2 * net/sched/sch_netem.c Network emulator
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
34 /* Network Emulation Queuing algorithm.
35 ====================================
37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 Network Emulation Tool
39 [2] Luigi Rizzo, DummyNet for FreeBSD
41 ----------------------------------------------------------------
43 This started out as a simple way to delay outgoing packets to
44 test TCP but has grown to include most of the functionality
45 of a full blown network emulator like NISTnet. It can delay
46 packets and add random jitter (and correlation). The random
47 distribution can be loaded from a table as well to provide
48 normal, Pareto, or experimental curves. Packet loss,
49 duplication, and reordering can also be emulated.
51 This qdisc does not do classification that can be handled in
52 layering other disciplines. It does not need to do bandwidth
53 control either since that can be handled by using token
54 bucket or other rate control.
56 Correlated Loss Generator models
58 Added generation of correlated loss according to the
59 "Gilbert-Elliot" model, a 4-state markov model.
62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 and intuitive loss model for packet networks and its implementation
65 in the Netem module in the Linux kernel", available in [1]
67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 Fabio Ludovici <fabio.ludovici at yahoo.it>
76 struct netem_sched_data {
77 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
78 struct rb_root t_root;
80 /* optional qdisc for classful handling (NULL at netem init) */
83 struct qdisc_watchdog watchdog;
99 struct reciprocal_value cell_size_reciprocal;
105 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
107 struct disttable *delay_dist;
116 TX_IN_GAP_PERIOD = 1,
119 LOST_IN_BURST_PERIOD,
127 /* Correlated Loss Generation models */
129 /* state of the Markov chain */
132 /* 4-states and Gilbert-Elliot models */
133 u32 a1; /* p13 for 4-states or p for GE */
134 u32 a2; /* p31 for 4-states or r for GE */
135 u32 a3; /* p32 for 4-states or h for GE */
136 u32 a4; /* p14 for 4-states or 1-k for GE */
137 u32 a5; /* p23 used only in 4-states */
140 struct tc_netem_slot slot_config;
147 struct disttable *slot_dist;
150 /* Time stamp put into socket buffer control block
151 * Only valid when skbs are in our internal t(ime)fifo queue.
153 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
154 * and skb->next & skb->prev are scratch space for a qdisc,
155 * we save skb->tstamp value in skb->cb[] before destroying it.
157 struct netem_skb_cb {
161 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
163 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
164 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
165 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
168 /* init_crandom - initialize correlated random number generator
169 * Use entropy source for initial seed.
171 static void init_crandom(struct crndstate *state, unsigned long rho)
174 state->last = prandom_u32();
177 /* get_crandom - correlated random number generator
178 * Next number depends on last value.
179 * rho is scaled to avoid floating point.
181 static u32 get_crandom(struct crndstate *state)
184 unsigned long answer;
186 if (!state || state->rho == 0) /* no correlation */
187 return prandom_u32();
189 value = prandom_u32();
190 rho = (u64)state->rho + 1;
191 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
192 state->last = answer;
196 /* loss_4state - 4-state model loss generator
197 * Generates losses according to the 4-state Markov chain adopted in
198 * the GI (General and Intuitive) loss model.
200 static bool loss_4state(struct netem_sched_data *q)
202 struct clgstate *clg = &q->clg;
203 u32 rnd = prandom_u32();
206 * Makes a comparison between rnd and the transition
207 * probabilities outgoing from the current state, then decides the
208 * next state and if the next packet has to be transmitted or lost.
