GNU Linux-libre 5.4.257-gnu1
[releases.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY         RPCDBG_SCHED
32 #endif
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
36
37 /*
38  * RPC slabs and memory pools
39  */
40 #define RPC_BUFFER_MAXSIZE      (2048)
41 #define RPC_BUFFER_POOLSIZE     (8)
42 #define RPC_TASK_POOLSIZE       (8)
43 static struct kmem_cache        *rpc_task_slabp __read_mostly;
44 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
45 static mempool_t        *rpc_task_mempool __read_mostly;
46 static mempool_t        *rpc_buffer_mempool __read_mostly;
47
48 static void                     rpc_async_schedule(struct work_struct *);
49 static void                      rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
51
52 /*
53  * RPC tasks sit here while waiting for conditions to improve.
54  */
55 static struct rpc_wait_queue delay_queue;
56
57 /*
58  * rpciod-related stuff
59  */
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63
64 unsigned long
65 rpc_task_timeout(const struct rpc_task *task)
66 {
67         unsigned long timeout = READ_ONCE(task->tk_timeout);
68
69         if (timeout != 0) {
70                 unsigned long now = jiffies;
71                 if (time_before(now, timeout))
72                         return timeout - now;
73         }
74         return 0;
75 }
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
77
78 /*
79  * Disable the timer for a given RPC task. Should be called with
80  * queue->lock and bh_disabled in order to avoid races within
81  * rpc_run_timer().
82  */
83 static void
84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86         if (list_empty(&task->u.tk_wait.timer_list))
87                 return;
88         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89         task->tk_timeout = 0;
90         list_del(&task->u.tk_wait.timer_list);
91         if (list_empty(&queue->timer_list.list))
92                 cancel_delayed_work(&queue->timer_list.dwork);
93 }
94
95 static void
96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97 {
98         unsigned long now = jiffies;
99         queue->timer_list.expires = expires;
100         if (time_before_eq(expires, now))
101                 expires = 0;
102         else
103                 expires -= now;
104         mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105 }
106
107 /*
108  * Set up a timer for the current task.
109  */
110 static void
111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112                 unsigned long timeout)
113 {
114         dprintk("RPC: %5u setting alarm for %u ms\n",
115                 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116
117         task->tk_timeout = timeout;
118         if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119                 rpc_set_queue_timer(queue, timeout);
120         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125         if (queue->priority != priority) {
126                 queue->priority = priority;
127                 queue->nr = 1U << priority;
128         }
129 }
130
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133         rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135
136 /*
137  * Add a request to a queue list
138  */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142         struct rpc_task *t;
143
144         list_for_each_entry(t, q, u.tk_wait.list) {
145                 if (t->tk_owner == task->tk_owner) {
146                         list_add_tail(&task->u.tk_wait.links,
147                                         &t->u.tk_wait.links);
148                         /* Cache the queue head in task->u.tk_wait.list */
149                         task->u.tk_wait.list.next = q;
150                         task->u.tk_wait.list.prev = NULL;
151                         return;
152                 }
153         }
154         INIT_LIST_HEAD(&task->u.tk_wait.links);
155         list_add_tail(&task->u.tk_wait.list, q);
156 }
157
158 /*
159  * Remove request from a queue list
160  */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164         struct list_head *q;
165         struct rpc_task *t;
166
167         if (task->u.tk_wait.list.prev == NULL) {
168                 list_del(&task->u.tk_wait.links);
169                 return;
170         }
171         if (!list_empty(&task->u.tk_wait.links)) {
172                 t = list_first_entry(&task->u.tk_wait.links,
173                                 struct rpc_task,
174                                 u.tk_wait.links);
175                 /* Assume __rpc_list_enqueue_task() cached the queue head */
176                 q = t->u.tk_wait.list.next;
177                 list_add_tail(&t->u.tk_wait.list, q);
178                 list_del(&task->u.tk_wait.links);
179         }
180         list_del(&task->u.tk_wait.list);
181 }
182
183 /*
184  * Add new request to a priority queue.
185  */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187                 struct rpc_task *task,
188                 unsigned char queue_priority)
189 {
190         if (unlikely(queue_priority > queue->maxpriority))
191                 queue_priority = queue->maxpriority;
192         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194
195 /*
196  * Add new request to wait queue.
197  *
198  * Swapper tasks always get inserted at the head of the queue.
199  * This should avoid many nasty memory deadlocks and hopefully
200  * improve overall performance.
