GNU Linux-libre 6.8.9-gnu
[releases.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "tls.h"
42 #include "trace.h"
43
44 /* device_offload_lock is used to synchronize tls_dev_add
45  * against NETDEV_DOWN notifications.
46  */
47 static DECLARE_RWSEM(device_offload_lock);
48
49 static struct workqueue_struct *destruct_wq __read_mostly;
50
51 static LIST_HEAD(tls_device_list);
52 static LIST_HEAD(tls_device_down_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54
55 static struct page *dummy_page;
56
57 static void tls_device_free_ctx(struct tls_context *ctx)
58 {
59         if (ctx->tx_conf == TLS_HW)
60                 kfree(tls_offload_ctx_tx(ctx));
61
62         if (ctx->rx_conf == TLS_HW)
63                 kfree(tls_offload_ctx_rx(ctx));
64
65         tls_ctx_free(NULL, ctx);
66 }
67
68 static void tls_device_tx_del_task(struct work_struct *work)
69 {
70         struct tls_offload_context_tx *offload_ctx =
71                 container_of(work, struct tls_offload_context_tx, destruct_work);
72         struct tls_context *ctx = offload_ctx->ctx;
73         struct net_device *netdev;
74
75         /* Safe, because this is the destroy flow, refcount is 0, so
76          * tls_device_down can't store this field in parallel.
77          */
78         netdev = rcu_dereference_protected(ctx->netdev,
79                                            !refcount_read(&ctx->refcount));
80
81         netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
82         dev_put(netdev);
83         ctx->netdev = NULL;
84         tls_device_free_ctx(ctx);
85 }
86
87 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
88 {
89         struct net_device *netdev;
90         unsigned long flags;
91         bool async_cleanup;
92
93         spin_lock_irqsave(&tls_device_lock, flags);
94         if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
95                 spin_unlock_irqrestore(&tls_device_lock, flags);
96                 return;
97         }
98
99         list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
100
101         /* Safe, because this is the destroy flow, refcount is 0, so
102          * tls_device_down can't store this field in parallel.
103          */
104         netdev = rcu_dereference_protected(ctx->netdev,
105                                            !refcount_read(&ctx->refcount));
106
107         async_cleanup = netdev && ctx->tx_conf == TLS_HW;
108         if (async_cleanup) {
109                 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
110
111                 /* queue_work inside the spinlock
112                  * to make sure tls_device_down waits for that work.
113                  */
114                 queue_work(destruct_wq, &offload_ctx->destruct_work);
115         }
116         spin_unlock_irqrestore(&tls_device_lock, flags);
117
118         if (!async_cleanup)
119                 tls_device_free_ctx(ctx);
120 }
121
122 /* We assume that the socket is already connected */
123 static struct net_device *get_netdev_for_sock(struct sock *sk)
124 {
125         struct dst_entry *dst = sk_dst_get(sk);
126         struct net_device *netdev = NULL;
127
128         if (likely(dst)) {
129                 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
130                 dev_hold(netdev);
131         }
132
133         dst_release(dst);
134
135         return netdev;
136 }
137
138 static void destroy_record(struct tls_record_info *record)
139 {
140         int i;
141
142         for (i = 0; i < record->num_frags; i++)
143                 __skb_frag_unref(&record->frags[i], false);
144         kfree(record);
145 }
146
147 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
148 {
149         struct tls_record_info *info, *temp;
150
151         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
152                 list_del(&info->list);
153                 destroy_record(info);
154         }
155
156         offload_ctx->retransmit_hint = NULL;
157 }
158
159 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
160 {
161         struct tls_context *tls_ctx = tls_get_ctx(sk);
162         struct tls_record_info *info, *temp;
163         struct tls_offload_context_tx *ctx;
164         u64 deleted_records = 0;
165         unsigned long flags;
166
167         if (!tls_ctx)
168                 return;
169
170         ctx = tls_offload_ctx_tx(tls_ctx);
171
172         spin_lock_irqsave(&ctx->lock, flags);
173         info = ctx->retransmit_hint;
174         if (info && !before(acked_seq, info->end_seq))
175                 ctx->retransmit_hint = NULL;
176
177         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
178                 if (before(acked_seq, info->end_seq))
179                         break;
180                 list_del(&info->list);
181
182                 destroy_record(info);
183                 deleted_records++;
184         }
185
186         ctx->unacked_record_sn += deleted_records;
187         spin_unlock_irqrestore(&ctx->lock, flags);
188 }
189
190 /* At this point, there should be no references on this
191  * socket and no in-flight SKBs associated with this
192  * socket, so it is safe to free all the resources.
