GNU Linux-libre 5.4.207-gnu1
[releases.git] / net / sched / sch_fq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4  *
5  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
6  *
7  *  Meant to be mostly used for locally generated traffic :
8  *  Fast classification depends on skb->sk being set before reaching us.
9  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10  *  All packets belonging to a socket are considered as a 'flow'.
11  *
12  *  Flows are dynamically allocated and stored in a hash table of RB trees
13  *  They are also part of one Round Robin 'queues' (new or old flows)
14  *
15  *  Burst avoidance (aka pacing) capability :
16  *
17  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18  *  bunch of packets, and this packet scheduler adds delay between
19  *  packets to respect rate limitation.
20  *
21  *  enqueue() :
22  *   - lookup one RB tree (out of 1024 or more) to find the flow.
23  *     If non existent flow, create it, add it to the tree.
24  *     Add skb to the per flow list of skb (fifo).
25  *   - Use a special fifo for high prio packets
26  *
27  *  dequeue() : serves flows in Round Robin
28  *  Note : When a flow becomes empty, we do not immediately remove it from
29  *  rb trees, for performance reasons (its expected to send additional packets,
30  *  or SLAB cache will reuse socket for another flow)
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/errno.h>
40 #include <linux/init.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/rbtree.h>
44 #include <linux/hash.h>
45 #include <linux/prefetch.h>
46 #include <linux/vmalloc.h>
47 #include <net/netlink.h>
48 #include <net/pkt_sched.h>
49 #include <net/sock.h>
50 #include <net/tcp_states.h>
51 #include <net/tcp.h>
52
53 struct fq_skb_cb {
54         u64             time_to_send;
55 };
56
57 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
58 {
59         qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
60         return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
61 }
62
63 /*
64  * Per flow structure, dynamically allocated.
65  * If packets have monotically increasing time_to_send, they are placed in O(1)
66  * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
67  */
68 struct fq_flow {
69         struct rb_root  t_root;
70         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
71         union {
72                 struct sk_buff *tail;   /* last skb in the list */
73                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
74         };
75         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
76         struct sock     *sk;
77         int             qlen;           /* number of packets in flow queue */
78         int             credit;
79         u32             socket_hash;    /* sk_hash */
80         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
81
82         struct rb_node  rate_node;      /* anchor in q->delayed tree */
83         u64             time_next_packet;
84 };
85
86 struct fq_flow_head {
87         struct fq_flow *first;
88         struct fq_flow *last;
89 };
90
91 struct fq_sched_data {
92         struct fq_flow_head new_flows;
93
94         struct fq_flow_head old_flows;
95
96         struct rb_root  delayed;        /* for rate limited flows */
97         u64             time_next_delayed_flow;
98         unsigned long   unthrottle_latency_ns;
99
100         struct fq_flow  internal;       /* for non classified or high prio packets */
101         u32             quantum;
102         u32             initial_quantum;
103         u32             flow_refill_delay;
104         u32             flow_plimit;    /* max packets per flow */
105         unsigned long   flow_max_rate;  /* optional max rate per flow */
106         u64             ce_threshold;
107         u32             orphan_mask;    /* mask for orphaned skb */
108         u32             low_rate_threshold;
109         struct rb_root  *fq_root;
110         u8              rate_enable;
111         u8              fq_trees_log;
112
113         u32             flows;
114         u32             inactive_flows;
115         u32             throttled_flows;
116
117         u64             stat_gc_flows;
118         u64             stat_internal_packets;
119         u64             stat_throttled;
120         u64             stat_ce_mark;
121         u64             stat_flows_plimit;
122         u64             stat_pkts_too_long;
123         u64             stat_allocation_errors;
124         struct qdisc_watchdog watchdog;
125 };
126
127 /* special value to mark a detached flow (not on old/new list) */
128 static struct fq_flow detached, throttled;
129
130 static void fq_flow_set_detached(struct fq_flow *f)
131 {
132         f->next = &detached;
133         f->age = jiffies;
134 }
135
136 static bool fq_flow_is_detached(const struct fq_flow *f)
137 {
138         return f->next == &detached;
