GNU Linux-libre 4.14.332-gnu1
[releases.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue __read_mostly;
58 struct workqueue_struct *xprtiod_workqueue __read_mostly;
59
60 /*
61  * Disable the timer for a given RPC task. Should be called with
62  * queue->lock and bh_disabled in order to avoid races within
63  * rpc_run_timer().
64  */
65 static void
66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67 {
68         if (task->tk_timeout == 0)
69                 return;
70         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71         task->tk_timeout = 0;
72         list_del(&task->u.tk_wait.timer_list);
73         if (list_empty(&queue->timer_list.list))
74                 del_timer(&queue->timer_list.timer);
75 }
76
77 static void
78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79 {
80         queue->timer_list.expires = expires;
81         mod_timer(&queue->timer_list.timer, expires);
82 }
83
84 /*
85  * Set up a timer for the current task.
86  */
87 static void
88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90         if (!task->tk_timeout)
91                 return;
92
93         dprintk("RPC: %5u setting alarm for %u ms\n",
94                 task->tk_pid, jiffies_to_msecs(task->tk_timeout));
95
96         task->u.tk_wait.expires = jiffies + task->tk_timeout;
97         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
98                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
99         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
100 }
101
102 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
103 {
104         if (queue->priority != priority) {
105                 queue->priority = priority;
106                 queue->nr = 1U << priority;
107         }
108 }
109
110 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
111 {
112         rpc_set_waitqueue_priority(queue, queue->maxpriority);
113 }
114
115 /*
116  * Add a request to a queue list
117  */
118 static void
119 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
120 {
121         struct rpc_task *t;
122
123         list_for_each_entry(t, q, u.tk_wait.list) {
124                 if (t->tk_owner == task->tk_owner) {
125                         list_add_tail(&task->u.tk_wait.links,
126                                         &t->u.tk_wait.links);
127                         /* Cache the queue head in task->u.tk_wait.list */
128                         task->u.tk_wait.list.next = q;
129                         task->u.tk_wait.list.prev = NULL;
130                         return;
131                 }
132         }
133         INIT_LIST_HEAD(&task->u.tk_wait.links);
134         list_add_tail(&task->u.tk_wait.list, q);
135 }
136
137 /*
138  * Remove request from a queue list
139  */
140 static void
141 __rpc_list_dequeue_task(struct rpc_task *task)
142 {
143         struct list_head *q;
144         struct rpc_task *t;
145
146         if (task->u.tk_wait.list.prev == NULL) {
147                 list_del(&task->u.tk_wait.links);
148                 return;
149         }
150         if (!list_empty(&task->u.tk_wait.links)) {
151                 t = list_first_entry(&task->u.tk_wait.links,
152                                 struct rpc_task,
153                                 u.tk_wait.links);
154                 /* Assume __rpc_list_enqueue_task() cached the queue head */
155                 q = t->u.tk_wait.list.next;
156                 list_add_tail(&t->u.tk_wait.list, q);
157                 list_del(&task->u.tk_wait.links);
158         }
159         list_del(&task->u.tk_wait.list);
160 }
161
162 /*
163  * Add new request to a priority queue.
164  */
165 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
166                 struct rpc_task *task,
167                 unsigned char queue_priority)
168 {
169         if (unlikely(queue_priority > queue->maxpriority))
170                 queue_priority = queue->maxpriority;
171         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
172 }
173
174 /*
175  * Add new request to wait queue.
176  *
177  * Swapper tasks always get inserted at the head of the queue.
178  * This should avoid many nasty memory deadlocks and hopefully
179  * improve overall performance.
180  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
181  */
182 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
183                 struct rpc_task *task,
184                 unsigned char queue_priority)
185 {
186         WARN_ON_ONCE(RPC_IS_QUEUED(task));
187         if (RPC_IS_QUEUED(task))
188                 return;
189
190         if (RPC_IS_PRIORITY(queue))
191                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
192         else if (RPC_IS_SWAPPER(task))
193                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
194         else
195                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
196         task->tk_waitqueue = queue;
197         queue->qlen++;
198         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
199         smp_wmb();
200         rpc_set_queued(task);
201
202         dprintk("RPC: %5u added to queue %p \"%s\"\n",
203                         task->tk_pid, queue, rpc_qname(queue));
204 }
205
206 /*
207  * Remove request from a priority queue.
