GNU Linux-libre 4.19.209-gnu1
[releases.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(struct timer_list *t);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue __read_mostly;
58 struct workqueue_struct *xprtiod_workqueue __read_mostly;
59
60 /*
61  * Disable the timer for a given RPC task. Should be called with
62  * queue->lock and bh_disabled in order to avoid races within
63  * rpc_run_timer().
64  */
65 static void
66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67 {
68         if (task->tk_timeout == 0)
69                 return;
70         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71         task->tk_timeout = 0;
72         list_del(&task->u.tk_wait.timer_list);
73         if (list_empty(&queue->timer_list.list))
74                 del_timer(&queue->timer_list.timer);
75 }
76
77 static void
78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79 {
80         queue->timer_list.expires = expires;
81         mod_timer(&queue->timer_list.timer, expires);
82 }
83
84 /*
85  * Set up a timer for the current task.
86  */
87 static void
88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90         if (!task->tk_timeout)
91                 return;
92
93         dprintk("RPC: %5u setting alarm for %u ms\n",
94                 task->tk_pid, jiffies_to_msecs(task->tk_timeout));
95
96         task->u.tk_wait.expires = jiffies + task->tk_timeout;
97         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
98                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
99         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
100 }
101
102 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
103 {
104         if (queue->priority != priority) {
105                 queue->priority = priority;
106                 queue->nr = 1U << priority;
107         }
108 }
109
110 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
111 {
112         rpc_set_waitqueue_priority(queue, queue->maxpriority);
113 }
114
115 /*
116  * Add a request to a queue list
117  */
118 static void
119 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
120 {
121         struct rpc_task *t;
122
123         list_for_each_entry(t, q, u.tk_wait.list) {
124                 if (t->tk_owner == task->tk_owner) {
125                         list_add_tail(&task->u.tk_wait.links,
126                                         &t->u.tk_wait.links);
127                         /* Cache the queue head in task->u.tk_wait.list */
128                         task->u.tk_wait.list.next = q;
129                         task->u.tk_wait.list.prev = NULL;
130                         return;
131                 }
132         }
133         INIT_LIST_HEAD(&task->u.tk_wait.links);
134         list_add_tail(&task->u.tk_wait.list, q);
135 }
136
137 /*
138  * Remove request from a queue list
139  */
140 static void
141 __rpc_list_dequeue_task(struct rpc_task *task)
142 {
143         struct list_head *q;
144         struct rpc_task *t;
145
146         if (task->u.tk_wait.list.prev == NULL) {
147                 list_del(&task->u.tk_wait.links);
148                 return;
149         }
150         if (!list_empty(&task->u.tk_wait.links)) {
151                 t = list_first_entry(&task->u.tk_wait.links,
152                                 struct rpc_task,
153                                 u.tk_wait.links);
154                 /* Assume __rpc_list_enqueue_task() cached the queue head */
155                 q = t->u.tk_wait.list.next;
156                 list_add_tail(&t->u.tk_wait.list, q);
157                 list_del(&task->u.tk_wait.links);
158         }
159         list_del(&task->u.tk_wait.list);
160 }
161
162 /*
163  * Add new request to a priority queue.
164  */
165 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
166                 struct rpc_task *task,
167                 unsigned char queue_priority)
168 {
169         if (unlikely(queue_priority > queue->maxpriority))
170                 queue_priority = queue->maxpriority;
171         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
172 }
173
174 /*
175  * Add new request to wait queue.
176  *
177  * Swapper tasks always get inserted at the head of the queue.
178  * This should avoid many nasty memory deadlocks and hopefully
179  * improve overall performance.
180  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
181  */
182 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
183                 struct rpc_task *task,
184                 unsigned char queue_priority)
185 {
186         WARN_ON_ONCE(RPC_IS_QUEUED(task));
187         if (RPC_IS_QUEUED(task))
188                 return;
189
190         if (RPC_IS_PRIORITY(queue))
191                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
192         else if (RPC_IS_SWAPPER(task))
193                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
194         else
195                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
196         task->tk_waitqueue = queue;
197         queue->qlen++;
198         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
199         smp_wmb();
200         rpc_set_queued(task);
201
202         dprintk("RPC: %5u added to queue %p \"%s\"\n",
203                         task->tk_pid, queue, rpc_qname(queue));
204 }
205
206 /*
207  * Remove request from a priority queue.
