GNU Linux-libre 5.4.257-gnu1
[releases.git] / net / rfkill / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2006 - 2007 Ivo van Doorn
4  * Copyright (C) 2007 Dmitry Torokhov
5  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/workqueue.h>
12 #include <linux/capability.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/rfkill.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <linux/device.h>
19 #include <linux/miscdevice.h>
20 #include <linux/wait.h>
21 #include <linux/poll.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24
25 #include "rfkill.h"
26
27 #define POLL_INTERVAL           (5 * HZ)
28
29 #define RFKILL_BLOCK_HW         BIT(0)
30 #define RFKILL_BLOCK_SW         BIT(1)
31 #define RFKILL_BLOCK_SW_PREV    BIT(2)
32 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
33                                  RFKILL_BLOCK_SW |\
34                                  RFKILL_BLOCK_SW_PREV)
35 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37 struct rfkill {
38         spinlock_t              lock;
39
40         enum rfkill_type        type;
41
42         unsigned long           state;
43
44         u32                     idx;
45
46         bool                    registered;
47         bool                    persistent;
48         bool                    polling_paused;
49         bool                    suspended;
50
51         const struct rfkill_ops *ops;
52         void                    *data;
53
54 #ifdef CONFIG_RFKILL_LEDS
55         struct led_trigger      led_trigger;
56         const char              *ledtrigname;
57 #endif
58
59         struct device           dev;
60         struct list_head        node;
61
62         struct delayed_work     poll_work;
63         struct work_struct      uevent_work;
64         struct work_struct      sync_work;
65         char                    name[];
66 };
67 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
68
69 struct rfkill_int_event {
70         struct list_head        list;
71         struct rfkill_event     ev;
72 };
73
74 struct rfkill_data {
75         struct list_head        list;
76         struct list_head        events;
77         struct mutex            mtx;
78         wait_queue_head_t       read_wait;
79         bool                    input_handler;
80 };
81
82
83 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
84 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
85 MODULE_DESCRIPTION("RF switch support");
86 MODULE_LICENSE("GPL");
87
88
89 /*
90  * The locking here should be made much smarter, we currently have
91  * a bit of a stupid situation because drivers might want to register
92  * the rfkill struct under their own lock, and take this lock during
93  * rfkill method calls -- which will cause an AB-BA deadlock situation.
94  *
95  * To fix that, we need to rework this code here to be mostly lock-free
96  * and only use the mutex for list manipulations, not to protect the
97  * various other global variables. Then we can avoid holding the mutex
98  * around driver operations, and all is happy.
99  */
100 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
101 static DEFINE_MUTEX(rfkill_global_mutex);
102 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
103
104 static unsigned int rfkill_default_state = 1;
105 module_param_named(default_state, rfkill_default_state, uint, 0444);
106 MODULE_PARM_DESC(default_state,
107                  "Default initial state for all radio types, 0 = radio off");
108
109 static struct {
110         bool cur, sav;
111 } rfkill_global_states[NUM_RFKILL_TYPES];
112
113 static bool rfkill_epo_lock_active;
114
115
116 #ifdef CONFIG_RFKILL_LEDS
117 static void rfkill_led_trigger_event(struct rfkill *rfkill)
118 {
119         struct led_trigger *trigger;
120
121         if (!rfkill->registered)
122                 return;
123
124         trigger = &rfkill->led_trigger;
125
126         if (rfkill->state & RFKILL_BLOCK_ANY)
127                 led_trigger_event(trigger, LED_OFF);
128         else
129                 led_trigger_event(trigger, LED_FULL);
130 }
131
132 static int rfkill_led_trigger_activate(struct led_classdev *led)
133 {
134         struct rfkill *rfkill;
135
136         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
137
138         rfkill_led_trigger_event(rfkill);
139
140         return 0;
141 }
142
143 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
144 {
145         return rfkill->led_trigger.name;
146 }
147 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
148
149 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
150 {
151         BUG_ON(!rfkill);
152
153         rfkill->ledtrigname = name;
154 }
155 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
156
157 static int rfkill_led_trigger_register(struct rfkill *rfkill)
158 {
159         rfkill->led_trigger.name = rfkill->ledtrigname
160                                         ? : dev_name(&rfkill->dev);
161         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
162         return led_trigger_register(&rfkill->led_trigger);
163 }
164
165 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
166 {
167         led_trigger_unregister(&rfkill->led_trigger);
168 }
169
170 static struct led_trigger rfkill_any_led_trigger;
171 static struct led_trigger rfkill_none_led_trigger;
172 static struct work_struct rfkill_global_led_trigger_work;
173
174 static void rfkill_global_led_trigger_worker(struct work_struct *work)
175 {
176         enum led_brightness brightness = LED_OFF;
177         struct rfkill *rfkill;
178
179         mutex_lock(&rfkill_global_mutex);