201  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202  */
203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204                 struct rpc_task *task,
205                 unsigned char queue_priority)
206 {
207         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
208         if (RPC_IS_PRIORITY(queue))
209                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
210         else if (RPC_IS_SWAPPER(task))
211                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
212         else
213                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
214         task->tk_waitqueue = queue;
215         queue->qlen++;
216         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
217         smp_wmb();
218         rpc_set_queued(task);
219
220         dprintk("RPC: %5u added to queue %p \"%s\"\n",
221                         task->tk_pid, queue, rpc_qname(queue));
222 }
223
224 /*
225  * Remove request from a priority queue.
226  */
227 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
228 {
229         __rpc_list_dequeue_task(task);
230 }
231
232 /*
233  * Remove request from queue.
234  * Note: must be called with spin lock held.
235  */
236 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
237 {
238         __rpc_disable_timer(queue, task);
239         if (RPC_IS_PRIORITY(queue))
240                 __rpc_remove_wait_queue_priority(task);
241         else
242                 list_del(&task->u.tk_wait.list);
243         queue->qlen--;
244         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
245                         task->tk_pid, queue, rpc_qname(queue));
246 }
247
248 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
249 {
250         int i;
251
252         spin_lock_init(&queue->lock);
253         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
254                 INIT_LIST_HEAD(&queue->tasks[i]);
255         queue->maxpriority = nr_queues - 1;
256         rpc_reset_waitqueue_priority(queue);
257         queue->qlen = 0;
258         queue->timer_list.expires = 0;
259         INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
260         INIT_LIST_HEAD(&queue->timer_list.list);
261         rpc_assign_waitqueue_name(queue, qname);
262 }
263
264 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
265 {
266         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
267 }
268 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
269
270 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
271 {
272         __rpc_init_priority_wait_queue(queue, qname, 1);
273 }
274 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
275
276 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
277 {
278         cancel_delayed_work_sync(&queue->timer_list.dwork);
279 }
280 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
281
282 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
283 {
284         freezable_schedule_unsafe();
285         if (signal_pending_state(mode, current))
286                 return -ERESTARTSYS;
287         return 0;
288 }
289
290 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
291 static void rpc_task_set_debuginfo(struct rpc_task *task)
292 {
293         static atomic_t rpc_pid;
294
295         task->tk_pid = atomic_inc_return(&rpc_pid);
296 }
297 #else
298 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
299 {
300 }
301 #endif
302
303 static void rpc_set_active(struct rpc_task *task)
304 {
305         rpc_task_set_debuginfo(task);
306         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
307         trace_rpc_task_begin(task, NULL);
308 }
309
310 /*
311  * Mark an RPC call as having completed by clearing the 'active' bit
312  * and then waking up all tasks that were sleeping.
313  */
314 static int rpc_complete_task(struct rpc_task *task)
315 {
316         void *m = &task->tk_runstate;
317         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
318         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
319         unsigned long flags;
320         int ret;
321
322         trace_rpc_task_complete(task, NULL);
323
324         spin_lock_irqsave(&wq->lock, flags);
325         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
326         ret = atomic_dec_and_test(&task->tk_count);
327         if (waitqueue_active(wq))
328                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
329         spin_unlock_irqrestore(&wq->lock, flags);
330         return ret;
331 }
332
333 /*
334  * Allow callers to wait for completion of an RPC call
335  *
336  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
337  * to enforce taking of the wq->lock and hence avoid races with
338  * rpc_complete_task().
339  */
340 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
341 {
342         if (action == NULL)
343                 action = rpc_wait_bit_killable;
344         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
345                         action, TASK_KILLABLE);
346 }
347 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
348
349 /*
350  * Make an RPC task runnable.
351  *
352  * Note: If the task is ASYNC, and is being made runnable after sitting on an
353  * rpc_wait_queue, this must be called with the queue spinlock held to protect
354  * the wait queue operation.
355  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
356  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
357  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
358  * the RPC_TASK_RUNNING flag.
359  */
360 static void rpc_make_runnable(struct workqueue_struct *wq,
361                 struct rpc_task *task)
362 {
363         bool need_wakeup = !rpc_test_and_set_running(task);
364
365         rpc_clear_queued(task);
366         if (!need_wakeup)
367                 return;
368         if (RPC_IS_ASYNC(task)) {
369                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
370                 queue_work(wq, &task->u.tk_work);
371         } else
372                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
373 }
374
375 /*
376  * Prepare for sleeping on a wait queue.
377  * By always appending tasks to the list we ensure FIFO behavior.
378  * NB: An RPC task will only receive interrupt-driven events as long
379  * as it's on a wait queue.
