GNU Linux-libre 5.4.207-gnu1
[releases.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 /* device_offload_lock is used to synchronize tls_dev_add
42  * against NETDEV_DOWN notifications.
43  */
44 static DECLARE_RWSEM(device_offload_lock);
45
46 static void tls_device_gc_task(struct work_struct *work);
47
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
52
53 static void tls_device_free_ctx(struct tls_context *ctx)
54 {
55         if (ctx->tx_conf == TLS_HW) {
56                 kfree(tls_offload_ctx_tx(ctx));
57                 kfree(ctx->tx.rec_seq);
58                 kfree(ctx->tx.iv);
59         }
60
61         if (ctx->rx_conf == TLS_HW)
62                 kfree(tls_offload_ctx_rx(ctx));
63
64         tls_ctx_free(NULL, ctx);
65 }
66
67 static void tls_device_gc_task(struct work_struct *work)
68 {
69         struct tls_context *ctx, *tmp;
70         unsigned long flags;
71         LIST_HEAD(gc_list);
72
73         spin_lock_irqsave(&tls_device_lock, flags);
74         list_splice_init(&tls_device_gc_list, &gc_list);
75         spin_unlock_irqrestore(&tls_device_lock, flags);
76
77         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78                 struct net_device *netdev = ctx->netdev;
79
80                 if (netdev && ctx->tx_conf == TLS_HW) {
81                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82                                                         TLS_OFFLOAD_CTX_DIR_TX);
83                         dev_put(netdev);
84                         ctx->netdev = NULL;
85                 }
86
87                 list_del(&ctx->list);
88                 tls_device_free_ctx(ctx);
89         }
90 }
91
92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
93 {
94         unsigned long flags;
95
96         spin_lock_irqsave(&tls_device_lock, flags);
97         list_move_tail(&ctx->list, &tls_device_gc_list);
98
99         /* schedule_work inside the spinlock
100          * to make sure tls_device_down waits for that work.
101          */
102         schedule_work(&tls_device_gc_work);
103
104         spin_unlock_irqrestore(&tls_device_lock, flags);
105 }
106
107 /* We assume that the socket is already connected */
108 static struct net_device *get_netdev_for_sock(struct sock *sk)
109 {
110         struct dst_entry *dst = sk_dst_get(sk);
111         struct net_device *netdev = NULL;
112
113         if (likely(dst)) {
114                 netdev = dst->dev;
115                 dev_hold(netdev);
116         }
117
118         dst_release(dst);
119
120         return netdev;
121 }
122
123 static void destroy_record(struct tls_record_info *record)
124 {
125         int i;
126
127         for (i = 0; i < record->num_frags; i++)
128                 __skb_frag_unref(&record->frags[i]);
129         kfree(record);
130 }
131
132 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
133 {
134         struct tls_record_info *info, *temp;
135
136         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
137                 list_del(&info->list);
138                 destroy_record(info);
139         }
140
141         offload_ctx->retransmit_hint = NULL;
142 }
143
144 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
145 {
146         struct tls_context *tls_ctx = tls_get_ctx(sk);
147         struct tls_record_info *info, *temp;
148         struct tls_offload_context_tx *ctx;
149         u64 deleted_records = 0;
150         unsigned long flags;
151
152         if (!tls_ctx)
153                 return;
154
155         ctx = tls_offload_ctx_tx(tls_ctx);
156
157         spin_lock_irqsave(&ctx->lock, flags);
158         info = ctx->retransmit_hint;
159         if (info && !before(acked_seq, info->end_seq))
160                 ctx->retransmit_hint = NULL;
161
162         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
163                 if (before(acked_seq, info->end_seq))
164                         break;
165                 list_del(&info->list);
166
167                 destroy_record(info);
168                 deleted_records++;
169         }
170
171         ctx->unacked_record_sn += deleted_records;
172         spin_unlock_irqrestore(&ctx->lock, flags);
173 }
174
175 /* At this point, there should be no references on this
176  * socket and no in-flight SKBs associated with this
177  * socket, so it is safe to free all the resources.