180         list_for_each_entry(rfkill, &rfkill_list, node) {
181                 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
182                         brightness = LED_FULL;
183                         break;
184                 }
185         }
186         mutex_unlock(&rfkill_global_mutex);
187
188         led_trigger_event(&rfkill_any_led_trigger, brightness);
189         led_trigger_event(&rfkill_none_led_trigger,
190                           brightness == LED_OFF ? LED_FULL : LED_OFF);
191 }
192
193 static void rfkill_global_led_trigger_event(void)
194 {
195         schedule_work(&rfkill_global_led_trigger_work);
196 }
197
198 static int rfkill_global_led_trigger_register(void)
199 {
200         int ret;
201
202         INIT_WORK(&rfkill_global_led_trigger_work,
203                         rfkill_global_led_trigger_worker);
204
205         rfkill_any_led_trigger.name = "rfkill-any";
206         ret = led_trigger_register(&rfkill_any_led_trigger);
207         if (ret)
208                 return ret;
209
210         rfkill_none_led_trigger.name = "rfkill-none";
211         ret = led_trigger_register(&rfkill_none_led_trigger);
212         if (ret)
213                 led_trigger_unregister(&rfkill_any_led_trigger);
214         else
215                 /* Delay activation until all global triggers are registered */
216                 rfkill_global_led_trigger_event();
217
218         return ret;
219 }
220
221 static void rfkill_global_led_trigger_unregister(void)
222 {
223         led_trigger_unregister(&rfkill_none_led_trigger);
224         led_trigger_unregister(&rfkill_any_led_trigger);
225         cancel_work_sync(&rfkill_global_led_trigger_work);
226 }
227 #else
228 static void rfkill_led_trigger_event(struct rfkill *rfkill)
229 {
230 }
231
232 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
233 {
234         return 0;
235 }
236
237 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
238 {
239 }
240
241 static void rfkill_global_led_trigger_event(void)
242 {
243 }
244
245 static int rfkill_global_led_trigger_register(void)
246 {
247         return 0;
248 }
249
250 static void rfkill_global_led_trigger_unregister(void)
251 {
252 }
253 #endif /* CONFIG_RFKILL_LEDS */
254
255 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
256                               enum rfkill_operation op)
257 {
258         unsigned long flags;
259
260         ev->idx = rfkill->idx;
261         ev->type = rfkill->type;
262         ev->op = op;
263
264         spin_lock_irqsave(&rfkill->lock, flags);
265         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
266         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
267                                         RFKILL_BLOCK_SW_PREV));
268         spin_unlock_irqrestore(&rfkill->lock, flags);
269 }
270
271 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
272 {
273         struct rfkill_data *data;
274         struct rfkill_int_event *ev;
275
276         list_for_each_entry(data, &rfkill_fds, list) {
277                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
278                 if (!ev)
279                         continue;
280                 rfkill_fill_event(&ev->ev, rfkill, op);
281                 mutex_lock(&data->mtx);
282                 list_add_tail(&ev->list, &data->events);
283                 mutex_unlock(&data->mtx);
284                 wake_up_interruptible(&data->read_wait);
285         }
286 }
287
288 static void rfkill_event(struct rfkill *rfkill)
289 {
290         if (!rfkill->registered)
291                 return;
292
293         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
294
295         /* also send event to /dev/rfkill */
296         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
297 }
298
299 /**
300  * rfkill_set_block - wrapper for set_block method
301  *
302  * @rfkill: the rfkill struct to use
303  * @blocked: the new software state
304  *
305  * Calls the set_block method (when applicable) and handles notifications
306  * etc. as well.
307  */
308 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
309 {
310         unsigned long flags;
311         bool prev, curr;
312         int err;
313
314         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
315                 return;
316
317         /*
318          * Some platforms (...!) generate input events which affect the
319          * _hard_ kill state -- whenever something tries to change the
320          * current software state query the hardware state too.
321          */
322         if (rfkill->ops->query)
323                 rfkill->ops->query(rfkill, rfkill->data);
324
325         spin_lock_irqsave(&rfkill->lock, flags);
326         prev = rfkill->state & RFKILL_BLOCK_SW;
327
328         if (prev)
329                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
330         else
331                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
332
333         if (blocked)
334                 rfkill->state |= RFKILL_BLOCK_SW;
335         else
336                 rfkill->state &= ~RFKILL_BLOCK_SW;
337
338         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
339         spin_unlock_irqrestore(&rfkill->lock, flags);
340
341         err = rfkill->ops->set_block(rfkill->data, blocked);
342
343         spin_lock_irqsave(&rfkill->lock, flags);
344         if (err) {
345                 /*
346                  * Failed -- reset status to _PREV, which may be different
347                  * from what we have set _PREV to earlier in this function
348                  * if rfkill_set_sw_state was invoked.
