GNU Linux-libre 5.10.217-gnu1
[releases.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54         TLSV4,
55         TLSV6,
56         TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          const struct proto *base);
67
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         WRITE_ONCE(sk->sk_prot,
73                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74         WRITE_ONCE(sk->sk_socket->ops,
75                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
76 }
77
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80         int rc = 0;
81         DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83         add_wait_queue(sk_sleep(sk), &wait);
84         while (1) {
85                 if (!*timeo) {
86                         rc = -EAGAIN;
87                         break;
88                 }
89
90                 if (signal_pending(current)) {
91                         rc = sock_intr_errno(*timeo);
92                         break;
93                 }
94
95                 if (sk_wait_event(sk, timeo,
96                                   !READ_ONCE(sk->sk_write_pending), &wait))
97                         break;
98         }
99         remove_wait_queue(sk_sleep(sk), &wait);
100         return rc;
101 }
102
103 int tls_push_sg(struct sock *sk,
104                 struct tls_context *ctx,
105                 struct scatterlist *sg,
106                 u16 first_offset,
107                 int flags)
108 {
109         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
110         int ret = 0;
111         struct page *p;
112         size_t size;
113         int offset = first_offset;
114
115         size = sg->length - offset;
116         offset += sg->offset;
117
118         ctx->in_tcp_sendpages = true;
119         while (1) {
120                 if (sg_is_last(sg))
121                         sendpage_flags = flags;
122
123                 /* is sending application-limited? */
124                 tcp_rate_check_app_limited(sk);
125                 p = sg_page(sg);
126 retry:
127                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
128
129                 if (ret != size) {
130                         if (ret > 0) {
131                                 offset += ret;
132                                 size -= ret;
133                                 goto retry;
134                         }
135
136                         offset -= sg->offset;
137                         ctx->partially_sent_offset = offset;
138                         ctx->partially_sent_record = (void *)sg;
139                         ctx->in_tcp_sendpages = false;
140                         return ret;
141                 }
142
143                 put_page(p);
144                 sk_mem_uncharge(sk, sg->length);
145                 sg = sg_next(sg);
146                 if (!sg)
147                         break;
148
149                 offset = sg->offset;
150                 size = sg->length;
151         }
152
153         ctx->in_tcp_sendpages = false;
154
155         return 0;
156 }
157
158 static int tls_handle_open_record(struct sock *sk, int flags)
159 {
160         struct tls_context *ctx = tls_get_ctx(sk);
161
162         if (tls_is_pending_open_record(ctx))
163                 return ctx->push_pending_record(sk, flags);
164
165         return 0;
166 }
167
168 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
169                       unsigned char *record_type)
170 {
171         struct cmsghdr *cmsg;
172         int rc = -EINVAL;
173
174         for_each_cmsghdr(cmsg, msg) {
175                 if (!CMSG_OK(msg, cmsg))
176                         return -EINVAL;
177                 if (cmsg->cmsg_level != SOL_TLS)
178                         continue;
179
180                 switch (cmsg->cmsg_type) {
181                 case TLS_SET_RECORD_TYPE:
182                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
183                                 return -EINVAL;
184
185                         if (msg->msg_flags & MSG_MORE)
186                                 return -EINVAL;
187
188                         rc = tls_handle_open_record(sk, msg->msg_flags);
189                         if (rc)
190                                 return rc;
191
192                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
193                         rc = 0;
194                         break;
195                 default:
196                         return -EINVAL;
197                 }
198         }
199
200         return rc;
201 }
202
203 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
204                             int flags)
205 {
206         struct scatterlist *sg;
207         u16 offset;
208
209         sg = ctx->partially_sent_record;
210         offset = ctx->partially_sent_offset;
211
212         ctx->partially_sent_record = NULL;
213         return tls_push_sg(sk, ctx, sg, offset, flags);
214 }
215
216 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
217 {
218         struct scatterlist *sg;
219
220         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
221                 put_page(sg_page(sg));
222                 sk_mem_uncharge(sk, sg->length);
223         }
224         ctx->partially_sent_record = NULL;
225 }
226
227 static void tls_write_space(struct sock *sk)
228 {
229         struct tls_context *ctx = tls_get_ctx(sk);
230
231         /* If in_tcp_sendpages call lower protocol write space handler
232          * to ensure we wake up any waiting operations there. For example
233          * if do_tcp_sendpages where to call sk_wait_event.