178  */
179 static void tls_device_sk_destruct(struct sock *sk)
180 {
181         struct tls_context *tls_ctx = tls_get_ctx(sk);
182         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
183
184         tls_ctx->sk_destruct(sk);
185
186         if (tls_ctx->tx_conf == TLS_HW) {
187                 if (ctx->open_record)
188                         destroy_record(ctx->open_record);
189                 delete_all_records(ctx);
190                 crypto_free_aead(ctx->aead_send);
191                 clean_acked_data_disable(inet_csk(sk));
192         }
193
194         if (refcount_dec_and_test(&tls_ctx->refcount))
195                 tls_device_queue_ctx_destruction(tls_ctx);
196 }
197
198 void tls_device_free_resources_tx(struct sock *sk)
199 {
200         struct tls_context *tls_ctx = tls_get_ctx(sk);
201
202         tls_free_partial_record(sk, tls_ctx);
203 }
204
205 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
206                                  u32 seq)
207 {
208         struct net_device *netdev;
209         struct sk_buff *skb;
210         int err = 0;
211         u8 *rcd_sn;
212
213         skb = tcp_write_queue_tail(sk);
214         if (skb)
215                 TCP_SKB_CB(skb)->eor = 1;
216
217         rcd_sn = tls_ctx->tx.rec_seq;
218
219         down_read(&device_offload_lock);
220         netdev = tls_ctx->netdev;
221         if (netdev)
222                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
223                                                          rcd_sn,
224                                                          TLS_OFFLOAD_CTX_DIR_TX);
225         up_read(&device_offload_lock);
226         if (err)
227                 return;
228
229         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
230 }
231
232 static void tls_append_frag(struct tls_record_info *record,
233                             struct page_frag *pfrag,
234                             int size)
235 {
236         skb_frag_t *frag;
237
238         frag = &record->frags[record->num_frags - 1];
239         if (skb_frag_page(frag) == pfrag->page &&
240             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
241                 skb_frag_size_add(frag, size);
242         } else {
243                 ++frag;
244                 __skb_frag_set_page(frag, pfrag->page);
245                 skb_frag_off_set(frag, pfrag->offset);
246                 skb_frag_size_set(frag, size);
247                 ++record->num_frags;
248                 get_page(pfrag->page);
249         }
250
251         pfrag->offset += size;
252         record->len += size;
253 }
254
255 static int tls_push_record(struct sock *sk,
256                            struct tls_context *ctx,
257                            struct tls_offload_context_tx *offload_ctx,
258                            struct tls_record_info *record,
259                            int flags)
260 {
261         struct tls_prot_info *prot = &ctx->prot_info;
262         struct tcp_sock *tp = tcp_sk(sk);
263         skb_frag_t *frag;
264         int i;
265
266         record->end_seq = tp->write_seq + record->len;
267         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
268         offload_ctx->open_record = NULL;
269
270         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
271                 tls_device_resync_tx(sk, ctx, tp->write_seq);
272
273         tls_advance_record_sn(sk, prot, &ctx->tx);
274
275         for (i = 0; i < record->num_frags; i++) {
276                 frag = &record->frags[i];
277                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
278                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
279                             skb_frag_size(frag), skb_frag_off(frag));
280                 sk_mem_charge(sk, skb_frag_size(frag));
281                 get_page(skb_frag_page(frag));
282         }
283         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
284
285         /* all ready, send */
286         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
287 }
288
289 static int tls_device_record_close(struct sock *sk,
290                                    struct tls_context *ctx,
291                                    struct tls_record_info *record,
292                                    struct page_frag *pfrag,
293                                    unsigned char record_type)
294 {
295         struct tls_prot_info *prot = &ctx->prot_info;
296         int ret;
297
298         /* append tag
299          * device will fill in the tag, we just need to append a placeholder
300          * use socket memory to improve coalescing (re-using a single buffer
301          * increases frag count)
302          * if we can't allocate memory now, steal some back from data
303          */
304         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
305                                         sk->sk_allocation))) {
306                 ret = 0;
307                 tls_append_frag(record, pfrag, prot->tag_size);
308         } else {
309                 ret = prot->tag_size;
310                 if (record->len <= prot->overhead_size)
311                         return -ENOMEM;
312         }
313
314         /* fill prepend */
315         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
316                          record->len - prot->overhead_size,
317                          record_type, prot->version);
318         return ret;
319 }
320
321 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
322                                  struct page_frag *pfrag,
323                                  size_t prepend_size)
324 {
325         struct tls_record_info *record;
326         skb_frag_t *frag;
327
328         record = kmalloc(sizeof(*record), GFP_KERNEL);
329         if (!record)
330                 return -ENOMEM;
331
332         frag = &record->frags[0];
333         __skb_frag_set_page(frag, pfrag->page);
334         skb_frag_off_set(frag, pfrag->offset);
335         skb_frag_size_set(frag, prepend_size);
336
337         get_page(pfrag->page);
338         pfrag->offset += prepend_size;
339
340         record->num_frags = 1;
341         record->len = prepend_size;
342         offload_ctx->open_record = record;
343         return 0;
344 }
345
346 static int tls_do_allocation(struct sock *sk,