209 * The four states correspond to:
210 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
211 * LOST_IN_BURST_PERIOD => isolated losses within a gap period
212 * LOST_IN_GAP_PERIOD => lost packets within a burst period
213 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
215 switch (clg->state) {
216 case TX_IN_GAP_PERIOD:
218 clg->state = LOST_IN_BURST_PERIOD;
220 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
221 clg->state = LOST_IN_GAP_PERIOD;
223 } else if (clg->a1 + clg->a4 < rnd) {
224 clg->state = TX_IN_GAP_PERIOD;
228 case TX_IN_BURST_PERIOD:
230 clg->state = LOST_IN_GAP_PERIOD;
233 clg->state = TX_IN_BURST_PERIOD;
237 case LOST_IN_GAP_PERIOD:
239 clg->state = TX_IN_BURST_PERIOD;
240 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
241 clg->state = TX_IN_GAP_PERIOD;
242 } else if (clg->a2 + clg->a3 < rnd) {
243 clg->state = LOST_IN_GAP_PERIOD;
247 case LOST_IN_BURST_PERIOD:
248 clg->state = TX_IN_GAP_PERIOD;
255 /* loss_gilb_ell - Gilbert-Elliot model loss generator
256 * Generates losses according to the Gilbert-Elliot loss model or
257 * its special cases (Gilbert or Simple Gilbert)
259 * Makes a comparison between random number and the transition
260 * probabilities outgoing from the current state, then decides the
261 * next state. A second random number is extracted and the comparison
262 * with the loss probability of the current state decides if the next
263 * packet will be transmitted or lost.
265 static bool loss_gilb_ell(struct netem_sched_data *q)
267 struct clgstate *clg = &q->clg;
269 switch (clg->state) {
271 if (prandom_u32() < clg->a1)
272 clg->state = BAD_STATE;
273 if (prandom_u32() < clg->a4)
277 if (prandom_u32() < clg->a2)
278 clg->state = GOOD_STATE;
279 if (prandom_u32() > clg->a3)
286 static bool loss_event(struct netem_sched_data *q)
288 switch (q->loss_model) {
290 /* Random packet drop 0 => none, ~0 => all */
291 return q->loss && q->loss >= get_crandom(&q->loss_cor);
294 /* 4state loss model algorithm (used also for GI model)
295 * Extracts a value from the markov 4 state loss generator,
296 * if it is 1 drops a packet and if needed writes the event in
299 return loss_4state(q);
302 /* Gilbert-Elliot loss model algorithm
303 * Extracts a value from the Gilbert-Elliot loss generator,
304 * if it is 1 drops a packet and if needed writes the event in
307 return loss_gilb_ell(q);
310 return false; /* not reached */
314 /* tabledist - return a pseudo-randomly distributed value with mean mu and
315 * std deviation sigma. Uses table lookup to approximate the desired
316 * distribution, and a uniformly-distributed pseudo-random source.
318 static s64 tabledist(s64 mu, s32 sigma,
319 struct crndstate *state,
320 const struct disttable *dist)
329 rnd = get_crandom(state);
331 /* default uniform distribution */
333 return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
335 t = dist->table[rnd % dist->size];
336 x = (sigma % NETEM_DIST_SCALE) * t;
338 x += NETEM_DIST_SCALE/2;
340 x -= NETEM_DIST_SCALE/2;
342 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
345 static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
347 len += q->packet_overhead;
350 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
352 if (len > cells * q->cell_size) /* extra cell needed for remainder */
354 len = cells * (q->cell_size + q->cell_overhead);
357 return div64_u64(len * NSEC_PER_SEC, q->rate);
360 static void tfifo_reset(struct Qdisc *sch)
362 struct netem_sched_data *q = qdisc_priv(sch);
363 struct rb_node *p = rb_first(&q->t_root);
366 struct sk_buff *skb = rb_to_skb(p);
369 rb_erase(&skb->rbnode, &q->t_root);
370 rtnl_kfree_skbs(skb, skb);
374 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
376 struct netem_sched_data *q = qdisc_priv(sch);
377 u64 tnext = netem_skb_cb(nskb)->time_to_send;
378 struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
384 skb = rb_to_skb(parent);
385 if (tnext >= netem_skb_cb(skb)->time_to_send)
386 p = &parent->rb_right;
388 p = &parent->rb_left;
390 rb_link_node(&nskb->rbnode, parent, p);
391 rb_insert_color(&nskb->rbnode, &q->t_root);
395 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
396 * when we statistically choose to corrupt one, we instead segment it, returning
397 * the first packet to be corrupted, and re-enqueue the remaining frames
399 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
400 struct sk_buff **to_free)
402 struct sk_buff *segs;
403 netdev_features_t features = netif_skb_features(skb);
405 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
407 if (IS_ERR_OR_NULL(segs)) {
408 qdisc_drop(skb, sch, to_free);
415 static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb)
417 skb->next = qh->head;
426 * Insert one skb into qdisc.