380  */
381 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
382                 struct rpc_task *task,
383                 unsigned char queue_priority)
384 {
385         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
386                         task->tk_pid, rpc_qname(q), jiffies);
387
388         trace_rpc_task_sleep(task, q);
389
390         __rpc_add_wait_queue(q, task, queue_priority);
391
392 }
393
394 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
395                 struct rpc_task *task,
396                 unsigned char queue_priority)
397 {
398         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
399                 return;
400         __rpc_do_sleep_on_priority(q, task, queue_priority);
401 }
402
403 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
404                 struct rpc_task *task, unsigned long timeout,
405                 unsigned char queue_priority)
406 {
407         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
408                 return;
409         if (time_is_after_jiffies(timeout)) {
410                 __rpc_do_sleep_on_priority(q, task, queue_priority);
411                 __rpc_add_timer(q, task, timeout);
412         } else
413                 task->tk_status = -ETIMEDOUT;
414 }
415
416 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
417 {
418         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
419                 task->tk_callback = action;
420 }
421
422 static bool rpc_sleep_check_activated(struct rpc_task *task)
423 {
424         /* We shouldn't ever put an inactive task to sleep */
425         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
426                 task->tk_status = -EIO;
427                 rpc_put_task_async(task);
428                 return false;
429         }
430         return true;
431 }
432
433 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
434                                 rpc_action action, unsigned long timeout)
435 {
436         if (!rpc_sleep_check_activated(task))
437                 return;
438
439         rpc_set_tk_callback(task, action);
440
441         /*
442          * Protect the queue operations.
443          */
444         spin_lock(&q->lock);
445         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
446         spin_unlock(&q->lock);
447 }
448 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
449
450 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
451                                 rpc_action action)
452 {
453         if (!rpc_sleep_check_activated(task))
454                 return;
455
456         rpc_set_tk_callback(task, action);
457
458         WARN_ON_ONCE(task->tk_timeout != 0);
459         /*
460          * Protect the queue operations.
461          */
462         spin_lock(&q->lock);
463         __rpc_sleep_on_priority(q, task, task->tk_priority);
464         spin_unlock(&q->lock);
465 }
466 EXPORT_SYMBOL_GPL(rpc_sleep_on);
467
468 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
469                 struct rpc_task *task, unsigned long timeout, int priority)
470 {
471         if (!rpc_sleep_check_activated(task))
472                 return;
473
474         priority -= RPC_PRIORITY_LOW;
475         /*
476          * Protect the queue operations.
477          */
478         spin_lock(&q->lock);
479         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
480         spin_unlock(&q->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
483
484 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
485                 int priority)
486 {
487         if (!rpc_sleep_check_activated(task))
488                 return;
489
490         WARN_ON_ONCE(task->tk_timeout != 0);
491         priority -= RPC_PRIORITY_LOW;
492         /*
493          * Protect the queue operations.
494          */
495         spin_lock(&q->lock);
496         __rpc_sleep_on_priority(q, task, priority);
497         spin_unlock(&q->lock);
498 }
499 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
500
501 /**
502  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
503  * @wq: workqueue on which to run task
504  * @queue: wait queue
505  * @task: task to be woken up
506  *
507  * Caller must hold queue->lock, and have cleared the task queued flag.
508  */
509 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
510                 struct rpc_wait_queue *queue,
511                 struct rpc_task *task)
512 {
513         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
514                         task->tk_pid, jiffies);
515
516         /* Has the task been executed yet? If not, we cannot wake it up! */
517         if (!RPC_IS_ACTIVATED(task)) {
518                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
519                 return;
520         }
521
522         trace_rpc_task_wakeup(task, queue);
523
524         __rpc_remove_wait_queue(queue, task);
525
526         rpc_make_runnable(wq, task);
527
528         dprintk("RPC:       __rpc_wake_up_task done\n");
529 }
530
531 /*
532  * Wake up a queued task while the queue lock is being held
533  */
534 static struct rpc_task *
535 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
536                 struct rpc_wait_queue *queue, struct rpc_task *task,
537                 bool (*action)(struct rpc_task *, void *), void *data)
538 {
539         if (RPC_IS_QUEUED(task)) {
540                 smp_rmb();
541                 if (task->tk_waitqueue == queue) {
542                         if (action == NULL || action(task, data)) {
543                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
544                                 return task;
545                         }
546                 }
547         }
548         return NULL;
549 }
550
551 /*
552  * Wake up a queued task while the queue lock is being held
553  */
554 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
555                                           struct rpc_task *task)
556 {
557         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
558                                                    task, NULL, NULL);
559 }
560
561 /*
562  * Wake up a task on a specific queue
563  */
564 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
565 {
566         if (!RPC_IS_QUEUED(task))
567                 return;
568         spin_lock(&queue->lock);
569         rpc_wake_up_task_queue_locked(queue, task);
570         spin_unlock(&queue->lock);
571 }
572 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
573
574 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
575 {
576         task->tk_status = *(int *)status;
577         return true;
578 }
579
580 static void
581 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
582                 struct rpc_task *task, int status)
583 {
584         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
585                         task, rpc_task_action_set_status, &status);
586 }
587
588 /**
589  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
590  * @queue: pointer to rpc_wait_queue
591  * @task: pointer to rpc_task
592  * @status: integer error value
593  *
594  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
595  * set to the value of @status.