208  */
209 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
210 {
211         __rpc_list_dequeue_task(task);
212 }
213
214 /*
215  * Remove request from queue.
216  * Note: must be called with spin lock held.
217  */
218 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
219 {
220         __rpc_disable_timer(queue, task);
221         if (RPC_IS_PRIORITY(queue))
222                 __rpc_remove_wait_queue_priority(task);
223         else
224                 list_del(&task->u.tk_wait.list);
225         queue->qlen--;
226         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
227                         task->tk_pid, queue, rpc_qname(queue));
228 }
229
230 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
231 {
232         int i;
233
234         spin_lock_init(&queue->lock);
235         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
236                 INIT_LIST_HEAD(&queue->tasks[i]);
237         queue->maxpriority = nr_queues - 1;
238         rpc_reset_waitqueue_priority(queue);
239         queue->qlen = 0;
240         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
241         INIT_LIST_HEAD(&queue->timer_list.list);
242         rpc_assign_waitqueue_name(queue, qname);
243 }
244
245 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
246 {
247         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
248 }
249 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
250
251 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253         __rpc_init_priority_wait_queue(queue, qname, 1);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
256
257 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
258 {
259         del_timer_sync(&queue->timer_list.timer);
260 }
261 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
262
263 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
264 {
265         freezable_schedule_unsafe();
266         if (signal_pending_state(mode, current))
267                 return -ERESTARTSYS;
268         return 0;
269 }
270
271 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
272 static void rpc_task_set_debuginfo(struct rpc_task *task)
273 {
274         static atomic_t rpc_pid;
275
276         task->tk_pid = atomic_inc_return(&rpc_pid);
277 }
278 #else
279 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
280 {
281 }
282 #endif
283
284 static void rpc_set_active(struct rpc_task *task)
285 {
286         rpc_task_set_debuginfo(task);
287         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
288         trace_rpc_task_begin(task->tk_client, task, NULL);
289 }
290
291 /*
292  * Mark an RPC call as having completed by clearing the 'active' bit
293  * and then waking up all tasks that were sleeping.
294  */
295 static int rpc_complete_task(struct rpc_task *task)
296 {
297         void *m = &task->tk_runstate;
298         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
299         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
300         unsigned long flags;
301         int ret;
302
303         trace_rpc_task_complete(task->tk_client, task, NULL);
304
305         spin_lock_irqsave(&wq->lock, flags);
306         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
307         ret = atomic_dec_and_test(&task->tk_count);
308         if (waitqueue_active(wq))
309                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
310         spin_unlock_irqrestore(&wq->lock, flags);
311         return ret;
312 }
313
314 /*
315  * Allow callers to wait for completion of an RPC call
316  *
317  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
318  * to enforce taking of the wq->lock and hence avoid races with
319  * rpc_complete_task().
320  */
321 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
322 {
323         if (action == NULL)
324                 action = rpc_wait_bit_killable;
325         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
326                         action, TASK_KILLABLE);
327 }
328 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
329
330 /*
331  * Make an RPC task runnable.
332  *
333  * Note: If the task is ASYNC, and is being made runnable after sitting on an
334  * rpc_wait_queue, this must be called with the queue spinlock held to protect
335  * the wait queue operation.
336  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
337  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
338  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
339  * the RPC_TASK_RUNNING flag.
340  */
341 static void rpc_make_runnable(struct workqueue_struct *wq,
342                 struct rpc_task *task)
343 {
344         bool need_wakeup = !rpc_test_and_set_running(task);
345
346         rpc_clear_queued(task);
347         if (!need_wakeup)
348                 return;
349         if (RPC_IS_ASYNC(task)) {
350                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
351                 queue_work(wq, &task->u.tk_work);
352         } else
353                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
354 }
355
356 /*
357  * Prepare for sleeping on a wait queue.