349                  */
350                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
351                         rfkill->state |= RFKILL_BLOCK_SW;
352                 else
353                         rfkill->state &= ~RFKILL_BLOCK_SW;
354         }
355         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
356         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
357         curr = rfkill->state & RFKILL_BLOCK_SW;
358         spin_unlock_irqrestore(&rfkill->lock, flags);
359
360         rfkill_led_trigger_event(rfkill);
361         rfkill_global_led_trigger_event();
362
363         if (prev != curr)
364                 rfkill_event(rfkill);
365 }
366
367 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
368 {
369         int i;
370
371         if (type != RFKILL_TYPE_ALL) {
372                 rfkill_global_states[type].cur = blocked;
373                 return;
374         }
375
376         for (i = 0; i < NUM_RFKILL_TYPES; i++)
377                 rfkill_global_states[i].cur = blocked;
378 }
379
380 #ifdef CONFIG_RFKILL_INPUT
381 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
382
383 /**
384  * __rfkill_switch_all - Toggle state of all switches of given type
385  * @type: type of interfaces to be affected
386  * @blocked: the new state
387  *
388  * This function sets the state of all switches of given type,
389  * unless a specific switch is suspended.
390  *
391  * Caller must have acquired rfkill_global_mutex.
392  */
393 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
394 {
395         struct rfkill *rfkill;
396
397         rfkill_update_global_state(type, blocked);
398         list_for_each_entry(rfkill, &rfkill_list, node) {
399                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
400                         continue;
401
402                 rfkill_set_block(rfkill, blocked);
403         }
404 }
405
406 /**
407  * rfkill_switch_all - Toggle state of all switches of given type
408  * @type: type of interfaces to be affected
409  * @blocked: the new state
410  *
411  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
412  * Please refer to __rfkill_switch_all() for details.
413  *
414  * Does nothing if the EPO lock is active.
415  */
416 void rfkill_switch_all(enum rfkill_type type, bool blocked)
417 {
418         if (atomic_read(&rfkill_input_disabled))
419                 return;
420
421         mutex_lock(&rfkill_global_mutex);
422
423         if (!rfkill_epo_lock_active)
424                 __rfkill_switch_all(type, blocked);
425
426         mutex_unlock(&rfkill_global_mutex);
427 }
428
429 /**
430  * rfkill_epo - emergency power off all transmitters
431  *
432  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
433  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
434  *
435  * The global state before the EPO is saved and can be restored later
436  * using rfkill_restore_states().
437  */
438 void rfkill_epo(void)
439 {
440         struct rfkill *rfkill;
441         int i;
442
443         if (atomic_read(&rfkill_input_disabled))
444                 return;
445
446         mutex_lock(&rfkill_global_mutex);
447
448         rfkill_epo_lock_active = true;
449         list_for_each_entry(rfkill, &rfkill_list, node)
450                 rfkill_set_block(rfkill, true);
451
452         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
453                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
454                 rfkill_global_states[i].cur = true;
455         }
456
457         mutex_unlock(&rfkill_global_mutex);
458 }
459
460 /**
461  * rfkill_restore_states - restore global states
462  *
463  * Restore (and sync switches to) the global state from the
464  * states in rfkill_default_states.  This can undo the effects of
465  * a call to rfkill_epo().
466  */
467 void rfkill_restore_states(void)
468 {
469         int i;
470
471         if (atomic_read(&rfkill_input_disabled))
472                 return;
473
474         mutex_lock(&rfkill_global_mutex);
475
476         rfkill_epo_lock_active = false;
477         for (i = 0; i < NUM_RFKILL_TYPES; i++)
478                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
479         mutex_unlock(&rfkill_global_mutex);
480 }
481
482 /**
483  * rfkill_remove_epo_lock - unlock state changes
484  *
485  * Used by rfkill-input manually unlock state changes, when
486  * the EPO switch is deactivated.
487  */
488 void rfkill_remove_epo_lock(void)
489 {
490         if (atomic_read(&rfkill_input_disabled))
491                 return;
492
493         mutex_lock(&rfkill_global_mutex);
494         rfkill_epo_lock_active = false;
495         mutex_unlock(&rfkill_global_mutex);
496 }
497
498 /**
499  * rfkill_is_epo_lock_active - returns true EPO is active
500  *
501  * Returns 0 (false) if there is NOT an active EPO condition,
502  * and 1 (true) if there is an active EPO condition, which
503  * locks all radios in one of the BLOCKED states.
504  *
505  * Can be called in atomic context.
506  */
507 bool rfkill_is_epo_lock_active(void)
508 {
509         return rfkill_epo_lock_active;
510 }
511
512 /**
513  * rfkill_get_global_sw_state - returns global state for a type
514  * @type: the type to get the global state of
515  *
516  * Returns the current global state for a given wireless
517  * device type.