427 * Note: parent depends on return value to account for queue length.
428 * NET_XMIT_DROP: queue length didn't change.
429 * NET_XMIT_SUCCESS: one skb was queued.
431 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
432 struct sk_buff **to_free)
434 struct netem_sched_data *q = qdisc_priv(sch);
435 /* We don't fill cb now as skb_unshare() may invalidate it */
436 struct netem_skb_cb *cb;
437 struct sk_buff *skb2;
438 struct sk_buff *segs = NULL;
439 unsigned int prev_len = qdisc_pkt_len(skb);
441 int rc = NET_XMIT_SUCCESS;
442 int rc_drop = NET_XMIT_DROP;
444 /* Do not fool qdisc_drop_all() */
447 /* Random duplication */
448 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
453 if (q->ecn && INET_ECN_set_ce(skb))
454 qdisc_qstats_drop(sch); /* mark packet */
459 qdisc_qstats_drop(sch);
460 __qdisc_drop(skb, to_free);
461 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
464 /* If a delay is expected, orphan the skb. (orphaning usually takes
465 * place at TX completion time, so _before_ the link transit delay)
467 if (q->latency || q->jitter || q->rate)
468 skb_orphan_partial(skb);
471 * If we need to duplicate packet, then re-insert at top of the
472 * qdisc tree, since parent queuer expects that only one
473 * skb will be queued.
475 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
476 struct Qdisc *rootq = qdisc_root_bh(sch);
477 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
480 rootq->enqueue(skb2, rootq, to_free);
481 q->duplicate = dupsave;
482 rc_drop = NET_XMIT_SUCCESS;
486 * Randomized packet corruption.
487 * Make copy if needed since we are modifying
488 * If packet is going to be hardware checksummed, then
489 * do it now in software before we mangle it.
491 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
492 if (skb_is_gso(skb)) {
493 segs = netem_segment(skb, sch, to_free);
496 qdisc_skb_cb(segs)->pkt_len = segs->len;
504 skb = skb_unshare(skb, GFP_ATOMIC);
505 if (unlikely(!skb)) {
506 qdisc_qstats_drop(sch);
509 if (skb->ip_summed == CHECKSUM_PARTIAL &&
510 skb_checksum_help(skb)) {
511 qdisc_drop(skb, sch, to_free);
516 skb->data[prandom_u32() % skb_headlen(skb)] ^=
517 1<<(prandom_u32() % 8);
520 if (unlikely(sch->q.qlen >= sch->limit)) {
521 qdisc_drop_all(skb, sch, to_free);
525 qdisc_qstats_backlog_inc(sch, skb);
527 cb = netem_skb_cb(skb);
528 if (q->gap == 0 || /* not doing reordering */
529 q->counter < q->gap - 1 || /* inside last reordering gap */
530 q->reorder < get_crandom(&q->reorder_cor)) {
534 delay = tabledist(q->latency, q->jitter,
535 &q->delay_cor, q->delay_dist);
537 now = ktime_get_ns();
540 struct netem_skb_cb *last = NULL;
543 last = netem_skb_cb(sch->q.tail);
544 if (q->t_root.rb_node) {
545 struct sk_buff *t_skb;
546 struct netem_skb_cb *t_last;
548 t_skb = skb_rb_last(&q->t_root);
549 t_last = netem_skb_cb(t_skb);
551 t_last->time_to_send > last->time_to_send) {
558 * Last packet in queue is reference point (now),
559 * calculate this time bonus and subtract
562 delay -= last->time_to_send - now;
563 delay = max_t(s64, 0, delay);
564 now = last->time_to_send;
567 delay += packet_time_ns(qdisc_pkt_len(skb), q);
570 cb->time_to_send = now + delay;
572 tfifo_enqueue(skb, sch);
575 * Do re-ordering by putting one out of N packets at the front
578 cb->time_to_send = ktime_get_ns();
581 netem_enqueue_skb_head(&sch->q, skb);
582 sch->qstats.requeues++;
587 unsigned int len, last_len;
590 len = skb ? skb->len : 0;
596 qdisc_skb_cb(segs)->pkt_len = segs->len;
597 last_len = segs->len;
598 rc = qdisc_enqueue(segs, sch, to_free);
599 if (rc != NET_XMIT_SUCCESS) {
600 if (net_xmit_drop_count(rc))
601 qdisc_qstats_drop(sch);
608 /* Parent qdiscs accounted for 1 skb of size @prev_len */
609 qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
611 return NET_XMIT_DROP;
613 return NET_XMIT_SUCCESS;
616 /* Delay the next round with a new future slot with a
617 * correct number of bytes and packets.
