GNU Linux-libre 4.19.245-gnu1
[releases.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static LIST_HEAD(device_list);
59 static DEFINE_MUTEX(device_mutex);
60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61 static struct proto_ops tls_sw_proto_ops;
62
63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
64 {
65         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
66
67         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
68 }
69
70 int wait_on_pending_writer(struct sock *sk, long *timeo)
71 {
72         int rc = 0;
73         DEFINE_WAIT_FUNC(wait, woken_wake_function);
74
75         add_wait_queue(sk_sleep(sk), &wait);
76         while (1) {
77                 if (!*timeo) {
78                         rc = -EAGAIN;
79                         break;
80                 }
81
82                 if (signal_pending(current)) {
83                         rc = sock_intr_errno(*timeo);
84                         break;
85                 }
86
87                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88                         break;
89         }
90         remove_wait_queue(sk_sleep(sk), &wait);
91         return rc;
92 }
93
94 int tls_push_sg(struct sock *sk,
95                 struct tls_context *ctx,
96                 struct scatterlist *sg,
97                 u16 first_offset,
98                 int flags)
99 {
100         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101         int ret = 0;
102         struct page *p;
103         size_t size;
104         int offset = first_offset;
105
106         size = sg->length - offset;
107         offset += sg->offset;
108
109         ctx->in_tcp_sendpages = true;
110         while (1) {
111                 if (sg_is_last(sg))
112                         sendpage_flags = flags;
113
114                 /* is sending application-limited? */
115                 tcp_rate_check_app_limited(sk);
116                 p = sg_page(sg);
117 retry:
118                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119
120                 if (ret != size) {
121                         if (ret > 0) {
122                                 offset += ret;
123                                 size -= ret;
124                                 goto retry;
125                         }
126
127                         offset -= sg->offset;
128                         ctx->partially_sent_offset = offset;
129                         ctx->partially_sent_record = (void *)sg;
130                         ctx->in_tcp_sendpages = false;
131                         return ret;
132                 }
133
134                 put_page(p);
135                 sk_mem_uncharge(sk, sg->length);
136                 sg = sg_next(sg);
137                 if (!sg)
138                         break;
139
140                 offset = sg->offset;
141                 size = sg->length;
142         }
143
144         clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145         ctx->in_tcp_sendpages = false;
146         ctx->sk_write_space(sk);
147
148         return 0;
149 }
150
151 static int tls_handle_open_record(struct sock *sk, int flags)
152 {
153         struct tls_context *ctx = tls_get_ctx(sk);
154
155         if (tls_is_pending_open_record(ctx))
156                 return ctx->push_pending_record(sk, flags);
157
158         return 0;
159 }
160
161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
162                       unsigned char *record_type)
163 {
164         struct cmsghdr *cmsg;
165         int rc = -EINVAL;
166
167         for_each_cmsghdr(cmsg, msg) {
168                 if (!CMSG_OK(msg, cmsg))
169                         return -EINVAL;
170                 if (cmsg->cmsg_level != SOL_TLS)
171                         continue;
172
173                 switch (cmsg->cmsg_type) {
174                 case TLS_SET_RECORD_TYPE:
175                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
176                                 return -EINVAL;
177
178                         if (msg->msg_flags & MSG_MORE)
179                                 return -EINVAL;
180
181                         rc = tls_handle_open_record(sk, msg->msg_flags);
182                         if (rc)
183                                 return rc;
184
185                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
186                         rc = 0;
187                         break;
188                 default:
189                         return -EINVAL;
190                 }
191         }
192
193         return rc;
194 }
195
196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
197                                    int flags, long *timeo)
198 {
199         struct scatterlist *sg;
200         u16 offset;
201
202         if (!tls_is_partially_sent_record(ctx))
203                 return ctx->push_pending_record(sk, flags);
204
205         sg = ctx->partially_sent_record;
206         offset = ctx->partially_sent_offset;
207
208         ctx->partially_sent_record = NULL;
209         return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
212 static void tls_write_space(struct sock *sk)
213 {
214         struct tls_context *ctx = tls_get_ctx(sk);
215
216         /* If in_tcp_sendpages call lower protocol write space handler
217          * to ensure we wake up any waiting operations there. For example
218          * if do_tcp_sendpages where to call sk_wait_event.