358  * By always appending tasks to the list we ensure FIFO behavior.
359  * NB: An RPC task will only receive interrupt-driven events as long
360  * as it's on a wait queue.
361  */
362 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
363                 struct rpc_task *task,
364                 rpc_action action,
365                 unsigned char queue_priority)
366 {
367         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
368                         task->tk_pid, rpc_qname(q), jiffies);
369
370         trace_rpc_task_sleep(task->tk_client, task, q);
371
372         __rpc_add_wait_queue(q, task, queue_priority);
373
374         WARN_ON_ONCE(task->tk_callback != NULL);
375         task->tk_callback = action;
376         __rpc_add_timer(q, task);
377 }
378
379 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
380                                 rpc_action action)
381 {
382         /* We shouldn't ever put an inactive task to sleep */
383         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
384         if (!RPC_IS_ACTIVATED(task)) {
385                 task->tk_status = -EIO;
386                 rpc_put_task_async(task);
387                 return;
388         }
389
390         /*
391          * Protect the queue operations.
392          */
393         spin_lock_bh(&q->lock);
394         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
395         spin_unlock_bh(&q->lock);
396 }
397 EXPORT_SYMBOL_GPL(rpc_sleep_on);
398
399 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
400                 rpc_action action, int priority)
401 {
402         /* We shouldn't ever put an inactive task to sleep */
403         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
404         if (!RPC_IS_ACTIVATED(task)) {
405                 task->tk_status = -EIO;
406                 rpc_put_task_async(task);
407                 return;
408         }
409
410         /*
411          * Protect the queue operations.
412          */
413         spin_lock_bh(&q->lock);
414         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
415         spin_unlock_bh(&q->lock);
416 }
417 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
418
419 /**
420  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
421  * @wq: workqueue on which to run task
422  * @queue: wait queue
423  * @task: task to be woken up
424  *
425  * Caller must hold queue->lock, and have cleared the task queued flag.
426  */
427 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
428                 struct rpc_wait_queue *queue,
429                 struct rpc_task *task)
430 {
431         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
432                         task->tk_pid, jiffies);
433
434         /* Has the task been executed yet? If not, we cannot wake it up! */
435         if (!RPC_IS_ACTIVATED(task)) {
436                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
437                 return;
438         }
439
440         trace_rpc_task_wakeup(task->tk_client, task, queue);
441
442         __rpc_remove_wait_queue(queue, task);
443
444         rpc_make_runnable(wq, task);
445
446         dprintk("RPC:       __rpc_wake_up_task done\n");
447 }
448
449 /*
450  * Wake up a queued task while the queue lock is being held
451  */
452 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
453                 struct rpc_wait_queue *queue, struct rpc_task *task)
454 {
455         if (RPC_IS_QUEUED(task)) {
456                 smp_rmb();
457                 if (task->tk_waitqueue == queue)
458                         __rpc_do_wake_up_task_on_wq(wq, queue, task);
459         }
460 }
461
462 /*
463  * Wake up a queued task while the queue lock is being held
464  */
465 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
466 {
467         rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
468 }
469
470 /*
471  * Wake up a task on a specific queue
472  */
473 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
474 {
475         spin_lock_bh(&queue->lock);
476         rpc_wake_up_task_queue_locked(queue, task);
477         spin_unlock_bh(&queue->lock);
478 }
479 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
480
481 /*
482  * Wake up the next task on a priority queue.
483  */
484 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
485 {
486         struct list_head *q;
487         struct rpc_task *task;
488
489         /*
490          * Service the privileged queue.
491          */
492         q = &queue->tasks[RPC_NR_PRIORITY - 1];
493         if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
494                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
495                 goto out;
496         }
497
498         /*
499          * Service a batch of tasks from a single owner.
500          */
501         q = &queue->tasks[queue->priority];
502         if (!list_empty(q) && queue->nr) {
503                 queue->nr--;
504                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
505                 goto out;
506         }
507
508         /*
509          * Service the next queue.
