GNU Linux-libre 4.4.285-gnu1
[releases.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67         if (task->tk_timeout == 0)
68                 return;
69         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70         task->tk_timeout = 0;
71         list_del(&task->u.tk_wait.timer_list);
72         if (list_empty(&queue->timer_list.list))
73                 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79         queue->timer_list.expires = expires;
80         mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89         if (!task->tk_timeout)
90                 return;
91
92         dprintk("RPC: %5u setting alarm for %u ms\n",
93                 task->tk_pid, jiffies_to_msecs(task->tk_timeout));
94
95         task->u.tk_wait.expires = jiffies + task->tk_timeout;
96         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
101 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
102 {
103         if (queue->priority != priority) {
104                 queue->priority = priority;
105                 queue->nr = 1U << priority;
106         }
107 }
108
109 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
110 {
111         rpc_set_waitqueue_priority(queue, queue->maxpriority);
112 }
113
114 /*
115  * Add a request to a queue list
116  */
117 static void
118 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
119 {
120         struct rpc_task *t;
121
122         list_for_each_entry(t, q, u.tk_wait.list) {
123                 if (t->tk_owner == task->tk_owner) {
124                         list_add_tail(&task->u.tk_wait.links,
125                                         &t->u.tk_wait.links);
126                         /* Cache the queue head in task->u.tk_wait.list */
127                         task->u.tk_wait.list.next = q;
128                         task->u.tk_wait.list.prev = NULL;
129                         return;
130                 }
131         }
132         INIT_LIST_HEAD(&task->u.tk_wait.links);
133         list_add_tail(&task->u.tk_wait.list, q);
134 }
135
136 /*
137  * Remove request from a queue list
138  */
139 static void
140 __rpc_list_dequeue_task(struct rpc_task *task)
141 {
142         struct list_head *q;
143         struct rpc_task *t;
144
145         if (task->u.tk_wait.list.prev == NULL) {
146                 list_del(&task->u.tk_wait.links);
147                 return;
148         }
149         if (!list_empty(&task->u.tk_wait.links)) {
150                 t = list_first_entry(&task->u.tk_wait.links,
151                                 struct rpc_task,
152                                 u.tk_wait.links);
153                 /* Assume __rpc_list_enqueue_task() cached the queue head */
154                 q = t->u.tk_wait.list.next;
155                 list_add_tail(&t->u.tk_wait.list, q);
156                 list_del(&task->u.tk_wait.links);
157         }
158         list_del(&task->u.tk_wait.list);
159 }
160
161 /*
162  * Add new request to a priority queue.
163  */
164 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
165                 struct rpc_task *task,
166                 unsigned char queue_priority)
167 {
168         if (unlikely(queue_priority > queue->maxpriority))
169                 queue_priority = queue->maxpriority;
170         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
171 }
172
173 /*
174  * Add new request to wait queue.
175  *
176  * Swapper tasks always get inserted at the head of the queue.
177  * This should avoid many nasty memory deadlocks and hopefully
178  * improve overall performance.
179  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
180  */
181 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
182                 struct rpc_task *task,
183                 unsigned char queue_priority)
184 {
185         WARN_ON_ONCE(RPC_IS_QUEUED(task));
186         if (RPC_IS_QUEUED(task))
187                 return;
188
189         if (RPC_IS_PRIORITY(queue))
190                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
191         else if (RPC_IS_SWAPPER(task))
192                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
193         else
194                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
195         task->tk_waitqueue = queue;
196         queue->qlen++;
197         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
198         smp_wmb();
199         rpc_set_queued(task);
200
201         dprintk("RPC: %5u added to queue %p \"%s\"\n",
202                         task->tk_pid, queue, rpc_qname(queue));
203 }
204
205 /*
206  * Remove request from a priority queue.
207  */
208 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
209 {
210         __rpc_list_dequeue_task(task);
211 }
212
213 /*
214  * Remove request from queue.
215  * Note: must be called with spin lock held.
