2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4 * Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * Meant to be mostly used for locally generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
19 * Burst avoidance (aka pacing) capability :
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
54 #include <net/tcp_states.h>
58 * Per flow structure, dynamically allocated
61 struct sk_buff *head; /* list of skbs for this flow : first skb */
63 struct sk_buff *tail; /* last skb in the list */
64 unsigned long age; /* jiffies when flow was emptied, for gc */
66 struct rb_node fq_node; /* anchor in fq_root[] trees */
68 int qlen; /* number of packets in flow queue */
70 u32 socket_hash; /* sk_hash */
71 struct fq_flow *next; /* next pointer in RR lists, or &detached */
73 struct rb_node rate_node; /* anchor in q->delayed tree */
78 struct fq_flow *first;
82 struct fq_sched_data {
83 struct fq_flow_head new_flows;
85 struct fq_flow_head old_flows;
87 struct rb_root delayed; /* for rate limited flows */
88 u64 time_next_delayed_flow;
89 unsigned long unthrottle_latency_ns;
91 struct fq_flow internal; /* for non classified or high prio packets */
94 u32 flow_refill_delay;
95 u32 flow_max_rate; /* optional max rate per flow */
96 u32 flow_plimit; /* max packets per flow */
97 u32 orphan_mask; /* mask for orphaned skb */
98 u32 low_rate_threshold;
99 struct rb_root *fq_root;
108 u64 stat_internal_packets;
109 u64 stat_tcp_retrans;
111 u64 stat_flows_plimit;
112 u64 stat_pkts_too_long;
113 u64 stat_allocation_errors;
114 struct qdisc_watchdog watchdog;
117 /* special value to mark a detached flow (not on old/new list) */
118 static struct fq_flow detached, throttled;
120 static void fq_flow_set_detached(struct fq_flow *f)
126 static bool fq_flow_is_detached(const struct fq_flow *f)
128 return f->next == &detached;
131 static bool fq_flow_is_throttled(const struct fq_flow *f)
133 return f->next == &throttled;
136 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
139 head->last->next = flow;
146 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
148 rb_erase(&f->rate_node, &q->delayed);
149 q->throttled_flows--;
150 fq_flow_add_tail(&q->old_flows, f);
153 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
155 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
161 aux = rb_entry(parent, struct fq_flow, rate_node);
162 if (f->time_next_packet >= aux->time_next_packet)
163 p = &parent->rb_right;
165 p = &parent->rb_left;
167 rb_link_node(&f->rate_node, parent, p);
168 rb_insert_color(&f->rate_node, &q->delayed);
169 q->throttled_flows++;
172 f->next = &throttled;
173 if (q->time_next_delayed_flow > f->time_next_packet)
174 q->time_next_delayed_flow = f->time_next_packet;
178 static struct kmem_cache *fq_flow_cachep __read_mostly;
181 /* limit number of collected flows per round */
183 #define FQ_GC_AGE (3*HZ)
185 static bool fq_gc_candidate(const struct fq_flow *f)
187 return fq_flow_is_detached(f) &&
188 time_after(jiffies, f->age + FQ_GC_AGE);
191 static void fq_gc(struct fq_sched_data *q,
192 struct rb_root *root,
195 struct fq_flow *f, *tofree[FQ_GC_MAX];
196 struct rb_node **p, *parent;
204 f = rb_entry(parent, struct fq_flow, fq_node);
208 if (fq_gc_candidate(f)) {
210 if (fcnt == FQ_GC_MAX)
215 p = &parent->rb_right;
217 p = &parent->rb_left;
221 q->inactive_flows -= fcnt;
222 q->stat_gc_flows += fcnt;
224 struct fq_flow *f = tofree[--fcnt];
226 rb_erase(&f->fq_node, root);
227 kmem_cache_free(fq_flow_cachep, f);
231 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
233 struct rb_node **p, *parent;
234 struct sock *sk = skb->sk;
235 struct rb_root *root;
238 /* warning: no starvation prevention... */
239 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
242 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
243 * or a listener (SYNCOOKIE mode)
244 * 1) request sockets are not full blown,
245 * they do not contain sk_pacing_rate
246 * 2) They are not part of a 'flow' yet
247 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
248 * especially if the listener set SO_MAX_PACING_RATE
249 * 4) We pretend they are orphaned
251 if (!sk || sk_listener(sk)) {
252 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
254 /* By forcing low order bit to 1, we make sure to not
255 * collide with a local flow (socket pointers are word aligned)
257 sk = (struct sock *)((hash << 1) | 1UL);
261 root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
263 if (q->flows >= (2U << q->fq_trees_log) &&
264 q->inactive_flows > q->flows/2)
272 f = rb_entry(parent, struct fq_flow, fq_node);
274 /* socket might have been reallocated, so check
275 * if its sk_hash is the same.