596  */
597 void
598 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
599                 struct rpc_task *task, int status)
600 {
601         if (!RPC_IS_QUEUED(task))
602                 return;
603         spin_lock(&queue->lock);
604         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
605         spin_unlock(&queue->lock);
606 }
607
608 /*
609  * Wake up the next task on a priority queue.
610  */
611 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
612 {
613         struct list_head *q;
614         struct rpc_task *task;
615
616         /*
617          * Service the privileged queue.
618          */
619         q = &queue->tasks[RPC_NR_PRIORITY - 1];
620         if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
621                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
622                 goto out;
623         }
624
625         /*
626          * Service a batch of tasks from a single owner.
627          */
628         q = &queue->tasks[queue->priority];
629         if (!list_empty(q) && queue->nr) {
630                 queue->nr--;
631                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
632                 goto out;
633         }
634
635         /*
636          * Service the next queue.
637          */
638         do {
639                 if (q == &queue->tasks[0])
640                         q = &queue->tasks[queue->maxpriority];
641                 else
642                         q = q - 1;
643                 if (!list_empty(q)) {
644                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
645                         goto new_queue;
646                 }
647         } while (q != &queue->tasks[queue->priority]);
648
649         rpc_reset_waitqueue_priority(queue);
650         return NULL;
651
652 new_queue:
653         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
654 out:
655         return task;
656 }
657
658 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
659 {
660         if (RPC_IS_PRIORITY(queue))
661                 return __rpc_find_next_queued_priority(queue);
662         if (!list_empty(&queue->tasks[0]))
663                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
664         return NULL;
665 }
666
667 /*
668  * Wake up the first task on the wait queue.
669  */
670 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
671                 struct rpc_wait_queue *queue,
672                 bool (*func)(struct rpc_task *, void *), void *data)
673 {
674         struct rpc_task *task = NULL;
675
676         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
677                         queue, rpc_qname(queue));
678         spin_lock(&queue->lock);
679         task = __rpc_find_next_queued(queue);
680         if (task != NULL)
681                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
682                                 task, func, data);
683         spin_unlock(&queue->lock);
684
685         return task;
686 }
687
688 /*
689  * Wake up the first task on the wait queue.
690  */
691 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
692                 bool (*func)(struct rpc_task *, void *), void *data)
693 {
694         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
695 }
696 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
697
698 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
699 {
700         return true;
701 }
702
703 /*
704  * Wake up the next task on the wait queue.
705 */
706 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
707 {
708         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
709 }
710 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
711
712 /**
713  * rpc_wake_up_locked - wake up all rpc_tasks
714  * @queue: rpc_wait_queue on which the tasks are sleeping
715  *
716  */
717 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
718 {
719         struct rpc_task *task;
720
721         for (;;) {
722                 task = __rpc_find_next_queued(queue);
723                 if (task == NULL)
724                         break;
725                 rpc_wake_up_task_queue_locked(queue, task);
726         }
727 }
728
729 /**
730  * rpc_wake_up - wake up all rpc_tasks
731  * @queue: rpc_wait_queue on which the tasks are sleeping
732  *
733  * Grabs queue->lock
734  */
735 void rpc_wake_up(struct rpc_wait_queue *queue)
736 {
737         spin_lock(&queue->lock);
738         rpc_wake_up_locked(queue);
739         spin_unlock(&queue->lock);
740 }
741 EXPORT_SYMBOL_GPL(rpc_wake_up);
742
743 /**
744  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
745  * @queue: rpc_wait_queue on which the tasks are sleeping
746  * @status: status value to set
747  */
748 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
749 {
750         struct rpc_task *task;
751
752         for (;;) {
753                 task = __rpc_find_next_queued(queue);
754                 if (task == NULL)
755                         break;
756                 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
757         }
758 }
759
760 /**
761  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
762  * @queue: rpc_wait_queue on which the tasks are sleeping