234          */
235         if (ctx->in_tcp_sendpages) {
236                 ctx->sk_write_space(sk);
237                 return;
238         }
239
240 #ifdef CONFIG_TLS_DEVICE
241         if (ctx->tx_conf == TLS_HW)
242                 tls_device_write_space(sk, ctx);
243         else
244 #endif
245                 tls_sw_write_space(sk, ctx);
246
247         ctx->sk_write_space(sk);
248 }
249
250 /**
251  * tls_ctx_free() - free TLS ULP context
252  * @sk:  socket to with @ctx is attached
253  * @ctx: TLS context structure
254  *
255  * Free TLS context. If @sk is %NULL caller guarantees that the socket
256  * to which @ctx was attached has no outstanding references.
257  */
258 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
259 {
260         if (!ctx)
261                 return;
262
263         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
264         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
265         mutex_destroy(&ctx->tx_lock);
266
267         if (sk)
268                 kfree_rcu(ctx, rcu);
269         else
270                 kfree(ctx);
271 }
272
273 static void tls_sk_proto_cleanup(struct sock *sk,
274                                  struct tls_context *ctx, long timeo)
275 {
276         if (unlikely(sk->sk_write_pending) &&
277             !wait_on_pending_writer(sk, &timeo))
278                 tls_handle_open_record(sk, 0);
279
280         /* We need these for tls_sw_fallback handling of other packets */
281         if (ctx->tx_conf == TLS_SW) {
282                 kfree(ctx->tx.rec_seq);
283                 kfree(ctx->tx.iv);
284                 tls_sw_release_resources_tx(sk);
285                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
286         } else if (ctx->tx_conf == TLS_HW) {
287                 tls_device_free_resources_tx(sk);
288                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
289         }
290
291         if (ctx->rx_conf == TLS_SW) {
292                 tls_sw_release_resources_rx(sk);
293                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
294         } else if (ctx->rx_conf == TLS_HW) {
295                 tls_device_offload_cleanup_rx(sk);
296                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
297         }
298 }
299
300 static void tls_sk_proto_close(struct sock *sk, long timeout)
301 {
302         struct inet_connection_sock *icsk = inet_csk(sk);
303         struct tls_context *ctx = tls_get_ctx(sk);
304         long timeo = sock_sndtimeo(sk, 0);
305         bool free_ctx;
306
307         if (ctx->tx_conf == TLS_SW)
308                 tls_sw_cancel_work_tx(ctx);
309
310         lock_sock(sk);
311         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312
313         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314                 tls_sk_proto_cleanup(sk, ctx, timeo);
315
316         write_lock_bh(&sk->sk_callback_lock);
317         if (free_ctx)
318                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
320         if (sk->sk_write_space == tls_write_space)
321                 sk->sk_write_space = ctx->sk_write_space;
322         write_unlock_bh(&sk->sk_callback_lock);
323         release_sock(sk);
324         if (ctx->tx_conf == TLS_SW)
325                 tls_sw_free_ctx_tx(ctx);
326         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327                 tls_sw_strparser_done(ctx);
328         if (ctx->rx_conf == TLS_SW)
329                 tls_sw_free_ctx_rx(ctx);
330         ctx->sk_proto->close(sk, timeout);
331
332         if (free_ctx)
333                 tls_ctx_free(sk, ctx);
334 }
335
336 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
337                                   int __user *optlen, int tx)
338 {
339         int rc = 0;
340         struct tls_context *ctx = tls_get_ctx(sk);
341         struct tls_crypto_info *crypto_info;
342         struct cipher_context *cctx;
343         int len;
344
345         if (get_user(len, optlen))
346                 return -EFAULT;
347
348         if (!optval || (len < sizeof(*crypto_info))) {
349                 rc = -EINVAL;
350                 goto out;
351         }
352
353         if (!ctx) {
354                 rc = -EBUSY;
355                 goto out;
356         }
357
358         /* get user crypto info */
359         if (tx) {
360                 crypto_info = &ctx->crypto_send.info;
361                 cctx = &ctx->tx;
362         } else {
363                 crypto_info = &ctx->crypto_recv.info;
364                 cctx = &ctx->rx;
365         }
366
367         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
368                 rc = -EBUSY;
369                 goto out;
370         }
371
372         if (len == sizeof(*crypto_info)) {
373                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
374                         rc = -EFAULT;
375                 goto out;
376         }
377
378         switch (crypto_info->cipher_type) {
379         case TLS_CIPHER_AES_GCM_128: {
380                 struct tls12_crypto_info_aes_gcm_128 *
381                   crypto_info_aes_gcm_128 =
382                   container_of(crypto_info,
383                                struct tls12_crypto_info_aes_gcm_128,
384                                info);
385
386                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
387                         rc = -EINVAL;
388                         goto out;
389                 }
390                 memcpy(crypto_info_aes_gcm_128->iv,
391                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
392                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
393                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
394                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
395                 if (copy_to_user(optval,
396                                  crypto_info_aes_gcm_128,
397                                  sizeof(*crypto_info_aes_gcm_128)))
398                         rc = -EFAULT;
399                 break;
400         }
401         case TLS_CIPHER_AES_GCM_256: {
402                 struct tls12_crypto_info_aes_gcm_256 *
403                   crypto_info_aes_gcm_256 =
404                   container_of(crypto_info,
405                                struct tls12_crypto_info_aes_gcm_256,
406                                info);
407
408                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
409                         rc = -EINVAL;
410                         goto out;
411                 }
412                 memcpy(crypto_info_aes_gcm_256->iv,
