GNU Linux-libre 4.4.299-gnu1
[releases.git] / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for locally generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
56
57 /*
58  * Per flow structure, dynamically allocated
59  */
60 struct fq_flow {
61         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
62         union {
63                 struct sk_buff *tail;   /* last skb in the list */
64                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
65         };
66         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
67         struct sock     *sk;
68         int             qlen;           /* number of packets in flow queue */
69         int             credit;
70         u32             socket_hash;    /* sk_hash */
71         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
72
73         struct rb_node  rate_node;      /* anchor in q->delayed tree */
74         u64             time_next_packet;
75 };
76
77 struct fq_flow_head {
78         struct fq_flow *first;
79         struct fq_flow *last;
80 };
81
82 struct fq_sched_data {
83         struct fq_flow_head new_flows;
84
85         struct fq_flow_head old_flows;
86
87         struct rb_root  delayed;        /* for rate limited flows */
88         u64             time_next_delayed_flow;
89
90         struct fq_flow  internal;       /* for non classified or high prio packets */
91         u32             quantum;
92         u32             initial_quantum;
93         u32             flow_refill_delay;
94         u32             flow_max_rate;  /* optional max rate per flow */
95         u32             flow_plimit;    /* max packets per flow */
96         u32             orphan_mask;    /* mask for orphaned skb */
97         struct rb_root  *fq_root;
98         u8              rate_enable;
99         u8              fq_trees_log;
100
101         u32             flows;
102         u32             inactive_flows;
103         u32             throttled_flows;
104
105         u64             stat_gc_flows;
106         u64             stat_internal_packets;
107         u64             stat_tcp_retrans;
108         u64             stat_throttled;
109         u64             stat_flows_plimit;
110         u64             stat_pkts_too_long;
111         u64             stat_allocation_errors;
112         struct qdisc_watchdog watchdog;
113 };
114
115 /* special value to mark a detached flow (not on old/new list) */
116 static struct fq_flow detached, throttled;
117
118 static void fq_flow_set_detached(struct fq_flow *f)
119 {
120         f->next = &detached;
121         f->age = jiffies;
122 }
123
124 static bool fq_flow_is_detached(const struct fq_flow *f)
125 {
126         return f->next == &detached;
127 }
128
129 static bool fq_flow_is_throttled(const struct fq_flow *f)
130 {
131         return f->next == &throttled;
132 }
133
134 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
135 {
136         if (head->first)
137                 head->last->next = flow;
138         else
139                 head->first = flow;
140         head->last = flow;
141         flow->next = NULL;
142 }
143
144 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
145 {
146         rb_erase(&f->rate_node, &q->delayed);
147         q->throttled_flows--;
148         fq_flow_add_tail(&q->old_flows, f);
149 }
150
151 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
152 {
153         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
154
155         while (*p) {
156                 struct fq_flow *aux;
157
158                 parent = *p;
159                 aux = container_of(parent, struct fq_flow, rate_node);
160                 if (f->time_next_packet >= aux->time_next_packet)
161                         p = &parent->rb_right;
162                 else
163                         p = &parent->rb_left;
164         }
165         rb_link_node(&f->rate_node, parent, p);
166         rb_insert_color(&f->rate_node, &q->delayed);
167         q->throttled_flows++;
168         q->stat_throttled++;
169
170         f->next = &throttled;
171         if (q->time_next_delayed_flow > f->time_next_packet)
172                 q->time_next_delayed_flow = f->time_next_packet;
173 }
174
175
176 static struct kmem_cache *fq_flow_cachep __read_mostly;
177
178
179 /* limit number of collected flows per round */
180 #define FQ_GC_MAX 8
181 #define FQ_GC_AGE (3*HZ)
182
183 static bool fq_gc_candidate(const struct fq_flow *f)
184 {
185         return fq_flow_is_detached(f) &&
186                time_after(jiffies, f->age + FQ_GC_AGE);
187 }
188
189 static void fq_gc(struct fq_sched_data *q,
190                   struct rb_root *root,
191                   struct sock *sk)
192 {
193         struct fq_flow *f, *tofree[FQ_GC_MAX];
194         struct rb_node **p, *parent;
195         int fcnt = 0;
196
197         p = &root->rb_node;
198         parent = NULL;
199         while (*p) {
200                 parent = *p;
201