216  */
217 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
218 {
219         __rpc_disable_timer(queue, task);
220         if (RPC_IS_PRIORITY(queue))
221                 __rpc_remove_wait_queue_priority(task);
222         else
223                 list_del(&task->u.tk_wait.list);
224         queue->qlen--;
225         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
226                         task->tk_pid, queue, rpc_qname(queue));
227 }
228
229 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
230 {
231         int i;
232
233         spin_lock_init(&queue->lock);
234         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
235                 INIT_LIST_HEAD(&queue->tasks[i]);
236         queue->maxpriority = nr_queues - 1;
237         rpc_reset_waitqueue_priority(queue);
238         queue->qlen = 0;
239         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
240         INIT_LIST_HEAD(&queue->timer_list.list);
241         rpc_assign_waitqueue_name(queue, qname);
242 }
243
244 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
245 {
246         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
247 }
248 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
249
250 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
251 {
252         __rpc_init_priority_wait_queue(queue, qname, 1);
253 }
254 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
255
256 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
257 {
258         del_timer_sync(&queue->timer_list.timer);
259 }
260 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
261
262 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
263 {
264         freezable_schedule_unsafe();
265         if (signal_pending_state(mode, current))
266                 return -ERESTARTSYS;
267         return 0;
268 }
269
270 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
271 static void rpc_task_set_debuginfo(struct rpc_task *task)
272 {
273         static atomic_t rpc_pid;
274
275         task->tk_pid = atomic_inc_return(&rpc_pid);
276 }
277 #else
278 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
279 {
280 }
281 #endif
282
283 static void rpc_set_active(struct rpc_task *task)
284 {
285         rpc_task_set_debuginfo(task);
286         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
287         trace_rpc_task_begin(task->tk_client, task, NULL);
288 }
289
290 /*
291  * Mark an RPC call as having completed by clearing the 'active' bit
292  * and then waking up all tasks that were sleeping.
293  */
294 static int rpc_complete_task(struct rpc_task *task)
295 {
296         void *m = &task->tk_runstate;
297         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
298         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
299         unsigned long flags;
300         int ret;
301
302         trace_rpc_task_complete(task->tk_client, task, NULL);
303
304         spin_lock_irqsave(&wq->lock, flags);
305         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
306         ret = atomic_dec_and_test(&task->tk_count);
307         if (waitqueue_active(wq))
308                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
309         spin_unlock_irqrestore(&wq->lock, flags);
310         return ret;
311 }
312
313 /*
314  * Allow callers to wait for completion of an RPC call
315  *
316  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
317  * to enforce taking of the wq->lock and hence avoid races with
318  * rpc_complete_task().
319  */
320 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
321 {
322         if (action == NULL)
323                 action = rpc_wait_bit_killable;
324         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
325                         action, TASK_KILLABLE);
326 }
327 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
328
329 /*
330  * Make an RPC task runnable.
331  *
332  * Note: If the task is ASYNC, and is being made runnable after sitting on an
333  * rpc_wait_queue, this must be called with the queue spinlock held to protect
334  * the wait queue operation.
335  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
336  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
337  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
338  * the RPC_TASK_RUNNING flag.
339  */
340 static void rpc_make_runnable(struct rpc_task *task)
341 {
342         bool need_wakeup = !rpc_test_and_set_running(task);
343
344         rpc_clear_queued(task);
345         if (!need_wakeup)
346                 return;
347         if (RPC_IS_ASYNC(task)) {
348                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
349                 queue_work(rpciod_workqueue, &task->u.tk_work);
350         } else
351                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
352 }
353
354 /*
355  * Prepare for sleeping on a wait queue.
356  * By always appending tasks to the list we ensure FIFO behavior.
357  * NB: An RPC task will only receive interrupt-driven events as long
358  * as it's on a wait queue.
359  */
360 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
361                 struct rpc_task *task,
362                 rpc_action action,
363                 unsigned char queue_priority)
364 {
365         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
366                         task->tk_pid, rpc_qname(q), jiffies);
367
368         trace_rpc_task_sleep(task->tk_client, task, q);
369
370         __rpc_add_wait_queue(q, task, queue_priority);
371
372         WARN_ON_ONCE(task->tk_callback != NULL);
373         task->tk_callback = action;
374         __rpc_add_timer(q, task);
375 }
376
377 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
378                                 rpc_action action)
379 {
380         /* We shouldn't ever put an inactive task to sleep */
381         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
382         if (!RPC_IS_ACTIVATED(task)) {
383                 task->tk_status = -EIO;
384                 rpc_put_task_async(task);
385                 return;
386         }
387
388         /*
389          * Protect the queue operations.