208  */
209 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
210 {
211         __rpc_list_dequeue_task(task);
212 }
213
214 /*
215  * Remove request from queue.
216  * Note: must be called with spin lock held.
217  */
218 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
219 {
220         __rpc_disable_timer(queue, task);
221         if (RPC_IS_PRIORITY(queue))
222                 __rpc_remove_wait_queue_priority(task);
223         else
224                 list_del(&task->u.tk_wait.list);
225         queue->qlen--;
226         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
227                         task->tk_pid, queue, rpc_qname(queue));
228 }
229
230 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
231 {
232         int i;
233
234         spin_lock_init(&queue->lock);
235         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
236                 INIT_LIST_HEAD(&queue->tasks[i]);
237         queue->maxpriority = nr_queues - 1;
238         rpc_reset_waitqueue_priority(queue);
239         queue->qlen = 0;
240         timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0);
241         INIT_LIST_HEAD(&queue->timer_list.list);
242         rpc_assign_waitqueue_name(queue, qname);
243 }
244
245 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
246 {
247         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
248 }
249 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
250
251 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253         __rpc_init_priority_wait_queue(queue, qname, 1);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
256
257 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
258 {
259         del_timer_sync(&queue->timer_list.timer);
260 }
261 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
262
263 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
264 {
265         freezable_schedule_unsafe();
266         if (signal_pending_state(mode, current))
267                 return -ERESTARTSYS;
268         return 0;
269 }
270
271 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
272 static void rpc_task_set_debuginfo(struct rpc_task *task)
273 {
274         static atomic_t rpc_pid;
275
276         task->tk_pid = atomic_inc_return(&rpc_pid);
277 }
278 #else
279 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
280 {
281 }
282 #endif
283
284 static void rpc_set_active(struct rpc_task *task)
285 {
286         rpc_task_set_debuginfo(task);
287         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
288         trace_rpc_task_begin(task, NULL);
289 }
290
291 /*
292  * Mark an RPC call as having completed by clearing the 'active' bit
293  * and then waking up all tasks that were sleeping.
294  */
295 static int rpc_complete_task(struct rpc_task *task)
296 {
297         void *m = &task->tk_runstate;
298         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
299         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
300         unsigned long flags;
301         int ret;
302
303         trace_rpc_task_complete(task, NULL);
304
305         spin_lock_irqsave(&wq->lock, flags);
306         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
307         ret = atomic_dec_and_test(&task->tk_count);
308         if (waitqueue_active(wq))
309                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
310         spin_unlock_irqrestore(&wq->lock, flags);
311         return ret;
312 }
313
314 /*
315  * Allow callers to wait for completion of an RPC call
316  *
317  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
318  * to enforce taking of the wq->lock and hence avoid races with
319  * rpc_complete_task().
320  */
321 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
322 {
323         if (action == NULL)
324                 action = rpc_wait_bit_killable;
325         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
326                         action, TASK_KILLABLE);
327 }
328 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
329
330 /*
331  * Make an RPC task runnable.
332  *
333  * Note: If the task is ASYNC, and is being made runnable after sitting on an
334  * rpc_wait_queue, this must be called with the queue spinlock held to protect
335  * the wait queue operation.
336  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
337  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
338  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
339  * the RPC_TASK_RUNNING flag.
340  */
341 static void rpc_make_runnable(struct workqueue_struct *wq,
342                 struct rpc_task *task)
343 {
344         bool need_wakeup = !rpc_test_and_set_running(task);
345
346         rpc_clear_queued(task);
347         if (!need_wakeup)
348                 return;
349         if (RPC_IS_ASYNC(task)) {
350                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
351                 queue_work(wq, &task->u.tk_work);
352         } else
353                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
354 }
355
356 /*
357  * Prepare for sleeping on a wait queue.