193  */
194 void tls_device_sk_destruct(struct sock *sk)
195 {
196         struct tls_context *tls_ctx = tls_get_ctx(sk);
197         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
198
199         tls_ctx->sk_destruct(sk);
200
201         if (tls_ctx->tx_conf == TLS_HW) {
202                 if (ctx->open_record)
203                         destroy_record(ctx->open_record);
204                 delete_all_records(ctx);
205                 crypto_free_aead(ctx->aead_send);
206                 clean_acked_data_disable(inet_csk(sk));
207         }
208
209         tls_device_queue_ctx_destruction(tls_ctx);
210 }
211 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
212
213 void tls_device_free_resources_tx(struct sock *sk)
214 {
215         struct tls_context *tls_ctx = tls_get_ctx(sk);
216
217         tls_free_partial_record(sk, tls_ctx);
218 }
219
220 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
221 {
222         struct tls_context *tls_ctx = tls_get_ctx(sk);
223
224         trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
225         WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
226 }
227 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
228
229 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
230                                  u32 seq)
231 {
232         struct net_device *netdev;
233         struct sk_buff *skb;
234         int err = 0;
235         u8 *rcd_sn;
236
237         skb = tcp_write_queue_tail(sk);
238         if (skb)
239                 TCP_SKB_CB(skb)->eor = 1;
240
241         rcd_sn = tls_ctx->tx.rec_seq;
242
243         trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
244         down_read(&device_offload_lock);
245         netdev = rcu_dereference_protected(tls_ctx->netdev,
246                                            lockdep_is_held(&device_offload_lock));
247         if (netdev)
248                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
249                                                          rcd_sn,
250                                                          TLS_OFFLOAD_CTX_DIR_TX);
251         up_read(&device_offload_lock);
252         if (err)
253                 return;
254
255         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
256 }
257
258 static void tls_append_frag(struct tls_record_info *record,
259                             struct page_frag *pfrag,
260                             int size)
261 {
262         skb_frag_t *frag;
263
264         frag = &record->frags[record->num_frags - 1];
265         if (skb_frag_page(frag) == pfrag->page &&
266             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
267                 skb_frag_size_add(frag, size);
268         } else {
269                 ++frag;
270                 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
271                                         size);
272                 ++record->num_frags;
273                 get_page(pfrag->page);
274         }
275
276         pfrag->offset += size;
277         record->len += size;
278 }
279
280 static int tls_push_record(struct sock *sk,
281                            struct tls_context *ctx,
282                            struct tls_offload_context_tx *offload_ctx,
283                            struct tls_record_info *record,
284                            int flags)
285 {
286         struct tls_prot_info *prot = &ctx->prot_info;
287         struct tcp_sock *tp = tcp_sk(sk);
288         skb_frag_t *frag;
289         int i;
290
291         record->end_seq = tp->write_seq + record->len;
292         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
293         offload_ctx->open_record = NULL;
294
295         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
296                 tls_device_resync_tx(sk, ctx, tp->write_seq);
297
298         tls_advance_record_sn(sk, prot, &ctx->tx);
299
300         for (i = 0; i < record->num_frags; i++) {
301                 frag = &record->frags[i];
302                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
303                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
304                             skb_frag_size(frag), skb_frag_off(frag));
305                 sk_mem_charge(sk, skb_frag_size(frag));
306                 get_page(skb_frag_page(frag));
307         }
308         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
309
310         /* all ready, send */
311         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
312 }
313
314 static void tls_device_record_close(struct sock *sk,
315                                     struct tls_context *ctx,
316                                     struct tls_record_info *record,
317                                     struct page_frag *pfrag,
318                                     unsigned char record_type)
319 {
320         struct tls_prot_info *prot = &ctx->prot_info;
321         struct page_frag dummy_tag_frag;
322
323         /* append tag
324          * device will fill in the tag, we just need to append a placeholder
325          * use socket memory to improve coalescing (re-using a single buffer
326          * increases frag count)
327          * if we can't allocate memory now use the dummy page
328          */
329         if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
330             !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
331                 dummy_tag_frag.page = dummy_page;
332                 dummy_tag_frag.offset = 0;
333                 pfrag = &dummy_tag_frag;
334         }
335         tls_append_frag(record, pfrag, prot->tag_size);
336
337         /* fill prepend */
338         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
339                          record->len - prot->overhead_size,
340                          record_type);
341 }
342
343 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
344                                  struct page_frag *pfrag,
345                                  size_t prepend_size)
346 {
347         struct tls_record_info *record;
348         skb_frag_t *frag;
349
350         record = kmalloc(sizeof(*record), GFP_KERNEL);
351         if (!record)
352                 return -ENOMEM;
353
354         frag = &record->frags[0];
355         skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
356                                 prepend_size);
357
358         get_page(pfrag->page);
359         pfrag->offset += prepend_size;
360
361         record->num_frags = 1;
362         record->len = prepend_size;
363         offload_ctx->open_record = record;
364         return 0;
365 }
366
367 static int tls_do_allocation(struct sock *sk,
368                              struct tls_offload_context_tx *offload_ctx,
369                              struct page_frag *pfrag,
370                              size_t prepend_size)
371 {
372         int ret;
373
374         if (!offload_ctx->open_record) {
375                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
376                                                    sk->sk_allocation))) {
377                         READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
378                         sk_stream_moderate_sndbuf(sk);
379                         return -ENOMEM;
380                 }
381
382                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
383                 if (ret)
384                         return ret;
385
386                 if (pfrag->size > pfrag->offset)
387                         return 0;
388         }
389
390         if (!sk_page_frag_refill(sk, pfrag))
391                 return -ENOMEM;
392
393         return 0;
394 }
395
396 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
397 {
398         size_t pre_copy, nocache;
399
400         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
401         if (pre_copy) {
402                 pre_copy = min(pre_copy, bytes);
403                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
404                         return -EFAULT;
405                 bytes -= pre_copy;
406                 addr += pre_copy;
407         }
408
409         nocache = round_down(bytes, SMP_CACHE_BYTES);
410         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
411                 return -EFAULT;
412         bytes -= nocache;
413         addr += nocache;
414
415         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
416                 return -EFAULT;
417
418         return 0;