219          */
220         if (ctx->in_tcp_sendpages) {
221                 ctx->sk_write_space(sk);
222                 return;
223         }
224
225         if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
226                 gfp_t sk_allocation = sk->sk_allocation;
227                 int rc;
228                 long timeo = 0;
229
230                 sk->sk_allocation = GFP_ATOMIC;
231                 rc = tls_push_pending_closed_record(sk, ctx,
232                                                     MSG_DONTWAIT |
233                                                     MSG_NOSIGNAL,
234                                                     &timeo);
235                 sk->sk_allocation = sk_allocation;
236
237                 if (rc < 0)
238                         return;
239         }
240
241         ctx->sk_write_space(sk);
242 }
243
244 void tls_ctx_free(struct tls_context *ctx)
245 {
246         if (!ctx)
247                 return;
248
249         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
250         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
251         kfree(ctx);
252 }
253
254 static void tls_sk_proto_close(struct sock *sk, long timeout)
255 {
256         struct tls_context *ctx = tls_get_ctx(sk);
257         long timeo = sock_sndtimeo(sk, 0);
258         void (*sk_proto_close)(struct sock *sk, long timeout);
259         bool free_ctx = false;
260
261         lock_sock(sk);
262         sk_proto_close = ctx->sk_proto_close;
263
264         if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
265             (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
266                 free_ctx = true;
267                 goto skip_tx_cleanup;
268         }
269
270         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
271                 tls_handle_open_record(sk, 0);
272
273         if (ctx->partially_sent_record) {
274                 struct scatterlist *sg = ctx->partially_sent_record;
275
276                 while (1) {
277                         put_page(sg_page(sg));
278                         sk_mem_uncharge(sk, sg->length);
279
280                         if (sg_is_last(sg))
281                                 break;
282                         sg++;
283                 }
284         }
285
286         /* We need these for tls_sw_fallback handling of other packets */
287         if (ctx->tx_conf == TLS_SW) {
288                 kfree(ctx->tx.rec_seq);
289                 kfree(ctx->tx.iv);
290                 tls_sw_free_resources_tx(sk);
291         }
292
293         if (ctx->rx_conf == TLS_SW)
294                 tls_sw_free_resources_rx(sk);
295
296 #ifdef CONFIG_TLS_DEVICE
297         if (ctx->rx_conf == TLS_HW)
298                 tls_device_offload_cleanup_rx(sk);
299
300         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
301 #else
302         {
303 #endif
304                 if (sk->sk_write_space == tls_write_space)
305                         sk->sk_write_space = ctx->sk_write_space;
306                 tls_ctx_free(ctx);
307                 ctx = NULL;
308         }
309
310 skip_tx_cleanup:
311         release_sock(sk);
312         sk_proto_close(sk, timeout);
313         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
314          * for sk->sk_prot->unhash [tls_hw_unhash]
315          */
316         if (free_ctx)
317                 tls_ctx_free(ctx);
318 }
319
320 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
321                                 int __user *optlen)
322 {
323         int rc = 0;
324         struct tls_context *ctx = tls_get_ctx(sk);
325         struct tls_crypto_info *crypto_info;
326         int len;
327
328         if (get_user(len, optlen))
329                 return -EFAULT;
330
331         if (!optval || (len < sizeof(*crypto_info))) {
332                 rc = -EINVAL;
333                 goto out;
334         }
335
336         if (!ctx) {
337                 rc = -EBUSY;
338                 goto out;
339         }
340
341         /* get user crypto info */
342         crypto_info = &ctx->crypto_send.info;
343
344         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
345                 rc = -EBUSY;
346                 goto out;
347         }
348
349         if (len == sizeof(*crypto_info)) {
350                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
351                         rc = -EFAULT;
352                 goto out;
353         }
354
355         switch (crypto_info->cipher_type) {
356         case TLS_CIPHER_AES_GCM_128: {
357                 struct tls12_crypto_info_aes_gcm_128 *