358  * By always appending tasks to the list we ensure FIFO behavior.
359  * NB: An RPC task will only receive interrupt-driven events as long
360  * as it's on a wait queue.
361  */
362 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
363                 struct rpc_task *task,
364                 rpc_action action,
365                 unsigned char queue_priority)
366 {
367         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
368                         task->tk_pid, rpc_qname(q), jiffies);
369
370         trace_rpc_task_sleep(task, q);
371
372         __rpc_add_wait_queue(q, task, queue_priority);
373
374         WARN_ON_ONCE(task->tk_callback != NULL);
375         task->tk_callback = action;
376         __rpc_add_timer(q, task);
377 }
378
379 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
380                                 rpc_action action)
381 {
382         /* We shouldn't ever put an inactive task to sleep */
383         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
384         if (!RPC_IS_ACTIVATED(task)) {
385                 task->tk_status = -EIO;
386                 rpc_put_task_async(task);
387                 return;
388         }
389
390         /*
391          * Protect the queue operations.
392          */
393         spin_lock_bh(&q->lock);
394         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
395         spin_unlock_bh(&q->lock);
396 }
397 EXPORT_SYMBOL_GPL(rpc_sleep_on);
398
399 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
400                 rpc_action action, int priority)
401 {
402         /* We shouldn't ever put an inactive task to sleep */
403         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
404         if (!RPC_IS_ACTIVATED(task)) {
405                 task->tk_status = -EIO;
406                 rpc_put_task_async(task);
407                 return;
408         }
409
410         /*
411          * Protect the queue operations.
412          */
413         spin_lock_bh(&q->lock);
414         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
415         spin_unlock_bh(&q->lock);
416 }
417 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
418
419 /**
420  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
421  * @wq: workqueue on which to run task
422  * @queue: wait queue
423  * @task: task to be woken up
424  *
425  * Caller must hold queue->lock, and have cleared the task queued flag.
426  */
427 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
428                 struct rpc_wait_queue *queue,
429                 struct rpc_task *task)
430 {
431         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
432                         task->tk_pid, jiffies);
433
434         /* Has the task been executed yet? If not, we cannot wake it up! */
435         if (!RPC_IS_ACTIVATED(task)) {
436                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
437                 return;
438         }
439
440         trace_rpc_task_wakeup(task, queue);
441
442         __rpc_remove_wait_queue(queue, task);
443
444         rpc_make_runnable(wq, task);
445
446         dprintk("RPC:       __rpc_wake_up_task done\n");
447 }
448
449 /*
450  * Wake up a queued task while the queue lock is being held
451  */
452 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
453                 struct rpc_wait_queue *queue, struct rpc_task *task)
454 {
455         if (RPC_IS_QUEUED(task)) {
456                 smp_rmb();
457                 if (task->tk_waitqueue == queue)
458                         __rpc_do_wake_up_task_on_wq(wq, queue, task);
459         }
460 }
461
462 /*
463  * Wake up a queued task while the queue lock is being held
464  */
465 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
466 {
467         rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
468 }
469
470 /*
471  * Wake up a task on a specific queue
472  */
473 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
474                 struct rpc_wait_queue *queue,
475                 struct rpc_task *task)
476 {
477         spin_lock_bh(&queue->lock);
478         rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
479         spin_unlock_bh(&queue->lock);
480 }
481
482 /*
483  * Wake up a task on a specific queue
484  */
485 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
486 {
487         spin_lock_bh(&queue->lock);
488         rpc_wake_up_task_queue_locked(queue, task);
489         spin_unlock_bh(&queue->lock);
490 }
491 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
492
493 /*
494  * Wake up the next task on a priority queue.
495  */
496 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
497 {
498         struct list_head *q;
499         struct rpc_task *task;
500
501         /*
502          * Service the privileged queue.
503          */
504         q = &queue->tasks[RPC_NR_PRIORITY - 1];
505         if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
506                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
507                 goto out;
508         }
509
510         /*
511          * Service a batch of tasks from a single owner.