413                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
415                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
416                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
417                 if (copy_to_user(optval,
418                                  crypto_info_aes_gcm_256,
419                                  sizeof(*crypto_info_aes_gcm_256)))
420                         rc = -EFAULT;
421                 break;
422         }
423         default:
424                 rc = -EINVAL;
425         }
426
427 out:
428         return rc;
429 }
430
431 static int do_tls_getsockopt(struct sock *sk, int optname,
432                              char __user *optval, int __user *optlen)
433 {
434         int rc = 0;
435
436         lock_sock(sk);
437
438         switch (optname) {
439         case TLS_TX:
440         case TLS_RX:
441                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
442                                             optname == TLS_TX);
443                 break;
444         default:
445                 rc = -ENOPROTOOPT;
446                 break;
447         }
448
449         release_sock(sk);
450
451         return rc;
452 }
453
454 static int tls_getsockopt(struct sock *sk, int level, int optname,
455                           char __user *optval, int __user *optlen)
456 {
457         struct tls_context *ctx = tls_get_ctx(sk);
458
459         if (level != SOL_TLS)
460                 return ctx->sk_proto->getsockopt(sk, level,
461                                                  optname, optval, optlen);
462
463         return do_tls_getsockopt(sk, optname, optval, optlen);
464 }
465
466 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
467                                   unsigned int optlen, int tx)
468 {
469         struct tls_crypto_info *crypto_info;
470         struct tls_crypto_info *alt_crypto_info;
471         struct tls_context *ctx = tls_get_ctx(sk);
472         size_t optsize;
473         int rc = 0;
474         int conf;
475
476         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
477                 rc = -EINVAL;
478                 goto out;
479         }
480
481         if (tx) {
482                 crypto_info = &ctx->crypto_send.info;
483                 alt_crypto_info = &ctx->crypto_recv.info;
484         } else {
485                 crypto_info = &ctx->crypto_recv.info;
486                 alt_crypto_info = &ctx->crypto_send.info;
487         }
488
489         /* Currently we don't support set crypto info more than one time */
490         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
491                 rc = -EBUSY;
492                 goto out;
493         }
494
495         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
496         if (rc) {
497                 rc = -EFAULT;
498                 goto err_crypto_info;
499         }
500
501         /* check version */
502         if (crypto_info->version != TLS_1_2_VERSION &&
503             crypto_info->version != TLS_1_3_VERSION) {
504                 rc = -EINVAL;
505                 goto err_crypto_info;
506         }
507
508         /* Ensure that TLS version and ciphers are same in both directions */
509         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
510                 if (alt_crypto_info->version != crypto_info->version ||
511                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
512                         rc = -EINVAL;
513                         goto err_crypto_info;
514                 }
515         }
516
517         switch (crypto_info->cipher_type) {
518         case TLS_CIPHER_AES_GCM_128:
519                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
520                 break;
521         case TLS_CIPHER_AES_GCM_256: {
522                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
523                 break;
524         }
525         case TLS_CIPHER_AES_CCM_128:
526                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
527                 break;
528         default:
529                 rc = -EINVAL;
530                 goto err_crypto_info;
531         }
532
533         if (optlen != optsize) {
534                 rc = -EINVAL;
535                 goto err_crypto_info;
536         }
537
538         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
539                                       sizeof(*crypto_info),
540                                       optlen - sizeof(*crypto_info));
541         if (rc) {
542                 rc = -EFAULT;
543                 goto err_crypto_info;
544         }
545
546         if (tx) {
547                 rc = tls_set_device_offload(sk, ctx);
548                 conf = TLS_HW;
549                 if (!rc) {
550                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
551                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
552                 } else {
553                         rc = tls_set_sw_offload(sk, ctx, 1);
554                         if (rc)
555                                 goto err_crypto_info;
556                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
557                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
558                         conf = TLS_SW;
559                 }
560         } else {
561                 rc = tls_set_device_offload_rx(sk, ctx);
562                 conf = TLS_HW;
563                 if (!rc) {
564                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
565                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
566                 } else {
567                         rc = tls_set_sw_offload(sk, ctx, 0);
568                         if (rc)
569                                 goto err_crypto_info;
570                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
571                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
572                         conf = TLS_SW;
573                 }
574                 tls_sw_strparser_arm(sk, ctx);
575         }
576
577         if (tx)
578                 ctx->tx_conf = conf;
579         else
580                 ctx->rx_conf = conf;
581         update_sk_prot(sk, ctx);
582         if (tx) {
583                 ctx->sk_write_space = sk->sk_write_space;
584                 sk->sk_write_space = tls_write_space;
585         }
586         goto out;
587
588 err_crypto_info:
589         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
590 out:
591         return rc;
592 }
593