510          */
511         do {
512                 if (q == &queue->tasks[0])
513                         q = &queue->tasks[queue->maxpriority];
514                 else
515                         q = q - 1;
516                 if (!list_empty(q)) {
517                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
518                         goto new_queue;
519                 }
520         } while (q != &queue->tasks[queue->priority]);
521
522         rpc_reset_waitqueue_priority(queue);
523         return NULL;
524
525 new_queue:
526         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
527 out:
528         return task;
529 }
530
531 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
532 {
533         if (RPC_IS_PRIORITY(queue))
534                 return __rpc_find_next_queued_priority(queue);
535         if (!list_empty(&queue->tasks[0]))
536                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
537         return NULL;
538 }
539
540 /*
541  * Wake up the first task on the wait queue.
542  */
543 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
544                 struct rpc_wait_queue *queue,
545                 bool (*func)(struct rpc_task *, void *), void *data)
546 {
547         struct rpc_task *task = NULL;
548
549         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
550                         queue, rpc_qname(queue));
551         spin_lock_bh(&queue->lock);
552         task = __rpc_find_next_queued(queue);
553         if (task != NULL) {
554                 if (func(task, data))
555                         rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
556                 else
557                         task = NULL;
558         }
559         spin_unlock_bh(&queue->lock);
560
561         return task;
562 }
563
564 /*
565  * Wake up the first task on the wait queue.
566  */
567 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
568                 bool (*func)(struct rpc_task *, void *), void *data)
569 {
570         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
571 }
572 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
573
574 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
575 {
576         return true;
577 }
578
579 /*
580  * Wake up the next task on the wait queue.
581 */
582 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
583 {
584         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
585 }
586 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
587
588 /**
589  * rpc_wake_up - wake up all rpc_tasks
590  * @queue: rpc_wait_queue on which the tasks are sleeping
591  *
592  * Grabs queue->lock
593  */
594 void rpc_wake_up(struct rpc_wait_queue *queue)
595 {
596         struct list_head *head;
597
598         spin_lock_bh(&queue->lock);
599         head = &queue->tasks[queue->maxpriority];
600         for (;;) {
601                 while (!list_empty(head)) {
602                         struct rpc_task *task;
603                         task = list_first_entry(head,
604                                         struct rpc_task,
605                                         u.tk_wait.list);
606                         rpc_wake_up_task_queue_locked(queue, task);
607                 }
608                 if (head == &queue->tasks[0])
609                         break;
610                 head--;
611         }
612         spin_unlock_bh(&queue->lock);
613 }
614 EXPORT_SYMBOL_GPL(rpc_wake_up);
615
616 /**
617  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
618  * @queue: rpc_wait_queue on which the tasks are sleeping
619  * @status: status value to set
620  *
621  * Grabs queue->lock
622  */
623 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
624 {
625         struct list_head *head;
626
627         spin_lock_bh(&queue->lock);
628         head = &queue->tasks[queue->maxpriority];
629         for (;;) {
630                 while (!list_empty(head)) {
631                         struct rpc_task *task;
632                         task = list_first_entry(head,
633                                         struct rpc_task,
634                                         u.tk_wait.list);
635                         task->tk_status = status;
636                         rpc_wake_up_task_queue_locked(queue, task);
637                 }
638                 if (head == &queue->tasks[0])
639                         break;
640                 head--;
641         }
642         spin_unlock_bh(&queue->lock);
643 }
644 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
645
646 static void __rpc_queue_timer_fn(unsigned long ptr)
647 {
648         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
649         struct rpc_task *task, *n;
650         unsigned long expires, now, timeo;
651
652         spin_lock(&queue->lock);
653         expires = now = jiffies;
654         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
655                 timeo = task->u.tk_wait.expires;