512          */
513         q = &queue->tasks[queue->priority];
514         if (!list_empty(q) && queue->nr) {
515                 queue->nr--;
516                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
517                 goto out;
518         }
519
520         /*
521          * Service the next queue.
522          */
523         do {
524                 if (q == &queue->tasks[0])
525                         q = &queue->tasks[queue->maxpriority];
526                 else
527                         q = q - 1;
528                 if (!list_empty(q)) {
529                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
530                         goto new_queue;
531                 }
532         } while (q != &queue->tasks[queue->priority]);
533
534         rpc_reset_waitqueue_priority(queue);
535         return NULL;
536
537 new_queue:
538         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
539 out:
540         return task;
541 }
542
543 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
544 {
545         if (RPC_IS_PRIORITY(queue))
546                 return __rpc_find_next_queued_priority(queue);
547         if (!list_empty(&queue->tasks[0]))
548                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
549         return NULL;
550 }
551
552 /*
553  * Wake up the first task on the wait queue.
554  */
555 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
556                 struct rpc_wait_queue *queue,
557                 bool (*func)(struct rpc_task *, void *), void *data)
558 {
559         struct rpc_task *task = NULL;
560
561         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
562                         queue, rpc_qname(queue));
563         spin_lock_bh(&queue->lock);
564         task = __rpc_find_next_queued(queue);
565         if (task != NULL) {
566                 if (func(task, data))
567                         rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
568                 else
569                         task = NULL;
570         }
571         spin_unlock_bh(&queue->lock);
572
573         return task;
574 }
575
576 /*
577  * Wake up the first task on the wait queue.
578  */
579 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
580                 bool (*func)(struct rpc_task *, void *), void *data)
581 {
582         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
583 }
584 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
585
586 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
587 {
588         return true;
589 }
590
591 /*
592  * Wake up the next task on the wait queue.
593 */
594 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
595 {
596         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
597 }
598 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
599
600 /**
601  * rpc_wake_up - wake up all rpc_tasks
602  * @queue: rpc_wait_queue on which the tasks are sleeping
603  *
604  * Grabs queue->lock
605  */
606 void rpc_wake_up(struct rpc_wait_queue *queue)
607 {
608         struct list_head *head;
609
610         spin_lock_bh(&queue->lock);
611         head = &queue->tasks[queue->maxpriority];
612         for (;;) {
613                 while (!list_empty(head)) {
614                         struct rpc_task *task;
615                         task = list_first_entry(head,
616                                         struct rpc_task,
617                                         u.tk_wait.list);
618                         rpc_wake_up_task_queue_locked(queue, task);
619                 }
620                 if (head == &queue->tasks[0])
621                         break;
622                 head--;
623         }
624         spin_unlock_bh(&queue->lock);
625 }
626 EXPORT_SYMBOL_GPL(rpc_wake_up);
627
628 /**
629  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
630  * @queue: rpc_wait_queue on which the tasks are sleeping
631  * @status: status value to set
632  *
633  * Grabs queue->lock
634  */
635 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
636 {
637         struct list_head *head;
638
639         spin_lock_bh(&queue->lock);
640         head = &queue->tasks[queue->maxpriority];
641         for (;;) {
642                 while (!list_empty(head)) {
643                         struct rpc_task *task;
644                         task = list_first_entry(head,
645                                         struct rpc_task,
646                                         u.tk_wait.list);
647                         task->tk_status = status;
648                         rpc_wake_up_task_queue_locked(queue, task);
649                 }
650                 if (head == &queue->tasks[0])
651                         break;
652                 head--;
653         }
654         spin_unlock_bh(&queue->lock);
655 }
656 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
657
658 static void __rpc_queue_timer_fn(struct timer_list *t)
659 {
660         struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
661         struct rpc_task *task, *n;
662         unsigned long expires, now, timeo;
663