347                              struct tls_offload_context_tx *offload_ctx,
348                              struct page_frag *pfrag,
349                              size_t prepend_size)
350 {
351         int ret;
352
353         if (!offload_ctx->open_record) {
354                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
355                                                    sk->sk_allocation))) {
356                         sk->sk_prot->enter_memory_pressure(sk);
357                         sk_stream_moderate_sndbuf(sk);
358                         return -ENOMEM;
359                 }
360
361                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
362                 if (ret)
363                         return ret;
364
365                 if (pfrag->size > pfrag->offset)
366                         return 0;
367         }
368
369         if (!sk_page_frag_refill(sk, pfrag))
370                 return -ENOMEM;
371
372         return 0;
373 }
374
375 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
376 {
377         size_t pre_copy, nocache;
378
379         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
380         if (pre_copy) {
381                 pre_copy = min(pre_copy, bytes);
382                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
383                         return -EFAULT;
384                 bytes -= pre_copy;
385                 addr += pre_copy;
386         }
387
388         nocache = round_down(bytes, SMP_CACHE_BYTES);
389         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
390                 return -EFAULT;
391         bytes -= nocache;
392         addr += nocache;
393
394         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
395                 return -EFAULT;
396
397         return 0;
398 }
399
400 static int tls_push_data(struct sock *sk,
401                          struct iov_iter *msg_iter,
402                          size_t size, int flags,
403                          unsigned char record_type)
404 {
405         struct tls_context *tls_ctx = tls_get_ctx(sk);
406         struct tls_prot_info *prot = &tls_ctx->prot_info;
407         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
408         struct tls_record_info *record = ctx->open_record;
409         int tls_push_record_flags;
410         struct page_frag *pfrag;
411         size_t orig_size = size;
412         u32 max_open_record_len;
413         bool more = false;
414         bool done = false;
415         int copy, rc = 0;
416         long timeo;
417
418         if (flags &
419             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
420                 return -EOPNOTSUPP;
421
422         if (sk->sk_err)
423                 return -sk->sk_err;
424
425         flags |= MSG_SENDPAGE_DECRYPTED;
426         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
427
428         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
429         if (tls_is_partially_sent_record(tls_ctx)) {
430                 rc = tls_push_partial_record(sk, tls_ctx, flags);
431                 if (rc < 0)
432                         return rc;
433         }
434
435         pfrag = sk_page_frag(sk);
436
437         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
438          * we need to leave room for an authentication tag.
439          */
440         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
441                               prot->prepend_size;
442         do {
443                 rc = tls_do_allocation(sk, ctx, pfrag,
444                                        prot->prepend_size);
445                 if (rc) {
446                         rc = sk_stream_wait_memory(sk, &timeo);
447                         if (!rc)
448                                 continue;
449
450                         record = ctx->open_record;
451                         if (!record)
452                                 break;
453 handle_error:
454                         if (record_type != TLS_RECORD_TYPE_DATA) {
455                                 /* avoid sending partial
456                                  * record with type !=
457                                  * application_data
458                                  */
459                                 size = orig_size;
460                                 destroy_record(record);
461                                 ctx->open_record = NULL;
462                         } else if (record->len > prot->prepend_size) {
463                                 goto last_record;
464                         }
465
466                         break;
467                 }
468
469                 record = ctx->open_record;
470                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
471                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
472
473                 if (copy) {
474                         rc = tls_device_copy_data(page_address(pfrag->page) +
475                                                   pfrag->offset, copy, msg_iter);
476                         if (rc)
477                                 goto handle_error;
478                         tls_append_frag(record, pfrag, copy);
479                 }
480
481                 size -= copy;
482                 if (!size) {
483 last_record:
484                         tls_push_record_flags = flags;
485                         if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
486                                 more = true;
487                                 break;
488                         }
489
490                         done = true;
491                 }
492
493                 if (done || record->len >= max_open_record_len ||
494                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
495                         rc = tls_device_record_close(sk, tls_ctx, record,
496                                                      pfrag, record_type);
497                         if (rc) {
498                                 if (rc > 0) {
499                                         size += rc;
500                                 } else {
501                                         size = orig_size;
502                                         destroy_record(record);
503                                         ctx->open_record = NULL;