656                 if (time_after_eq(now, timeo)) {
657                         dprintk("RPC: %5u timeout\n", task->tk_pid);
658                         task->tk_status = -ETIMEDOUT;
659                         rpc_wake_up_task_queue_locked(queue, task);
660                         continue;
661                 }
662                 if (expires == now || time_after(expires, timeo))
663                         expires = timeo;
664         }
665         if (!list_empty(&queue->timer_list.list))
666                 rpc_set_queue_timer(queue, expires);
667         spin_unlock(&queue->lock);
668 }
669
670 static void __rpc_atrun(struct rpc_task *task)
671 {
672         if (task->tk_status == -ETIMEDOUT)
673                 task->tk_status = 0;
674 }
675
676 /*
677  * Run a task at a later time
678  */
679 void rpc_delay(struct rpc_task *task, unsigned long delay)
680 {
681         task->tk_timeout = delay;
682         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
683 }
684 EXPORT_SYMBOL_GPL(rpc_delay);
685
686 /*
687  * Helper to call task->tk_ops->rpc_call_prepare
688  */
689 void rpc_prepare_task(struct rpc_task *task)
690 {
691         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
692 }
693
694 static void
695 rpc_init_task_statistics(struct rpc_task *task)
696 {
697         /* Initialize retry counters */
698         task->tk_garb_retry = 2;
699         task->tk_cred_retry = 2;
700
701         /* starting timestamp */
702         task->tk_start = ktime_get();
703 }
704
705 static void
706 rpc_reset_task_statistics(struct rpc_task *task)
707 {
708         task->tk_timeouts = 0;
709         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
710
711         rpc_init_task_statistics(task);
712 }
713
714 /*
715  * Helper that calls task->tk_ops->rpc_call_done if it exists
716  */
717 void rpc_exit_task(struct rpc_task *task)
718 {
719         task->tk_action = NULL;
720         if (task->tk_ops->rpc_call_done != NULL) {
721                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
722                 if (task->tk_action != NULL) {
723                         WARN_ON(RPC_ASSASSINATED(task));
724                         /* Always release the RPC slot and buffer memory */
725                         xprt_release(task);
726                         rpc_reset_task_statistics(task);
727                 }
728         }
729 }
730
731 void rpc_exit(struct rpc_task *task, int status)
732 {
733         task->tk_status = status;
734         task->tk_action = rpc_exit_task;
735         if (RPC_IS_QUEUED(task))
736                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
737 }
738 EXPORT_SYMBOL_GPL(rpc_exit);
739
740 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
741 {
742         if (ops->rpc_release != NULL)
743                 ops->rpc_release(calldata);
744 }
745
746 /*
747  * This is the RPC `scheduler' (or rather, the finite state machine).
748  */
749 static void __rpc_execute(struct rpc_task *task)
750 {
751         struct rpc_wait_queue *queue;
752         int task_is_async = RPC_IS_ASYNC(task);
753         int status = 0;
754
755         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
756                         task->tk_pid, task->tk_flags);
757
758         WARN_ON_ONCE(RPC_IS_QUEUED(task));
759         if (RPC_IS_QUEUED(task))
760                 return;
761
762         for (;;) {
763                 void (*do_action)(struct rpc_task *);
764
765                 /*
766                  * Execute any pending callback first.
767                  */
768                 do_action = task->tk_callback;
769                 task->tk_callback = NULL;
770                 if (do_action == NULL) {
771                         /*
772                          * Perform the next FSM step.
773                          * tk_action may be NULL if the task has been killed.
774                          * In particular, note that rpc_killall_tasks may
775                          * do this at any time, so beware when dereferencing.
776                          */
777                         do_action = task->tk_action;
778                         if (do_action == NULL)
779                                 break;
780                 }
781                 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
782                 do_action(task);
783
784                 /*
785                  * Lockless check for whether task is sleeping or not.
786                  */
787                 if (!RPC_IS_QUEUED(task))
788                         continue;
789                 /*
790                  * The queue->lock protects against races with
791                  * rpc_make_runnable().
792                  *
793                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
794                  * rpc_task, rpc_make_runnable() can assign it to a
795                  * different workqueue. We therefore cannot assume that the
796                  * rpc_task pointer may still be dereferenced.