390          */
391         spin_lock_bh(&q->lock);
392         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
393         spin_unlock_bh(&q->lock);
394 }
395 EXPORT_SYMBOL_GPL(rpc_sleep_on);
396
397 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
398                 rpc_action action, int priority)
399 {
400         /* We shouldn't ever put an inactive task to sleep */
401         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
402         if (!RPC_IS_ACTIVATED(task)) {
403                 task->tk_status = -EIO;
404                 rpc_put_task_async(task);
405                 return;
406         }
407
408         /*
409          * Protect the queue operations.
410          */
411         spin_lock_bh(&q->lock);
412         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
413         spin_unlock_bh(&q->lock);
414 }
415 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
416
417 /**
418  * __rpc_do_wake_up_task - wake up a single rpc_task
419  * @queue: wait queue
420  * @task: task to be woken up
421  *
422  * Caller must hold queue->lock, and have cleared the task queued flag.
423  */
424 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
425 {
426         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
427                         task->tk_pid, jiffies);
428
429         /* Has the task been executed yet? If not, we cannot wake it up! */
430         if (!RPC_IS_ACTIVATED(task)) {
431                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
432                 return;
433         }
434
435         trace_rpc_task_wakeup(task->tk_client, task, queue);
436
437         __rpc_remove_wait_queue(queue, task);
438
439         rpc_make_runnable(task);
440
441         dprintk("RPC:       __rpc_wake_up_task done\n");
442 }
443
444 /*
445  * Wake up a queued task while the queue lock is being held
446  */
447 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
448 {
449         if (RPC_IS_QUEUED(task)) {
450                 smp_rmb();
451                 if (task->tk_waitqueue == queue)
452                         __rpc_do_wake_up_task(queue, task);
453         }
454 }
455
456 /*
457  * Wake up a task on a specific queue
458  */
459 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
460 {
461         spin_lock_bh(&queue->lock);
462         rpc_wake_up_task_queue_locked(queue, task);
463         spin_unlock_bh(&queue->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
466
467 /*
468  * Wake up the next task on a priority queue.
469  */
470 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
471 {
472         struct list_head *q;
473         struct rpc_task *task;
474
475         /*
476          * Service the privileged queue.
477          */
478         q = &queue->tasks[RPC_NR_PRIORITY - 1];
479         if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
480                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
481                 goto out;
482         }
483
484         /*
485          * Service a batch of tasks from a single owner.
486          */
487         q = &queue->tasks[queue->priority];
488         if (!list_empty(q) && queue->nr) {
489                 queue->nr--;
490                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
491                 goto out;
492         }
493
494         /*
495          * Service the next queue.
496          */
497         do {
498                 if (q == &queue->tasks[0])
499                         q = &queue->tasks[queue->maxpriority];
500                 else
501                         q = q - 1;
502                 if (!list_empty(q)) {
503                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
504                         goto new_queue;
505                 }
506         } while (q != &queue->tasks[queue->priority]);
507
508         rpc_reset_waitqueue_priority(queue);
509         return NULL;
510
511 new_queue:
512         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
513 out:
514         return task;
515 }
516
517 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
518 {
519         if (RPC_IS_PRIORITY(queue))
520                 return __rpc_find_next_queued_priority(queue);
521         if (!list_empty(&queue->tasks[0]))
522                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
523         return NULL;
524 }
525
526 /*
527  * Wake up the first task on the wait queue.
528  */
529 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
530                 bool (*func)(struct rpc_task *, void *), void *data)
531 {
532         struct rpc_task *task = NULL;
533
534         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
535                         queue, rpc_qname(queue));
536         spin_lock_bh(&queue->lock);
537         task = __rpc_find_next_queued(queue);
538         if (task != NULL) {
539                 if (func(task, data))
540                         rpc_wake_up_task_queue_locked(queue, task);
541                 else
542                         task = NULL;
543         }
544         spin_unlock_bh(&queue->lock);
545
546         return task;
547 }
548 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
549
550 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
551 {
552         return true;
553 }
554
555 /*
556  * Wake up the next task on the wait queue.