358                   crypto_info_aes_gcm_128 =
359                   container_of(crypto_info,
360                                struct tls12_crypto_info_aes_gcm_128,
361                                info);
362
363                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
364                         rc = -EINVAL;
365                         goto out;
366                 }
367                 lock_sock(sk);
368                 memcpy(crypto_info_aes_gcm_128->iv,
369                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
370                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
371                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
372                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
373                 release_sock(sk);
374                 if (copy_to_user(optval,
375                                  crypto_info_aes_gcm_128,
376                                  sizeof(*crypto_info_aes_gcm_128)))
377                         rc = -EFAULT;
378                 break;
379         }
380         default:
381                 rc = -EINVAL;
382         }
383
384 out:
385         return rc;
386 }
387
388 static int do_tls_getsockopt(struct sock *sk, int optname,
389                              char __user *optval, int __user *optlen)
390 {
391         int rc = 0;
392
393         switch (optname) {
394         case TLS_TX:
395                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
396                 break;
397         default:
398                 rc = -ENOPROTOOPT;
399                 break;
400         }
401         return rc;
402 }
403
404 static int tls_getsockopt(struct sock *sk, int level, int optname,
405                           char __user *optval, int __user *optlen)
406 {
407         struct tls_context *ctx = tls_get_ctx(sk);
408
409         if (level != SOL_TLS)
410                 return ctx->getsockopt(sk, level, optname, optval, optlen);
411
412         return do_tls_getsockopt(sk, optname, optval, optlen);
413 }
414
415 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
416                                   unsigned int optlen, int tx)
417 {
418         struct tls_crypto_info *crypto_info;
419         struct tls_context *ctx = tls_get_ctx(sk);
420         int rc = 0;
421         int conf;
422
423         if (!optval || (optlen < sizeof(*crypto_info))) {
424                 rc = -EINVAL;
425                 goto out;
426         }
427
428         if (tx)
429                 crypto_info = &ctx->crypto_send.info;
430         else
431                 crypto_info = &ctx->crypto_recv.info;
432
433         /* Currently we don't support set crypto info more than one time */
434         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
435                 rc = -EBUSY;
436                 goto out;
437         }
438
439         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
440         if (rc) {
441                 rc = -EFAULT;
442                 goto err_crypto_info;
443         }
444
445         /* check version */
446         if (crypto_info->version != TLS_1_2_VERSION) {
447                 rc = -ENOTSUPP;
448                 goto err_crypto_info;
449         }
450
451         switch (crypto_info->cipher_type) {
452         case TLS_CIPHER_AES_GCM_128: {
453                 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
454                         rc = -EINVAL;
455                         goto err_crypto_info;
456                 }
457                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
458                                     optlen - sizeof(*crypto_info));
459                 if (rc) {
460                         rc = -EFAULT;
461                         goto err_crypto_info;
462                 }
463                 break;
464         }
465         default:
466                 rc = -EINVAL;
467                 goto err_crypto_info;
468         }
469
470         if (tx) {
471 #ifdef CONFIG_TLS_DEVICE
472                 rc = tls_set_device_offload(sk, ctx);
473                 conf = TLS_HW;
474                 if (rc) {
475 #else
476                 {
477 #endif
478                         rc = tls_set_sw_offload(sk, ctx, 1);
479                         conf = TLS_SW;
480                 }
481         } else {
482 #ifdef CONFIG_TLS_DEVICE
483                 rc = tls_set_device_offload_rx(sk, ctx);
484                 conf = TLS_HW;
485                 if (rc) {
486 #else
487                 {
488 #endif