419 }
420
421 static int tls_push_data(struct sock *sk,
422                          struct iov_iter *iter,
423                          size_t size, int flags,
424                          unsigned char record_type)
425 {
426         struct tls_context *tls_ctx = tls_get_ctx(sk);
427         struct tls_prot_info *prot = &tls_ctx->prot_info;
428         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
429         struct tls_record_info *record;
430         int tls_push_record_flags;
431         struct page_frag *pfrag;
432         size_t orig_size = size;
433         u32 max_open_record_len;
434         bool more = false;
435         bool done = false;
436         int copy, rc = 0;
437         long timeo;
438
439         if (flags &
440             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
441               MSG_SPLICE_PAGES | MSG_EOR))
442                 return -EOPNOTSUPP;
443
444         if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
445                 return -EINVAL;
446
447         if (unlikely(sk->sk_err))
448                 return -sk->sk_err;
449
450         flags |= MSG_SENDPAGE_DECRYPTED;
451         tls_push_record_flags = flags | MSG_MORE;
452
453         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
454         if (tls_is_partially_sent_record(tls_ctx)) {
455                 rc = tls_push_partial_record(sk, tls_ctx, flags);
456                 if (rc < 0)
457                         return rc;
458         }
459
460         pfrag = sk_page_frag(sk);
461
462         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
463          * we need to leave room for an authentication tag.
464          */
465         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
466                               prot->prepend_size;
467         do {
468                 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
469                 if (unlikely(rc)) {
470                         rc = sk_stream_wait_memory(sk, &timeo);
471                         if (!rc)
472                                 continue;
473
474                         record = ctx->open_record;
475                         if (!record)
476                                 break;
477 handle_error:
478                         if (record_type != TLS_RECORD_TYPE_DATA) {
479                                 /* avoid sending partial
480                                  * record with type !=
481                                  * application_data
482                                  */
483                                 size = orig_size;
484                                 destroy_record(record);
485                                 ctx->open_record = NULL;
486                         } else if (record->len > prot->prepend_size) {
487                                 goto last_record;
488                         }
489
490                         break;
491                 }
492
493                 record = ctx->open_record;
494
495                 copy = min_t(size_t, size, max_open_record_len - record->len);
496                 if (copy && (flags & MSG_SPLICE_PAGES)) {
497                         struct page_frag zc_pfrag;
498                         struct page **pages = &zc_pfrag.page;
499                         size_t off;
500
501                         rc = iov_iter_extract_pages(iter, &pages,
502                                                     copy, 1, 0, &off);
503                         if (rc <= 0) {
504                                 if (rc == 0)
505                                         rc = -EIO;
506                                 goto handle_error;
507                         }
508                         copy = rc;
509
510                         if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
511                                 iov_iter_revert(iter, copy);
512                                 rc = -EIO;
513                                 goto handle_error;
514                         }
515
516                         zc_pfrag.offset = off;
517                         zc_pfrag.size = copy;
518                         tls_append_frag(record, &zc_pfrag, copy);
519                 } else if (copy) {
520                         copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
521
522                         rc = tls_device_copy_data(page_address(pfrag->page) +
523                                                   pfrag->offset, copy,
524                                                   iter);
525                         if (rc)
526                                 goto handle_error;
527                         tls_append_frag(record, pfrag, copy);
528                 }
529
530                 size -= copy;
531                 if (!size) {
532 last_record:
533                         tls_push_record_flags = flags;
534                         if (flags & MSG_MORE) {
535                                 more = true;
536                                 break;
537                         }
538
539                         done = true;
540                 }
541
542                 if (done || record->len >= max_open_record_len ||
543                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
544                         tls_device_record_close(sk, tls_ctx, record,
545                                                 pfrag, record_type);
546
547                         rc = tls_push_record(sk,
548                                              tls_ctx,
549                                              ctx,
550                                              record,
551                                              tls_push_record_flags);
552                         if (rc < 0)
553                                 break;
554                 }
555         } while (!done);
556
557         tls_ctx->pending_open_record_frags = more;
558
559         if (orig_size - size > 0)
560                 rc = orig_size - size;
561
562         return rc;
563 }
564
565 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
566 {
567         unsigned char record_type = TLS_RECORD_TYPE_DATA;
568         struct tls_context *tls_ctx = tls_get_ctx(sk);
569         int rc;
570
571         if (!tls_ctx->zerocopy_sendfile)
572                 msg->msg_flags &= ~MSG_SPLICE_PAGES;
573
574         mutex_lock(&tls_ctx->tx_lock);
575         lock_sock(sk);
576
577         if (unlikely(msg->msg_controllen)) {
578                 rc = tls_process_cmsg(sk, msg, &record_type);
579                 if (rc)
580                         goto out;
581         }
582
583         rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
584                            record_type);
585
586 out:
587         release_sock(sk);
588         mutex_unlock(&tls_ctx->tx_lock);
589         return rc;
590 }
591
592 void tls_device_splice_eof(struct socket *sock)
593 {
594         struct sock *sk = sock->sk;
595         struct tls_context *tls_ctx = tls_get_ctx(sk);
596         struct iov_iter iter = {};
597
598         if (!tls_is_partially_sent_record(tls_ctx))
599                 return;
600
601         mutex_lock(&tls_ctx->tx_lock);
602         lock_sock(sk);
603
604         if (tls_is_partially_sent_record(tls_ctx)) {
605                 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
606                 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
607         }
608
609         release_sock(sk);
610         mutex_unlock(&tls_ctx->tx_lock);
611 }
612
613 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
614                                        u32 seq, u64 *p_record_sn)
615 {
616         u64 record_sn = context->hint_record_sn;
617         struct tls_record_info *info, *last;
618
619         info = context->retransmit_hint;
620         if (!info ||
621             before(seq, info->end_seq - info->len)) {
622                 /* if retransmit_hint is irrelevant start
623                  * from the beginning of the list
624                  */
625                 info = list_first_entry_or_null(&context->records_list,
626                                                 struct tls_record_info, list);
627                 if (!info)
628                         return NULL;
629                 /* send the start_marker record if seq number is before the
630                  * tls offload start marker sequence number. This record is
631                  * required to handle TCP packets which are before TLS offload
632                  * started.