202                 f = container_of(parent, struct fq_flow, fq_node);
203                 if (f->sk == sk)
204                         break;
205
206                 if (fq_gc_candidate(f)) {
207                         tofree[fcnt++] = f;
208                         if (fcnt == FQ_GC_MAX)
209                                 break;
210                 }
211
212                 if (f->sk > sk)
213                         p = &parent->rb_right;
214                 else
215                         p = &parent->rb_left;
216         }
217
218         q->flows -= fcnt;
219         q->inactive_flows -= fcnt;
220         q->stat_gc_flows += fcnt;
221         while (fcnt) {
222                 struct fq_flow *f = tofree[--fcnt];
223
224                 rb_erase(&f->fq_node, root);
225                 kmem_cache_free(fq_flow_cachep, f);
226         }
227 }
228
229 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
230 {
231         struct rb_node **p, *parent;
232         struct sock *sk = skb->sk;
233         struct rb_root *root;
234         struct fq_flow *f;
235
236         /* warning: no starvation prevention... */
237         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
238                 return &q->internal;
239
240         /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
241          * or a listener (SYNCOOKIE mode)
242          * 1) request sockets are not full blown,
243          *    they do not contain sk_pacing_rate
244          * 2) They are not part of a 'flow' yet
245          * 3) We do not want to rate limit them (eg SYNFLOOD attack),
246          *    especially if the listener set SO_MAX_PACING_RATE
247          * 4) We pretend they are orphaned
248          */
249         if (!sk || sk_listener(sk)) {
250                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
251
252                 /* By forcing low order bit to 1, we make sure to not
253                  * collide with a local flow (socket pointers are word aligned)
254                  */
255                 sk = (struct sock *)((hash << 1) | 1UL);
256                 skb_orphan(skb);
257         }
258
259         root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
260
261         if (q->flows >= (2U << q->fq_trees_log) &&
262             q->inactive_flows > q->flows/2)
263                 fq_gc(q, root, sk);
264
265         p = &root->rb_node;
266         parent = NULL;
267         while (*p) {
268                 parent = *p;
269
270                 f = container_of(parent, struct fq_flow, fq_node);
271                 if (f->sk == sk) {
272                         /* socket might have been reallocated, so check
273                          * if its sk_hash is the same.
274                          * It not, we need to refill credit with
275                          * initial quantum
276                          */
277                         if (unlikely(skb->sk &&
278                                      f->socket_hash != sk->sk_hash)) {
279                                 f->credit = q->initial_quantum;
280                                 f->socket_hash = sk->sk_hash;
281                                 if (fq_flow_is_throttled(f))
282                                         fq_flow_unset_throttled(q, f);
283                                 f->time_next_packet = 0ULL;
284                         }
285                         return f;
286                 }
287                 if (f->sk > sk)
288                         p = &parent->rb_right;
289                 else
290                         p = &parent->rb_left;
291         }
292
293         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
294         if (unlikely(!f)) {
295                 q->stat_allocation_errors++;
296                 return &q->internal;
297         }
298         fq_flow_set_detached(f);
299         f->sk = sk;
300         if (skb->sk)
301                 f->socket_hash = sk->sk_hash;
302         f->credit = q->initial_quantum;
303
304         rb_link_node(&f->fq_node, parent, p);
305         rb_insert_color(&f->fq_node, root);
306
307         q->flows++;
308         q->inactive_flows++;
309         return f;
310 }
311
312
313 /* remove one skb from head of flow queue */
314 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
315 {
316         struct sk_buff *skb = flow->head;
317
318         if (skb) {
319                 flow->head = skb->next;
320                 skb->next = NULL;
321                 flow->qlen--;
322                 qdisc_qstats_backlog_dec(sch, skb);
323                 sch->q.qlen--;
324         }
325         return skb;
326 }
327
328 /* We might add in the future detection of retransmits
329  * For the time being, just return false
330  */
331 static bool skb_is_retransmit(struct sk_buff *skb)
332 {
333         return false;
334 }
335
336 /* add skb to flow queue
337  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
338  * We special case tcp retransmits to be transmitted before other packets.