797                  */
798                 queue = task->tk_waitqueue;
799                 spin_lock_bh(&queue->lock);
800                 if (!RPC_IS_QUEUED(task)) {
801                         spin_unlock_bh(&queue->lock);
802                         continue;
803                 }
804                 rpc_clear_running(task);
805                 spin_unlock_bh(&queue->lock);
806                 if (task_is_async)
807                         return;
808
809                 /* sync task: sleep here */
810                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
811                 status = out_of_line_wait_on_bit(&task->tk_runstate,
812                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
813                                 TASK_KILLABLE);
814                 if (status == -ERESTARTSYS) {
815                         /*
816                          * When a sync task receives a signal, it exits with
817                          * -ERESTARTSYS. In order to catch any callbacks that
818                          * clean up after sleeping on some queue, we don't
819                          * break the loop here, but go around once more.
820                          */
821                         dprintk("RPC: %5u got signal\n", task->tk_pid);
822                         task->tk_flags |= RPC_TASK_KILLED;
823                         rpc_exit(task, -ERESTARTSYS);
824                 }
825                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
826         }
827
828         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
829                         task->tk_status);
830         /* Release all resources associated with the task */
831         rpc_release_task(task);
832 }
833
834 /*
835  * User-visible entry point to the scheduler.
836  *
837  * This may be called recursively if e.g. an async NFS task updates
838  * the attributes and finds that dirty pages must be flushed.
839  * NOTE: Upon exit of this function the task is guaranteed to be
840  *       released. In particular note that tk_release() will have
841  *       been called, so your task memory may have been freed.
842  */
843 void rpc_execute(struct rpc_task *task)
844 {
845         bool is_async = RPC_IS_ASYNC(task);
846
847         rpc_set_active(task);
848         rpc_make_runnable(rpciod_workqueue, task);
849         if (!is_async)
850                 __rpc_execute(task);
851 }
852
853 static void rpc_async_schedule(struct work_struct *work)
854 {
855         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
856 }
857
858 /**
859  * rpc_malloc - allocate RPC buffer resources
860  * @task: RPC task
861  *
862  * A single memory region is allocated, which is split between the
863  * RPC call and RPC reply that this task is being used for. When
864  * this RPC is retired, the memory is released by calling rpc_free.
865  *
866  * To prevent rpciod from hanging, this allocator never sleeps,
867  * returning -ENOMEM and suppressing warning if the request cannot
868  * be serviced immediately. The caller can arrange to sleep in a
869  * way that is safe for rpciod.
870  *
871  * Most requests are 'small' (under 2KiB) and can be serviced from a
872  * mempool, ensuring that NFS reads and writes can always proceed,
873  * and that there is good locality of reference for these buffers.
874  *
875  * In order to avoid memory starvation triggering more writebacks of
876  * NFS requests, we avoid using GFP_KERNEL.
877  */
878 int rpc_malloc(struct rpc_task *task)
879 {
880         struct rpc_rqst *rqst = task->tk_rqstp;
881         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
882         struct rpc_buffer *buf;
883         gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
884
885         if (RPC_IS_ASYNC(task))
886                 gfp = GFP_NOWAIT | __GFP_NOWARN;
887         if (RPC_IS_SWAPPER(task))
888                 gfp |= __GFP_MEMALLOC;
889
890         size += sizeof(struct rpc_buffer);
891         if (size <= RPC_BUFFER_MAXSIZE)
892                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
893         else
894                 buf = kmalloc(size, gfp);
895
896         if (!buf)
897                 return -ENOMEM;
898
899         buf->len = size;
900         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
901                         task->tk_pid, size, buf);
902         rqst->rq_buffer = buf->data;
903         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
904         return 0;
905 }
906 EXPORT_SYMBOL_GPL(rpc_malloc);
907
908 /**
909  * rpc_free - free RPC buffer resources allocated via rpc_malloc
910  * @task: RPC task
911  *
912  */
913 void rpc_free(struct rpc_task *task)
914 {
915         void *buffer = task->tk_rqstp->rq_buffer;
916         size_t size;
917         struct rpc_buffer *buf;
918
919         buf = container_of(buffer, struct rpc_buffer, data);
920         size = buf->len;
921
922         dprintk("RPC:       freeing buffer of size %zu at %p\n",
923                         size, buf);
924
925         if (size <= RPC_BUFFER_MAXSIZE)