633                  *  And if it's not start marker, look if this seq number
634                  * belongs to the list.
635                  */
636                 if (likely(!tls_record_is_start_marker(info))) {
637                         /* we have the first record, get the last record to see
638                          * if this seq number belongs to the list.
639                          */
640                         last = list_last_entry(&context->records_list,
641                                                struct tls_record_info, list);
642
643                         if (!between(seq, tls_record_start_seq(info),
644                                      last->end_seq))
645                                 return NULL;
646                 }
647                 record_sn = context->unacked_record_sn;
648         }
649
650         /* We just need the _rcu for the READ_ONCE() */
651         rcu_read_lock();
652         list_for_each_entry_from_rcu(info, &context->records_list, list) {
653                 if (before(seq, info->end_seq)) {
654                         if (!context->retransmit_hint ||
655                             after(info->end_seq,
656                                   context->retransmit_hint->end_seq)) {
657                                 context->hint_record_sn = record_sn;
658                                 context->retransmit_hint = info;
659                         }
660                         *p_record_sn = record_sn;
661                         goto exit_rcu_unlock;
662                 }
663                 record_sn++;
664         }
665         info = NULL;
666
667 exit_rcu_unlock:
668         rcu_read_unlock();
669         return info;
670 }
671 EXPORT_SYMBOL(tls_get_record);
672
673 static int tls_device_push_pending_record(struct sock *sk, int flags)
674 {
675         struct iov_iter iter;
676
677         iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
678         return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
679 }
680
681 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
682 {
683         if (tls_is_partially_sent_record(ctx)) {
684                 gfp_t sk_allocation = sk->sk_allocation;
685
686                 WARN_ON_ONCE(sk->sk_write_pending);
687
688                 sk->sk_allocation = GFP_ATOMIC;
689                 tls_push_partial_record(sk, ctx,
690                                         MSG_DONTWAIT | MSG_NOSIGNAL |
691                                         MSG_SENDPAGE_DECRYPTED);
692                 sk->sk_allocation = sk_allocation;
693         }
694 }
695
696 static void tls_device_resync_rx(struct tls_context *tls_ctx,
697                                  struct sock *sk, u32 seq, u8 *rcd_sn)
698 {
699         struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
700         struct net_device *netdev;
701
702         trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
703         rcu_read_lock();
704         netdev = rcu_dereference(tls_ctx->netdev);
705         if (netdev)
706                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
707                                                    TLS_OFFLOAD_CTX_DIR_RX);
708         rcu_read_unlock();
709         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
710 }
711
712 static bool
713 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
714                            s64 resync_req, u32 *seq, u16 *rcd_delta)
715 {
716         u32 is_async = resync_req & RESYNC_REQ_ASYNC;
717         u32 req_seq = resync_req >> 32;
718         u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
719         u16 i;
720
721         *rcd_delta = 0;
722
723         if (is_async) {
724                 /* shouldn't get to wraparound:
725                  * too long in async stage, something bad happened
726                  */
727                 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
728                         return false;
729
730                 /* asynchronous stage: log all headers seq such that
731                  * req_seq <= seq <= end_seq, and wait for real resync request
732                  */
733                 if (before(*seq, req_seq))
734                         return false;
735                 if (!after(*seq, req_end) &&
736                     resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
737                         resync_async->log[resync_async->loglen++] = *seq;
738
739                 resync_async->rcd_delta++;
740
741                 return false;
742         }
743
744         /* synchronous stage: check against the logged entries and
745          * proceed to check the next entries if no match was found
746          */
747         for (i = 0; i < resync_async->loglen; i++)
748                 if (req_seq == resync_async->log[i] &&
749                     atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
750                         *rcd_delta = resync_async->rcd_delta - i;
751                         *seq = req_seq;
752                         resync_async->loglen = 0;
753                         resync_async->rcd_delta = 0;
754                         return true;
755                 }
756
757         resync_async->loglen = 0;
758         resync_async->rcd_delta = 0;
759
760         if (req_seq == *seq &&
761             atomic64_try_cmpxchg(&resync_async->req,
762                                  &resync_req, 0))
763                 return true;
764
765         return false;
766 }
767
768 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
769 {
770         struct tls_context *tls_ctx = tls_get_ctx(sk);
771         struct tls_offload_context_rx *rx_ctx;
772         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
773         u32 sock_data, is_req_pending;
774         struct tls_prot_info *prot;
775         s64 resync_req;
776         u16 rcd_delta;
777         u32 req_seq;
778
779         if (tls_ctx->rx_conf != TLS_HW)
780                 return;
781         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
782                 return;
783
784         prot = &tls_ctx->prot_info;
785         rx_ctx = tls_offload_ctx_rx(tls_ctx);
786         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
787
788         switch (rx_ctx->resync_type) {
789         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