763  * @status: status value to set
764  *
765  * Grabs queue->lock
766  */
767 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
768 {
769         spin_lock(&queue->lock);
770         rpc_wake_up_status_locked(queue, status);
771         spin_unlock(&queue->lock);
772 }
773 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
774
775 static void __rpc_queue_timer_fn(struct work_struct *work)
776 {
777         struct rpc_wait_queue *queue = container_of(work,
778                         struct rpc_wait_queue,
779                         timer_list.dwork.work);
780         struct rpc_task *task, *n;
781         unsigned long expires, now, timeo;
782
783         spin_lock(&queue->lock);
784         expires = now = jiffies;
785         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
786                 timeo = task->tk_timeout;
787                 if (time_after_eq(now, timeo)) {
788                         dprintk("RPC: %5u timeout\n", task->tk_pid);
789                         task->tk_status = -ETIMEDOUT;
790                         rpc_wake_up_task_queue_locked(queue, task);
791                         continue;
792                 }
793                 if (expires == now || time_after(expires, timeo))
794                         expires = timeo;
795         }
796         if (!list_empty(&queue->timer_list.list))
797                 rpc_set_queue_timer(queue, expires);
798         spin_unlock(&queue->lock);
799 }
800
801 static void __rpc_atrun(struct rpc_task *task)
802 {
803         if (task->tk_status == -ETIMEDOUT)
804                 task->tk_status = 0;
805 }
806
807 /*
808  * Run a task at a later time
809  */
810 void rpc_delay(struct rpc_task *task, unsigned long delay)
811 {
812         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
813 }
814 EXPORT_SYMBOL_GPL(rpc_delay);
815
816 /*
817  * Helper to call task->tk_ops->rpc_call_prepare
818  */
819 void rpc_prepare_task(struct rpc_task *task)
820 {
821         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
822 }
823
824 static void
825 rpc_init_task_statistics(struct rpc_task *task)
826 {
827         /* Initialize retry counters */
828         task->tk_garb_retry = 2;
829         task->tk_cred_retry = 2;
830
831         /* starting timestamp */
832         task->tk_start = ktime_get();
833 }
834
835 static void
836 rpc_reset_task_statistics(struct rpc_task *task)
837 {
838         task->tk_timeouts = 0;
839         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
840         rpc_init_task_statistics(task);
841 }
842
843 /*
844  * Helper that calls task->tk_ops->rpc_call_done if it exists
845  */
846 void rpc_exit_task(struct rpc_task *task)
847 {
848         trace_rpc_task_end(task, task->tk_action);
849         task->tk_action = NULL;
850         if (task->tk_ops->rpc_count_stats)
851                 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
852         else if (task->tk_client)
853                 rpc_count_iostats(task, task->tk_client->cl_metrics);
854         if (task->tk_ops->rpc_call_done != NULL) {
855                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
856                 if (task->tk_action != NULL) {
857                         /* Always release the RPC slot and buffer memory */
858                         xprt_release(task);
859                         rpc_reset_task_statistics(task);
860                 }
861         }
862 }
863
864 void rpc_signal_task(struct rpc_task *task)
865 {
866         struct rpc_wait_queue *queue;
867
868         if (!RPC_IS_ACTIVATED(task))
869                 return;
870         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
871         smp_mb__after_atomic();
872         queue = READ_ONCE(task->tk_waitqueue);
873         if (queue)
874                 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
875 }
876
877 void rpc_exit(struct rpc_task *task, int status)
878 {
879         task->tk_status = status;
880         task->tk_action = rpc_exit_task;
881         rpc_wake_up_queued_task(task->tk_waitqueue, task);
882 }
883 EXPORT_SYMBOL_GPL(rpc_exit);
884
885 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
886 {
887         if (ops->rpc_release != NULL)
888                 ops->rpc_release(calldata);
889 }
890
891 /*
892  * This is the RPC `scheduler' (or rather, the finite state machine).
893  */
894 static void __rpc_execute(struct rpc_task *task)
895 {
896         struct rpc_wait_queue *queue;
897         int task_is_async = RPC_IS_ASYNC(task);
898         int status = 0;
899
900         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
901                         task->tk_pid, task->tk_flags);
902
903         WARN_ON_ONCE(RPC_IS_QUEUED(task));
904         if (RPC_IS_QUEUED(task))
905                 return;
906
907         for (;;) {
908                 void (*do_action)(struct rpc_task *);
909
910                 /*
911                  * Perform the next FSM step or a pending callback.
912                  *
913                  * tk_action may be NULL if the task has been killed.
914                  * In particular, note that rpc_killall_tasks may
915                  * do this at any time, so beware when dereferencing.