620 static void get_slot_next(struct netem_sched_data *q, u64 now)
625 next_delay = q->slot_config.min_delay +
627 (q->slot_config.max_delay -
628 q->slot_config.min_delay) >> 32);
630 next_delay = tabledist(q->slot_config.dist_delay,
631 (s32)(q->slot_config.dist_jitter),
634 q->slot.slot_next = now + next_delay;
635 q->slot.packets_left = q->slot_config.max_packets;
636 q->slot.bytes_left = q->slot_config.max_bytes;
639 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
641 struct netem_sched_data *q = qdisc_priv(sch);
646 skb = __qdisc_dequeue_head(&sch->q);
648 qdisc_qstats_backlog_dec(sch, skb);
650 qdisc_bstats_update(sch, skb);
653 p = rb_first(&q->t_root);
656 u64 now = ktime_get_ns();
660 /* if more time remaining? */
661 time_to_send = netem_skb_cb(skb)->time_to_send;
662 if (q->slot.slot_next && q->slot.slot_next < time_to_send)
663 get_slot_next(q, now);
665 if (time_to_send <= now && q->slot.slot_next <= now) {
666 rb_erase(p, &q->t_root);
668 qdisc_qstats_backlog_dec(sch, skb);
671 /* skb->dev shares skb->rbnode area,
672 * we need to restore its value.
674 skb->dev = qdisc_dev(sch);
676 #ifdef CONFIG_NET_CLS_ACT
678 * If it's at ingress let's pretend the delay is
679 * from the network (tstamp will be updated).
681 if (skb->tc_redirected && skb->tc_from_ingress)
685 if (q->slot.slot_next) {
686 q->slot.packets_left--;
687 q->slot.bytes_left -= qdisc_pkt_len(skb);
688 if (q->slot.packets_left <= 0 ||
689 q->slot.bytes_left <= 0)
690 get_slot_next(q, now);
694 unsigned int pkt_len = qdisc_pkt_len(skb);
695 struct sk_buff *to_free = NULL;
698 err = qdisc_enqueue(skb, q->qdisc, &to_free);
699 kfree_skb_list(to_free);
700 if (err != NET_XMIT_SUCCESS &&
701 net_xmit_drop_count(err)) {
702 qdisc_qstats_drop(sch);
703 qdisc_tree_reduce_backlog(sch, 1,
712 skb = q->qdisc->ops->dequeue(q->qdisc);
717 qdisc_watchdog_schedule_ns(&q->watchdog,
723 skb = q->qdisc->ops->dequeue(q->qdisc);
730 static void netem_reset(struct Qdisc *sch)
732 struct netem_sched_data *q = qdisc_priv(sch);
734 qdisc_reset_queue(sch);
737 qdisc_reset(q->qdisc);
738 qdisc_watchdog_cancel(&q->watchdog);
741 static void dist_free(struct disttable *d)
747 * Distribution data is a variable size payload containing
748 * signed 16 bit values.