504                                         break;
505                                 }
506                         }
507
508                         rc = tls_push_record(sk,
509                                              tls_ctx,
510                                              ctx,
511                                              record,
512                                              tls_push_record_flags);
513                         if (rc < 0)
514                                 break;
515                 }
516         } while (!done);
517
518         tls_ctx->pending_open_record_frags = more;
519
520         if (orig_size - size > 0)
521                 rc = orig_size - size;
522
523         return rc;
524 }
525
526 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
527 {
528         unsigned char record_type = TLS_RECORD_TYPE_DATA;
529         struct tls_context *tls_ctx = tls_get_ctx(sk);
530         int rc;
531
532         mutex_lock(&tls_ctx->tx_lock);
533         lock_sock(sk);
534
535         if (unlikely(msg->msg_controllen)) {
536                 rc = tls_proccess_cmsg(sk, msg, &record_type);
537                 if (rc)
538                         goto out;
539         }
540
541         rc = tls_push_data(sk, &msg->msg_iter, size,
542                            msg->msg_flags, record_type);
543
544 out:
545         release_sock(sk);
546         mutex_unlock(&tls_ctx->tx_lock);
547         return rc;
548 }
549
550 int tls_device_sendpage(struct sock *sk, struct page *page,
551                         int offset, size_t size, int flags)
552 {
553         struct tls_context *tls_ctx = tls_get_ctx(sk);
554         struct iov_iter msg_iter;
555         char *kaddr;
556         struct kvec iov;
557         int rc;
558
559         if (flags & MSG_SENDPAGE_NOTLAST)
560                 flags |= MSG_MORE;
561
562         mutex_lock(&tls_ctx->tx_lock);
563         lock_sock(sk);
564
565         if (flags & MSG_OOB) {
566                 rc = -EOPNOTSUPP;
567                 goto out;
568         }
569
570         kaddr = kmap(page);
571         iov.iov_base = kaddr + offset;
572         iov.iov_len = size;
573         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
574         rc = tls_push_data(sk, &msg_iter, size,
575                            flags, TLS_RECORD_TYPE_DATA);
576         kunmap(page);
577
578 out:
579         release_sock(sk);
580         mutex_unlock(&tls_ctx->tx_lock);
581         return rc;
582 }
583
584 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
585                                        u32 seq, u64 *p_record_sn)
586 {
587         u64 record_sn = context->hint_record_sn;
588         struct tls_record_info *info, *last;
589
590         info = context->retransmit_hint;
591         if (!info ||
592             before(seq, info->end_seq - info->len)) {
593                 /* if retransmit_hint is irrelevant start
594                  * from the beggining of the list
595                  */
596                 info = list_first_entry_or_null(&context->records_list,
597                                                 struct tls_record_info, list);
598                 if (!info)
599                         return NULL;
600                 /* send the start_marker record if seq number is before the
601                  * tls offload start marker sequence number. This record is
602                  * required to handle TCP packets which are before TLS offload
603                  * started.
604                  *  And if it's not start marker, look if this seq number
605                  * belongs to the list.
606                  */
607                 if (likely(!tls_record_is_start_marker(info))) {
608                         /* we have the first record, get the last record to see
609                          * if this seq number belongs to the list.
610                          */
611                         last = list_last_entry(&context->records_list,
612                                                struct tls_record_info, list);
613
614                         if (!between(seq, tls_record_start_seq(info),
615                                      last->end_seq))
616                                 return NULL;
617                 }
618                 record_sn = context->unacked_record_sn;
619         }
620
621         /* We just need the _rcu for the READ_ONCE() */
622         rcu_read_lock();
623         list_for_each_entry_from_rcu(info, &context->records_list, list) {
624                 if (before(seq, info->end_seq)) {
625                         if (!context->retransmit_hint ||
626                             after(info->end_seq,
627                                   context->retransmit_hint->end_seq)) {
628                                 context->hint_record_sn = record_sn;
629                                 context->retransmit_hint = info;
630                         }
631                         *p_record_sn = record_sn;
632                         goto exit_rcu_unlock;
633                 }
634                 record_sn++;
635         }
636         info = NULL;
637
638 exit_rcu_unlock:
639         rcu_read_unlock();
640         return info;
641 }
642 EXPORT_SYMBOL(tls_get_record);
643
644 static int tls_device_push_pending_record(struct sock *sk, int flags)
645 {
646         struct iov_iter msg_iter;
647
648         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
649         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
650 }
651
652 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
653 {
654         if (tls_is_partially_sent_record(ctx)) {
655                 gfp_t sk_allocation = sk->sk_allocation;
656
657                 WARN_ON_ONCE(sk->sk_write_pending);
658
659                 sk->sk_allocation = GFP_ATOMIC;
660                 tls_push_partial_record(sk, ctx,
661                                         MSG_DONTWAIT | MSG_NOSIGNAL |
662                                         MSG_SENDPAGE_DECRYPTED);
663                 sk->sk_allocation = sk_allocation;
664         }
665 }
666
667 static void tls_device_resync_rx(struct tls_context *tls_ctx,
668                                  struct sock *sk, u32 seq, u8 *rcd_sn)
669 {
670         struct net_device *netdev;
671
672         if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