518  */
519 bool rfkill_get_global_sw_state(const enum rfkill_type type)
520 {
521         return rfkill_global_states[type].cur;
522 }
523 #endif
524
525 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
526 {
527         unsigned long flags;
528         bool ret, prev;
529
530         BUG_ON(!rfkill);
531
532         spin_lock_irqsave(&rfkill->lock, flags);
533         prev = !!(rfkill->state & RFKILL_BLOCK_HW);
534         if (blocked)
535                 rfkill->state |= RFKILL_BLOCK_HW;
536         else
537                 rfkill->state &= ~RFKILL_BLOCK_HW;
538         ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
539         spin_unlock_irqrestore(&rfkill->lock, flags);
540
541         rfkill_led_trigger_event(rfkill);
542         rfkill_global_led_trigger_event();
543
544         if (rfkill->registered && prev != blocked)
545                 schedule_work(&rfkill->uevent_work);
546
547         return ret;
548 }
549 EXPORT_SYMBOL(rfkill_set_hw_state);
550
551 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
552 {
553         u32 bit = RFKILL_BLOCK_SW;
554
555         /* if in a ops->set_block right now, use other bit */
556         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
557                 bit = RFKILL_BLOCK_SW_PREV;
558
559         if (blocked)
560                 rfkill->state |= bit;
561         else
562                 rfkill->state &= ~bit;
563 }
564
565 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566 {
567         unsigned long flags;
568         bool prev, hwblock;
569
570         BUG_ON(!rfkill);
571
572         spin_lock_irqsave(&rfkill->lock, flags);
573         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
574         __rfkill_set_sw_state(rfkill, blocked);
575         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
576         blocked = blocked || hwblock;
577         spin_unlock_irqrestore(&rfkill->lock, flags);
578
579         if (!rfkill->registered)
580                 return blocked;
581
582         if (prev != blocked && !hwblock)
583                 schedule_work(&rfkill->uevent_work);
584
585         rfkill_led_trigger_event(rfkill);
586         rfkill_global_led_trigger_event();
587
588         return blocked;
589 }
590 EXPORT_SYMBOL(rfkill_set_sw_state);
591
592 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
593 {
594         unsigned long flags;
595
596         BUG_ON(!rfkill);
597         BUG_ON(rfkill->registered);
598
599         spin_lock_irqsave(&rfkill->lock, flags);
600         __rfkill_set_sw_state(rfkill, blocked);
601         rfkill->persistent = true;
602         spin_unlock_irqrestore(&rfkill->lock, flags);
603 }
604 EXPORT_SYMBOL(rfkill_init_sw_state);
605
606 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
607 {
608         unsigned long flags;
609         bool swprev, hwprev;
610
611         BUG_ON(!rfkill);
612
613         spin_lock_irqsave(&rfkill->lock, flags);
614
615         /*
616          * No need to care about prev/setblock ... this is for uevent only
617          * and that will get triggered by rfkill_set_block anyway.
618          */
619         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
620         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
621         __rfkill_set_sw_state(rfkill, sw);
622         if (hw)
623                 rfkill->state |= RFKILL_BLOCK_HW;
624         else
625                 rfkill->state &= ~RFKILL_BLOCK_HW;
626
627         spin_unlock_irqrestore(&rfkill->lock, flags);
628
629         if (!rfkill->registered) {
630                 rfkill->persistent = true;
631         } else {
632                 if (swprev != sw || hwprev != hw)
633                         schedule_work(&rfkill->uevent_work);
634
635                 rfkill_led_trigger_event(rfkill);
636                 rfkill_global_led_trigger_event();
637         }
638 }
639 EXPORT_SYMBOL(rfkill_set_states);
640
641 static const char * const rfkill_types[] = {
642         NULL, /* RFKILL_TYPE_ALL */
643         "wlan",
644         "bluetooth",
645         "ultrawideband",
646         "wimax",
647         "wwan",
648         "gps",
649         "fm",
650         "nfc",
651 };
652
653 enum rfkill_type rfkill_find_type(const char *name)
654 {
655         int i;
656
657         BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
658
659         if (!name)
660                 return RFKILL_TYPE_ALL;
661
662         for (i = 1; i < NUM_RFKILL_TYPES; i++)
663                 if (!strcmp(name, rfkill_types[i]))
664                         return i;
665         return RFKILL_TYPE_ALL;
666 }
667 EXPORT_SYMBOL(rfkill_find_type);
668
669 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
670                          char *buf)
671 {
672         struct rfkill *rfkill = to_rfkill(dev);
673
674         return sprintf(buf, "%s\n", rfkill->name);
675 }
676 static DEVICE_ATTR_RO(name);
677
678 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
679                          char *buf)
680 {
681         struct rfkill *rfkill = to_rfkill(dev);
682
683         return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
684 }
685 static DEVICE_ATTR_RO(type);
686
687 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
688                           char *buf)
689 {
690         struct rfkill *rfkill = to_rfkill(dev);
691
692         return sprintf(buf, "%d\n", rfkill->idx);
693 }
694 static DEVICE_ATTR_RO(index);
695
696 static ssize_t persistent_show(struct device *dev,
697                                struct device_attribute *attr, char *buf)