557 */
558 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
559 {
560         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
561 }
562 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
563
564 /**
565  * rpc_wake_up - wake up all rpc_tasks
566  * @queue: rpc_wait_queue on which the tasks are sleeping
567  *
568  * Grabs queue->lock
569  */
570 void rpc_wake_up(struct rpc_wait_queue *queue)
571 {
572         struct list_head *head;
573
574         spin_lock_bh(&queue->lock);
575         head = &queue->tasks[queue->maxpriority];
576         for (;;) {
577                 while (!list_empty(head)) {
578                         struct rpc_task *task;
579                         task = list_first_entry(head,
580                                         struct rpc_task,
581                                         u.tk_wait.list);
582                         rpc_wake_up_task_queue_locked(queue, task);
583                 }
584                 if (head == &queue->tasks[0])
585                         break;
586                 head--;
587         }
588         spin_unlock_bh(&queue->lock);
589 }
590 EXPORT_SYMBOL_GPL(rpc_wake_up);
591
592 /**
593  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
594  * @queue: rpc_wait_queue on which the tasks are sleeping
595  * @status: status value to set
596  *
597  * Grabs queue->lock
598  */
599 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
600 {
601         struct list_head *head;
602
603         spin_lock_bh(&queue->lock);
604         head = &queue->tasks[queue->maxpriority];
605         for (;;) {
606                 while (!list_empty(head)) {
607                         struct rpc_task *task;
608                         task = list_first_entry(head,
609                                         struct rpc_task,
610                                         u.tk_wait.list);
611                         task->tk_status = status;
612                         rpc_wake_up_task_queue_locked(queue, task);
613                 }
614                 if (head == &queue->tasks[0])
615                         break;
616                 head--;
617         }
618         spin_unlock_bh(&queue->lock);
619 }
620 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
621
622 static void __rpc_queue_timer_fn(unsigned long ptr)
623 {
624         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
625         struct rpc_task *task, *n;
626         unsigned long expires, now, timeo;
627
628         spin_lock(&queue->lock);
629         expires = now = jiffies;
630         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
631                 timeo = task->u.tk_wait.expires;
632                 if (time_after_eq(now, timeo)) {
633                         dprintk("RPC: %5u timeout\n", task->tk_pid);
634                         task->tk_status = -ETIMEDOUT;
635                         rpc_wake_up_task_queue_locked(queue, task);
636                         continue;
637                 }
638                 if (expires == now || time_after(expires, timeo))
639                         expires = timeo;
640         }
641         if (!list_empty(&queue->timer_list.list))
642                 rpc_set_queue_timer(queue, expires);
643         spin_unlock(&queue->lock);
644 }
645
646 static void __rpc_atrun(struct rpc_task *task)
647 {
648         if (task->tk_status == -ETIMEDOUT)
649                 task->tk_status = 0;
650 }
651
652 /*
653  * Run a task at a later time
654  */
655 void rpc_delay(struct rpc_task *task, unsigned long delay)
656 {
657         task->tk_timeout = delay;
658         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
659 }
660 EXPORT_SYMBOL_GPL(rpc_delay);
661
662 /*
663  * Helper to call task->tk_ops->rpc_call_prepare
664  */
665 void rpc_prepare_task(struct rpc_task *task)
666 {
667         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
668 }
669
670 static void
671 rpc_init_task_statistics(struct rpc_task *task)
672 {
673         /* Initialize retry counters */
674         task->tk_garb_retry = 2;
675         task->tk_cred_retry = 2;
676         task->tk_rebind_retry = 2;
677
678         /* starting timestamp */
679         task->tk_start = ktime_get();
680 }
681
682 static void
683 rpc_reset_task_statistics(struct rpc_task *task)
684 {
685         task->tk_timeouts = 0;
686         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
687
688         rpc_init_task_statistics(task);
689 }
690
691 /*
692  * Helper that calls task->tk_ops->rpc_call_done if it exists
693  */
694 void rpc_exit_task(struct rpc_task *task)
695 {
696         task->tk_action = NULL;
697         if (task->tk_ops->rpc_call_done != NULL) {
698                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
699                 if (task->tk_action != NULL) {
700                         WARN_ON(RPC_ASSASSINATED(task));
701                         /* Always release the RPC slot and buffer memory */
702                         xprt_release(task);
703                         rpc_reset_task_statistics(task);
704                 }
705         }
706 }
707
708 void rpc_exit(struct rpc_task *task, int status)
709 {
710         task->tk_status = status;
711         task->tk_action = rpc_exit_task;
712         if (RPC_IS_QUEUED(task))
713                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
714 }
715 EXPORT_SYMBOL_GPL(rpc_exit);
716
717 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
718 {
719         if (ops->rpc_release != NULL)
720                 ops->rpc_release(calldata);
721 }
722
723 /*
724  * This is the RPC `scheduler' (or rather, the finite state machine).