664         spin_lock(&queue->lock);
665         expires = now = jiffies;
666         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
667                 timeo = task->u.tk_wait.expires;
668                 if (time_after_eq(now, timeo)) {
669                         dprintk("RPC: %5u timeout\n", task->tk_pid);
670                         task->tk_status = -ETIMEDOUT;
671                         rpc_wake_up_task_queue_locked(queue, task);
672                         continue;
673                 }
674                 if (expires == now || time_after(expires, timeo))
675                         expires = timeo;
676         }
677         if (!list_empty(&queue->timer_list.list))
678                 rpc_set_queue_timer(queue, expires);
679         spin_unlock(&queue->lock);
680 }
681
682 static void __rpc_atrun(struct rpc_task *task)
683 {
684         if (task->tk_status == -ETIMEDOUT)
685                 task->tk_status = 0;
686 }
687
688 /*
689  * Run a task at a later time
690  */
691 void rpc_delay(struct rpc_task *task, unsigned long delay)
692 {
693         task->tk_timeout = delay;
694         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
695 }
696 EXPORT_SYMBOL_GPL(rpc_delay);
697
698 /*
699  * Helper to call task->tk_ops->rpc_call_prepare
700  */
701 void rpc_prepare_task(struct rpc_task *task)
702 {
703         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
704 }
705
706 static void
707 rpc_init_task_statistics(struct rpc_task *task)
708 {
709         /* Initialize retry counters */
710         task->tk_garb_retry = 2;
711         task->tk_cred_retry = 2;
712         task->tk_rebind_retry = 2;
713
714         /* starting timestamp */
715         task->tk_start = ktime_get();
716 }
717
718 static void
719 rpc_reset_task_statistics(struct rpc_task *task)
720 {
721         task->tk_timeouts = 0;
722         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
723
724         rpc_init_task_statistics(task);
725 }
726
727 /*
728  * Helper that calls task->tk_ops->rpc_call_done if it exists
729  */
730 void rpc_exit_task(struct rpc_task *task)
731 {
732         task->tk_action = NULL;
733         if (task->tk_ops->rpc_call_done != NULL) {
734                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
735                 if (task->tk_action != NULL) {
736                         WARN_ON(RPC_ASSASSINATED(task));
737                         /* Always release the RPC slot and buffer memory */
738                         xprt_release(task);
739                         rpc_reset_task_statistics(task);
740                 }
741         }
742 }
743
744 void rpc_exit(struct rpc_task *task, int status)
745 {
746         task->tk_status = status;
747         task->tk_action = rpc_exit_task;
748         if (RPC_IS_QUEUED(task))
749                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
750 }
751 EXPORT_SYMBOL_GPL(rpc_exit);
752
753 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
754 {
755         if (ops->rpc_release != NULL)
756                 ops->rpc_release(calldata);
757 }
758
759 /*
760  * This is the RPC `scheduler' (or rather, the finite state machine).
761  */
762 static void __rpc_execute(struct rpc_task *task)
763 {
764         struct rpc_wait_queue *queue;
765         int task_is_async = RPC_IS_ASYNC(task);
766         int status = 0;
767
768         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
769                         task->tk_pid, task->tk_flags);
770
771         WARN_ON_ONCE(RPC_IS_QUEUED(task));
772         if (RPC_IS_QUEUED(task))
773                 return;
774
775         for (;;) {
776                 void (*do_action)(struct rpc_task *);
777
778                 /*
779                  * Perform the next FSM step or a pending callback.
780                  *
781                  * tk_action may be NULL if the task has been killed.
782                  * In particular, note that rpc_killall_tasks may
783                  * do this at any time, so beware when dereferencing.
784                  */
785                 do_action = task->tk_action;
786                 if (task->tk_callback) {
787                         do_action = task->tk_callback;
788                         task->tk_callback = NULL;
789                 }
790                 if (!do_action)
791                         break;
792                 trace_rpc_task_run_action(task, do_action);
793                 do_action(task);
794
795                 /*
796                  * Lockless check for whether task is sleeping or not.
797                  */
798                 if (!RPC_IS_QUEUED(task))
799                         continue;
800                 /*
801                  * The queue->lock protects against races with
802                  * rpc_make_runnable().
803                  *
804                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
805                  * rpc_task, rpc_make_runnable() can assign it to a
806                  * different workqueue. We therefore cannot assume that the
807                  * rpc_task pointer may still be dereferenced.