594 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
595                              unsigned int optlen)
596 {
597         int rc = 0;
598
599         switch (optname) {
600         case TLS_TX:
601         case TLS_RX:
602                 lock_sock(sk);
603                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
604                                             optname == TLS_TX);
605                 release_sock(sk);
606                 break;
607         default:
608                 rc = -ENOPROTOOPT;
609                 break;
610         }
611         return rc;
612 }
613
614 static int tls_setsockopt(struct sock *sk, int level, int optname,
615                           sockptr_t optval, unsigned int optlen)
616 {
617         struct tls_context *ctx = tls_get_ctx(sk);
618
619         if (level != SOL_TLS)
620                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
621                                                  optlen);
622
623         return do_tls_setsockopt(sk, optname, optval, optlen);
624 }
625
626 struct tls_context *tls_ctx_create(struct sock *sk)
627 {
628         struct inet_connection_sock *icsk = inet_csk(sk);
629         struct tls_context *ctx;
630
631         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
632         if (!ctx)
633                 return NULL;
634
635         mutex_init(&ctx->tx_lock);
636         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
637         ctx->sk_proto = READ_ONCE(sk->sk_prot);
638         ctx->sk = sk;
639         return ctx;
640 }
641
642 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
643                             const struct proto_ops *base)
644 {
645         ops[TLS_BASE][TLS_BASE] = *base;
646
647         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
648         ops[TLS_SW  ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
649
650         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
651         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
652
653         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
654         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
655
656 #ifdef CONFIG_TLS_DEVICE
657         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
658         ops[TLS_HW  ][TLS_BASE].sendpage_locked = NULL;
659
660         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
661         ops[TLS_HW  ][TLS_SW  ].sendpage_locked = NULL;
662
663         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
664
665         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
666
667         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
668         ops[TLS_HW  ][TLS_HW  ].sendpage_locked = NULL;
669 #endif
670 #ifdef CONFIG_TLS_TOE
671         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
672 #endif
673 }
674
675 static void tls_build_proto(struct sock *sk)
676 {
677         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
678         struct proto *prot = READ_ONCE(sk->sk_prot);
679
680         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
681         if (ip_ver == TLSV6 &&
682             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
683                 mutex_lock(&tcpv6_prot_mutex);
684                 if (likely(prot != saved_tcpv6_prot)) {
685                         build_protos(tls_prots[TLSV6], prot);
686                         build_proto_ops(tls_proto_ops[TLSV6],
687                                         sk->sk_socket->ops);
688                         smp_store_release(&saved_tcpv6_prot, prot);
689                 }
690                 mutex_unlock(&tcpv6_prot_mutex);
691         }
692
693         if (ip_ver == TLSV4 &&
694             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
695                 mutex_lock(&tcpv4_prot_mutex);
696                 if (likely(prot != saved_tcpv4_prot)) {
697                         build_protos(tls_prots[TLSV4], prot);
698                         build_proto_ops(tls_proto_ops[TLSV4],
699                                         sk->sk_socket->ops);
700                         smp_store_release(&saved_tcpv4_prot, prot);
701                 }
702                 mutex_unlock(&tcpv4_prot_mutex);
703         }
704 }
705
706 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
707                          const struct proto *base)
708 {
709         prot[TLS_BASE][TLS_BASE] = *base;
710         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
711         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
712         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
713
714         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
715         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
716         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
717
718         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
719         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
720         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
721         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
722
723         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
724         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
725         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
726         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
727
728 #ifdef CONFIG_TLS_DEVICE
729         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
730         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
731         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
732
733         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
734         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
735         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
736
737         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
738
739         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
740
741         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
742 #endif
743 #ifdef CONFIG_TLS_TOE
744         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
745         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
746         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
747 #endif
748 }
749
750 static int tls_init(struct sock *sk)
751 {
752         struct tls_context *ctx;
753         int rc = 0;
754
755         tls_build_proto(sk);
756
757 #ifdef CONFIG_TLS_TOE
758         if (tls_toe_bypass(sk))
759                 return 0;
760 #endif
761
762         /* The TLS ulp is currently supported only for TCP sockets
763          * in ESTABLISHED state.