790                 resync_req = atomic64_read(&rx_ctx->resync_req);
791                 req_seq = resync_req >> 32;
792                 seq += TLS_HEADER_SIZE - 1;
793                 is_req_pending = resync_req;
794
795                 if (likely(!is_req_pending) || req_seq != seq ||
796                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
797                         return;
798                 break;
799         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
800                 if (likely(!rx_ctx->resync_nh_do_now))
801                         return;
802
803                 /* head of next rec is already in, note that the sock_inq will
804                  * include the currently parsed message when called from parser
805                  */
806                 sock_data = tcp_inq(sk);
807                 if (sock_data > rcd_len) {
808                         trace_tls_device_rx_resync_nh_delay(sk, sock_data,
809                                                             rcd_len);
810                         return;
811                 }
812
813                 rx_ctx->resync_nh_do_now = 0;
814                 seq += rcd_len;
815                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
816                 break;
817         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
818                 resync_req = atomic64_read(&rx_ctx->resync_async->req);
819                 is_req_pending = resync_req;
820                 if (likely(!is_req_pending))
821                         return;
822
823                 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
824                                                 resync_req, &seq, &rcd_delta))
825                         return;
826                 tls_bigint_subtract(rcd_sn, rcd_delta);
827                 break;
828         }
829
830         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
831 }
832
833 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
834                                            struct tls_offload_context_rx *ctx,
835                                            struct sock *sk, struct sk_buff *skb)
836 {
837         struct strp_msg *rxm;
838
839         /* device will request resyncs by itself based on stream scan */
840         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
841                 return;
842         /* already scheduled */
843         if (ctx->resync_nh_do_now)
844                 return;
845         /* seen decrypted fragments since last fully-failed record */
846         if (ctx->resync_nh_reset) {
847                 ctx->resync_nh_reset = 0;
848                 ctx->resync_nh.decrypted_failed = 1;
849                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
850                 return;
851         }
852
853         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
854                 return;
855
856         /* doing resync, bump the next target in case it fails */
857         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
858                 ctx->resync_nh.decrypted_tgt *= 2;
859         else
860                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
861
862         rxm = strp_msg(skb);
863
864         /* head of next rec is already in, parser will sync for us */
865         if (tcp_inq(sk) > rxm->full_len) {
866                 trace_tls_device_rx_resync_nh_schedule(sk);
867                 ctx->resync_nh_do_now = 1;
868         } else {
869                 struct tls_prot_info *prot = &tls_ctx->prot_info;
870                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
871
872                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
873                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
874
875                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
876                                      rcd_sn);
877         }
878 }
879
880 static int
881 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
882 {
883         struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
884         const struct tls_cipher_desc *cipher_desc;
885         int err, offset, copy, data_len, pos;
886         struct sk_buff *skb, *skb_iter;
887         struct scatterlist sg[1];
888         struct strp_msg *rxm;
889         char *orig_buf, *buf;
890
891         cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
892         DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
893
894         rxm = strp_msg(tls_strp_msg(sw_ctx));
895         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
896                            sk->sk_allocation);
897         if (!orig_buf)
898                 return -ENOMEM;
899         buf = orig_buf;
900
901         err = tls_strp_msg_cow(sw_ctx);
902         if (unlikely(err))
903                 goto free_buf;
904
905         skb = tls_strp_msg(sw_ctx);
906         rxm = strp_msg(skb);
907         offset = rxm->offset;
908
909         sg_init_table(sg, 1);
910         sg_set_buf(&sg[0], buf,
911                    rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
912         err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
913         if (err)
914                 goto free_buf;
915
916         /* We are interested only in the decrypted data not the auth */
917         err = decrypt_skb(sk, sg);
918         if (err != -EBADMSG)
919                 goto free_buf;
920         else
921                 err = 0;
922
923         data_len = rxm->full_len - cipher_desc->tag;
924
925         if (skb_pagelen(skb) > offset) {
926                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
927
928                 if (skb->decrypted) {
929                         err = skb_store_bits(skb, offset, buf, copy);
930                         if (err)
931                                 goto free_buf;
932                 }
933
934                 offset += copy;
935                 buf += copy;
936         }
937
938         pos = skb_pagelen(skb);
939         skb_walk_frags(skb, skb_iter) {
940                 int frag_pos;
941
942                 /* Practically all frags must belong to msg if reencrypt
943                  * is needed with current strparser and coalescing logic,
944                  * but strparser may "get optimized", so let's be safe.
