */
766         if (sk->sk_state != TCP_ESTABLISHED)
767                 return -ENOTCONN;
768
769         /* allocate tls context */
770         write_lock_bh(&sk->sk_callback_lock);
771         ctx = tls_ctx_create(sk);
772         if (!ctx) {
773                 rc = -ENOMEM;
774                 goto out;
775         }
776
777         ctx->tx_conf = TLS_BASE;
778         ctx->rx_conf = TLS_BASE;
779         update_sk_prot(sk, ctx);
780 out:
781         write_unlock_bh(&sk->sk_callback_lock);
782         return rc;
783 }
784
785 static void tls_update(struct sock *sk, struct proto *p,
786                        void (*write_space)(struct sock *sk))
787 {
788         struct tls_context *ctx;
789
790         ctx = tls_get_ctx(sk);
791         if (likely(ctx)) {
792                 ctx->sk_write_space = write_space;
793                 ctx->sk_proto = p;
794         } else {
795                 /* Pairs with lockless read in sk_clone_lock(). */
796                 WRITE_ONCE(sk->sk_prot, p);
797                 sk->sk_write_space = write_space;
798         }
799 }
800
801 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
802 {
803         u16 version, cipher_type;
804         struct tls_context *ctx;
805         struct nlattr *start;
806         int err;
807
808         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
809         if (!start)
810                 return -EMSGSIZE;
811
812         rcu_read_lock();
813         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
814         if (!ctx) {
815                 err = 0;
816                 goto nla_failure;
817         }
818         version = ctx->prot_info.version;
819         if (version) {
820                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
821                 if (err)
822                         goto nla_failure;
823         }
824         cipher_type = ctx->prot_info.cipher_type;
825         if (cipher_type) {
826                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
827                 if (err)
828                         goto nla_failure;
829         }
830         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
831         if (err)
832                 goto nla_failure;
833
834         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
835         if (err)
836                 goto nla_failure;
837
838         rcu_read_unlock();
839         nla_nest_end(skb, start);
840         return 0;
841
842 nla_failure:
843         rcu_read_unlock();
844         nla_nest_cancel(skb, start);
845         return err;
846 }
847
848 static size_t tls_get_info_size(const struct sock *sk)
849 {
850         size_t size = 0;
851
852         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
853                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
854                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
855                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
856                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
857                 0;
858
859         return size;
860 }
861
862 static int __net_init tls_init_net(struct net *net)
863 {
864         int err;
865
866         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
867         if (!net->mib.tls_statistics)
868                 return -ENOMEM;
869
870         err = tls_proc_init(net);
871         if (err)
872                 goto err_free_stats;
873
874         return 0;
875 err_free_stats:
876         free_percpu(net->mib.tls_statistics);
877         return err;
878 }
879
880 static void __net_exit tls_exit_net(struct net *net)
881 {
882         tls_proc_fini(net);
883         free_percpu(net->mib.tls_statistics);
884 }
885
886 static struct pernet_operations tls_proc_ops = {
887         .init = tls_init_net,
888         .exit = tls_exit_net,
889 };
890
891 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
892         .name                   = "tls",
893         .owner                  = THIS_MODULE,
894         .init                   = tls_init,
895         .update                 = tls_update,
896         .get_info               = tls_get_info,
897         .get_info_size          = tls_get_info_size,
898 };
899
900 static int __init tls_register(void)
901 {
902         int err;
903
904         err = register_pernet_subsys(&tls_proc_ops);
905         if (err)
906                 return err;
907
908         err = tls_device_init();
909         if (err) {
910                 unregister_pernet_subsys(&tls_proc_ops);
911                 return err;
912         }
913
914         tcp_register_ulp(&tcp_tls_ulp_ops);
915
916         return 0;
917 }
918
919 static void __exit tls_unregister(void)
920 {
921         tcp_unregister_ulp(&tcp_tls_ulp_ops);
922         tls_device_cleanup();
923         unregister_pernet_subsys(&tls_proc_ops);
924 }
925
926 module_init(tls_register);
927 module_exit(tls_unregister);