276 * It not, we need to refill credit with
279 if (unlikely(skb->sk &&
280 f->socket_hash != sk->sk_hash)) {
281 f->credit = q->initial_quantum;
282 f->socket_hash = sk->sk_hash;
283 if (fq_flow_is_throttled(f))
284 fq_flow_unset_throttled(q, f);
285 f->time_next_packet = 0ULL;
290 p = &parent->rb_right;
292 p = &parent->rb_left;
295 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
297 q->stat_allocation_errors++;
300 fq_flow_set_detached(f);
303 f->socket_hash = sk->sk_hash;
304 f->credit = q->initial_quantum;
306 rb_link_node(&f->fq_node, parent, p);
307 rb_insert_color(&f->fq_node, root);
315 /* remove one skb from head of flow queue */
316 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
318 struct sk_buff *skb = flow->head;
321 flow->head = skb->next;
324 qdisc_qstats_backlog_dec(sch, skb);
330 /* We might add in the future detection of retransmits
331 * For the time being, just return false
333 static bool skb_is_retransmit(struct sk_buff *skb)
338 /* add skb to flow queue
339 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
340 * We special case tcp retransmits to be transmitted before other packets.
341 * We rely on fact that TCP retransmits are unlikely, so we do not waste
342 * a separate queue or a pointer.
343 * head-> [retrans pkt 1]
348 * tail-> [ normal pkt 4]
350 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
352 struct sk_buff *prev, *head = flow->head;
360 if (likely(!skb_is_retransmit(skb))) {
361 flow->tail->next = skb;
366 /* This skb is a tcp retransmit,
367 * find the last retrans packet in the queue
370 while (skb_is_retransmit(head)) {
376 if (!prev) { /* no rtx packet in queue, become the new head */
377 skb->next = flow->head;
380 if (prev == flow->tail)
383 skb->next = prev->next;
388 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
389 struct sk_buff **to_free)
391 struct fq_sched_data *q = qdisc_priv(sch);
394 if (unlikely(sch->q.qlen >= sch->limit))
395 return qdisc_drop(skb, sch, to_free);
397 f = fq_classify(skb, q);
398 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
399 q->stat_flows_plimit++;
400 return qdisc_drop(skb, sch, to_free);
404 if (skb_is_retransmit(skb))
405 q->stat_tcp_retrans++;
406 qdisc_qstats_backlog_inc(sch, skb);
407 if (fq_flow_is_detached(f)) {
408 struct sock *sk = skb->sk;
410 fq_flow_add_tail(&q->new_flows, f);
411 if (time_after(jiffies, f->age + q->flow_refill_delay))
412 f->credit = max_t(u32, f->credit, q->quantum);
413 if (sk && q->rate_enable) {
414 if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
416 smp_store_release(&sk->sk_pacing_status,
422 /* Note: this overwrites f->age */
423 flow_queue_add(f, skb);
425 if (unlikely(f == &q->internal)) {
426 q->stat_internal_packets++;
430 return NET_XMIT_SUCCESS;
433 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
435 unsigned long sample;
438 if (q->time_next_delayed_flow > now)
441 /* Update unthrottle latency EWMA.
442 * This is cheap and can help diagnosing timer/latency problems.
444 sample = (unsigned long)(now - q->time_next_delayed_flow);
445 q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
446 q->unthrottle_latency_ns += sample >> 3;
448 q->time_next_delayed_flow = ~0ULL;
449 while ((p = rb_first(&q->delayed)) != NULL) {
450 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
452 if (f->time_next_packet > now) {
453 q->time_next_delayed_flow = f->time_next_packet;
456 fq_flow_unset_throttled(q, f);
460 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
462 struct fq_sched_data *q = qdisc_priv(sch);
463 u64 now = ktime_get_ns();
464 struct fq_flow_head *head;
469 skb = fq_dequeue_head(sch, &q->internal);
472 fq_check_throttled(q, now);
474 head = &q->new_flows;
476 head = &q->old_flows;
478 if (q->time_next_delayed_flow != ~0ULL)
479 qdisc_watchdog_schedule_ns(&q->watchdog,
480 q->time_next_delayed_flow);
486 if (f->credit <= 0) {
487 f->credit += q->quantum;
488 head->first = f->next;
489 fq_flow_add_tail(&q->old_flows, f);
494 if (unlikely(skb && now < f->time_next_packet &&
495 !skb_is_tcp_pure_ack(skb))) {
496 head->first = f->next;
497 fq_flow_set_throttled(q, f);
501 skb = fq_dequeue_head(sch, f);
503 head->first = f->next;
504 /* force a pass through old_flows to prevent starvation */
505 if ((head == &q->new_flows) && q->old_flows.first) {
506 fq_flow_add_tail(&q->old_flows, f);
508 fq_flow_set_detached(f);
514 f->credit -= qdisc_pkt_len(skb);
519 /* Do not pace locally generated ack packets */
520 if (skb_is_tcp_pure_ack(skb))
523 rate = q->flow_max_rate;
525 rate = min(skb->sk->sk_pacing_rate, rate);
527 if (rate <= q->low_rate_threshold) {
529 plen = qdisc_pkt_len(skb);
531 plen = max(qdisc_pkt_len(skb), q->quantum);
536 u64 len = (u64)plen * NSEC_PER_SEC;
540 /* Since socket rate can change later,
541 * clamp the delay to 1 second.