489                         rc = tls_set_sw_offload(sk, ctx, 0);
490                         conf = TLS_SW;
491                 }
492         }
493
494         if (rc)
495                 goto err_crypto_info;
496
497         if (tx)
498                 ctx->tx_conf = conf;
499         else
500                 ctx->rx_conf = conf;
501         update_sk_prot(sk, ctx);
502         if (tx) {
503                 ctx->sk_write_space = sk->sk_write_space;
504                 sk->sk_write_space = tls_write_space;
505         } else {
506                 sk->sk_socket->ops = &tls_sw_proto_ops;
507         }
508         goto out;
509
510 err_crypto_info:
511         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
512 out:
513         return rc;
514 }
515
516 static int do_tls_setsockopt(struct sock *sk, int optname,
517                              char __user *optval, unsigned int optlen)
518 {
519         int rc = 0;
520
521         switch (optname) {
522         case TLS_TX:
523         case TLS_RX:
524                 lock_sock(sk);
525                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
526                                             optname == TLS_TX);
527                 release_sock(sk);
528                 break;
529         default:
530                 rc = -ENOPROTOOPT;
531                 break;
532         }
533         return rc;
534 }
535
536 static int tls_setsockopt(struct sock *sk, int level, int optname,
537                           char __user *optval, unsigned int optlen)
538 {
539         struct tls_context *ctx = tls_get_ctx(sk);
540
541         if (level != SOL_TLS)
542                 return ctx->setsockopt(sk, level, optname, optval, optlen);
543
544         return do_tls_setsockopt(sk, optname, optval, optlen);
545 }
546
547 static struct tls_context *create_ctx(struct sock *sk)
548 {
549         struct inet_connection_sock *icsk = inet_csk(sk);
550         struct tls_context *ctx;
551
552         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
553         if (!ctx)
554                 return NULL;
555
556         icsk->icsk_ulp_data = ctx;
557         ctx->setsockopt = sk->sk_prot->setsockopt;
558         ctx->getsockopt = sk->sk_prot->getsockopt;
559         ctx->sk_proto_close = sk->sk_prot->close;
560         return ctx;
561 }
562
563 static int tls_hw_prot(struct sock *sk)
564 {
565         struct tls_context *ctx;
566         struct tls_device *dev;
567         int rc = 0;
568
569         mutex_lock(&device_mutex);
570         list_for_each_entry(dev, &device_list, dev_list) {
571                 if (dev->feature && dev->feature(dev)) {
572                         ctx = create_ctx(sk);
573                         if (!ctx)
574                                 goto out;
575
576                         ctx->hash = sk->sk_prot->hash;
577                         ctx->unhash = sk->sk_prot->unhash;
578                         ctx->sk_proto_close = sk->sk_prot->close;
579                         ctx->rx_conf = TLS_HW_RECORD;
580                         ctx->tx_conf = TLS_HW_RECORD;
581                         update_sk_prot(sk, ctx);
582                         rc = 1;
583                         break;
584                 }
585         }
586 out:
587         mutex_unlock(&device_mutex);
588         return rc;
589 }
590
591 static void tls_hw_unhash(struct sock *sk)
592 {
593         struct tls_context *ctx = tls_get_ctx(sk);
594         struct tls_device *dev;
595
596         mutex_lock(&device_mutex);
597         list_for_each_entry(dev, &device_list, dev_list) {
598                 if (dev->unhash)
599                         dev->unhash(dev, sk);
600         }
601         mutex_unlock(&device_mutex);
602         ctx->unhash(sk);
603 }
604
605 static int tls_hw_hash(struct sock *sk)
606 {
607         struct tls_context *ctx = tls_get_ctx(sk);
608         struct tls_device *dev;
609         int err;
610
611         err = ctx->hash(sk);
612         mutex_lock(&device_mutex);
613         list_for_each_entry(dev, &device_list, dev_list) {
614                 if (dev->hash)
615                         err |= dev->hash(dev, sk);
616         }
617         mutex_unlock(&device_mutex);
618
619         if (err)
620                 tls_hw_unhash(sk);
621         return err;
622 }
623
624 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
625                          struct proto *base)
626 {
627         prot[TLS_BASE][TLS_BASE] = *base;
628         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
629         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