808                  */
809                 queue = task->tk_waitqueue;
810                 spin_lock_bh(&queue->lock);
811                 if (!RPC_IS_QUEUED(task)) {
812                         spin_unlock_bh(&queue->lock);
813                         continue;
814                 }
815                 rpc_clear_running(task);
816                 spin_unlock_bh(&queue->lock);
817                 if (task_is_async)
818                         return;
819
820                 /* sync task: sleep here */
821                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
822                 status = out_of_line_wait_on_bit(&task->tk_runstate,
823                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
824                                 TASK_KILLABLE);
825                 if (status == -ERESTARTSYS) {
826                         /*
827                          * When a sync task receives a signal, it exits with
828                          * -ERESTARTSYS. In order to catch any callbacks that
829                          * clean up after sleeping on some queue, we don't
830                          * break the loop here, but go around once more.
831                          */
832                         dprintk("RPC: %5u got signal\n", task->tk_pid);
833                         task->tk_flags |= RPC_TASK_KILLED;
834                         rpc_exit(task, -ERESTARTSYS);
835                 }
836                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
837         }
838
839         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
840                         task->tk_status);
841         /* Release all resources associated with the task */
842         rpc_release_task(task);
843 }
844
845 /*
846  * User-visible entry point to the scheduler.
847  *
848  * This may be called recursively if e.g. an async NFS task updates
849  * the attributes and finds that dirty pages must be flushed.
850  * NOTE: Upon exit of this function the task is guaranteed to be
851  *       released. In particular note that tk_release() will have
852  *       been called, so your task memory may have been freed.
853  */
854 void rpc_execute(struct rpc_task *task)
855 {
856         bool is_async = RPC_IS_ASYNC(task);
857
858         rpc_set_active(task);
859         rpc_make_runnable(rpciod_workqueue, task);
860         if (!is_async)
861                 __rpc_execute(task);
862 }
863
864 static void rpc_async_schedule(struct work_struct *work)
865 {
866         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
867 }
868
869 /**
870  * rpc_malloc - allocate RPC buffer resources
871  * @task: RPC task
872  *
873  * A single memory region is allocated, which is split between the
874  * RPC call and RPC reply that this task is being used for. When
875  * this RPC is retired, the memory is released by calling rpc_free.
876  *
877  * To prevent rpciod from hanging, this allocator never sleeps,
878  * returning -ENOMEM and suppressing warning if the request cannot
879  * be serviced immediately. The caller can arrange to sleep in a
880  * way that is safe for rpciod.
881  *
882  * Most requests are 'small' (under 2KiB) and can be serviced from a
883  * mempool, ensuring that NFS reads and writes can always proceed,
884  * and that there is good locality of reference for these buffers.
885  *
886  * In order to avoid memory starvation triggering more writebacks of
887  * NFS requests, we avoid using GFP_KERNEL.
888  */
889 int rpc_malloc(struct rpc_task *task)
890 {
891         struct rpc_rqst *rqst = task->tk_rqstp;
892         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
893         struct rpc_buffer *buf;
894         gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
895
896         if (RPC_IS_SWAPPER(task))
897                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
898
899         size += sizeof(struct rpc_buffer);
900         if (size <= RPC_BUFFER_MAXSIZE)
901                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
902         else
903                 buf = kmalloc(size, gfp);
904
905         if (!buf)
906                 return -ENOMEM;
907
908         buf->len = size;
909         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
910                         task->tk_pid, size, buf);
911         rqst->rq_buffer = buf->data;
912         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
913         return 0;
914 }
915 EXPORT_SYMBOL_GPL(rpc_malloc);
916
917 /**
918  * rpc_free - free RPC buffer resources allocated via rpc_malloc
919  * @task: RPC task
920  *
921  */
922 void rpc_free(struct rpc_task *task)
923 {
924         void *buffer = task->tk_rqstp->rq_buffer;
925         size_t size;
926         struct rpc_buffer *buf;
927
928         buf = container_of(buffer, struct rpc_buffer, data);
929         size = buf->len;
930
931         dprintk("RPC:       freeing buffer of size %zu at %p\n",
932                         size, buf);
933
934         if (size <= RPC_BUFFER_MAXSIZE)