916                  */
917                 do_action = task->tk_action;
918                 if (task->tk_callback) {
919                         do_action = task->tk_callback;
920                         task->tk_callback = NULL;
921                 }
922                 if (!do_action)
923                         break;
924                 trace_rpc_task_run_action(task, do_action);
925                 do_action(task);
926
927                 /*
928                  * Lockless check for whether task is sleeping or not.
929                  */
930                 if (!RPC_IS_QUEUED(task))
931                         continue;
932
933                 /*
934                  * Signalled tasks should exit rather than sleep.
935                  */
936                 if (RPC_SIGNALLED(task)) {
937                         task->tk_rpc_status = -ERESTARTSYS;
938                         rpc_exit(task, -ERESTARTSYS);
939                 }
940
941                 /*
942                  * The queue->lock protects against races with
943                  * rpc_make_runnable().
944                  *
945                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
946                  * rpc_task, rpc_make_runnable() can assign it to a
947                  * different workqueue. We therefore cannot assume that the
948                  * rpc_task pointer may still be dereferenced.
949                  */
950                 queue = task->tk_waitqueue;
951                 spin_lock(&queue->lock);
952                 if (!RPC_IS_QUEUED(task)) {
953                         spin_unlock(&queue->lock);
954                         continue;
955                 }
956                 rpc_clear_running(task);
957                 spin_unlock(&queue->lock);
958                 if (task_is_async)
959                         return;
960
961                 /* sync task: sleep here */
962                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
963                 status = out_of_line_wait_on_bit(&task->tk_runstate,
964                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
965                                 TASK_KILLABLE);
966                 if (status < 0) {
967                         /*
968                          * When a sync task receives a signal, it exits with
969                          * -ERESTARTSYS. In order to catch any callbacks that
970                          * clean up after sleeping on some queue, we don't
971                          * break the loop here, but go around once more.
972                          */
973                         dprintk("RPC: %5u got signal\n", task->tk_pid);
974                         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
975                         task->tk_rpc_status = -ERESTARTSYS;
976                         rpc_exit(task, -ERESTARTSYS);
977                 }
978                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
979         }
980
981         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
982                         task->tk_status);
983         /* Release all resources associated with the task */
984         rpc_release_task(task);
985 }
986
987 /*
988  * User-visible entry point to the scheduler.
989  *
990  * This may be called recursively if e.g. an async NFS task updates
991  * the attributes and finds that dirty pages must be flushed.
992  * NOTE: Upon exit of this function the task is guaranteed to be
993  *       released. In particular note that tk_release() will have
994  *       been called, so your task memory may have been freed.
995  */
996 void rpc_execute(struct rpc_task *task)
997 {
998         bool is_async = RPC_IS_ASYNC(task);
999
1000         rpc_set_active(task);
1001         rpc_make_runnable(rpciod_workqueue, task);
1002         if (!is_async) {
1003                 unsigned int pflags = memalloc_nofs_save();
1004                 __rpc_execute(task);
1005                 memalloc_nofs_restore(pflags);
1006         }
1007 }
1008
1009 static void rpc_async_schedule(struct work_struct *work)
1010 {
1011         unsigned int pflags = memalloc_nofs_save();
1012
1013         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1014         memalloc_nofs_restore(pflags);
1015 }
1016
1017 /**
1018  * rpc_malloc - allocate RPC buffer resources
1019  * @task: RPC task
1020  *
1021  * A single memory region is allocated, which is split between the
1022  * RPC call and RPC reply that this task is being used for. When
1023  * this RPC is retired, the memory is released by calling rpc_free.
1024  *
1025  * To prevent rpciod from hanging, this allocator never sleeps,
1026  * returning -ENOMEM and suppressing warning if the request cannot
1027  * be serviced immediately. The caller can arrange to sleep in a
1028  * way that is safe for rpciod.
1029  *
1030  * Most requests are 'small' (under 2KiB) and can be serviced from a
1031  * mempool, ensuring that NFS reads and writes can always proceed,
1032  * and that there is good locality of reference for these buffers.