945                  */
946                 if (pos + skb_iter->len <= offset)
947                         goto done_with_frag;
948                 if (pos >= data_len + rxm->offset)
949                         break;
950
951                 frag_pos = offset - pos;
952                 copy = min_t(int, skb_iter->len - frag_pos,
953                              data_len + rxm->offset - offset);
954
955                 if (skb_iter->decrypted) {
956                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
957                         if (err)
958                                 goto free_buf;
959                 }
960
961                 offset += copy;
962                 buf += copy;
963 done_with_frag:
964                 pos += skb_iter->len;
965         }
966
967 free_buf:
968         kfree(orig_buf);
969         return err;
970 }
971
972 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
973 {
974         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
975         struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
976         struct sk_buff *skb = tls_strp_msg(sw_ctx);
977         struct strp_msg *rxm = strp_msg(skb);
978         int is_decrypted, is_encrypted;
979
980         if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
981                 is_decrypted = skb->decrypted;
982                 is_encrypted = !is_decrypted;
983         } else {
984                 is_decrypted = 0;
985                 is_encrypted = 0;
986         }
987
988         trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
989                                    tls_ctx->rx.rec_seq, rxm->full_len,
990                                    is_encrypted, is_decrypted);
991
992         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
993                 if (likely(is_encrypted || is_decrypted))
994                         return is_decrypted;
995
996                 /* After tls_device_down disables the offload, the next SKB will
997                  * likely have initial fragments decrypted, and final ones not
998                  * decrypted. We need to reencrypt that single SKB.
999                  */
1000                 return tls_device_reencrypt(sk, tls_ctx);
1001         }
1002
1003         /* Return immediately if the record is either entirely plaintext or
1004          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1005          * record.
1006          */
1007         if (is_decrypted) {
1008                 ctx->resync_nh_reset = 1;
1009                 return is_decrypted;
1010         }
1011         if (is_encrypted) {
1012                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1013                 return 0;
1014         }
1015
1016         ctx->resync_nh_reset = 1;
1017         return tls_device_reencrypt(sk, tls_ctx);
1018 }
1019
1020 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1021                               struct net_device *netdev)
1022 {
1023         if (sk->sk_destruct != tls_device_sk_destruct) {
1024                 refcount_set(&ctx->refcount, 1);
1025                 dev_hold(netdev);
1026                 RCU_INIT_POINTER(ctx->netdev, netdev);
1027                 spin_lock_irq(&tls_device_lock);
1028                 list_add_tail(&ctx->list, &tls_device_list);
1029                 spin_unlock_irq(&tls_device_lock);
1030
1031                 ctx->sk_destruct = sk->sk_destruct;
1032                 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1033         }
1034 }
1035
1036 static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx)
1037 {
1038         struct tls_offload_context_tx *offload_ctx;
1039         __be64 rcd_sn;
1040
1041         offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL);
1042         if (!offload_ctx)
1043                 return NULL;
1044
1045         INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1046         INIT_LIST_HEAD(&offload_ctx->records_list);
1047         spin_lock_init(&offload_ctx->lock);
1048         sg_init_table(offload_ctx->sg_tx_data,
1049                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1050
1051         /* start at rec_seq - 1 to account for the start marker record */
1052         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1053         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1054
1055         offload_ctx->ctx = ctx;
1056
1057         return offload_ctx;
1058 }
1059
1060 int tls_set_device_offload(struct sock *sk)
1061 {
1062         struct tls_record_info *start_marker_record;
1063         struct tls_offload_context_tx *offload_ctx;
1064         const struct tls_cipher_desc *cipher_desc;
1065         struct tls_crypto_info *crypto_info;
1066         struct tls_prot_info *prot;
1067         struct net_device *netdev;
1068         struct tls_context *ctx;
1069         struct sk_buff *skb;
1070         char *iv, *rec_seq;
1071         int rc;
1072
1073         ctx = tls_get_ctx(sk);
1074         prot = &ctx->prot_info;
1075
1076         if (ctx->priv_ctx_tx)
1077                 return -EEXIST;
1078
1079         netdev = get_netdev_for_sock(sk);
1080         if (!netdev) {
1081                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1082                 return -EINVAL;
1083         }
1084
1085         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1086                 rc = -EOPNOTSUPP;
1087                 goto release_netdev;
1088         }
1089
1090         crypto_info = &ctx->crypto_send.info;
1091         if (crypto_info->version != TLS_1_2_VERSION) {
1092                 rc = -EOPNOTSUPP;
1093                 goto release_netdev;
1094         }
1095
1096         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1097         if (!cipher_desc || !cipher_desc->offloadable) {
1098                 rc = -EINVAL;
1099                 goto release_netdev;
1100         }
1101
1102         rc = init_prot_info(prot, crypto_info, cipher_desc);
1103         if (rc)
1104                 goto release_netdev;
1105
1106         iv = crypto_info_iv(crypto_info, cipher_desc);
1107         rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1108
1109         memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1110         memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq);
1111
1112         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1113         if (!start_marker_record) {
1114                 rc = -ENOMEM;
1115                 goto release_netdev;
1116         }
1117
1118         offload_ctx = alloc_offload_ctx_tx(ctx);
1119         if (!offload_ctx) {
1120                 rc = -ENOMEM;
1121                 goto free_marker_record;
1122         }
1123
1124         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1125         if (rc)
1126                 goto free_offload_ctx;
1127
1128         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1129         start_marker_record->len = 0;
1130         start_marker_record->num_frags = 0;
1131         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1132
1133         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1134         ctx->push_pending_record = tls_device_push_pending_record;
1135
1136         /* TLS offload is greatly simplified if we don't send
1137          * SKBs where only part of the payload needs to be encrypted.