139 }
140
141 static bool fq_flow_is_throttled(const struct fq_flow *f)
142 {
143         return f->next == &throttled;
144 }
145
146 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
147 {
148         if (head->first)
149                 head->last->next = flow;
150         else
151                 head->first = flow;
152         head->last = flow;
153         flow->next = NULL;
154 }
155
156 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
157 {
158         rb_erase(&f->rate_node, &q->delayed);
159         q->throttled_flows--;
160         fq_flow_add_tail(&q->old_flows, f);
161 }
162
163 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
164 {
165         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
166
167         while (*p) {
168                 struct fq_flow *aux;
169
170                 parent = *p;
171                 aux = rb_entry(parent, struct fq_flow, rate_node);
172                 if (f->time_next_packet >= aux->time_next_packet)
173                         p = &parent->rb_right;
174                 else
175                         p = &parent->rb_left;
176         }
177         rb_link_node(&f->rate_node, parent, p);
178         rb_insert_color(&f->rate_node, &q->delayed);
179         q->throttled_flows++;
180         q->stat_throttled++;
181
182         f->next = &throttled;
183         if (q->time_next_delayed_flow > f->time_next_packet)
184                 q->time_next_delayed_flow = f->time_next_packet;
185 }
186
187
188 static struct kmem_cache *fq_flow_cachep __read_mostly;
189
190
191 /* limit number of collected flows per round */
192 #define FQ_GC_MAX 8
193 #define FQ_GC_AGE (3*HZ)
194
195 static bool fq_gc_candidate(const struct fq_flow *f)
196 {
197         return fq_flow_is_detached(f) &&
198                time_after(jiffies, f->age + FQ_GC_AGE);
199 }
200
201 static void fq_gc(struct fq_sched_data *q,
202                   struct rb_root *root,
203                   struct sock *sk)
204 {
205         struct fq_flow *f, *tofree[FQ_GC_MAX];
206         struct rb_node **p, *parent;
207         int fcnt = 0;
208
209         p = &root->rb_node;
210         parent = NULL;
211         while (*p) {
212                 parent = *p;
213
214                 f = rb_entry(parent, struct fq_flow, fq_node);
215                 if (f->sk == sk)
216                         break;
217
218                 if (fq_gc_candidate(f)) {
219                         tofree[fcnt++] = f;
220                         if (fcnt == FQ_GC_MAX)
221                                 break;
222                 }
223
224                 if (f->sk > sk)
225                         p = &parent->rb_right;
226                 else
227                         p = &parent->rb_left;
228         }
229
230         q->flows -= fcnt;
231         q->inactive_flows -= fcnt;
232         q->stat_gc_flows += fcnt;
233         while (fcnt) {
234                 struct fq_flow *f = tofree[--fcnt];
235
236                 rb_erase(&f->fq_node, root);
237                 kmem_cache_free(fq_flow_cachep, f);
238         }
239 }
240
241 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
242 {
243         struct rb_node **p, *parent;
244         struct sock *sk = skb->sk;
245         struct rb_root *root;
246         struct fq_flow *f;
247
248         /* warning: no starvation prevention... */
249         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
250                 return &q->internal;
251
252         /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
253          * or a listener (SYNCOOKIE mode)
254          * 1) request sockets are not full blown,
255          *    they do not contain sk_pacing_rate
256          * 2) They are not part of a 'flow' yet
257          * 3) We do not want to rate limit them (eg SYNFLOOD attack),
258          *    especially if the listener set SO_MAX_PACING_RATE
259          * 4) We pretend they are orphaned
260          */
261         if (!sk || sk_listener(sk)) {
262                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
263
264                 /* By forcing low order bit to 1, we make sure to not
265                  * collide with a local flow (socket pointers are word aligned)
266                  */
267                 sk = (struct sock *)((hash << 1) | 1UL);
268                 skb_orphan(skb);
269         } else if (sk->sk_state == TCP_CLOSE) {
270                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
271                 /*
272                  * Sockets in TCP_CLOSE are non connected.
273                  * Typical use case is UDP sockets, they can send packets
274                  * with sendto() to many different destinations.
275                  * We probably could use a generic bit advertising
276                  * non connected sockets, instead of sk_state == TCP_CLOSE,
277                  * if we care enough.