1033  */
1034 int rpc_malloc(struct rpc_task *task)
1035 {
1036         struct rpc_rqst *rqst = task->tk_rqstp;
1037         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1038         struct rpc_buffer *buf;
1039         gfp_t gfp = GFP_NOFS;
1040
1041         if (RPC_IS_ASYNC(task))
1042                 gfp = GFP_NOWAIT | __GFP_NOWARN;
1043         if (RPC_IS_SWAPPER(task))
1044                 gfp |= __GFP_MEMALLOC;
1045
1046         size += sizeof(struct rpc_buffer);
1047         if (size <= RPC_BUFFER_MAXSIZE)
1048                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1049         else
1050                 buf = kmalloc(size, gfp);
1051
1052         if (!buf)
1053                 return -ENOMEM;
1054
1055         buf->len = size;
1056         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1057                         task->tk_pid, size, buf);
1058         rqst->rq_buffer = buf->data;
1059         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1060         return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(rpc_malloc);
1063
1064 /**
1065  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1066  * @task: RPC task
1067  *
1068  */
1069 void rpc_free(struct rpc_task *task)
1070 {
1071         void *buffer = task->tk_rqstp->rq_buffer;
1072         size_t size;
1073         struct rpc_buffer *buf;
1074
1075         buf = container_of(buffer, struct rpc_buffer, data);
1076         size = buf->len;
1077
1078         dprintk("RPC:       freeing buffer of size %zu at %p\n",
1079                         size, buf);
1080
1081         if (size <= RPC_BUFFER_MAXSIZE)
1082                 mempool_free(buf, rpc_buffer_mempool);
1083         else
1084                 kfree(buf);
1085 }
1086 EXPORT_SYMBOL_GPL(rpc_free);
1087
1088 /*
1089  * Creation and deletion of RPC task structures
1090  */
1091 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1092 {
1093         memset(task, 0, sizeof(*task));
1094         atomic_set(&task->tk_count, 1);
1095         task->tk_flags  = task_setup_data->flags;
1096         task->tk_ops = task_setup_data->callback_ops;
1097         task->tk_calldata = task_setup_data->callback_data;
1098         INIT_LIST_HEAD(&task->tk_task);
1099
1100         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1101         task->tk_owner = current->tgid;
1102
1103         /* Initialize workqueue for async tasks */
1104         task->tk_workqueue = task_setup_data->workqueue;
1105
1106         task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1107                         xprt_get(task_setup_data->rpc_xprt));
1108
1109         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1110
1111         if (task->tk_ops->rpc_call_prepare != NULL)
1112                 task->tk_action = rpc_prepare_task;
1113
1114         rpc_init_task_statistics(task);
1115
1116         dprintk("RPC:       new task initialized, procpid %u\n",
1117                                 task_pid_nr(current));
1118 }
1119
1120 static struct rpc_task *
1121 rpc_alloc_task(void)
1122 {
1123         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1124 }
1125
1126 /*
1127  * Create a new task for the specified client.
1128  */
1129 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1130 {
1131         struct rpc_task *task = setup_data->task;
1132         unsigned short flags = 0;
1133
1134         if (task == NULL) {
1135                 task = rpc_alloc_task();
1136                 flags = RPC_TASK_DYNAMIC;
1137         }
1138
1139         rpc_init_task(task, setup_data);
1140         task->tk_flags |= flags;
1141         dprintk("RPC:       allocated task %p\n", task);
1142         return task;
1143 }
1144
1145 /*
1146  * rpc_free_task - release rpc task and perform cleanups
1147  *
1148  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1149  * in order to work around a workqueue dependency issue.
1150  *
1151  * Tejun Heo states:
1152  * "Workqueue currently considers two work items to be the same if they're
1153  * on the same address and won't execute them concurrently - ie. it
1154  * makes a work item which is queued again while being executed wait
1155  * for the previous execution to complete.
1156  *
1157  * If a work function frees the work item, and then waits for an event
1158  * which should be performed by another work item and *that* work item
1159  * recycles the freed work item, it can create a false dependency loop.
1160  * There really is no reliable way to detect this short of verifying
1161  * every memory free."
1162  *
1163  */
1164 static void rpc_free_task(struct rpc_task *task)
1165 {
1166         unsigned short tk_flags = task->tk_flags;
1167
1168         put_rpccred(task->tk_op_cred);
1169         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1170
1171         if (tk_flags & RPC_TASK_DYNAMIC) {
1172                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1173                 mempool_free(task, rpc_task_mempool);
1174         }
1175 }
1176
1177 static void rpc_async_release(struct work_struct *work)
1178 {
1179         unsigned int pflags = memalloc_nofs_save();
1180
1181         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1182         memalloc_nofs_restore(pflags);
1183 }
1184
1185 static void rpc_release_resources_task(struct rpc_task *task)
1186 {
1187         xprt_release(task);
1188         if (task->tk_msg.rpc_cred) {
1189                 put_cred(task->tk_msg.rpc_cred);
1190                 task->tk_msg.rpc_cred = NULL;
1191         }
1192         rpc_task_release_client(task);
1193 }
1194
1195 static void rpc_final_put_task(struct rpc_task *task,
1196                 struct workqueue_struct *q)
1197 {
1198         if (q != NULL) {
1199                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1200                 queue_work(q, &task->u.tk_work);
1201         } else
1202                 rpc_free_task(task);
1203 }
1204
1205 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1206 {
1207         if (atomic_dec_and_test(&task->tk_count)) {
1208                 rpc_release_resources_task(task);
1209                 rpc_final_put_task(task, q);
1210         }
1211 }
1212
1213 void rpc_put_task(struct rpc_task *task)
1214 {
1215         rpc_do_put_task(task, NULL);
1216 }
1217 EXPORT_SYMBOL_GPL(rpc_put_task);
1218
1219 void rpc_put_task_async(struct rpc_task *task)
1220 {
1221         rpc_do_put_task(task, task->tk_workqueue);
1222 }
1223 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1224
1225 static void rpc_release_task(struct rpc_task *task)
1226 {
1227         dprintk("RPC: %5u release task\n", task->tk_pid);
1228
1229         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1230
1231         rpc_release_resources_task(task);
1232
1233         /*
1234          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1235          * so it should be safe to use task->tk_count as a test for whether
1236          * or not any other processes still hold references to our rpc_task.