725  */
726 static void __rpc_execute(struct rpc_task *task)
727 {
728         struct rpc_wait_queue *queue;
729         int task_is_async = RPC_IS_ASYNC(task);
730         int status = 0;
731
732         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
733                         task->tk_pid, task->tk_flags);
734
735         WARN_ON_ONCE(RPC_IS_QUEUED(task));
736         if (RPC_IS_QUEUED(task))
737                 return;
738
739         for (;;) {
740                 void (*do_action)(struct rpc_task *);
741
742                 /*
743                  * Execute any pending callback first.
744                  */
745                 do_action = task->tk_callback;
746                 task->tk_callback = NULL;
747                 if (do_action == NULL) {
748                         /*
749                          * Perform the next FSM step.
750                          * tk_action may be NULL if the task has been killed.
751                          * In particular, note that rpc_killall_tasks may
752                          * do this at any time, so beware when dereferencing.
753                          */
754                         do_action = task->tk_action;
755                         if (do_action == NULL)
756                                 break;
757                 }
758                 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
759                 do_action(task);
760
761                 /*
762                  * Lockless check for whether task is sleeping or not.
763                  */
764                 if (!RPC_IS_QUEUED(task))
765                         continue;
766                 /*
767                  * The queue->lock protects against races with
768                  * rpc_make_runnable().
769                  *
770                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
771                  * rpc_task, rpc_make_runnable() can assign it to a
772                  * different workqueue. We therefore cannot assume that the
773                  * rpc_task pointer may still be dereferenced.
774                  */
775                 queue = task->tk_waitqueue;
776                 spin_lock_bh(&queue->lock);
777                 if (!RPC_IS_QUEUED(task)) {
778                         spin_unlock_bh(&queue->lock);
779                         continue;
780                 }
781                 rpc_clear_running(task);
782                 spin_unlock_bh(&queue->lock);
783                 if (task_is_async)
784                         return;
785
786                 /* sync task: sleep here */
787                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
788                 status = out_of_line_wait_on_bit(&task->tk_runstate,
789                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
790                                 TASK_KILLABLE);
791                 if (status == -ERESTARTSYS) {
792                         /*
793                          * When a sync task receives a signal, it exits with
794                          * -ERESTARTSYS. In order to catch any callbacks that
795                          * clean up after sleeping on some queue, we don't
796                          * break the loop here, but go around once more.
797                          */
798                         dprintk("RPC: %5u got signal\n", task->tk_pid);
799                         task->tk_flags |= RPC_TASK_KILLED;
800                         rpc_exit(task, -ERESTARTSYS);
801                 }
802                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
803         }
804
805         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
806                         task->tk_status);
807         /* Release all resources associated with the task */
808         rpc_release_task(task);
809 }
810
811 /*
812  * User-visible entry point to the scheduler.
813  *
814  * This may be called recursively if e.g. an async NFS task updates
815  * the attributes and finds that dirty pages must be flushed.
816  * NOTE: Upon exit of this function the task is guaranteed to be
817  *       released. In particular note that tk_release() will have
818  *       been called, so your task memory may have been freed.
819  */
820 void rpc_execute(struct rpc_task *task)
821 {
822         bool is_async = RPC_IS_ASYNC(task);
823
824         rpc_set_active(task);
825         rpc_make_runnable(task);
826         if (!is_async)
827                 __rpc_execute(task);
828 }
829
830 static void rpc_async_schedule(struct work_struct *work)
831 {
832         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
833 }
834
835 /**
836  * rpc_malloc - allocate an RPC buffer
837  * @task: RPC task that will use this buffer
838  * @size: requested byte size
839  *
840  * To prevent rpciod from hanging, this allocator never sleeps,
841  * returning NULL and suppressing warning if the request cannot be serviced
842  * immediately.
843  * The caller can arrange to sleep in a way that is safe for rpciod.
844  *
845  * Most requests are 'small' (under 2KiB) and can be serviced from a
846  * mempool, ensuring that NFS reads and writes can always proceed,
847  * and that there is good locality of reference for these buffers.
848  *
849  * In order to avoid memory starvation triggering more writebacks of
850  * NFS requests, we avoid using GFP_KERNEL.