751 static int get_dist_table(struct Qdisc *sch, struct disttable **tbl,
752 const struct nlattr *attr)
754 size_t n = nla_len(attr)/sizeof(__s16);
755 const __s16 *data = nla_data(attr);
756 spinlock_t *root_lock;
760 if (!n || n > NETEM_DIST_MAX)
763 d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
768 for (i = 0; i < n; i++)
769 d->table[i] = data[i];
771 root_lock = qdisc_root_sleeping_lock(sch);
773 spin_lock_bh(root_lock);
775 spin_unlock_bh(root_lock);
781 static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
783 const struct tc_netem_slot *c = nla_data(attr);
786 if (q->slot_config.max_packets == 0)
787 q->slot_config.max_packets = INT_MAX;
788 if (q->slot_config.max_bytes == 0)
789 q->slot_config.max_bytes = INT_MAX;
791 /* capping dist_jitter to the range acceptable by tabledist() */
792 q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
794 q->slot.packets_left = q->slot_config.max_packets;
795 q->slot.bytes_left = q->slot_config.max_bytes;
796 if (q->slot_config.min_delay | q->slot_config.max_delay |
797 q->slot_config.dist_jitter)
798 q->slot.slot_next = ktime_get_ns();
800 q->slot.slot_next = 0;
803 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
805 const struct tc_netem_corr *c = nla_data(attr);
807 init_crandom(&q->delay_cor, c->delay_corr);
808 init_crandom(&q->loss_cor, c->loss_corr);
809 init_crandom(&q->dup_cor, c->dup_corr);
812 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
814 const struct tc_netem_reorder *r = nla_data(attr);
816 q->reorder = r->probability;
817 init_crandom(&q->reorder_cor, r->correlation);
820 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
822 const struct tc_netem_corrupt *r = nla_data(attr);
824 q->corrupt = r->probability;
825 init_crandom(&q->corrupt_cor, r->correlation);
828 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
830 const struct tc_netem_rate *r = nla_data(attr);
833 q->packet_overhead = r->packet_overhead;
834 q->cell_size = r->cell_size;
835 q->cell_overhead = r->cell_overhead;
837 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
839 q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
842 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
844 const struct nlattr *la;
847 nla_for_each_nested(la, attr, rem) {
848 u16 type = nla_type(la);
851 case NETEM_LOSS_GI: {
852 const struct tc_netem_gimodel *gi = nla_data(la);
854 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
855 pr_info("netem: incorrect gi model size\n");
859 q->loss_model = CLG_4_STATES;
861 q->clg.state = TX_IN_GAP_PERIOD;
870 case NETEM_LOSS_GE: {
871 const struct tc_netem_gemodel *ge = nla_data(la);
873 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
874 pr_info("netem: incorrect ge model size\n");
878 q->loss_model = CLG_GILB_ELL;
879 q->clg.state = GOOD_STATE;
888 pr_info("netem: unknown loss type %u\n", type);
896 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
897 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
898 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
899 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
900 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
901 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
902 [TCA_NETEM_ECN] = { .type = NLA_U32 },
903 [TCA_NETEM_RATE64] = { .type = NLA_U64 },
904 [TCA_NETEM_LATENCY64] = { .type = NLA_S64 },
905 [TCA_NETEM_JITTER64] = { .type = NLA_S64 },
906 [TCA_NETEM_SLOT] = { .len = sizeof(struct tc_netem_slot) },
909 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
910 const struct nla_policy *policy, int len)
912 int nested_len = nla_len(nla) - NLA_ALIGN(len);
914 if (nested_len < 0) {
915 pr_info("netem: invalid attributes len %d\n", nested_len);
919 if (nested_len >= nla_attr_size(0))