1237          */
1238         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1239                 /* Wake up anyone who may be waiting for task completion */
1240                 if (!rpc_complete_task(task))
1241                         return;
1242         } else {
1243                 if (!atomic_dec_and_test(&task->tk_count))
1244                         return;
1245         }
1246         rpc_final_put_task(task, task->tk_workqueue);
1247 }
1248
1249 int rpciod_up(void)
1250 {
1251         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1252 }
1253
1254 void rpciod_down(void)
1255 {
1256         module_put(THIS_MODULE);
1257 }
1258
1259 /*
1260  * Start up the rpciod workqueue.
1261  */
1262 static int rpciod_start(void)
1263 {
1264         struct workqueue_struct *wq;
1265
1266         /*
1267          * Create the rpciod thread and wait for it to start.
1268          */
1269         dprintk("RPC:       creating workqueue rpciod\n");
1270         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1271         if (!wq)
1272                 goto out_failed;
1273         rpciod_workqueue = wq;
1274         /* Note: highpri because network receive is latency sensitive */
1275         wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1276         if (!wq)
1277                 goto free_rpciod;
1278         xprtiod_workqueue = wq;
1279         return 1;
1280 free_rpciod:
1281         wq = rpciod_workqueue;
1282         rpciod_workqueue = NULL;
1283         destroy_workqueue(wq);
1284 out_failed:
1285         return 0;
1286 }
1287
1288 static void rpciod_stop(void)
1289 {
1290         struct workqueue_struct *wq = NULL;
1291
1292         if (rpciod_workqueue == NULL)
1293                 return;
1294         dprintk("RPC:       destroying workqueue rpciod\n");
1295
1296         wq = rpciod_workqueue;
1297         rpciod_workqueue = NULL;
1298         destroy_workqueue(wq);
1299         wq = xprtiod_workqueue;
1300         xprtiod_workqueue = NULL;
1301         destroy_workqueue(wq);
1302 }
1303
1304 void
1305 rpc_destroy_mempool(void)
1306 {
1307         rpciod_stop();
1308         mempool_destroy(rpc_buffer_mempool);
1309         mempool_destroy(rpc_task_mempool);
1310         kmem_cache_destroy(rpc_task_slabp);
1311         kmem_cache_destroy(rpc_buffer_slabp);
1312         rpc_destroy_wait_queue(&delay_queue);
1313 }
1314
1315 int
1316 rpc_init_mempool(void)
1317 {
1318         /*
1319          * The following is not strictly a mempool initialisation,
1320          * but there is no harm in doing it here
1321          */
1322         rpc_init_wait_queue(&delay_queue, "delayq");
1323         if (!rpciod_start())
1324                 goto err_nomem;
1325
1326         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1327                                              sizeof(struct rpc_task),
1328                                              0, SLAB_HWCACHE_ALIGN,
1329                                              NULL);
1330         if (!rpc_task_slabp)
1331                 goto err_nomem;
1332         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1333                                              RPC_BUFFER_MAXSIZE,
1334                                              0, SLAB_HWCACHE_ALIGN,
1335                                              NULL);
1336         if (!rpc_buffer_slabp)
1337                 goto err_nomem;
1338         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1339                                                     rpc_task_slabp);
1340         if (!rpc_task_mempool)
1341                 goto err_nomem;
1342         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1343                                                       rpc_buffer_slabp);
1344         if (!rpc_buffer_mempool)
1345                 goto err_nomem;
1346         return 0;
1347 err_nomem:
1348         rpc_destroy_mempool();
1349         return -ENOMEM;
1350 }