851  */
852 void *rpc_malloc(struct rpc_task *task, size_t size)
853 {
854         struct rpc_buffer *buf;
855         gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
856
857         if (RPC_IS_SWAPPER(task))
858                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
859
860         size += sizeof(struct rpc_buffer);
861         if (size <= RPC_BUFFER_MAXSIZE)
862                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
863         else
864                 buf = kmalloc(size, gfp);
865
866         if (!buf)
867                 return NULL;
868
869         buf->len = size;
870         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
871                         task->tk_pid, size, buf);
872         return &buf->data;
873 }
874 EXPORT_SYMBOL_GPL(rpc_malloc);
875
876 /**
877  * rpc_free - free buffer allocated via rpc_malloc
878  * @buffer: buffer to free
879  *
880  */
881 void rpc_free(void *buffer)
882 {
883         size_t size;
884         struct rpc_buffer *buf;
885
886         if (!buffer)
887                 return;
888
889         buf = container_of(buffer, struct rpc_buffer, data);
890         size = buf->len;
891
892         dprintk("RPC:       freeing buffer of size %zu at %p\n",
893                         size, buf);
894
895         if (size <= RPC_BUFFER_MAXSIZE)
896                 mempool_free(buf, rpc_buffer_mempool);
897         else
898                 kfree(buf);
899 }
900 EXPORT_SYMBOL_GPL(rpc_free);
901
902 /*
903  * Creation and deletion of RPC task structures
904  */
905 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
906 {
907         memset(task, 0, sizeof(*task));
908         atomic_set(&task->tk_count, 1);
909         task->tk_flags  = task_setup_data->flags;
910         task->tk_ops = task_setup_data->callback_ops;
911         task->tk_calldata = task_setup_data->callback_data;
912         INIT_LIST_HEAD(&task->tk_task);
913
914         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
915         task->tk_owner = current->tgid;
916
917         /* Initialize workqueue for async tasks */
918         task->tk_workqueue = task_setup_data->workqueue;
919
920         if (task->tk_ops->rpc_call_prepare != NULL)
921                 task->tk_action = rpc_prepare_task;
922
923         rpc_init_task_statistics(task);
924
925         dprintk("RPC:       new task initialized, procpid %u\n",
926                                 task_pid_nr(current));
927 }
928
929 static struct rpc_task *
930 rpc_alloc_task(void)
931 {
932         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
933 }
934
935 /*
936  * Create a new task for the specified client.
937  */
938 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
939 {
940         struct rpc_task *task = setup_data->task;
941         unsigned short flags = 0;
942
943         if (task == NULL) {
944                 task = rpc_alloc_task();
945                 if (task == NULL) {
946                         rpc_release_calldata(setup_data->callback_ops,
947                                         setup_data->callback_data);
948                         return ERR_PTR(-ENOMEM);
949                 }
950                 flags = RPC_TASK_DYNAMIC;
951         }
952
953         rpc_init_task(task, setup_data);
954         task->tk_flags |= flags;
955         dprintk("RPC:       allocated task %p\n", task);
956         return task;
957 }
958
959 /*
960  * rpc_free_task - release rpc task and perform cleanups
961  *
962  * Note that we free up the rpc_task _after_ rpc_release_calldata()
963  * in order to work around a workqueue dependency issue.
964  *
965  * Tejun Heo states:
966  * "Workqueue currently considers two work items to be the same if they're
967  * on the same address and won't execute them concurrently - ie. it
968  * makes a work item which is queued again while being executed wait
969  * for the previous execution to complete.
970  *
971  * If a work function frees the work item, and then waits for an event
972  * which should be performed by another work item and *that* work item
973  * recycles the freed work item, it can create a false dependency loop.
974  * There really is no reliable way to detect this short of verifying
975  * every memory free."