698 {
699         struct rfkill *rfkill = to_rfkill(dev);
700
701         return sprintf(buf, "%d\n", rfkill->persistent);
702 }
703 static DEVICE_ATTR_RO(persistent);
704
705 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
706                          char *buf)
707 {
708         struct rfkill *rfkill = to_rfkill(dev);
709
710         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
711 }
712 static DEVICE_ATTR_RO(hard);
713
714 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
715                          char *buf)
716 {
717         struct rfkill *rfkill = to_rfkill(dev);
718
719         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
720 }
721
722 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
723                           const char *buf, size_t count)
724 {
725         struct rfkill *rfkill = to_rfkill(dev);
726         unsigned long state;
727         int err;
728
729         if (!capable(CAP_NET_ADMIN))
730                 return -EPERM;
731
732         err = kstrtoul(buf, 0, &state);
733         if (err)
734                 return err;
735
736         if (state > 1 )
737                 return -EINVAL;
738
739         mutex_lock(&rfkill_global_mutex);
740         rfkill_set_block(rfkill, state);
741         mutex_unlock(&rfkill_global_mutex);
742
743         return count;
744 }
745 static DEVICE_ATTR_RW(soft);
746
747 static u8 user_state_from_blocked(unsigned long state)
748 {
749         if (state & RFKILL_BLOCK_HW)
750                 return RFKILL_USER_STATE_HARD_BLOCKED;
751         if (state & RFKILL_BLOCK_SW)
752                 return RFKILL_USER_STATE_SOFT_BLOCKED;
753
754         return RFKILL_USER_STATE_UNBLOCKED;
755 }
756
757 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
758                           char *buf)
759 {
760         struct rfkill *rfkill = to_rfkill(dev);
761
762         return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
763 }
764
765 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
766                            const char *buf, size_t count)
767 {
768         struct rfkill *rfkill = to_rfkill(dev);
769         unsigned long state;
770         int err;
771
772         if (!capable(CAP_NET_ADMIN))
773                 return -EPERM;
774
775         err = kstrtoul(buf, 0, &state);
776         if (err)
777                 return err;
778
779         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
780             state != RFKILL_USER_STATE_UNBLOCKED)
781                 return -EINVAL;
782
783         mutex_lock(&rfkill_global_mutex);
784         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
785         mutex_unlock(&rfkill_global_mutex);
786
787         return count;
788 }
789 static DEVICE_ATTR_RW(state);
790
791 static struct attribute *rfkill_dev_attrs[] = {
792         &dev_attr_name.attr,
793         &dev_attr_type.attr,
794         &dev_attr_index.attr,
795         &dev_attr_persistent.attr,
796         &dev_attr_state.attr,
797         &dev_attr_soft.attr,
798         &dev_attr_hard.attr,
799         NULL,
800 };
801 ATTRIBUTE_GROUPS(rfkill_dev);
802
803 static void rfkill_release(struct device *dev)
804 {
805         struct rfkill *rfkill = to_rfkill(dev);
806
807         kfree(rfkill);
808 }
809
810 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
811 {
812         struct rfkill *rfkill = to_rfkill(dev);
813         unsigned long flags;
814         u32 state;
815         int error;
816
817         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
818         if (error)
819                 return error;
820         error = add_uevent_var(env, "RFKILL_TYPE=%s",
821                                rfkill_types[rfkill->type]);
822         if (error)
823                 return error;
824         spin_lock_irqsave(&rfkill->lock, flags);
825         state = rfkill->state;
826         spin_unlock_irqrestore(&rfkill->lock, flags);
827         error = add_uevent_var(env, "RFKILL_STATE=%d",
828                                user_state_from_blocked(state));
829         return error;
830 }
831
832 void rfkill_pause_polling(struct rfkill *rfkill)
833 {
834         BUG_ON(!rfkill);
835
836         if (!rfkill->ops->poll)
837                 return;
838
839         rfkill->polling_paused = true;
840         cancel_delayed_work_sync(&rfkill->poll_work);
841 }
842 EXPORT_SYMBOL(rfkill_pause_polling);
843
844 void rfkill_resume_polling(struct rfkill *rfkill)
845 {
846         BUG_ON(!rfkill);
847
848         if (!rfkill->ops->poll)
849                 return;
850
851         rfkill->polling_paused = false;
852
853         if (rfkill->suspended)
854                 return;
855
856         queue_delayed_work(system_power_efficient_wq,
857                            &rfkill->poll_work, 0);
858 }
859 EXPORT_SYMBOL(rfkill_resume_polling);
860
861 #ifdef CONFIG_PM_SLEEP
862 static int rfkill_suspend(struct device *dev)
863 {
864         struct rfkill *rfkill = to_rfkill(dev);
865
866         rfkill->suspended = true;
867         cancel_delayed_work_sync(&rfkill->poll_work);
868
869         return 0;
870 }
871
872 static int rfkill_resume(struct device *dev)
873 {
874         struct rfkill *rfkill = to_rfkill(dev);
875         bool cur;
876
877         rfkill->suspended = false;
878
879         if (!rfkill->registered)
880                 return 0;
881
882         if (!rfkill->persistent) {
883                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
884                 rfkill_set_block(rfkill, cur);