278                  */
279                 sk = (struct sock *)((hash << 1) | 1UL);
280         }
281
282         root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
283
284         if (q->flows >= (2U << q->fq_trees_log) &&
285             q->inactive_flows > q->flows/2)
286                 fq_gc(q, root, sk);
287
288         p = &root->rb_node;
289         parent = NULL;
290         while (*p) {
291                 parent = *p;
292
293                 f = rb_entry(parent, struct fq_flow, fq_node);
294                 if (f->sk == sk) {
295                         /* socket might have been reallocated, so check
296                          * if its sk_hash is the same.
297                          * It not, we need to refill credit with
298                          * initial quantum
299                          */
300                         if (unlikely(skb->sk == sk &&
301                                      f->socket_hash != sk->sk_hash)) {
302                                 f->credit = q->initial_quantum;
303                                 f->socket_hash = sk->sk_hash;
304                                 if (q->rate_enable)
305                                         smp_store_release(&sk->sk_pacing_status,
306                                                           SK_PACING_FQ);
307                                 if (fq_flow_is_throttled(f))
308                                         fq_flow_unset_throttled(q, f);
309                                 f->time_next_packet = 0ULL;
310                         }
311                         return f;
312                 }
313                 if (f->sk > sk)
314                         p = &parent->rb_right;
315                 else
316                         p = &parent->rb_left;
317         }
318
319         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
320         if (unlikely(!f)) {
321                 q->stat_allocation_errors++;
322                 return &q->internal;
323         }
324         /* f->t_root is already zeroed after kmem_cache_zalloc() */
325
326         fq_flow_set_detached(f);
327         f->sk = sk;
328         if (skb->sk == sk) {
329                 f->socket_hash = sk->sk_hash;
330                 if (q->rate_enable)
331                         smp_store_release(&sk->sk_pacing_status,
332                                           SK_PACING_FQ);
333         }
334         f->credit = q->initial_quantum;
335
336         rb_link_node(&f->fq_node, parent, p);
337         rb_insert_color(&f->fq_node, root);
338
339         q->flows++;
340         q->inactive_flows++;
341         return f;
342 }
343
344 static struct sk_buff *fq_peek(struct fq_flow *flow)
345 {
346         struct sk_buff *skb = skb_rb_first(&flow->t_root);
347         struct sk_buff *head = flow->head;
348
349         if (!skb)
350                 return head;
351
352         if (!head)
353                 return skb;
354
355         if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
356                 return skb;
357         return head;
358 }
359
360 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
361                           struct sk_buff *skb)
362 {
363         if (skb == flow->head) {
364                 flow->head = skb->next;
365         } else {
366                 rb_erase(&skb->rbnode, &flow->t_root);
367                 skb->dev = qdisc_dev(sch);
368         }
369 }
370
371 /* remove one skb from head of flow queue */
372 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
373 {
374         struct sk_buff *skb = fq_peek(flow);
375
376         if (skb) {
377                 fq_erase_head(sch, flow, skb);
378                 skb_mark_not_on_list(skb);
379                 flow->qlen--;
380                 qdisc_qstats_backlog_dec(sch, skb);
381                 sch->q.qlen--;
382         }
383         return skb;
384 }
385
386 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
387 {
388         struct rb_node **p, *parent;
389         struct sk_buff *head, *aux;
390
391         fq_skb_cb(skb)->time_to_send = skb->tstamp ?: ktime_get_ns();
392
393         head = flow->head;
394         if (!head ||
395             fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
396                 if (!head)
397                         flow->head = skb;
398                 else
399                         flow->tail->next = skb;
400                 flow->tail = skb;
401                 skb->next = NULL;
402                 return;
403         }
404
405         p = &flow->t_root.rb_node;
406         parent = NULL;
407
408         while (*p) {
409                 parent = *p;
410                 aux = rb_to_skb(parent);
411                 if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
412                         p = &parent->rb_right;
413                 else
414                         p = &parent->rb_left;
415         }
416         rb_link_node(&skb->rbnode, parent, p);
417         rb_insert_color(&skb->rbnode, &flow->t_root);
418 }
419
420 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
421                       struct sk_buff **to_free)
422 {
423         struct fq_sched_data *q = qdisc_priv(sch);
424         struct fq_flow *f;
425
426         if (unlikely(sch->q.qlen >= sch->limit))
427                 return qdisc_drop(skb, sch, to_free);
428
429         f = fq_classify(skb, q);
430         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
431                 q->stat_flows_plimit++;
432                 return qdisc_drop(skb, sch, to_free);
433         }
434
435         f->qlen++;
436         qdisc_qstats_backlog_inc(sch, skb);
437         if (fq_flow_is_detached(f)) {
438                 fq_flow_add_tail(&q->new_flows, f);
439                 if (time_after(jiffies, f->age + q->flow_refill_delay))
440                         f->credit = max_t(u32, f->credit, q->quantum);
441                 q->inactive_flows--;
442         }
443
444         /* Note: this overwrites f->age */
445         flow_queue_add(f, skb);
446
447         if (unlikely(f == &q->internal)) {
448                 q->stat_internal_packets++;
449         }
450         sch->q.qlen++;
451
452         return NET_XMIT_SUCCESS;
453 }
454
455 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
456 {
457         unsigned long sample;
458         struct rb_node *p;
459
460         if (q->time_next_delayed_flow > now)
461                 return;
462
463         /* Update unthrottle latency EWMA.