673                 return;
674         netdev = READ_ONCE(tls_ctx->netdev);
675         if (netdev)
676                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
677                                                    TLS_OFFLOAD_CTX_DIR_RX);
678         clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
679 }
680
681 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
682 {
683         struct tls_context *tls_ctx = tls_get_ctx(sk);
684         struct tls_offload_context_rx *rx_ctx;
685         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
686         struct tls_prot_info *prot;
687         u32 is_req_pending;
688         s64 resync_req;
689         u32 req_seq;
690
691         if (tls_ctx->rx_conf != TLS_HW)
692                 return;
693
694         prot = &tls_ctx->prot_info;
695         rx_ctx = tls_offload_ctx_rx(tls_ctx);
696         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
697
698         switch (rx_ctx->resync_type) {
699         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
700                 resync_req = atomic64_read(&rx_ctx->resync_req);
701                 req_seq = resync_req >> 32;
702                 seq += TLS_HEADER_SIZE - 1;
703                 is_req_pending = resync_req;
704
705                 if (likely(!is_req_pending) || req_seq != seq ||
706                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
707                         return;
708                 break;
709         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
710                 if (likely(!rx_ctx->resync_nh_do_now))
711                         return;
712
713                 /* head of next rec is already in, note that the sock_inq will
714                  * include the currently parsed message when called from parser
715                  */
716                 if (tcp_inq(sk) > rcd_len)
717                         return;
718
719                 rx_ctx->resync_nh_do_now = 0;
720                 seq += rcd_len;
721                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
722                 break;
723         }
724
725         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
726 }
727
728 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
729                                            struct tls_offload_context_rx *ctx,
730                                            struct sock *sk, struct sk_buff *skb)
731 {
732         struct strp_msg *rxm;
733
734         /* device will request resyncs by itself based on stream scan */
735         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
736                 return;
737         /* already scheduled */
738         if (ctx->resync_nh_do_now)
739                 return;
740         /* seen decrypted fragments since last fully-failed record */
741         if (ctx->resync_nh_reset) {
742                 ctx->resync_nh_reset = 0;
743                 ctx->resync_nh.decrypted_failed = 1;
744                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
745                 return;
746         }
747
748         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
749                 return;
750
751         /* doing resync, bump the next target in case it fails */
752         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
753                 ctx->resync_nh.decrypted_tgt *= 2;
754         else
755                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
756
757         rxm = strp_msg(skb);
758
759         /* head of next rec is already in, parser will sync for us */
760         if (tcp_inq(sk) > rxm->full_len) {
761                 ctx->resync_nh_do_now = 1;
762         } else {
763                 struct tls_prot_info *prot = &tls_ctx->prot_info;
764                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
765
766                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
767                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
768
769                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
770                                      rcd_sn);
771         }
772 }
773
774 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
775 {
776         struct strp_msg *rxm = strp_msg(skb);
777         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
778         struct sk_buff *skb_iter, *unused;
779         struct scatterlist sg[1];
780         char *orig_buf, *buf;
781
782         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
783                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
784         if (!orig_buf)
785                 return -ENOMEM;
786         buf = orig_buf;
787
788         nsg = skb_cow_data(skb, 0, &unused);
789         if (unlikely(nsg < 0)) {
790                 err = nsg;
791                 goto free_buf;
792         }
793
794         sg_init_table(sg, 1);
795         sg_set_buf(&sg[0], buf,
796                    rxm->full_len + TLS_HEADER_SIZE +
797                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
798         err = skb_copy_bits(skb, offset, buf,
799                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
800         if (err)
801                 goto free_buf;
802
803         /* We are interested only in the decrypted data not the auth */
804         err = decrypt_skb(sk, skb, sg);
805         if (err != -EBADMSG)
806                 goto free_buf;
807         else
808                 err = 0;
809
810         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
811
812         if (skb_pagelen(skb) > offset) {
813                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
814
815                 if (skb->decrypted) {
816                         err = skb_store_bits(skb, offset, buf, copy);
817                         if (err)
818                                 goto free_buf;
819                 }
820
821                 offset += copy;
822                 buf += copy;
823         }
824
825         pos = skb_pagelen(skb);
826         skb_walk_frags(skb, skb_iter) {
827                 int frag_pos;
828
829                 /* Practically all frags must belong to msg if reencrypt
830                  * is needed with current strparser and coalescing logic,
831                  * but strparser may "get optimized", so let's be safe.