885         }
886
887         if (rfkill->ops->poll && !rfkill->polling_paused)
888                 queue_delayed_work(system_power_efficient_wq,
889                                    &rfkill->poll_work, 0);
890
891         return 0;
892 }
893
894 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
895 #define RFKILL_PM_OPS (&rfkill_pm_ops)
896 #else
897 #define RFKILL_PM_OPS NULL
898 #endif
899
900 static struct class rfkill_class = {
901         .name           = "rfkill",
902         .dev_release    = rfkill_release,
903         .dev_groups     = rfkill_dev_groups,
904         .dev_uevent     = rfkill_dev_uevent,
905         .pm             = RFKILL_PM_OPS,
906 };
907
908 bool rfkill_blocked(struct rfkill *rfkill)
909 {
910         unsigned long flags;
911         u32 state;
912
913         spin_lock_irqsave(&rfkill->lock, flags);
914         state = rfkill->state;
915         spin_unlock_irqrestore(&rfkill->lock, flags);
916
917         return !!(state & RFKILL_BLOCK_ANY);
918 }
919 EXPORT_SYMBOL(rfkill_blocked);
920
921
922 struct rfkill * __must_check rfkill_alloc(const char *name,
923                                           struct device *parent,
924                                           const enum rfkill_type type,
925                                           const struct rfkill_ops *ops,
926                                           void *ops_data)
927 {
928         struct rfkill *rfkill;
929         struct device *dev;
930
931         if (WARN_ON(!ops))
932                 return NULL;
933
934         if (WARN_ON(!ops->set_block))
935                 return NULL;
936
937         if (WARN_ON(!name))
938                 return NULL;
939
940         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
941                 return NULL;
942
943         rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
944         if (!rfkill)
945                 return NULL;
946
947         spin_lock_init(&rfkill->lock);
948         INIT_LIST_HEAD(&rfkill->node);
949         rfkill->type = type;
950         strcpy(rfkill->name, name);
951         rfkill->ops = ops;
952         rfkill->data = ops_data;
953
954         dev = &rfkill->dev;
955         dev->class = &rfkill_class;
956         dev->parent = parent;
957         device_initialize(dev);
958
959         return rfkill;
960 }
961 EXPORT_SYMBOL(rfkill_alloc);
962
963 static void rfkill_poll(struct work_struct *work)
964 {
965         struct rfkill *rfkill;
966
967         rfkill = container_of(work, struct rfkill, poll_work.work);
968
969         /*
970          * Poll hardware state -- driver will use one of the
971          * rfkill_set{,_hw,_sw}_state functions and use its
972          * return value to update the current status.
973          */
974         rfkill->ops->poll(rfkill, rfkill->data);
975
976         queue_delayed_work(system_power_efficient_wq,
977                 &rfkill->poll_work,
978                 round_jiffies_relative(POLL_INTERVAL));
979 }
980
981 static void rfkill_uevent_work(struct work_struct *work)
982 {
983         struct rfkill *rfkill;
984
985         rfkill = container_of(work, struct rfkill, uevent_work);
986
987         mutex_lock(&rfkill_global_mutex);
988         rfkill_event(rfkill);
989         mutex_unlock(&rfkill_global_mutex);
990 }
991
992 static void rfkill_sync_work(struct work_struct *work)
993 {
994         struct rfkill *rfkill;
995         bool cur;
996
997         rfkill = container_of(work, struct rfkill, sync_work);
998
999         mutex_lock(&rfkill_global_mutex);
1000         cur = rfkill_global_states[rfkill->type].cur;
1001         rfkill_set_block(rfkill, cur);
1002         mutex_unlock(&rfkill_global_mutex);
1003 }
1004
1005 int __must_check rfkill_register(struct rfkill *rfkill)
1006 {
1007         static unsigned long rfkill_no;
1008         struct device *dev;
1009         int error;
1010
1011         if (!rfkill)
1012                 return -EINVAL;
1013
1014         dev = &rfkill->dev;
1015
1016         mutex_lock(&rfkill_global_mutex);
1017
1018         if (rfkill->registered) {
1019                 error = -EALREADY;
1020                 goto unlock;
1021         }
1022
1023         rfkill->idx = rfkill_no;
1024         dev_set_name(dev, "rfkill%lu", rfkill_no);
1025         rfkill_no++;
1026
1027         list_add_tail(&rfkill->node, &rfkill_list);
1028
1029         error = device_add(dev);
1030         if (error)
1031                 goto remove;
1032
1033         error = rfkill_led_trigger_register(rfkill);
1034         if (error)
1035                 goto devdel;
1036
1037         rfkill->registered = true;
1038
1039         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1040         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1041         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1042
1043         if (rfkill->ops->poll)
1044                 queue_delayed_work(system_power_efficient_wq,
1045                         &rfkill->poll_work,
1046                         round_jiffies_relative(POLL_INTERVAL));
1047
1048         if (!rfkill->persistent || rfkill_epo_lock_active) {
1049                 schedule_work(&rfkill->sync_work);
1050         } else {
1051 #ifdef CONFIG_RFKILL_INPUT
1052                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1053
1054                 if (!atomic_read(&rfkill_input_disabled))
1055                         __rfkill_switch_all(rfkill->type, soft_blocked);
1056 #endif
1057         }
1058
1059         rfkill_global_led_trigger_event();