339  * We rely on fact that TCP retransmits are unlikely, so we do not waste
340  * a separate queue or a pointer.
341  * head->  [retrans pkt 1]
342  *         [retrans pkt 2]
343  *         [ normal pkt 1]
344  *         [ normal pkt 2]
345  *         [ normal pkt 3]
346  * tail->  [ normal pkt 4]
347  */
348 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
349 {
350         struct sk_buff *prev, *head = flow->head;
351
352         skb->next = NULL;
353         if (!head) {
354                 flow->head = skb;
355                 flow->tail = skb;
356                 return;
357         }
358         if (likely(!skb_is_retransmit(skb))) {
359                 flow->tail->next = skb;
360                 flow->tail = skb;
361                 return;
362         }
363
364         /* This skb is a tcp retransmit,
365          * find the last retrans packet in the queue
366          */
367         prev = NULL;
368         while (skb_is_retransmit(head)) {
369                 prev = head;
370                 head = head->next;
371                 if (!head)
372                         break;
373         }
374         if (!prev) { /* no rtx packet in queue, become the new head */
375                 skb->next = flow->head;
376                 flow->head = skb;
377         } else {
378                 if (prev == flow->tail)
379                         flow->tail = skb;
380                 else
381                         skb->next = prev->next;
382                 prev->next = skb;
383         }
384 }
385
386 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
387 {
388         struct fq_sched_data *q = qdisc_priv(sch);
389         struct fq_flow *f;
390
391         if (unlikely(sch->q.qlen >= sch->limit))
392                 return qdisc_drop(skb, sch);
393
394         f = fq_classify(skb, q);
395         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
396                 q->stat_flows_plimit++;
397                 return qdisc_drop(skb, sch);
398         }
399
400         f->qlen++;
401         if (skb_is_retransmit(skb))
402                 q->stat_tcp_retrans++;
403         qdisc_qstats_backlog_inc(sch, skb);
404         if (fq_flow_is_detached(f)) {
405                 fq_flow_add_tail(&q->new_flows, f);
406                 if (time_after(jiffies, f->age + q->flow_refill_delay))
407                         f->credit = max_t(u32, f->credit, q->quantum);
408                 q->inactive_flows--;
409         }
410
411         /* Note: this overwrites f->age */
412         flow_queue_add(f, skb);
413
414         if (unlikely(f == &q->internal)) {
415                 q->stat_internal_packets++;
416         }
417         sch->q.qlen++;
418
419         return NET_XMIT_SUCCESS;
420 }
421
422 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
423 {
424         struct rb_node *p;
425
426         if (q->time_next_delayed_flow > now)
427                 return;
428
429         q->time_next_delayed_flow = ~0ULL;
430         while ((p = rb_first(&q->delayed)) != NULL) {
431                 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
432
433                 if (f->time_next_packet > now) {
434                         q->time_next_delayed_flow = f->time_next_packet;
435                         break;
436                 }
437                 fq_flow_unset_throttled(q, f);
438         }
439 }
440
441 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
442 {
443         struct fq_sched_data *q = qdisc_priv(sch);
444         u64 now = ktime_get_ns();
445         struct fq_flow_head *head;
446         struct sk_buff *skb;
447         struct fq_flow *f;
448         u32 rate;
449
450         skb = fq_dequeue_head(sch, &q->internal);
451         if (skb)
452                 goto out;
453         fq_check_throttled(q, now);
454 begin:
455         head = &q->new_flows;
456         if (!head->first) {
457                 head = &q->old_flows;
458                 if (!head->first) {
459                         if (q->time_next_delayed_flow != ~0ULL)
460                                 qdisc_watchdog_schedule_ns(&q->watchdog,
461                                                            q->time_next_delayed_flow,
462                                                            false);
463                         return NULL;
464                 }
465         }
466         f = head->first;
467
468         if (f->credit <= 0) {
469                 f->credit += q->quantum;
470                 head->first = f->next;
471                 fq_flow_add_tail(&q->old_flows, f);
472                 goto begin;
473         }
474
475         skb = f->head;
476         if (unlikely(skb && now < f->time_next_packet &&
477                      !skb_is_tcp_pure_ack(skb))) {
478                 head->first = f->next;
479                 fq_flow_set_throttled(q, f);
480                 goto begin;
481         }
482
483         skb = fq_dequeue_head(sch, f);
484         if (!skb) {
485                 head->first = f->next;