976  *
977  */
978 static void rpc_free_task(struct rpc_task *task)
979 {
980         unsigned short tk_flags = task->tk_flags;
981
982         rpc_release_calldata(task->tk_ops, task->tk_calldata);
983
984         if (tk_flags & RPC_TASK_DYNAMIC) {
985                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
986                 mempool_free(task, rpc_task_mempool);
987         }
988 }
989
990 static void rpc_async_release(struct work_struct *work)
991 {
992         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
993 }
994
995 static void rpc_release_resources_task(struct rpc_task *task)
996 {
997         xprt_release(task);
998         if (task->tk_msg.rpc_cred) {
999                 put_rpccred(task->tk_msg.rpc_cred);
1000                 task->tk_msg.rpc_cred = NULL;
1001         }
1002         rpc_task_release_client(task);
1003 }
1004
1005 static void rpc_final_put_task(struct rpc_task *task,
1006                 struct workqueue_struct *q)
1007 {
1008         if (q != NULL) {
1009                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1010                 queue_work(q, &task->u.tk_work);
1011         } else
1012                 rpc_free_task(task);
1013 }
1014
1015 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1016 {
1017         if (atomic_dec_and_test(&task->tk_count)) {
1018                 rpc_release_resources_task(task);
1019                 rpc_final_put_task(task, q);
1020         }
1021 }
1022
1023 void rpc_put_task(struct rpc_task *task)
1024 {
1025         rpc_do_put_task(task, NULL);
1026 }
1027 EXPORT_SYMBOL_GPL(rpc_put_task);
1028
1029 void rpc_put_task_async(struct rpc_task *task)
1030 {
1031         rpc_do_put_task(task, task->tk_workqueue);
1032 }
1033 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1034
1035 static void rpc_release_task(struct rpc_task *task)
1036 {
1037         dprintk("RPC: %5u release task\n", task->tk_pid);
1038
1039         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1040
1041         rpc_release_resources_task(task);
1042
1043         /*
1044          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1045          * so it should be safe to use task->tk_count as a test for whether
1046          * or not any other processes still hold references to our rpc_task.
1047          */
1048         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1049                 /* Wake up anyone who may be waiting for task completion */
1050                 if (!rpc_complete_task(task))
1051                         return;
1052         } else {
1053                 if (!atomic_dec_and_test(&task->tk_count))
1054                         return;
1055         }
1056         rpc_final_put_task(task, task->tk_workqueue);
1057 }
1058
1059 int rpciod_up(void)
1060 {
1061         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1062 }
1063
1064 void rpciod_down(void)
1065 {
1066         module_put(THIS_MODULE);
1067 }
1068
1069 /*
1070  * Start up the rpciod workqueue.
1071  */
1072 static int rpciod_start(void)
1073 {
1074         struct workqueue_struct *wq;
1075
1076         /*
1077          * Create the rpciod thread and wait for it to start.
1078          */
1079         dprintk("RPC:       creating workqueue rpciod\n");
1080         /* Note: highpri because network receive is latency sensitive */
1081         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1082         rpciod_workqueue = wq;
1083         return rpciod_workqueue != NULL;
1084 }
1085
1086 static void rpciod_stop(void)
1087 {
1088         struct workqueue_struct *wq = NULL;
1089
1090         if (rpciod_workqueue == NULL)
1091                 return;
1092         dprintk("RPC:       destroying workqueue rpciod\n");
1093
1094         wq = rpciod_workqueue;
1095         rpciod_workqueue = NULL;
1096         destroy_workqueue(wq);
1097 }
1098
1099 void
1100 rpc_destroy_mempool(void)
1101 {
1102         rpciod_stop();
1103         mempool_destroy(rpc_buffer_mempool);
1104         mempool_destroy(rpc_task_mempool);
1105         kmem_cache_destroy(rpc_task_slabp);
1106         kmem_cache_destroy(rpc_buffer_slabp);
1107         rpc_destroy_wait_queue(&delay_queue);
1108 }
1109
1110 int
1111 rpc_init_mempool(void)
1112 {
1113         /*
1114          * The following is not strictly a mempool initialisation,
1115          * but there is no harm in doing it here
1116          */
1117         rpc_init_wait_queue(&delay_queue, "delayq");
1118         if (!rpciod_start())
1119                 goto err_nomem;
1120
1121         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1122                                              sizeof(struct rpc_task),
1123                                              0, SLAB_HWCACHE_ALIGN,
1124                                              NULL);
1125         if (!rpc_task_slabp)
1126                 goto err_nomem;
1127         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1128                                              RPC_BUFFER_MAXSIZE,
1129                                              0, SLAB_HWCACHE_ALIGN,
1130                                              NULL);
1131         if (!rpc_buffer_slabp)
1132                 goto err_nomem;
1133         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1134                                                     rpc_task_slabp);
1135         if (!rpc_task_mempool)
1136                 goto err_nomem;
1137         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1138                                                       rpc_buffer_slabp);
1139         if (!rpc_buffer_mempool)
1140                 goto err_nomem;
1141         return 0;
1142 err_nomem:
1143         rpc_destroy_mempool();
1144         return -ENOMEM;
1145 }