1060         rfkill_send_events(rfkill, RFKILL_OP_ADD);
1061
1062         mutex_unlock(&rfkill_global_mutex);
1063         return 0;
1064
1065  devdel:
1066         device_del(&rfkill->dev);
1067  remove:
1068         list_del_init(&rfkill->node);
1069  unlock:
1070         mutex_unlock(&rfkill_global_mutex);
1071         return error;
1072 }
1073 EXPORT_SYMBOL(rfkill_register);
1074
1075 void rfkill_unregister(struct rfkill *rfkill)
1076 {
1077         BUG_ON(!rfkill);
1078
1079         if (rfkill->ops->poll)
1080                 cancel_delayed_work_sync(&rfkill->poll_work);
1081
1082         cancel_work_sync(&rfkill->uevent_work);
1083         cancel_work_sync(&rfkill->sync_work);
1084
1085         rfkill->registered = false;
1086
1087         device_del(&rfkill->dev);
1088
1089         mutex_lock(&rfkill_global_mutex);
1090         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1091         list_del_init(&rfkill->node);
1092         rfkill_global_led_trigger_event();
1093         mutex_unlock(&rfkill_global_mutex);
1094
1095         rfkill_led_trigger_unregister(rfkill);
1096 }
1097 EXPORT_SYMBOL(rfkill_unregister);
1098
1099 void rfkill_destroy(struct rfkill *rfkill)
1100 {
1101         if (rfkill)
1102                 put_device(&rfkill->dev);
1103 }
1104 EXPORT_SYMBOL(rfkill_destroy);
1105
1106 static int rfkill_fop_open(struct inode *inode, struct file *file)
1107 {
1108         struct rfkill_data *data;
1109         struct rfkill *rfkill;
1110         struct rfkill_int_event *ev, *tmp;
1111
1112         data = kzalloc(sizeof(*data), GFP_KERNEL);
1113         if (!data)
1114                 return -ENOMEM;
1115
1116         INIT_LIST_HEAD(&data->events);
1117         mutex_init(&data->mtx);
1118         init_waitqueue_head(&data->read_wait);
1119
1120         mutex_lock(&rfkill_global_mutex);
1121         mutex_lock(&data->mtx);
1122         /*
1123          * start getting events from elsewhere but hold mtx to get
1124          * startup events added first
1125          */
1126
1127         list_for_each_entry(rfkill, &rfkill_list, node) {
1128                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1129                 if (!ev)
1130                         goto free;
1131                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1132                 list_add_tail(&ev->list, &data->events);
1133         }
1134         list_add(&data->list, &rfkill_fds);
1135         mutex_unlock(&data->mtx);
1136         mutex_unlock(&rfkill_global_mutex);
1137
1138         file->private_data = data;
1139
1140         return stream_open(inode, file);
1141
1142  free:
1143         mutex_unlock(&data->mtx);
1144         mutex_unlock(&rfkill_global_mutex);
1145         mutex_destroy(&data->mtx);
1146         list_for_each_entry_safe(ev, tmp, &data->events, list)
1147                 kfree(ev);
1148         kfree(data);
1149         return -ENOMEM;
1150 }
1151
1152 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1153 {
1154         struct rfkill_data *data = file->private_data;
1155         __poll_t res = EPOLLOUT | EPOLLWRNORM;
1156
1157         poll_wait(file, &data->read_wait, wait);
1158
1159         mutex_lock(&data->mtx);
1160         if (!list_empty(&data->events))
1161                 res = EPOLLIN | EPOLLRDNORM;
1162         mutex_unlock(&data->mtx);
1163
1164         return res;
1165 }
1166
1167 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1168                                size_t count, loff_t *pos)
1169 {
1170         struct rfkill_data *data = file->private_data;
1171         struct rfkill_int_event *ev;
1172         unsigned long sz;
1173         int ret;
1174
1175         mutex_lock(&data->mtx);
1176
1177         while (list_empty(&data->events)) {
1178                 if (file->f_flags & O_NONBLOCK) {
1179                         ret = -EAGAIN;
1180                         goto out;
1181                 }
1182                 mutex_unlock(&data->mtx);
1183                 /* since we re-check and it just compares pointers,
1184                  * using !list_empty() without locking isn't a problem
1185                  */
1186                 ret = wait_event_interruptible(data->read_wait,
1187                                                !list_empty(&data->events));
1188                 mutex_lock(&data->mtx);
1189
1190                 if (ret)
1191                         goto out;
1192         }
1193
1194         ev = list_first_entry(&data->events, struct rfkill_int_event,
1195                                 list);
1196
1197         sz = min_t(unsigned long, sizeof(ev->ev), count);
1198         ret = sz;
1199         if (copy_to_user(buf, &ev->ev, sz))
1200                 ret = -EFAULT;
1201
1202         list_del(&ev->list);
1203         kfree(ev);
1204  out:
1205         mutex_unlock(&data->mtx);
1206         return ret;
1207 }
1208
1209 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1210                                 size_t count, loff_t *pos)
1211 {
1212         struct rfkill *rfkill;
1213         struct rfkill_event ev;
1214         int ret;
1215
1216         /* we don't need the 'hard' variable but accept it */
1217         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1218                 return -EINVAL;
1219
1220         /*
1221          * Copy as much data as we can accept into our 'ev' buffer,
1222          * but tell userspace how much we've copied so it can determine
1223          * our API version even in a write() call, if it cares.