464          * This is cheap and can help diagnosing timer/latency problems.
465          */
466         sample = (unsigned long)(now - q->time_next_delayed_flow);
467         q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
468         q->unthrottle_latency_ns += sample >> 3;
469
470         q->time_next_delayed_flow = ~0ULL;
471         while ((p = rb_first(&q->delayed)) != NULL) {
472                 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
473
474                 if (f->time_next_packet > now) {
475                         q->time_next_delayed_flow = f->time_next_packet;
476                         break;
477                 }
478                 fq_flow_unset_throttled(q, f);
479         }
480 }
481
482 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
483 {
484         struct fq_sched_data *q = qdisc_priv(sch);
485         struct fq_flow_head *head;
486         struct sk_buff *skb;
487         struct fq_flow *f;
488         unsigned long rate;
489         u32 plen;
490         u64 now;
491
492         if (!sch->q.qlen)
493                 return NULL;
494
495         skb = fq_dequeue_head(sch, &q->internal);
496         if (skb)
497                 goto out;
498
499         now = ktime_get_ns();
500         fq_check_throttled(q, now);
501 begin:
502         head = &q->new_flows;
503         if (!head->first) {
504                 head = &q->old_flows;
505                 if (!head->first) {
506                         if (q->time_next_delayed_flow != ~0ULL)
507                                 qdisc_watchdog_schedule_ns(&q->watchdog,
508                                                            q->time_next_delayed_flow);
509                         return NULL;
510                 }
511         }
512         f = head->first;
513
514         if (f->credit <= 0) {
515                 f->credit += q->quantum;
516                 head->first = f->next;
517                 fq_flow_add_tail(&q->old_flows, f);
518                 goto begin;
519         }
520
521         skb = fq_peek(f);
522         if (skb) {
523                 u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
524                                              f->time_next_packet);
525
526                 if (now < time_next_packet) {
527                         head->first = f->next;
528                         f->time_next_packet = time_next_packet;
529                         fq_flow_set_throttled(q, f);
530                         goto begin;
531                 }
532                 if (time_next_packet &&
533                     (s64)(now - time_next_packet - q->ce_threshold) > 0) {
534                         INET_ECN_set_ce(skb);
535                         q->stat_ce_mark++;
536                 }
537         }
538
539         skb = fq_dequeue_head(sch, f);
540         if (!skb) {
541                 head->first = f->next;
542                 /* force a pass through old_flows to prevent starvation */
543                 if ((head == &q->new_flows) && q->old_flows.first) {
544                         fq_flow_add_tail(&q->old_flows, f);
545                 } else {
546                         fq_flow_set_detached(f);
547                         q->inactive_flows++;
548                 }
549                 goto begin;
550         }
551         prefetch(&skb->end);
552         plen = qdisc_pkt_len(skb);
553         f->credit -= plen;
554
555         if (!q->rate_enable)
556                 goto out;
557
558         rate = q->flow_max_rate;
559
560         /* If EDT time was provided for this skb, we need to
561          * update f->time_next_packet only if this qdisc enforces
562          * a flow max rate.
563          */
564         if (!skb->tstamp) {
565                 if (skb->sk)
566                         rate = min(skb->sk->sk_pacing_rate, rate);
567
568                 if (rate <= q->low_rate_threshold) {
569                         f->credit = 0;
570                 } else {
571                         plen = max(plen, q->quantum);
572                         if (f->credit > 0)
573                                 goto out;
574                 }
575         }
576         if (rate != ~0UL) {
577                 u64 len = (u64)plen * NSEC_PER_SEC;
578
579                 if (likely(rate))
580                         len = div64_ul(len, rate);
581                 /* Since socket rate can change later,
582                  * clamp the delay to 1 second.