542 * Really, providers of too big packets should be fixed !
544 if (unlikely(len > NSEC_PER_SEC)) {
546 q->stat_pkts_too_long++;
548 /* Account for schedule/timers drifts.
549 * f->time_next_packet was set when prior packet was sent,
550 * and current time (@now) can be too late by tens of us.
552 if (f->time_next_packet)
553 len -= min(len/2, now - f->time_next_packet);
554 f->time_next_packet = now + len;
557 qdisc_bstats_update(sch, skb);
561 static void fq_flow_purge(struct fq_flow *flow)
563 rtnl_kfree_skbs(flow->head, flow->tail);
568 static void fq_reset(struct Qdisc *sch)
570 struct fq_sched_data *q = qdisc_priv(sch);
571 struct rb_root *root;
577 sch->qstats.backlog = 0;
579 fq_flow_purge(&q->internal);
584 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
585 root = &q->fq_root[idx];
586 while ((p = rb_first(root)) != NULL) {
587 f = rb_entry(p, struct fq_flow, fq_node);
592 kmem_cache_free(fq_flow_cachep, f);
595 q->new_flows.first = NULL;
596 q->old_flows.first = NULL;
597 q->delayed = RB_ROOT;
599 q->inactive_flows = 0;
600 q->throttled_flows = 0;
603 static void fq_rehash(struct fq_sched_data *q,
604 struct rb_root *old_array, u32 old_log,
605 struct rb_root *new_array, u32 new_log)
607 struct rb_node *op, **np, *parent;
608 struct rb_root *oroot, *nroot;
609 struct fq_flow *of, *nf;
613 for (idx = 0; idx < (1U << old_log); idx++) {
614 oroot = &old_array[idx];
615 while ((op = rb_first(oroot)) != NULL) {
617 of = rb_entry(op, struct fq_flow, fq_node);
618 if (fq_gc_candidate(of)) {
620 kmem_cache_free(fq_flow_cachep, of);
623 nroot = &new_array[hash_ptr(of->sk, new_log)];
625 np = &nroot->rb_node;
630 nf = rb_entry(parent, struct fq_flow, fq_node);
631 BUG_ON(nf->sk == of->sk);
634 np = &parent->rb_right;
636 np = &parent->rb_left;
639 rb_link_node(&of->fq_node, parent, np);
640 rb_insert_color(&of->fq_node, nroot);
644 q->inactive_flows -= fcnt;
645 q->stat_gc_flows += fcnt;
648 static void fq_free(void *addr)
653 static int fq_resize(struct Qdisc *sch, u32 log)
655 struct fq_sched_data *q = qdisc_priv(sch);
656 struct rb_root *array;
660 if (q->fq_root && log == q->fq_trees_log)
663 /* If XPS was setup, we can allocate memory on right NUMA node */
664 array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
665 netdev_queue_numa_node_read(sch->dev_queue));
669 for (idx = 0; idx < (1U << log); idx++)
670 array[idx] = RB_ROOT;
674 old_fq_root = q->fq_root;
676 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
679 q->fq_trees_log = log;
681 sch_tree_unlock(sch);
683 fq_free(old_fq_root);
688 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
689 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
690 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
691 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
692 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
693 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
694 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
695 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
696 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
697 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
698 [TCA_FQ_ORPHAN_MASK] = { .type = NLA_U32 },
699 [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
702 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
703 struct netlink_ext_ack *extack)
705 struct fq_sched_data *q = qdisc_priv(sch);
706 struct nlattr *tb[TCA_FQ_MAX + 1];
707 int err, drop_count = 0;
708 unsigned drop_len = 0;
714 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy, NULL);
720 fq_log = q->fq_trees_log;
722 if (tb[TCA_FQ_BUCKETS_LOG]) {
723 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
725 if (nval >= 1 && nval <= ilog2(256*1024))
730 if (tb[TCA_FQ_PLIMIT])
731 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
733 if (tb[TCA_FQ_FLOW_PLIMIT])
734 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
736 if (tb[TCA_FQ_QUANTUM]) {
737 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
739 if (quantum > 0 && quantum <= (1 << 20)) {
740 q->quantum = quantum;
742 NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
747 if (tb[TCA_FQ_INITIAL_QUANTUM])
748 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
750 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
751 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