1138          * So mark the last skb in the write queue as end of record.
1139          */
1140         skb = tcp_write_queue_tail(sk);
1141         if (skb)
1142                 TCP_SKB_CB(skb)->eor = 1;
1143
1144         /* Avoid offloading if the device is down
1145          * We don't want to offload new flows after
1146          * the NETDEV_DOWN event
1147          *
1148          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1149          * handler thus protecting from the device going down before
1150          * ctx was added to tls_device_list.
1151          */
1152         down_read(&device_offload_lock);
1153         if (!(netdev->flags & IFF_UP)) {
1154                 rc = -EINVAL;
1155                 goto release_lock;
1156         }
1157
1158         ctx->priv_ctx_tx = offload_ctx;
1159         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1160                                              &ctx->crypto_send.info,
1161                                              tcp_sk(sk)->write_seq);
1162         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1163                                      tcp_sk(sk)->write_seq, rec_seq, rc);
1164         if (rc)
1165                 goto release_lock;
1166
1167         tls_device_attach(ctx, sk, netdev);
1168         up_read(&device_offload_lock);
1169
1170         /* following this assignment tls_is_skb_tx_device_offloaded
1171          * will return true and the context might be accessed
1172          * by the netdev's xmit function.
1173          */
1174         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1175         dev_put(netdev);
1176
1177         return 0;
1178
1179 release_lock:
1180         up_read(&device_offload_lock);
1181         clean_acked_data_disable(inet_csk(sk));
1182         crypto_free_aead(offload_ctx->aead_send);
1183 free_offload_ctx:
1184         kfree(offload_ctx);
1185         ctx->priv_ctx_tx = NULL;
1186 free_marker_record:
1187         kfree(start_marker_record);
1188 release_netdev:
1189         dev_put(netdev);
1190         return rc;
1191 }
1192
1193 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1194 {
1195         struct tls12_crypto_info_aes_gcm_128 *info;
1196         struct tls_offload_context_rx *context;
1197         struct net_device *netdev;
1198         int rc = 0;
1199
1200         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1201                 return -EOPNOTSUPP;
1202
1203         netdev = get_netdev_for_sock(sk);
1204         if (!netdev) {
1205                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1206                 return -EINVAL;
1207         }
1208
1209         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1210                 rc = -EOPNOTSUPP;
1211                 goto release_netdev;
1212         }
1213
1214         /* Avoid offloading if the device is down
1215          * We don't want to offload new flows after
1216          * the NETDEV_DOWN event
1217          *
1218          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1219          * handler thus protecting from the device going down before
1220          * ctx was added to tls_device_list.
1221          */
1222         down_read(&device_offload_lock);
1223         if (!(netdev->flags & IFF_UP)) {
1224                 rc = -EINVAL;
1225                 goto release_lock;
1226         }
1227
1228         context = kzalloc(sizeof(*context), GFP_KERNEL);
1229         if (!context) {
1230                 rc = -ENOMEM;
1231                 goto release_lock;
1232         }
1233         context->resync_nh_reset = 1;
1234
1235         ctx->priv_ctx_rx = context;
1236         rc = tls_set_sw_offload(sk, 0);
1237         if (rc)
1238                 goto release_ctx;
1239
1240         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1241                                              &ctx->crypto_recv.info,
1242                                              tcp_sk(sk)->copied_seq);
1243         info = (void *)&ctx->crypto_recv.info;
1244         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1245                                      tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1246         if (rc)
1247                 goto free_sw_resources;
1248
1249         tls_device_attach(ctx, sk, netdev);
1250         up_read(&device_offload_lock);
1251
1252         dev_put(netdev);
1253
1254         return 0;
1255
1256 free_sw_resources:
1257         up_read(&device_offload_lock);
1258         tls_sw_free_resources_rx(sk);
1259         down_read(&device_offload_lock);
1260 release_ctx:
1261         ctx->priv_ctx_rx = NULL;
1262 release_lock:
1263         up_read(&device_offload_lock);
1264 release_netdev:
1265         dev_put(netdev);
1266         return rc;
1267 }
1268
1269 void tls_device_offload_cleanup_rx(struct sock *sk)
1270 {
1271         struct tls_context *tls_ctx = tls_get_ctx(sk);
1272         struct net_device *netdev;
1273
1274         down_read(&device_offload_lock);
1275         netdev = rcu_dereference_protected(tls_ctx->netdev,
1276                                            lockdep_is_held(&device_offload_lock));
1277         if (!netdev)
1278                 goto out;
1279
1280         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1281                                         TLS_OFFLOAD_CTX_DIR_RX);
1282
1283         if (tls_ctx->tx_conf != TLS_HW) {
1284                 dev_put(netdev);
1285                 rcu_assign_pointer(tls_ctx->netdev, NULL);
1286         } else {
1287                 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1288         }
1289 out:
1290         up_read(&device_offload_lock);
1291         tls_sw_release_resources_rx(sk);
1292 }
1293
1294 static int tls_device_down(struct net_device *netdev)
1295 {
1296         struct tls_context *ctx, *tmp;
1297         unsigned long flags;
1298         LIST_HEAD(list);
1299
1300         /* Request a write lock to block new offload attempts */
1301         down_write(&device_offload_lock);
1302
1303         spin_lock_irqsave(&tls_device_lock, flags);
1304         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1305                 struct net_device *ctx_netdev =
1306                         rcu_dereference_protected(ctx->netdev,
1307                                                   lockdep_is_held(&device_offload_lock));
1308
1309                 if (ctx_netdev != netdev ||
1310                     !refcount_inc_not_zero(&ctx->refcount))
1311                         continue;
1312
1313                 list_move(&ctx->list, &list);
1314         }
1315         spin_unlock_irqrestore(&tls_device_lock, flags);
1316
1317         list_for_each_entry_safe(ctx, tmp, &list, list) {
1318                 /* Stop offloaded TX and switch to the fallback.