583                  * Really, providers of too big packets should be fixed !
584                  */
585                 if (unlikely(len > NSEC_PER_SEC)) {
586                         len = NSEC_PER_SEC;
587                         q->stat_pkts_too_long++;
588                 }
589                 /* Account for schedule/timers drifts.
590                  * f->time_next_packet was set when prior packet was sent,
591                  * and current time (@now) can be too late by tens of us.
592                  */
593                 if (f->time_next_packet)
594                         len -= min(len/2, now - f->time_next_packet);
595                 f->time_next_packet = now + len;
596         }
597 out:
598         qdisc_bstats_update(sch, skb);
599         return skb;
600 }
601
602 static void fq_flow_purge(struct fq_flow *flow)
603 {
604         struct rb_node *p = rb_first(&flow->t_root);
605
606         while (p) {
607                 struct sk_buff *skb = rb_to_skb(p);
608
609                 p = rb_next(p);
610                 rb_erase(&skb->rbnode, &flow->t_root);
611                 rtnl_kfree_skbs(skb, skb);
612         }
613         rtnl_kfree_skbs(flow->head, flow->tail);
614         flow->head = NULL;
615         flow->qlen = 0;
616 }
617
618 static void fq_reset(struct Qdisc *sch)
619 {
620         struct fq_sched_data *q = qdisc_priv(sch);
621         struct rb_root *root;
622         struct rb_node *p;
623         struct fq_flow *f;
624         unsigned int idx;
625
626         sch->q.qlen = 0;
627         sch->qstats.backlog = 0;
628
629         fq_flow_purge(&q->internal);
630
631         if (!q->fq_root)
632                 return;
633
634         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
635                 root = &q->fq_root[idx];
636                 while ((p = rb_first(root)) != NULL) {
637                         f = rb_entry(p, struct fq_flow, fq_node);
638                         rb_erase(p, root);
639
640                         fq_flow_purge(f);
641
642                         kmem_cache_free(fq_flow_cachep, f);
643                 }
644         }
645         q->new_flows.first      = NULL;
646         q->old_flows.first      = NULL;
647         q->delayed              = RB_ROOT;
648         q->flows                = 0;
649         q->inactive_flows       = 0;
650         q->throttled_flows      = 0;
651 }
652
653 static void fq_rehash(struct fq_sched_data *q,
654                       struct rb_root *old_array, u32 old_log,
655                       struct rb_root *new_array, u32 new_log)
656 {
657         struct rb_node *op, **np, *parent;
658         struct rb_root *oroot, *nroot;
659         struct fq_flow *of, *nf;
660         int fcnt = 0;
661         u32 idx;
662
663         for (idx = 0; idx < (1U << old_log); idx++) {
664                 oroot = &old_array[idx];
665                 while ((op = rb_first(oroot)) != NULL) {
666                         rb_erase(op, oroot);
667                         of = rb_entry(op, struct fq_flow, fq_node);
668                         if (fq_gc_candidate(of)) {
669                                 fcnt++;
670                                 kmem_cache_free(fq_flow_cachep, of);
671                                 continue;
672                         }
673                         nroot = &new_array[hash_ptr(of->sk, new_log)];
674
675                         np = &nroot->rb_node;
676                         parent = NULL;
677                         while (*np) {
678                                 parent = *np;
679
680                                 nf = rb_entry(parent, struct fq_flow, fq_node);
681                                 BUG_ON(nf->sk == of->sk);
682
683                                 if (nf->sk > of->sk)
684                                         np = &parent->rb_right;
685                                 else
686                                         np = &parent->rb_left;
687                         }
688
689                         rb_link_node(&of->fq_node, parent, np);
690                         rb_insert_color(&of->fq_node, nroot);
691                 }
692         }
693         q->flows -= fcnt;
694         q->inactive_flows -= fcnt;
695         q->stat_gc_flows += fcnt;
696 }
697
698 static void fq_free(void *addr)
699 {
700         kvfree(addr);
701 }
702
703 static int fq_resize(struct Qdisc *sch, u32 log)
704 {
705         struct fq_sched_data *q = qdisc_priv(sch);
706         struct rb_root *array;
707         void *old_fq_root;
708         u32 idx;
709
710         if (q->fq_root && log == q->fq_trees_log)
711                 return 0;
712
713         /* If XPS was setup, we can allocate memory on right NUMA node */
714         array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
715                               netdev_queue_numa_node_read(sch->dev_queue));
716         if (!array)
717                 return -ENOMEM;
718
719         for (idx = 0; idx < (1U << log); idx++)
720                 array[idx] = RB_ROOT;
721
722         sch_tree_lock(sch);
723
724         old_fq_root = q->fq_root;
725         if (old_fq_root)
726                 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
727
728         q->fq_root = array;
729         q->fq_trees_log = log;