764          * Supporting sockets in LISTEN state will require us
765          * to modify the accept implementation to clone rather then
766          * share the ulp context.
767          */
768         if (sk->sk_state != TCP_ESTABLISHED)
769                 return -ENOTCONN;
770
771         /* allocate tls context */
772         write_lock_bh(&sk->sk_callback_lock);
773         ctx = tls_ctx_create(sk);
774         if (!ctx) {
775                 rc = -ENOMEM;
776                 goto out;
777         }
778
779         ctx->tx_conf = TLS_BASE;
780         ctx->rx_conf = TLS_BASE;
781         update_sk_prot(sk, ctx);
782 out:
783         write_unlock_bh(&sk->sk_callback_lock);
784         return rc;
785 }
786
787 static void tls_update(struct sock *sk, struct proto *p,
788                        void (*write_space)(struct sock *sk))
789 {
790         struct tls_context *ctx;
791
792         ctx = tls_get_ctx(sk);
793         if (likely(ctx)) {
794                 ctx->sk_write_space = write_space;
795                 ctx->sk_proto = p;
796         } else {
797                 /* Pairs with lockless read in sk_clone_lock(). */
798                 WRITE_ONCE(sk->sk_prot, p);
799                 sk->sk_write_space = write_space;
800         }
801 }
802
803 static int tls_get_info(struct sock *sk, struct sk_buff *skb)
804 {
805         u16 version, cipher_type;
806         struct tls_context *ctx;
807         struct nlattr *start;
808         int err;
809
810         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
811         if (!start)
812                 return -EMSGSIZE;
813
814         rcu_read_lock();
815         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
816         if (!ctx) {
817                 err = 0;
818                 goto nla_failure;
819         }
820         version = ctx->prot_info.version;
821         if (version) {
822                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
823                 if (err)
824                         goto nla_failure;
825         }
826         cipher_type = ctx->prot_info.cipher_type;
827         if (cipher_type) {
828                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
829                 if (err)
830                         goto nla_failure;
831         }
832         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
833         if (err)
834                 goto nla_failure;
835
836         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
837         if (err)
838                 goto nla_failure;
839
840         rcu_read_unlock();
841         nla_nest_end(skb, start);
842         return 0;
843
844 nla_failure:
845         rcu_read_unlock();
846         nla_nest_cancel(skb, start);
847         return err;
848 }
849
850 static size_t tls_get_info_size(const struct sock *sk)
851 {
852         size_t size = 0;
853
854         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
855                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
856                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
857                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
858                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
859                 0;
860
861         return size;
862 }
863
864 static int __net_init tls_init_net(struct net *net)
865 {
866         int err;
867
868         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
869         if (!net->mib.tls_statistics)
870                 return -ENOMEM;
871
872         err = tls_proc_init(net);
873         if (err)
874                 goto err_free_stats;
875
876         return 0;
877 err_free_stats:
878         free_percpu(net->mib.tls_statistics);
879         return err;
880 }
881
882 static void __net_exit tls_exit_net(struct net *net)
883 {
884         tls_proc_fini(net);
885         free_percpu(net->mib.tls_statistics);
886 }
887
888 static struct pernet_operations tls_proc_ops = {
889         .init = tls_init_net,
890         .exit = tls_exit_net,
891 };
892
893 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
894         .name                   = "tls",
895         .owner                  = THIS_MODULE,
896         .init                   = tls_init,
897         .update                 = tls_update,
898         .get_info               = tls_get_info,
899         .get_info_size          = tls_get_info_size,
900 };
901
902 static int __init tls_register(void)
903 {
904         int err;
905
906         err = register_pernet_subsys(&tls_proc_ops);
907         if (err)
908                 return err;
909
910         err = tls_device_init();
911         if (err) {
912                 unregister_pernet_subsys(&tls_proc_ops);
913                 return err;
914         }
915
916         tcp_register_ulp(&tcp_tls_ulp_ops);
917
918         return 0;
919 }
920
921 static void __exit tls_unregister(void)
922 {
923         tcp_unregister_ulp(&tcp_tls_ulp_ops);
924         tls_device_cleanup();
925         unregister_pernet_subsys(&tls_proc_ops);
926 }
927
928 module_init(tls_register);
929 module_exit(tls_unregister);