920 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
921 nested_len, policy, NULL);
923 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
927 /* Parse netlink message to set options */
928 static int netem_change(struct Qdisc *sch, struct nlattr *opt,
929 struct netlink_ext_ack *extack)
931 struct netem_sched_data *q = qdisc_priv(sch);
932 struct nlattr *tb[TCA_NETEM_MAX + 1];
933 struct tc_netem_qopt *qopt;
934 struct clgstate old_clg;
935 int old_loss_model = CLG_RANDOM;
941 qopt = nla_data(opt);
942 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
946 /* backup q->clg and q->loss_model */
948 old_loss_model = q->loss_model;
950 if (tb[TCA_NETEM_LOSS]) {
951 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
953 q->loss_model = old_loss_model;
957 q->loss_model = CLG_RANDOM;
960 if (tb[TCA_NETEM_DELAY_DIST]) {
961 ret = get_dist_table(sch, &q->delay_dist,
962 tb[TCA_NETEM_DELAY_DIST]);
964 goto get_table_failure;
967 if (tb[TCA_NETEM_SLOT_DIST]) {
968 ret = get_dist_table(sch, &q->slot_dist,
969 tb[TCA_NETEM_SLOT_DIST]);
971 goto get_table_failure;
974 sch->limit = qopt->limit;
976 q->latency = PSCHED_TICKS2NS(qopt->latency);
977 q->jitter = PSCHED_TICKS2NS(qopt->jitter);
978 q->limit = qopt->limit;
981 q->loss = qopt->loss;
982 q->duplicate = qopt->duplicate;
984 /* for compatibility with earlier versions.
985 * if gap is set, need to assume 100% probability
990 if (tb[TCA_NETEM_CORR])
991 get_correlation(q, tb[TCA_NETEM_CORR]);
993 if (tb[TCA_NETEM_REORDER])
994 get_reorder(q, tb[TCA_NETEM_REORDER]);
996 if (tb[TCA_NETEM_CORRUPT])
997 get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
999 if (tb[TCA_NETEM_RATE])
1000 get_rate(q, tb[TCA_NETEM_RATE]);
1002 if (tb[TCA_NETEM_RATE64])
1003 q->rate = max_t(u64, q->rate,
1004 nla_get_u64(tb[TCA_NETEM_RATE64]));
1006 if (tb[TCA_NETEM_LATENCY64])
1007 q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1009 if (tb[TCA_NETEM_JITTER64])
1010 q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1012 if (tb[TCA_NETEM_ECN])
1013 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1015 if (tb[TCA_NETEM_SLOT])
1016 get_slot(q, tb[TCA_NETEM_SLOT]);
1018 /* capping jitter to the range acceptable by tabledist() */
1019 q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1024 /* recover clg and loss_model, in case of
1025 * q->clg and q->loss_model were modified
1029 q->loss_model = old_loss_model;
1033 static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1034 struct netlink_ext_ack *extack)
1036 struct netem_sched_data *q = qdisc_priv(sch);
1039 qdisc_watchdog_init(&q->watchdog, sch);
1044 q->loss_model = CLG_RANDOM;
1045 ret = netem_change(sch, opt, extack);
1047 pr_info("netem: change failed\n");
1051 static void netem_destroy(struct Qdisc *sch)
1053 struct netem_sched_data *q = qdisc_priv(sch);
1055 qdisc_watchdog_cancel(&q->watchdog);
1057 qdisc_destroy(q->qdisc);
1058 dist_free(q->delay_dist);
1059 dist_free(q->slot_dist);
1062 static int dump_loss_model(const struct netem_sched_data *q,
1063 struct sk_buff *skb)
1065 struct nlattr *nest;
1067 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
1069 goto nla_put_failure;
1071 switch (q->loss_model) {
1073 /* legacy loss model */
1074 nla_nest_cancel(skb, nest);
1075 return 0; /* no data */
1077 case CLG_4_STATES: {
1078 struct tc_netem_gimodel gi = {
1086 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1087 goto nla_put_failure;
1090 case CLG_GILB_ELL: {
1091 struct tc_netem_gemodel ge = {
1098 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1099 goto nla_put_failure;
1104 nla_nest_end(skb, nest);
1108 nla_nest_cancel(skb, nest);
1112 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1114 const struct netem_sched_data *q = qdisc_priv(sch);