730
731         sch_tree_unlock(sch);
732
733         fq_free(old_fq_root);
734
735         return 0;
736 }
737
738 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
739         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
740         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
741         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
742         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
743         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
744         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
745         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
746         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
747         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
748         [TCA_FQ_ORPHAN_MASK]            = { .type = NLA_U32 },
749         [TCA_FQ_LOW_RATE_THRESHOLD]     = { .type = NLA_U32 },
750         [TCA_FQ_CE_THRESHOLD]           = { .type = NLA_U32 },
751 };
752
753 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
754                      struct netlink_ext_ack *extack)
755 {
756         struct fq_sched_data *q = qdisc_priv(sch);
757         struct nlattr *tb[TCA_FQ_MAX + 1];
758         int err, drop_count = 0;
759         unsigned drop_len = 0;
760         u32 fq_log;
761
762         if (!opt)
763                 return -EINVAL;
764
765         err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
766                                           NULL);
767         if (err < 0)
768                 return err;
769
770         sch_tree_lock(sch);
771
772         fq_log = q->fq_trees_log;
773
774         if (tb[TCA_FQ_BUCKETS_LOG]) {
775                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
776
777                 if (nval >= 1 && nval <= ilog2(256*1024))
778                         fq_log = nval;
779                 else
780                         err = -EINVAL;
781         }
782         if (tb[TCA_FQ_PLIMIT])
783                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
784
785         if (tb[TCA_FQ_FLOW_PLIMIT])
786                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
787
788         if (tb[TCA_FQ_QUANTUM]) {
789                 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
790
791                 if (quantum > 0 && quantum <= (1 << 20)) {
792                         q->quantum = quantum;
793                 } else {
794                         NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
795                         err = -EINVAL;
796                 }
797         }
798
799         if (tb[TCA_FQ_INITIAL_QUANTUM])
800                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
801
802         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
803                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
804                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
805
806         if (tb[TCA_FQ_FLOW_MAX_RATE]) {
807                 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
808
809                 q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
810         }
811         if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
812                 q->low_rate_threshold =
813                         nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
814
815         if (tb[TCA_FQ_RATE_ENABLE]) {
816                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
817
818                 if (enable <= 1)
819                         q->rate_enable = enable;
820                 else
821                         err = -EINVAL;
822         }
823
824         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
825                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
826
827                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
828         }
829
830         if (tb[TCA_FQ_ORPHAN_MASK])
831                 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
832
833         if (tb[TCA_FQ_CE_THRESHOLD])
834                 q->ce_threshold = (u64)NSEC_PER_USEC *
835                                   nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
836
837         if (!err) {
838                 sch_tree_unlock(sch);
839                 err = fq_resize(sch, fq_log);
840                 sch_tree_lock(sch);
841         }
842         while (sch->q.qlen > sch->limit) {
843                 struct sk_buff *skb = fq_dequeue(sch);
844
845                 if (!skb)
846                         break;
847                 drop_len += qdisc_pkt_len(skb);
848                 rtnl_kfree_skbs(skb, skb);
849                 drop_count++;
850         }
851         qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
852
853         sch_tree_unlock(sch);
854         return err;
855 }
856
857 static void fq_destroy(struct Qdisc *sch)
858 {
859         struct fq_sched_data *q = qdisc_priv(sch);
860
861         fq_reset(sch);
862         fq_free(q->fq_root);
863         qdisc_watchdog_cancel(&q->watchdog);
864 }
865
866 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
867                    struct netlink_ext_ack *extack)
868 {
869         struct fq_sched_data *q = qdisc_priv(sch);
870         int err;
871
872         sch->limit              = 10000;