926                 mempool_free(buf, rpc_buffer_mempool);
927         else
928                 kfree(buf);
929 }
930 EXPORT_SYMBOL_GPL(rpc_free);
931
932 /*
933  * Creation and deletion of RPC task structures
934  */
935 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
936 {
937         memset(task, 0, sizeof(*task));
938         atomic_set(&task->tk_count, 1);
939         task->tk_flags  = task_setup_data->flags;
940         task->tk_ops = task_setup_data->callback_ops;
941         task->tk_calldata = task_setup_data->callback_data;
942         INIT_LIST_HEAD(&task->tk_task);
943
944         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
945         task->tk_owner = current->tgid;
946
947         /* Initialize workqueue for async tasks */
948         task->tk_workqueue = task_setup_data->workqueue;
949
950         task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
951
952         if (task->tk_ops->rpc_call_prepare != NULL)
953                 task->tk_action = rpc_prepare_task;
954
955         rpc_init_task_statistics(task);
956
957         dprintk("RPC:       new task initialized, procpid %u\n",
958                                 task_pid_nr(current));
959 }
960
961 static struct rpc_task *
962 rpc_alloc_task(void)
963 {
964         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
965 }
966
967 /*
968  * Create a new task for the specified client.
969  */
970 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
971 {
972         struct rpc_task *task = setup_data->task;
973         unsigned short flags = 0;
974
975         if (task == NULL) {
976                 task = rpc_alloc_task();
977                 flags = RPC_TASK_DYNAMIC;
978         }
979
980         rpc_init_task(task, setup_data);
981         task->tk_flags |= flags;
982         dprintk("RPC:       allocated task %p\n", task);
983         return task;
984 }
985
986 /*
987  * rpc_free_task - release rpc task and perform cleanups
988  *
989  * Note that we free up the rpc_task _after_ rpc_release_calldata()
990  * in order to work around a workqueue dependency issue.
991  *
992  * Tejun Heo states:
993  * "Workqueue currently considers two work items to be the same if they're
994  * on the same address and won't execute them concurrently - ie. it
995  * makes a work item which is queued again while being executed wait
996  * for the previous execution to complete.
997  *
998  * If a work function frees the work item, and then waits for an event
999  * which should be performed by another work item and *that* work item
1000  * recycles the freed work item, it can create a false dependency loop.
1001  * There really is no reliable way to detect this short of verifying
1002  * every memory free."
1003  *
1004  */
1005 static void rpc_free_task(struct rpc_task *task)
1006 {
1007         unsigned short tk_flags = task->tk_flags;
1008
1009         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1010
1011         if (tk_flags & RPC_TASK_DYNAMIC) {
1012                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1013                 mempool_free(task, rpc_task_mempool);
1014         }
1015 }
1016
1017 static void rpc_async_release(struct work_struct *work)
1018 {
1019         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1020 }
1021
1022 static void rpc_release_resources_task(struct rpc_task *task)
1023 {
1024         xprt_release(task);
1025         if (task->tk_msg.rpc_cred) {
1026                 put_rpccred(task->tk_msg.rpc_cred);
1027                 task->tk_msg.rpc_cred = NULL;
1028         }
1029         rpc_task_release_client(task);
1030 }
1031
1032 static void rpc_final_put_task(struct rpc_task *task,
1033                 struct workqueue_struct *q)
1034 {
1035         if (q != NULL) {
1036                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1037                 queue_work(q, &task->u.tk_work);
1038         } else
1039                 rpc_free_task(task);
1040 }
1041
1042 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1043 {
1044         if (atomic_dec_and_test(&task->tk_count)) {
1045                 rpc_release_resources_task(task);
1046                 rpc_final_put_task(task, q);
1047         }
1048 }
1049
1050 void rpc_put_task(struct rpc_task *task)
1051 {
1052         rpc_do_put_task(task, NULL);
1053 }
1054 EXPORT_SYMBOL_GPL(rpc_put_task);
1055
1056 void rpc_put_task_async(struct rpc_task *task)
1057 {
1058         rpc_do_put_task(task, task->tk_workqueue);
1059 }
1060 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1061
1062 static void rpc_release_task(struct rpc_task *task)
1063 {
1064         dprintk("RPC: %5u release task\n", task->tk_pid);
1065
1066         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1067
1068         rpc_release_resources_task(task);
1069
1070         /*
1071          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1072          * so it should be safe to use task->tk_count as a test for whether
1073          * or not any other processes still hold references to our rpc_task.