486                 /* force a pass through old_flows to prevent starvation */
487                 if ((head == &q->new_flows) && q->old_flows.first) {
488                         fq_flow_add_tail(&q->old_flows, f);
489                 } else {
490                         fq_flow_set_detached(f);
491                         q->inactive_flows++;
492                 }
493                 goto begin;
494         }
495         prefetch(&skb->end);
496         f->credit -= qdisc_pkt_len(skb);
497
498         if (f->credit > 0 || !q->rate_enable)
499                 goto out;
500
501         /* Do not pace locally generated ack packets */
502         if (skb_is_tcp_pure_ack(skb))
503                 goto out;
504
505         rate = q->flow_max_rate;
506         if (skb->sk)
507                 rate = min(skb->sk->sk_pacing_rate, rate);
508
509         if (rate != ~0U) {
510                 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
511                 u64 len = (u64)plen * NSEC_PER_SEC;
512
513                 if (likely(rate))
514                         do_div(len, rate);
515                 /* Since socket rate can change later,
516                  * clamp the delay to 1 second.
517                  * Really, providers of too big packets should be fixed !
518                  */
519                 if (unlikely(len > NSEC_PER_SEC)) {
520                         len = NSEC_PER_SEC;
521                         q->stat_pkts_too_long++;
522                 }
523
524                 f->time_next_packet = now + len;
525         }
526 out:
527         qdisc_bstats_update(sch, skb);
528         return skb;
529 }
530
531 static void fq_reset(struct Qdisc *sch)
532 {
533         struct fq_sched_data *q = qdisc_priv(sch);
534         struct rb_root *root;
535         struct sk_buff *skb;
536         struct rb_node *p;
537         struct fq_flow *f;
538         unsigned int idx;
539
540         while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
541                 kfree_skb(skb);
542
543         if (!q->fq_root)
544                 return;
545
546         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
547                 root = &q->fq_root[idx];
548                 while ((p = rb_first(root)) != NULL) {
549                         f = container_of(p, struct fq_flow, fq_node);
550                         rb_erase(p, root);
551
552                         while ((skb = fq_dequeue_head(sch, f)) != NULL)
553                                 kfree_skb(skb);
554
555                         kmem_cache_free(fq_flow_cachep, f);
556                 }
557         }
558         q->new_flows.first      = NULL;
559         q->old_flows.first      = NULL;
560         q->delayed              = RB_ROOT;
561         q->flows                = 0;
562         q->inactive_flows       = 0;
563         q->throttled_flows      = 0;
564 }
565
566 static void fq_rehash(struct fq_sched_data *q,
567                       struct rb_root *old_array, u32 old_log,
568                       struct rb_root *new_array, u32 new_log)
569 {
570         struct rb_node *op, **np, *parent;
571         struct rb_root *oroot, *nroot;
572         struct fq_flow *of, *nf;
573         int fcnt = 0;
574         u32 idx;
575
576         for (idx = 0; idx < (1U << old_log); idx++) {
577                 oroot = &old_array[idx];
578                 while ((op = rb_first(oroot)) != NULL) {
579                         rb_erase(op, oroot);
580                         of = container_of(op, struct fq_flow, fq_node);
581                         if (fq_gc_candidate(of)) {
582                                 fcnt++;
583                                 kmem_cache_free(fq_flow_cachep, of);
584                                 continue;
585                         }
586                         nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
587
588                         np = &nroot->rb_node;
589                         parent = NULL;
590                         while (*np) {
591                                 parent = *np;
592
593                                 nf = container_of(parent, struct fq_flow, fq_node);
594                                 BUG_ON(nf->sk == of->sk);
595
596                                 if (nf->sk > of->sk)
597                                         np = &parent->rb_right;
598                                 else
599                                         np = &parent->rb_left;
600                         }
601
602                         rb_link_node(&of->fq_node, parent, np);
603                         rb_insert_color(&of->fq_node, nroot);
604                 }
605         }
606         q->flows -= fcnt;
607         q->inactive_flows -= fcnt;
608         q->stat_gc_flows += fcnt;
609 }
610
611 static void *fq_alloc_node(size_t sz, int node)
612 {
613         void *ptr;
614
615         ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
616         if (!ptr)