832                  */
833                 if (pos + skb_iter->len <= offset)
834                         goto done_with_frag;
835                 if (pos >= data_len + rxm->offset)
836                         break;
837
838                 frag_pos = offset - pos;
839                 copy = min_t(int, skb_iter->len - frag_pos,
840                              data_len + rxm->offset - offset);
841
842                 if (skb_iter->decrypted) {
843                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
844                         if (err)
845                                 goto free_buf;
846                 }
847
848                 offset += copy;
849                 buf += copy;
850 done_with_frag:
851                 pos += skb_iter->len;
852         }
853
854 free_buf:
855         kfree(orig_buf);
856         return err;
857 }
858
859 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
860 {
861         struct tls_context *tls_ctx = tls_get_ctx(sk);
862         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
863         int is_decrypted = skb->decrypted;
864         int is_encrypted = !is_decrypted;
865         struct sk_buff *skb_iter;
866
867         /* Check if all the data is decrypted already */
868         skb_walk_frags(skb, skb_iter) {
869                 is_decrypted &= skb_iter->decrypted;
870                 is_encrypted &= !skb_iter->decrypted;
871         }
872
873         ctx->sw.decrypted |= is_decrypted;
874
875         /* Return immediately if the record is either entirely plaintext or
876          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
877          * record.
878          */
879         if (is_decrypted) {
880                 ctx->resync_nh_reset = 1;
881                 return 0;
882         }
883         if (is_encrypted) {
884                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
885                 return 0;
886         }
887
888         ctx->resync_nh_reset = 1;
889         return tls_device_reencrypt(sk, skb);
890 }
891
892 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
893                               struct net_device *netdev)
894 {
895         if (sk->sk_destruct != tls_device_sk_destruct) {
896                 refcount_set(&ctx->refcount, 1);
897                 dev_hold(netdev);
898                 ctx->netdev = netdev;
899                 spin_lock_irq(&tls_device_lock);
900                 list_add_tail(&ctx->list, &tls_device_list);
901                 spin_unlock_irq(&tls_device_lock);
902
903                 ctx->sk_destruct = sk->sk_destruct;
904                 sk->sk_destruct = tls_device_sk_destruct;
905         }
906 }
907
908 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
909 {
910         u16 nonce_size, tag_size, iv_size, rec_seq_size;
911         struct tls_context *tls_ctx = tls_get_ctx(sk);
912         struct tls_prot_info *prot = &tls_ctx->prot_info;
913         struct tls_record_info *start_marker_record;
914         struct tls_offload_context_tx *offload_ctx;
915         struct tls_crypto_info *crypto_info;
916         struct net_device *netdev;
917         char *iv, *rec_seq;
918         struct sk_buff *skb;
919         __be64 rcd_sn;
920         int rc;
921
922         if (!ctx)
923                 return -EINVAL;
924
925         if (ctx->priv_ctx_tx)
926                 return -EEXIST;
927
928         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
929         if (!start_marker_record)
930                 return -ENOMEM;
931
932         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
933         if (!offload_ctx) {
934                 rc = -ENOMEM;
935                 goto free_marker_record;
936         }
937
938         crypto_info = &ctx->crypto_send.info;
939         if (crypto_info->version != TLS_1_2_VERSION) {
940                 rc = -EOPNOTSUPP;
941                 goto free_offload_ctx;
942         }
943
944         switch (crypto_info->cipher_type) {
945         case TLS_CIPHER_AES_GCM_128:
946                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
947                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
948                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
949                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
950                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
951                 rec_seq =
952                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
953                 break;
954         default:
955                 rc = -EINVAL;
956                 goto free_offload_ctx;
957         }
958
959         /* Sanity-check the rec_seq_size for stack allocations */
960         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
961                 rc = -EINVAL;
962                 goto free_offload_ctx;
963         }
964
965         prot->version = crypto_info->version;
966         prot->cipher_type = crypto_info->cipher_type;
967         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
968         prot->tag_size = tag_size;
969         prot->overhead_size = prot->prepend_size + prot->tag_size;
970         prot->iv_size = iv_size;
971         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
972                              GFP_KERNEL);
973         if (!ctx->tx.iv) {
974                 rc = -ENOMEM;
975                 goto free_offload_ctx;
976         }
977
978         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
979
980         prot->rec_seq_size = rec_seq_size;
981         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
982         if (!ctx->tx.rec_seq) {
983                 rc = -ENOMEM;
984                 goto free_iv;
985         }
986
987         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
988         if (rc)
989                 goto free_rec_seq;
990
991         /* start at rec_seq - 1 to account for the start marker record */
992         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
993         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
994
995         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
996         start_marker_record->len = 0;
997         start_marker_record->num_frags = 0;
998
999         INIT_LIST_HEAD(&offload_ctx->records_list);
1000         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1001         spin_lock_init(&offload_ctx->lock);
1002         sg_init_table(offload_ctx->sg_tx_data,
1003                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1004
1005         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1006         ctx->push_pending_record = tls_device_push_pending_record;
1007
1008         /* TLS offload is greatly simplified if we don't send
1009          * SKBs where only part of the payload needs to be encrypted.