1074          */
1075         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1076                 /* Wake up anyone who may be waiting for task completion */
1077                 if (!rpc_complete_task(task))
1078                         return;
1079         } else {
1080                 if (!atomic_dec_and_test(&task->tk_count))
1081                         return;
1082         }
1083         rpc_final_put_task(task, task->tk_workqueue);
1084 }
1085
1086 int rpciod_up(void)
1087 {
1088         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1089 }
1090
1091 void rpciod_down(void)
1092 {
1093         module_put(THIS_MODULE);
1094 }
1095
1096 /*
1097  * Start up the rpciod workqueue.
1098  */
1099 static int rpciod_start(void)
1100 {
1101         struct workqueue_struct *wq;
1102
1103         /*
1104          * Create the rpciod thread and wait for it to start.
1105          */
1106         dprintk("RPC:       creating workqueue rpciod\n");
1107         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1108         if (!wq)
1109                 goto out_failed;
1110         rpciod_workqueue = wq;
1111         /* Note: highpri because network receive is latency sensitive */
1112         wq = alloc_workqueue("xprtiod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1113         if (!wq)
1114                 goto free_rpciod;
1115         xprtiod_workqueue = wq;
1116         return 1;
1117 free_rpciod:
1118         wq = rpciod_workqueue;
1119         rpciod_workqueue = NULL;
1120         destroy_workqueue(wq);
1121 out_failed:
1122         return 0;
1123 }
1124
1125 static void rpciod_stop(void)
1126 {
1127         struct workqueue_struct *wq = NULL;
1128
1129         if (rpciod_workqueue == NULL)
1130                 return;
1131         dprintk("RPC:       destroying workqueue rpciod\n");
1132
1133         wq = rpciod_workqueue;
1134         rpciod_workqueue = NULL;
1135         destroy_workqueue(wq);
1136         wq = xprtiod_workqueue;
1137         xprtiod_workqueue = NULL;
1138         destroy_workqueue(wq);
1139 }
1140
1141 void
1142 rpc_destroy_mempool(void)
1143 {
1144         rpciod_stop();
1145         mempool_destroy(rpc_buffer_mempool);
1146         mempool_destroy(rpc_task_mempool);
1147         kmem_cache_destroy(rpc_task_slabp);
1148         kmem_cache_destroy(rpc_buffer_slabp);
1149         rpc_destroy_wait_queue(&delay_queue);
1150 }
1151
1152 int
1153 rpc_init_mempool(void)
1154 {
1155         /*
1156          * The following is not strictly a mempool initialisation,
1157          * but there is no harm in doing it here
1158          */
1159         rpc_init_wait_queue(&delay_queue, "delayq");
1160         if (!rpciod_start())
1161                 goto err_nomem;
1162
1163         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1164                                              sizeof(struct rpc_task),
1165                                              0, SLAB_HWCACHE_ALIGN,
1166                                              NULL);
1167         if (!rpc_task_slabp)
1168                 goto err_nomem;
1169         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1170                                              RPC_BUFFER_MAXSIZE,
1171                                              0, SLAB_HWCACHE_ALIGN,
1172                                              NULL);
1173         if (!rpc_buffer_slabp)
1174                 goto err_nomem;
1175         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1176                                                     rpc_task_slabp);
1177         if (!rpc_task_mempool)
1178                 goto err_nomem;
1179         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1180                                                       rpc_buffer_slabp);
1181         if (!rpc_buffer_mempool)
1182                 goto err_nomem;
1183         return 0;
1184 err_nomem:
1185         rpc_destroy_mempool();
1186         return -ENOMEM;
1187 }