873         q->flow_plimit          = 100;
874         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
875         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
876         q->flow_refill_delay    = msecs_to_jiffies(40);
877         q->flow_max_rate        = ~0UL;
878         q->time_next_delayed_flow = ~0ULL;
879         q->rate_enable          = 1;
880         q->new_flows.first      = NULL;
881         q->old_flows.first      = NULL;
882         q->delayed              = RB_ROOT;
883         q->fq_root              = NULL;
884         q->fq_trees_log         = ilog2(1024);
885         q->orphan_mask          = 1024 - 1;
886         q->low_rate_threshold   = 550000 / 8;
887
888         /* Default ce_threshold of 4294 seconds */
889         q->ce_threshold         = (u64)NSEC_PER_USEC * ~0U;
890
891         qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
892
893         if (opt)
894                 err = fq_change(sch, opt, extack);
895         else
896                 err = fq_resize(sch, q->fq_trees_log);
897
898         return err;
899 }
900
901 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
902 {
903         struct fq_sched_data *q = qdisc_priv(sch);
904         u64 ce_threshold = q->ce_threshold;
905         struct nlattr *opts;
906
907         opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
908         if (opts == NULL)
909                 goto nla_put_failure;
910
911         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
912
913         do_div(ce_threshold, NSEC_PER_USEC);
914
915         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
916             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
917             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
918             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
919             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
920             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
921                         min_t(unsigned long, q->flow_max_rate, ~0U)) ||
922             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
923                         jiffies_to_usecs(q->flow_refill_delay)) ||
924             nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
925             nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
926                         q->low_rate_threshold) ||
927             nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
928             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
929                 goto nla_put_failure;
930
931         return nla_nest_end(skb, opts);
932
933 nla_put_failure:
934         return -1;
935 }
936
937 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
938 {
939         struct fq_sched_data *q = qdisc_priv(sch);
940         struct tc_fq_qd_stats st;
941
942         sch_tree_lock(sch);
943
944         st.gc_flows               = q->stat_gc_flows;
945         st.highprio_packets       = q->stat_internal_packets;
946         st.tcp_retrans            = 0;
947         st.throttled              = q->stat_throttled;
948         st.flows_plimit           = q->stat_flows_plimit;
949         st.pkts_too_long          = q->stat_pkts_too_long;
950         st.allocation_errors      = q->stat_allocation_errors;
951         st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
952         st.flows                  = q->flows;
953         st.inactive_flows         = q->inactive_flows;
954         st.throttled_flows        = q->throttled_flows;
955         st.unthrottle_latency_ns  = min_t(unsigned long,
956                                           q->unthrottle_latency_ns, ~0U);
957         st.ce_mark                = q->stat_ce_mark;
958         sch_tree_unlock(sch);
959
960         return gnet_stats_copy_app(d, &st, sizeof(st));
961 }
962
963 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
964         .id             =       "fq",
965         .priv_size      =       sizeof(struct fq_sched_data),
966
967         .enqueue        =       fq_enqueue,
968         .dequeue        =       fq_dequeue,
969         .peek           =       qdisc_peek_dequeued,
970         .init           =       fq_init,
971         .reset          =       fq_reset,
972         .destroy        =       fq_destroy,
973         .change         =       fq_change,
974         .dump           =       fq_dump,
975         .dump_stats     =       fq_dump_stats,
976         .owner          =       THIS_MODULE,
977 };
978
979 static int __init fq_module_init(void)
980 {
981         int ret;
982
983         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
984                                            sizeof(struct fq_flow),
985                                            0, 0, NULL);
986         if (!fq_flow_cachep)
987                 return -ENOMEM;
988
989         ret = register_qdisc(&fq_qdisc_ops);
990         if (ret)
991                 kmem_cache_destroy(fq_flow_cachep);
992         return ret;
993 }
994
995 static void __exit fq_module_exit(void)
996 {
997         unregister_qdisc(&fq_qdisc_ops);
998         kmem_cache_destroy(fq_flow_cachep);
999 }
1000
1001 module_init(fq_module_init)
1002 module_exit(fq_module_exit)
1003 MODULE_AUTHOR("Eric Dumazet");
1004 MODULE_LICENSE("GPL");