1010          * So mark the last skb in the write queue as end of record.
1011          */
1012         skb = tcp_write_queue_tail(sk);
1013         if (skb)
1014                 TCP_SKB_CB(skb)->eor = 1;
1015
1016         netdev = get_netdev_for_sock(sk);
1017         if (!netdev) {
1018                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1019                 rc = -EINVAL;
1020                 goto disable_cad;
1021         }
1022
1023         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1024                 rc = -EOPNOTSUPP;
1025                 goto release_netdev;
1026         }
1027
1028         /* Avoid offloading if the device is down
1029          * We don't want to offload new flows after
1030          * the NETDEV_DOWN event
1031          *
1032          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1033          * handler thus protecting from the device going down before
1034          * ctx was added to tls_device_list.
1035          */
1036         down_read(&device_offload_lock);
1037         if (!(netdev->flags & IFF_UP)) {
1038                 rc = -EINVAL;
1039                 goto release_lock;
1040         }
1041
1042         ctx->priv_ctx_tx = offload_ctx;
1043         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1044                                              &ctx->crypto_send.info,
1045                                              tcp_sk(sk)->write_seq);
1046         if (rc)
1047                 goto release_lock;
1048
1049         tls_device_attach(ctx, sk, netdev);
1050         up_read(&device_offload_lock);
1051
1052         /* following this assignment tls_is_sk_tx_device_offloaded
1053          * will return true and the context might be accessed
1054          * by the netdev's xmit function.
1055          */
1056         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1057         dev_put(netdev);
1058
1059         return 0;
1060
1061 release_lock:
1062         up_read(&device_offload_lock);
1063 release_netdev:
1064         dev_put(netdev);
1065 disable_cad:
1066         clean_acked_data_disable(inet_csk(sk));
1067         crypto_free_aead(offload_ctx->aead_send);
1068 free_rec_seq:
1069         kfree(ctx->tx.rec_seq);
1070 free_iv:
1071         kfree(ctx->tx.iv);
1072 free_offload_ctx:
1073         kfree(offload_ctx);
1074         ctx->priv_ctx_tx = NULL;
1075 free_marker_record:
1076         kfree(start_marker_record);
1077         return rc;
1078 }
1079
1080 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1081 {
1082         struct tls_offload_context_rx *context;
1083         struct net_device *netdev;
1084         int rc = 0;
1085
1086         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1087                 return -EOPNOTSUPP;
1088
1089         netdev = get_netdev_for_sock(sk);
1090         if (!netdev) {
1091                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1092                 return -EINVAL;
1093         }
1094
1095         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1096                 rc = -EOPNOTSUPP;
1097                 goto release_netdev;
1098         }
1099
1100         /* Avoid offloading if the device is down
1101          * We don't want to offload new flows after
1102          * the NETDEV_DOWN event
1103          *
1104          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1105          * handler thus protecting from the device going down before
1106          * ctx was added to tls_device_list.