617                 ptr = vmalloc_node(sz, node);
618         return ptr;
619 }
620
621 static void fq_free(void *addr)
622 {
623         kvfree(addr);
624 }
625
626 static int fq_resize(struct Qdisc *sch, u32 log)
627 {
628         struct fq_sched_data *q = qdisc_priv(sch);
629         struct rb_root *array;
630         void *old_fq_root;
631         u32 idx;
632
633         if (q->fq_root && log == q->fq_trees_log)
634                 return 0;
635
636         /* If XPS was setup, we can allocate memory on right NUMA node */
637         array = fq_alloc_node(sizeof(struct rb_root) << log,
638                               netdev_queue_numa_node_read(sch->dev_queue));
639         if (!array)
640                 return -ENOMEM;
641
642         for (idx = 0; idx < (1U << log); idx++)
643                 array[idx] = RB_ROOT;
644
645         sch_tree_lock(sch);
646
647         old_fq_root = q->fq_root;
648         if (old_fq_root)
649                 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
650
651         q->fq_root = array;
652         q->fq_trees_log = log;
653
654         sch_tree_unlock(sch);
655
656         fq_free(old_fq_root);
657
658         return 0;
659 }
660
661 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
662         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
663         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
664         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
665         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
666         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
667         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
668         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
669         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
670         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
671         [TCA_FQ_ORPHAN_MASK]            = { .type = NLA_U32 },
672 };
673
674 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
675 {
676         struct fq_sched_data *q = qdisc_priv(sch);
677         struct nlattr *tb[TCA_FQ_MAX + 1];
678         int err, drop_count = 0;
679         unsigned drop_len = 0;
680         u32 fq_log;
681
682         if (!opt)
683                 return -EINVAL;
684
685         err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
686         if (err < 0)
687                 return err;
688
689         sch_tree_lock(sch);
690
691         fq_log = q->fq_trees_log;
692
693         if (tb[TCA_FQ_BUCKETS_LOG]) {
694                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
695
696                 if (nval >= 1 && nval <= ilog2(256*1024))
697                         fq_log = nval;
698                 else
699                         err = -EINVAL;
700         }
701         if (tb[TCA_FQ_PLIMIT])
702                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
703
704         if (tb[TCA_FQ_FLOW_PLIMIT])
705                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
706
707         if (tb[TCA_FQ_QUANTUM]) {
708                 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
709
710                 if (quantum > 0 && quantum <= (1 << 20))
711                         q->quantum = quantum;
712                 else
713                         err = -EINVAL;
714         }
715
716         if (tb[TCA_FQ_INITIAL_QUANTUM])
717                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
718
719         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
720                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
721                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
722
723         if (tb[TCA_FQ_FLOW_MAX_RATE])
724                 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
725
726         if (tb[TCA_FQ_RATE_ENABLE]) {
727                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
728
729                 if (enable <= 1)
730                         q->rate_enable = enable;
731                 else
732                         err = -EINVAL;
733         }
734
735         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
736                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
737
738                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
739         }
740
741         if (tb[TCA_FQ_ORPHAN_MASK])
742                 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
743
744         if (!err) {
745                 sch_tree_unlock(sch);
746                 err = fq_resize(sch, fq_log);
747                 sch_tree_lock(sch);
748         }
749         while (sch->q.qlen > sch->limit) {
750                 struct sk_buff *skb = fq_dequeue(sch);
751
752                 if (!skb)
753                         break;
754                 drop_len += qdisc_pkt_len(skb);
755                 kfree_skb(skb);
756                 drop_count++;
757         }
758         qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
759
760         sch_tree_unlock(sch);