752 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
754 if (tb[TCA_FQ_FLOW_MAX_RATE])
755 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
757 if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
758 q->low_rate_threshold =
759 nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
761 if (tb[TCA_FQ_RATE_ENABLE]) {
762 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
765 q->rate_enable = enable;
770 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
771 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
773 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
776 if (tb[TCA_FQ_ORPHAN_MASK])
777 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
780 sch_tree_unlock(sch);
781 err = fq_resize(sch, fq_log);
784 while (sch->q.qlen > sch->limit) {
785 struct sk_buff *skb = fq_dequeue(sch);
789 drop_len += qdisc_pkt_len(skb);
790 rtnl_kfree_skbs(skb, skb);
793 qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
795 sch_tree_unlock(sch);
799 static void fq_destroy(struct Qdisc *sch)
801 struct fq_sched_data *q = qdisc_priv(sch);
805 qdisc_watchdog_cancel(&q->watchdog);
808 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
809 struct netlink_ext_ack *extack)
811 struct fq_sched_data *q = qdisc_priv(sch);
815 q->flow_plimit = 100;
816 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
817 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
818 q->flow_refill_delay = msecs_to_jiffies(40);
819 q->flow_max_rate = ~0U;
820 q->time_next_delayed_flow = ~0ULL;
822 q->new_flows.first = NULL;
823 q->old_flows.first = NULL;
824 q->delayed = RB_ROOT;
826 q->fq_trees_log = ilog2(1024);
827 q->orphan_mask = 1024 - 1;
828 q->low_rate_threshold = 550000 / 8;
829 qdisc_watchdog_init(&q->watchdog, sch);
832 err = fq_change(sch, opt, extack);
834 err = fq_resize(sch, q->fq_trees_log);
839 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
841 struct fq_sched_data *q = qdisc_priv(sch);
844 opts = nla_nest_start(skb, TCA_OPTIONS);
846 goto nla_put_failure;
848 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
850 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
851 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
852 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
853 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
854 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
855 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
856 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
857 jiffies_to_usecs(q->flow_refill_delay)) ||
858 nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
859 nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
860 q->low_rate_threshold) ||
861 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
862 goto nla_put_failure;
864 return nla_nest_end(skb, opts);
870 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
872 struct fq_sched_data *q = qdisc_priv(sch);
873 struct tc_fq_qd_stats st;
877 st.gc_flows = q->stat_gc_flows;
878 st.highprio_packets = q->stat_internal_packets;
879 st.tcp_retrans = q->stat_tcp_retrans;
880 st.throttled = q->stat_throttled;
881 st.flows_plimit = q->stat_flows_plimit;
882 st.pkts_too_long = q->stat_pkts_too_long;
883 st.allocation_errors = q->stat_allocation_errors;
884 st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
886 st.inactive_flows = q->inactive_flows;
887 st.throttled_flows = q->throttled_flows;
888 st.unthrottle_latency_ns = min_t(unsigned long,
889 q->unthrottle_latency_ns, ~0U);
890 sch_tree_unlock(sch);
892 return gnet_stats_copy_app(d, &st, sizeof(st));
895 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
897 .priv_size = sizeof(struct fq_sched_data),
899 .enqueue = fq_enqueue,
900 .dequeue = fq_dequeue,
901 .peek = qdisc_peek_dequeued,
904 .destroy = fq_destroy,
907 .dump_stats = fq_dump_stats,
908 .owner = THIS_MODULE,
911 static int __init fq_module_init(void)
915 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
916 sizeof(struct fq_flow),
921 ret = register_qdisc(&fq_qdisc_ops);
923 kmem_cache_destroy(fq_flow_cachep);
927 static void __exit fq_module_exit(void)
929 unregister_qdisc(&fq_qdisc_ops);
930 kmem_cache_destroy(fq_flow_cachep);
933 module_init(fq_module_init)
934 module_exit(fq_module_exit)
935 MODULE_AUTHOR("Eric Dumazet");
936 MODULE_LICENSE("GPL");