1319                  * tls_is_skb_tx_device_offloaded will return false.
1320                  */
1321                 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1322
1323                 /* Stop the RX and TX resync.
1324                  * tls_dev_resync must not be called after tls_dev_del.
1325                  */
1326                 rcu_assign_pointer(ctx->netdev, NULL);
1327
1328                 /* Start skipping the RX resync logic completely. */
1329                 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1330
1331                 /* Sync with inflight packets. After this point:
1332                  * TX: no non-encrypted packets will be passed to the driver.
1333                  * RX: resync requests from the driver will be ignored.
1334                  */
1335                 synchronize_net();
1336
1337                 /* Release the offload context on the driver side. */
1338                 if (ctx->tx_conf == TLS_HW)
1339                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1340                                                         TLS_OFFLOAD_CTX_DIR_TX);
1341                 if (ctx->rx_conf == TLS_HW &&
1342                     !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1343                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1344                                                         TLS_OFFLOAD_CTX_DIR_RX);
1345
1346                 dev_put(netdev);
1347
1348                 /* Move the context to a separate list for two reasons:
1349                  * 1. When the context is deallocated, list_del is called.
1350                  * 2. It's no longer an offloaded context, so we don't want to
1351                  *    run offload-specific code on this context.
1352                  */
1353                 spin_lock_irqsave(&tls_device_lock, flags);
1354                 list_move_tail(&ctx->list, &tls_device_down_list);
1355                 spin_unlock_irqrestore(&tls_device_lock, flags);
1356
1357                 /* Device contexts for RX and TX will be freed in on sk_destruct
1358                  * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1359                  * Now release the ref taken above.
1360                  */
1361                 if (refcount_dec_and_test(&ctx->refcount)) {
1362                         /* sk_destruct ran after tls_device_down took a ref, and
1363                          * it returned early. Complete the destruction here.
1364                          */
1365                         list_del(&ctx->list);
1366                         tls_device_free_ctx(ctx);
1367                 }
1368         }
1369
1370         up_write(&device_offload_lock);
1371
1372         flush_workqueue(destruct_wq);
1373
1374         return NOTIFY_DONE;
1375 }
1376
1377 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1378                          void *ptr)
1379 {
1380         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1381
1382         if (!dev->tlsdev_ops &&
1383             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1384                 return NOTIFY_DONE;
1385
1386         switch (event) {
1387         case NETDEV_REGISTER:
1388         case NETDEV_FEAT_CHANGE:
1389                 if (netif_is_bond_master(dev))
1390                         return NOTIFY_DONE;
1391                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1392                     !dev->tlsdev_ops->tls_dev_resync)
1393                         return NOTIFY_BAD;
1394
1395                 if  (dev->tlsdev_ops &&
1396                      dev->tlsdev_ops->tls_dev_add &&
1397                      dev->tlsdev_ops->tls_dev_del)
1398                         return NOTIFY_DONE;
1399                 else
1400                         return NOTIFY_BAD;
1401         case NETDEV_DOWN:
1402                 return tls_device_down(dev);
1403         }
1404         return NOTIFY_DONE;
1405 }
1406
1407 static struct notifier_block tls_dev_notifier = {
1408         .notifier_call  = tls_dev_event,
1409 };
1410
1411 int __init tls_device_init(void)
1412 {
1413         int err;
1414
1415         dummy_page = alloc_page(GFP_KERNEL);
1416         if (!dummy_page)
1417                 return -ENOMEM;
1418
1419         destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1420         if (!destruct_wq) {
1421                 err = -ENOMEM;
1422                 goto err_free_dummy;
1423         }
1424
1425         err = register_netdevice_notifier(&tls_dev_notifier);
1426         if (err)
1427                 goto err_destroy_wq;
1428
1429         return 0;
1430
1431 err_destroy_wq:
1432         destroy_workqueue(destruct_wq);
1433 err_free_dummy:
1434         put_page(dummy_page);
1435         return err;
1436 }
1437
1438 void __exit tls_device_cleanup(void)
1439 {
1440         unregister_netdevice_notifier(&tls_dev_notifier);
1441         destroy_workqueue(destruct_wq);
1442         clean_acked_data_flush();
1443         put_page(dummy_page);
1444 }