761         return err;
762 }
763
764 static void fq_destroy(struct Qdisc *sch)
765 {
766         struct fq_sched_data *q = qdisc_priv(sch);
767
768         fq_reset(sch);
769         fq_free(q->fq_root);
770         qdisc_watchdog_cancel(&q->watchdog);
771 }
772
773 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
774 {
775         struct fq_sched_data *q = qdisc_priv(sch);
776         int err;
777
778         sch->limit              = 10000;
779         q->flow_plimit          = 100;
780         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
781         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
782         q->flow_refill_delay    = msecs_to_jiffies(40);
783         q->flow_max_rate        = ~0U;
784         q->rate_enable          = 1;
785         q->new_flows.first      = NULL;
786         q->old_flows.first      = NULL;
787         q->delayed              = RB_ROOT;
788         q->fq_root              = NULL;
789         q->fq_trees_log         = ilog2(1024);
790         q->orphan_mask          = 1024 - 1;
791         qdisc_watchdog_init(&q->watchdog, sch);
792
793         if (opt)
794                 err = fq_change(sch, opt);
795         else
796                 err = fq_resize(sch, q->fq_trees_log);
797
798         return err;
799 }
800
801 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
802 {
803         struct fq_sched_data *q = qdisc_priv(sch);
804         struct nlattr *opts;
805
806         opts = nla_nest_start(skb, TCA_OPTIONS);
807         if (opts == NULL)
808                 goto nla_put_failure;
809
810         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
811
812         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
813             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
814             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
815             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
816             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
817             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
818             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
819                         jiffies_to_usecs(q->flow_refill_delay)) ||
820             nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
821             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
822                 goto nla_put_failure;
823
824         return nla_nest_end(skb, opts);
825
826 nla_put_failure:
827         return -1;
828 }
829
830 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
831 {
832         struct fq_sched_data *q = qdisc_priv(sch);
833         u64 now = ktime_get_ns();
834         struct tc_fq_qd_stats st = {
835                 .gc_flows               = q->stat_gc_flows,
836                 .highprio_packets       = q->stat_internal_packets,
837                 .tcp_retrans            = q->stat_tcp_retrans,
838                 .throttled              = q->stat_throttled,
839                 .flows_plimit           = q->stat_flows_plimit,
840                 .pkts_too_long          = q->stat_pkts_too_long,
841                 .allocation_errors      = q->stat_allocation_errors,
842                 .flows                  = q->flows,
843                 .inactive_flows         = q->inactive_flows,
844                 .throttled_flows        = q->throttled_flows,
845                 .time_next_delayed_flow = q->time_next_delayed_flow - now,
846         };
847
848         return gnet_stats_copy_app(d, &st, sizeof(st));
849 }
850
851 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
852         .id             =       "fq",
853         .priv_size      =       sizeof(struct fq_sched_data),
854
855         .enqueue        =       fq_enqueue,
856         .dequeue        =       fq_dequeue,
857         .peek           =       qdisc_peek_dequeued,
858         .init           =       fq_init,
859         .reset          =       fq_reset,
860         .destroy        =       fq_destroy,
861         .change         =       fq_change,
862         .dump           =       fq_dump,
863         .dump_stats     =       fq_dump_stats,
864         .owner          =       THIS_MODULE,
865 };
866
867 static int __init fq_module_init(void)
868 {
869         int ret;
870
871         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
872                                            sizeof(struct fq_flow),
873                                            0, 0, NULL);
874         if (!fq_flow_cachep)
875                 return -ENOMEM;
876
877         ret = register_qdisc(&fq_qdisc_ops);
878         if (ret)
879                 kmem_cache_destroy(fq_flow_cachep);
880         return ret;
881 }
882
883 static void __exit fq_module_exit(void)
884 {
885         unregister_qdisc(&fq_qdisc_ops);
886         kmem_cache_destroy(fq_flow_cachep);
887 }
888
889 module_init(fq_module_init)
890 module_exit(fq_module_exit)
891 MODULE_AUTHOR("Eric Dumazet");
892 MODULE_LICENSE("GPL");