630         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
631
632         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
633         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
634         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
635
636         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
637         prot[TLS_BASE][TLS_SW].recvmsg          = tls_sw_recvmsg;
638         prot[TLS_BASE][TLS_SW].close            = tls_sk_proto_close;
639
640         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
641         prot[TLS_SW][TLS_SW].recvmsg    = tls_sw_recvmsg;
642         prot[TLS_SW][TLS_SW].close      = tls_sk_proto_close;
643
644 #ifdef CONFIG_TLS_DEVICE
645         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
646         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
647         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
648
649         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
650         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
651         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
652
653         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
654
655         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
656
657         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
658 #endif
659
660         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
661         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
662         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
663         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
664 }
665
666 static int tls_init(struct sock *sk)
667 {
668         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
669         struct tls_context *ctx;
670         int rc = 0;
671
672         if (tls_hw_prot(sk))
673                 goto out;
674
675         /* The TLS ulp is currently supported only for TCP sockets
676          * in ESTABLISHED state.
677          * Supporting sockets in LISTEN state will require us
678          * to modify the accept implementation to clone rather then
679          * share the ulp context.
680          */
681         if (sk->sk_state != TCP_ESTABLISHED)
682                 return -ENOTSUPP;
683
684         /* allocate tls context */
685         ctx = create_ctx(sk);
686         if (!ctx) {
687                 rc = -ENOMEM;
688                 goto out;
689         }
690
691         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
692         if (ip_ver == TLSV6 &&
693             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
694                 mutex_lock(&tcpv6_prot_mutex);
695                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
696                         build_protos(tls_prots[TLSV6], sk->sk_prot);
697                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
698                 }
699                 mutex_unlock(&tcpv6_prot_mutex);
700         }
701
702         ctx->tx_conf = TLS_BASE;
703         ctx->rx_conf = TLS_BASE;
704         update_sk_prot(sk, ctx);
705 out:
706         return rc;
707 }
708
709 void tls_register_device(struct tls_device *device)
710 {
711         mutex_lock(&device_mutex);
712         list_add_tail(&device->dev_list, &device_list);
713         mutex_unlock(&device_mutex);
714 }
715 EXPORT_SYMBOL(tls_register_device);
716
717 void tls_unregister_device(struct tls_device *device)
718 {
719         mutex_lock(&device_mutex);
720         list_del(&device->dev_list);
721         mutex_unlock(&device_mutex);
722 }
723 EXPORT_SYMBOL(tls_unregister_device);
724
725 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
726         .name                   = "tls",
727         .uid                    = TCP_ULP_TLS,
728         .user_visible           = true,
729         .owner                  = THIS_MODULE,
730         .init                   = tls_init,
731 };
732
733 static int __init tls_register(void)
734 {
735         build_protos(tls_prots[TLSV4], &tcp_prot);
736
737         tls_sw_proto_ops = inet_stream_ops;
738         tls_sw_proto_ops.poll = tls_sw_poll;
739         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
740
741 #ifdef CONFIG_TLS_DEVICE
742         tls_device_init();
743 #endif
744         tcp_register_ulp(&tcp_tls_ulp_ops);
745
746         return 0;
747 }
748
749 static void __exit tls_unregister(void)
750 {
751         tcp_unregister_ulp(&tcp_tls_ulp_ops);
752 #ifdef CONFIG_TLS_DEVICE
753         tls_device_cleanup();
754 #endif
755 }
756
757 module_init(tls_register);
758 module_exit(tls_unregister);