935                 mempool_free(buf, rpc_buffer_mempool);
936         else
937                 kfree(buf);
938 }
939 EXPORT_SYMBOL_GPL(rpc_free);
940
941 /*
942  * Creation and deletion of RPC task structures
943  */
944 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
945 {
946         memset(task, 0, sizeof(*task));
947         atomic_set(&task->tk_count, 1);
948         task->tk_flags  = task_setup_data->flags;
949         task->tk_ops = task_setup_data->callback_ops;
950         task->tk_calldata = task_setup_data->callback_data;
951         INIT_LIST_HEAD(&task->tk_task);
952
953         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
954         task->tk_owner = current->tgid;
955
956         /* Initialize workqueue for async tasks */
957         task->tk_workqueue = task_setup_data->workqueue;
958
959         task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
960
961         if (task->tk_ops->rpc_call_prepare != NULL)
962                 task->tk_action = rpc_prepare_task;
963
964         rpc_init_task_statistics(task);
965
966         dprintk("RPC:       new task initialized, procpid %u\n",
967                                 task_pid_nr(current));
968 }
969
970 static struct rpc_task *
971 rpc_alloc_task(void)
972 {
973         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
974 }
975
976 /*
977  * Create a new task for the specified client.
978  */
979 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
980 {
981         struct rpc_task *task = setup_data->task;
982         unsigned short flags = 0;
983
984         if (task == NULL) {
985                 task = rpc_alloc_task();
986                 flags = RPC_TASK_DYNAMIC;
987         }
988
989         rpc_init_task(task, setup_data);
990         task->tk_flags |= flags;
991         dprintk("RPC:       allocated task %p\n", task);
992         return task;
993 }
994
995 /*
996  * rpc_free_task - release rpc task and perform cleanups
997  *
998  * Note that we free up the rpc_task _after_ rpc_release_calldata()
999  * in order to work around a workqueue dependency issue.
1000  *
1001  * Tejun Heo states:
1002  * "Workqueue currently considers two work items to be the same if they're
1003  * on the same address and won't execute them concurrently - ie. it
1004  * makes a work item which is queued again while being executed wait
1005  * for the previous execution to complete.
1006  *
1007  * If a work function frees the work item, and then waits for an event
1008  * which should be performed by another work item and *that* work item
1009  * recycles the freed work item, it can create a false dependency loop.
1010  * There really is no reliable way to detect this short of verifying
1011  * every memory free."
1012  *
1013  */
1014 static void rpc_free_task(struct rpc_task *task)
1015 {
1016         unsigned short tk_flags = task->tk_flags;
1017
1018         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1019
1020         if (tk_flags & RPC_TASK_DYNAMIC) {
1021                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1022                 mempool_free(task, rpc_task_mempool);
1023         }
1024 }
1025
1026 static void rpc_async_release(struct work_struct *work)
1027 {
1028         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1029 }
1030
1031 static void rpc_release_resources_task(struct rpc_task *task)
1032 {
1033         xprt_release(task);
1034         if (task->tk_msg.rpc_cred) {
1035                 put_rpccred(task->tk_msg.rpc_cred);
1036                 task->tk_msg.rpc_cred = NULL;
1037         }
1038         rpc_task_release_client(task);
1039 }
1040
1041 static void rpc_final_put_task(struct rpc_task *task,
1042                 struct workqueue_struct *q)
1043 {
1044         if (q != NULL) {
1045                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1046                 queue_work(q, &task->u.tk_work);
1047         } else
1048                 rpc_free_task(task);
1049 }
1050
1051 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1052 {
1053         if (atomic_dec_and_test(&task->tk_count)) {
1054                 rpc_release_resources_task(task);
1055                 rpc_final_put_task(task, q);
1056         }
1057 }
1058
1059 void rpc_put_task(struct rpc_task *task)
1060 {
1061         rpc_do_put_task(task, NULL);
1062 }
1063 EXPORT_SYMBOL_GPL(rpc_put_task);
1064
1065 void rpc_put_task_async(struct rpc_task *task)
1066 {
1067         rpc_do_put_task(task, task->tk_workqueue);
1068 }
1069 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1070
1071 static void rpc_release_task(struct rpc_task *task)
1072 {
1073         dprintk("RPC: %5u release task\n", task->tk_pid);
1074
1075         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1076
1077         rpc_release_resources_task(task);
1078
1079         /*
1080          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1081          * so it should be safe to use task->tk_count as a test for whether
1082          * or not any other processes still hold references to our rpc_task.