1115 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1116 struct tc_netem_qopt qopt;
1117 struct tc_netem_corr cor;
1118 struct tc_netem_reorder reorder;
1119 struct tc_netem_corrupt corrupt;
1120 struct tc_netem_rate rate;
1121 struct tc_netem_slot slot;
1123 qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1125 qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1127 qopt.limit = q->limit;
1128 qopt.loss = q->loss;
1130 qopt.duplicate = q->duplicate;
1131 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1132 goto nla_put_failure;
1134 if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1135 goto nla_put_failure;
1137 if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1138 goto nla_put_failure;
1140 cor.delay_corr = q->delay_cor.rho;
1141 cor.loss_corr = q->loss_cor.rho;
1142 cor.dup_corr = q->dup_cor.rho;
1143 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1144 goto nla_put_failure;
1146 reorder.probability = q->reorder;
1147 reorder.correlation = q->reorder_cor.rho;
1148 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1149 goto nla_put_failure;
1151 corrupt.probability = q->corrupt;
1152 corrupt.correlation = q->corrupt_cor.rho;
1153 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1154 goto nla_put_failure;
1156 if (q->rate >= (1ULL << 32)) {
1157 if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1159 goto nla_put_failure;
1162 rate.rate = q->rate;
1164 rate.packet_overhead = q->packet_overhead;
1165 rate.cell_size = q->cell_size;
1166 rate.cell_overhead = q->cell_overhead;
1167 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1168 goto nla_put_failure;
1170 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1171 goto nla_put_failure;
1173 if (dump_loss_model(q, skb) != 0)
1174 goto nla_put_failure;
1176 if (q->slot_config.min_delay | q->slot_config.max_delay |
1177 q->slot_config.dist_jitter) {
1178 slot = q->slot_config;
1179 if (slot.max_packets == INT_MAX)
1180 slot.max_packets = 0;
1181 if (slot.max_bytes == INT_MAX)
1183 if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1184 goto nla_put_failure;
1187 return nla_nest_end(skb, nla);
1190 nlmsg_trim(skb, nla);
1194 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1195 struct sk_buff *skb, struct tcmsg *tcm)
1197 struct netem_sched_data *q = qdisc_priv(sch);
1199 if (cl != 1 || !q->qdisc) /* only one class */
1202 tcm->tcm_handle |= TC_H_MIN(1);
1203 tcm->tcm_info = q->qdisc->handle;
1208 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1209 struct Qdisc **old, struct netlink_ext_ack *extack)
1211 struct netem_sched_data *q = qdisc_priv(sch);
1213 *old = qdisc_replace(sch, new, &q->qdisc);
1217 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1219 struct netem_sched_data *q = qdisc_priv(sch);
1223 static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1228 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1230 if (!walker->stop) {
1231 if (walker->count >= walker->skip)
1232 if (walker->fn(sch, 1, walker) < 0) {
1240 static const struct Qdisc_class_ops netem_class_ops = {
1241 .graft = netem_graft,
1245 .dump = netem_dump_class,
1248 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1250 .cl_ops = &netem_class_ops,
1251 .priv_size = sizeof(struct netem_sched_data),
1252 .enqueue = netem_enqueue,
1253 .dequeue = netem_dequeue,
1254 .peek = qdisc_peek_dequeued,
1256 .reset = netem_reset,
1257 .destroy = netem_destroy,
1258 .change = netem_change,
1260 .owner = THIS_MODULE,
1264 static int __init netem_module_init(void)
1266 pr_info("netem: version " VERSION "\n");
1267 return register_qdisc(&netem_qdisc_ops);
1269 static void __exit netem_module_exit(void)
1271 unregister_qdisc(&netem_qdisc_ops);
1273 module_init(netem_module_init)
1274 module_exit(netem_module_exit)
1275 MODULE_LICENSE("GPL");