1224          */
1225         count = min(count, sizeof(ev));
1226         if (copy_from_user(&ev, buf, count))
1227                 return -EFAULT;
1228
1229         if (ev.type >= NUM_RFKILL_TYPES)
1230                 return -EINVAL;
1231
1232         mutex_lock(&rfkill_global_mutex);
1233
1234         switch (ev.op) {
1235         case RFKILL_OP_CHANGE_ALL:
1236                 rfkill_update_global_state(ev.type, ev.soft);
1237                 list_for_each_entry(rfkill, &rfkill_list, node)
1238                         if (rfkill->type == ev.type ||
1239                             ev.type == RFKILL_TYPE_ALL)
1240                                 rfkill_set_block(rfkill, ev.soft);
1241                 ret = 0;
1242                 break;
1243         case RFKILL_OP_CHANGE:
1244                 list_for_each_entry(rfkill, &rfkill_list, node)
1245                         if (rfkill->idx == ev.idx &&
1246                             (rfkill->type == ev.type ||
1247                              ev.type == RFKILL_TYPE_ALL))
1248                                 rfkill_set_block(rfkill, ev.soft);
1249                 ret = 0;
1250                 break;
1251         default:
1252                 ret = -EINVAL;
1253                 break;
1254         }
1255
1256         mutex_unlock(&rfkill_global_mutex);
1257
1258         return ret ?: count;
1259 }
1260
1261 static int rfkill_fop_release(struct inode *inode, struct file *file)
1262 {
1263         struct rfkill_data *data = file->private_data;
1264         struct rfkill_int_event *ev, *tmp;
1265
1266         mutex_lock(&rfkill_global_mutex);
1267         list_del(&data->list);
1268         mutex_unlock(&rfkill_global_mutex);
1269
1270         mutex_destroy(&data->mtx);
1271         list_for_each_entry_safe(ev, tmp, &data->events, list)
1272                 kfree(ev);
1273
1274 #ifdef CONFIG_RFKILL_INPUT
1275         if (data->input_handler)
1276                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1277                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1278 #endif
1279
1280         kfree(data);
1281
1282         return 0;
1283 }
1284
1285 #ifdef CONFIG_RFKILL_INPUT
1286 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1287                              unsigned long arg)
1288 {
1289         struct rfkill_data *data = file->private_data;
1290
1291         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1292                 return -ENOSYS;
1293
1294         if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1295                 return -ENOSYS;
1296
1297         mutex_lock(&data->mtx);
1298
1299         if (!data->input_handler) {
1300                 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1301                         printk(KERN_DEBUG "rfkill: input handler disabled\n");
1302                 data->input_handler = true;
1303         }
1304
1305         mutex_unlock(&data->mtx);
1306
1307         return 0;
1308 }
1309 #endif
1310
1311 static const struct file_operations rfkill_fops = {
1312         .owner          = THIS_MODULE,
1313         .open           = rfkill_fop_open,
1314         .read           = rfkill_fop_read,
1315         .write          = rfkill_fop_write,
1316         .poll           = rfkill_fop_poll,
1317         .release        = rfkill_fop_release,
1318 #ifdef CONFIG_RFKILL_INPUT
1319         .unlocked_ioctl = rfkill_fop_ioctl,
1320         .compat_ioctl   = rfkill_fop_ioctl,
1321 #endif
1322         .llseek         = no_llseek,
1323 };
1324
1325 #define RFKILL_NAME "rfkill"
1326
1327 static struct miscdevice rfkill_miscdev = {
1328         .fops   = &rfkill_fops,
1329         .name   = RFKILL_NAME,
1330         .minor  = RFKILL_MINOR,
1331 };
1332
1333 static int __init rfkill_init(void)
1334 {
1335         int error;
1336
1337         rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1338
1339         error = class_register(&rfkill_class);
1340         if (error)
1341                 goto error_class;
1342
1343         error = misc_register(&rfkill_miscdev);
1344         if (error)
1345                 goto error_misc;
1346
1347         error = rfkill_global_led_trigger_register();
1348         if (error)
1349                 goto error_led_trigger;
1350
1351 #ifdef CONFIG_RFKILL_INPUT
1352         error = rfkill_handler_init();
1353         if (error)
1354                 goto error_input;
1355 #endif
1356
1357         return 0;
1358
1359 #ifdef CONFIG_RFKILL_INPUT
1360 error_input:
1361         rfkill_global_led_trigger_unregister();
1362 #endif
1363 error_led_trigger:
1364         misc_deregister(&rfkill_miscdev);
1365 error_misc:
1366         class_unregister(&rfkill_class);
1367 error_class:
1368         return error;
1369 }
1370 subsys_initcall(rfkill_init);
1371
1372 static void __exit rfkill_exit(void)
1373 {
1374 #ifdef CONFIG_RFKILL_INPUT
1375         rfkill_handler_exit();
1376 #endif
1377         rfkill_global_led_trigger_unregister();
1378         misc_deregister(&rfkill_miscdev);
1379         class_unregister(&rfkill_class);
1380 }
1381 module_exit(rfkill_exit);
1382
1383 MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1384 MODULE_ALIAS("devname:" RFKILL_NAME);