1083          */
1084         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1085                 /* Wake up anyone who may be waiting for task completion */
1086                 if (!rpc_complete_task(task))
1087                         return;
1088         } else {
1089                 if (!atomic_dec_and_test(&task->tk_count))
1090                         return;
1091         }
1092         rpc_final_put_task(task, task->tk_workqueue);
1093 }
1094
1095 int rpciod_up(void)
1096 {
1097         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1098 }
1099
1100 void rpciod_down(void)
1101 {
1102         module_put(THIS_MODULE);
1103 }
1104
1105 /*
1106  * Start up the rpciod workqueue.
1107  */
1108 static int rpciod_start(void)
1109 {
1110         struct workqueue_struct *wq;
1111
1112         /*
1113          * Create the rpciod thread and wait for it to start.
1114          */
1115         dprintk("RPC:       creating workqueue rpciod\n");
1116         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1117         if (!wq)
1118                 goto out_failed;
1119         rpciod_workqueue = wq;
1120         /* Note: highpri because network receive is latency sensitive */
1121         wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1122         if (!wq)
1123                 goto free_rpciod;
1124         xprtiod_workqueue = wq;
1125         return 1;
1126 free_rpciod:
1127         wq = rpciod_workqueue;
1128         rpciod_workqueue = NULL;
1129         destroy_workqueue(wq);
1130 out_failed:
1131         return 0;
1132 }
1133
1134 static void rpciod_stop(void)
1135 {
1136         struct workqueue_struct *wq = NULL;
1137
1138         if (rpciod_workqueue == NULL)
1139                 return;
1140         dprintk("RPC:       destroying workqueue rpciod\n");
1141
1142         wq = rpciod_workqueue;
1143         rpciod_workqueue = NULL;
1144         destroy_workqueue(wq);
1145         wq = xprtiod_workqueue;
1146         xprtiod_workqueue = NULL;
1147         destroy_workqueue(wq);
1148 }
1149
1150 void
1151 rpc_destroy_mempool(void)
1152 {
1153         rpciod_stop();
1154         mempool_destroy(rpc_buffer_mempool);
1155         mempool_destroy(rpc_task_mempool);
1156         kmem_cache_destroy(rpc_task_slabp);
1157         kmem_cache_destroy(rpc_buffer_slabp);
1158         rpc_destroy_wait_queue(&delay_queue);
1159 }
1160
1161 int
1162 rpc_init_mempool(void)
1163 {
1164         /*
1165          * The following is not strictly a mempool initialisation,
1166          * but there is no harm in doing it here
1167          */
1168         rpc_init_wait_queue(&delay_queue, "delayq");
1169         if (!rpciod_start())
1170                 goto err_nomem;
1171
1172         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1173                                              sizeof(struct rpc_task),
1174                                              0, SLAB_HWCACHE_ALIGN,
1175                                              NULL);
1176         if (!rpc_task_slabp)
1177                 goto err_nomem;
1178         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1179                                              RPC_BUFFER_MAXSIZE,
1180                                              0, SLAB_HWCACHE_ALIGN,
1181                                              NULL);
1182         if (!rpc_buffer_slabp)
1183                 goto err_nomem;
1184         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1185                                                     rpc_task_slabp);
1186         if (!rpc_task_mempool)
1187                 goto err_nomem;
1188         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1189                                                       rpc_buffer_slabp);
1190         if (!rpc_buffer_mempool)
1191                 goto err_nomem;
1192         return 0;
1193 err_nomem:
1194         rpc_destroy_mempool();
1195         return -ENOMEM;
1196 }