1107          */
1108         down_read(&device_offload_lock);
1109         if (!(netdev->flags & IFF_UP)) {
1110                 rc = -EINVAL;
1111                 goto release_lock;
1112         }
1113
1114         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1115         if (!context) {
1116                 rc = -ENOMEM;
1117                 goto release_lock;
1118         }
1119         context->resync_nh_reset = 1;
1120
1121         ctx->priv_ctx_rx = context;
1122         rc = tls_set_sw_offload(sk, ctx, 0);
1123         if (rc)
1124                 goto release_ctx;
1125
1126         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1127                                              &ctx->crypto_recv.info,
1128                                              tcp_sk(sk)->copied_seq);
1129         if (rc)
1130                 goto free_sw_resources;
1131
1132         tls_device_attach(ctx, sk, netdev);
1133         up_read(&device_offload_lock);
1134
1135         dev_put(netdev);
1136
1137         return 0;
1138
1139 free_sw_resources:
1140         up_read(&device_offload_lock);
1141         tls_sw_free_resources_rx(sk);
1142         down_read(&device_offload_lock);
1143 release_ctx:
1144         ctx->priv_ctx_rx = NULL;
1145 release_lock:
1146         up_read(&device_offload_lock);
1147 release_netdev:
1148         dev_put(netdev);
1149         return rc;
1150 }
1151
1152 void tls_device_offload_cleanup_rx(struct sock *sk)
1153 {
1154         struct tls_context *tls_ctx = tls_get_ctx(sk);
1155         struct net_device *netdev;
1156
1157         down_read(&device_offload_lock);
1158         netdev = tls_ctx->netdev;
1159         if (!netdev)
1160                 goto out;
1161
1162         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1163                                         TLS_OFFLOAD_CTX_DIR_RX);
1164
1165         if (tls_ctx->tx_conf != TLS_HW) {
1166                 dev_put(netdev);
1167                 tls_ctx->netdev = NULL;
1168         } else {
1169                 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1170         }
1171 out:
1172         up_read(&device_offload_lock);
1173         tls_sw_release_resources_rx(sk);
1174 }
1175
1176 static int tls_device_down(struct net_device *netdev)
1177 {
1178         struct tls_context *ctx, *tmp;
1179         unsigned long flags;
1180         LIST_HEAD(list);
1181
1182         /* Request a write lock to block new offload attempts */
1183         down_write(&device_offload_lock);
1184
1185         spin_lock_irqsave(&tls_device_lock, flags);
1186         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1187                 if (ctx->netdev != netdev ||
1188                     !refcount_inc_not_zero(&ctx->refcount))
1189                         continue;
1190
1191                 list_move(&ctx->list, &list);
1192         }
1193         spin_unlock_irqrestore(&tls_device_lock, flags);
1194
1195         list_for_each_entry_safe(ctx, tmp, &list, list) {
1196                 if (ctx->tx_conf == TLS_HW)
1197                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1198                                                         TLS_OFFLOAD_CTX_DIR_TX);
1199                 if (ctx->rx_conf == TLS_HW &&
1200                     !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1201                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1202                                                         TLS_OFFLOAD_CTX_DIR_RX);
1203                 WRITE_ONCE(ctx->netdev, NULL);
1204                 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1205                 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1206                         usleep_range(10, 200);
1207                 dev_put(netdev);
1208                 list_del_init(&ctx->list);
1209
1210                 if (refcount_dec_and_test(&ctx->refcount))
1211                         tls_device_free_ctx(ctx);
1212         }
1213
1214         up_write(&device_offload_lock);
1215
1216         flush_work(&tls_device_gc_work);
1217
1218         return NOTIFY_DONE;
1219 }
1220
1221 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1222                          void *ptr)
1223 {
1224         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1225
1226         if (!dev->tlsdev_ops &&
1227             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1228                 return NOTIFY_DONE;
1229
1230         switch (event) {
1231         case NETDEV_REGISTER:
1232         case NETDEV_FEAT_CHANGE:
1233                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1234                     !dev->tlsdev_ops->tls_dev_resync)
1235                         return NOTIFY_BAD;
1236
1237                 if  (dev->tlsdev_ops &&
1238                      dev->tlsdev_ops->tls_dev_add &&
1239                      dev->tlsdev_ops->tls_dev_del)
1240                         return NOTIFY_DONE;
1241                 else
1242                         return NOTIFY_BAD;
1243         case NETDEV_DOWN:
1244                 return tls_device_down(dev);
1245         }
1246         return NOTIFY_DONE;
1247 }
1248
1249 static struct notifier_block tls_dev_notifier = {
1250         .notifier_call  = tls_dev_event,
1251 };
1252
1253 void __init tls_device_init(void)
1254 {
1255         register_netdevice_notifier(&tls_dev_notifier);
1256 }
1257
1258 void __exit tls_device_cleanup(void)
1259 {
1260         unregister_netdevice_notifier(&tls_dev_notifier);
1261         flush_work(&tls_device_gc_work);
1262         clean_acked_data_flush();
1263 }