GNU Linux-libre 4.19.211-gnu1
[releases.git] / net / rds / ib_rdma.c
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
37
38 #include "rds_single_path.h"
39 #include "ib_mr.h"
40
41 struct workqueue_struct *rds_ib_mr_wq;
42
43 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
44 #define CLEAN_LIST_BUSY_BIT 0
45
46 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
47 {
48         struct rds_ib_device *rds_ibdev;
49         struct rds_ib_ipaddr *i_ipaddr;
50
51         rcu_read_lock();
52         list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
53                 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
54                         if (i_ipaddr->ipaddr == ipaddr) {
55                                 refcount_inc(&rds_ibdev->refcount);
56                                 rcu_read_unlock();
57                                 return rds_ibdev;
58                         }
59                 }
60         }
61         rcu_read_unlock();
62
63         return NULL;
64 }
65
66 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
67 {
68         struct rds_ib_ipaddr *i_ipaddr;
69
70         i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
71         if (!i_ipaddr)
72                 return -ENOMEM;
73
74         i_ipaddr->ipaddr = ipaddr;
75
76         spin_lock_irq(&rds_ibdev->spinlock);
77         list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
78         spin_unlock_irq(&rds_ibdev->spinlock);
79
80         return 0;
81 }
82
83 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
84 {
85         struct rds_ib_ipaddr *i_ipaddr;
86         struct rds_ib_ipaddr *to_free = NULL;
87
88
89         spin_lock_irq(&rds_ibdev->spinlock);
90         list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
91                 if (i_ipaddr->ipaddr == ipaddr) {
92                         list_del_rcu(&i_ipaddr->list);
93                         to_free = i_ipaddr;
94                         break;
95                 }
96         }
97         spin_unlock_irq(&rds_ibdev->spinlock);
98
99         if (to_free)
100                 kfree_rcu(to_free, rcu);
101 }
102
103 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev,
104                          struct in6_addr *ipaddr)
105 {
106         struct rds_ib_device *rds_ibdev_old;
107
108         rds_ibdev_old = rds_ib_get_device(ipaddr->s6_addr32[3]);
109         if (!rds_ibdev_old)
110                 return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]);
111
112         if (rds_ibdev_old != rds_ibdev) {
113                 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr->s6_addr32[3]);
114                 rds_ib_dev_put(rds_ibdev_old);
115                 return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]);
116         }
117         rds_ib_dev_put(rds_ibdev_old);
118
119         return 0;
120 }
121
122 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
123 {
124         struct rds_ib_connection *ic = conn->c_transport_data;
125
126         /* conn was previously on the nodev_conns_list */
127         spin_lock_irq(&ib_nodev_conns_lock);
128         BUG_ON(list_empty(&ib_nodev_conns));
129         BUG_ON(list_empty(&ic->ib_node));
130         list_del(&ic->ib_node);
131
132         spin_lock(&rds_ibdev->spinlock);
133         list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
134         spin_unlock(&rds_ibdev->spinlock);
135         spin_unlock_irq(&ib_nodev_conns_lock);
136
137         ic->rds_ibdev = rds_ibdev;
138         refcount_inc(&rds_ibdev->refcount);
139 }
140
141 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
142 {
143         struct rds_ib_connection *ic = conn->c_transport_data;
144
145         /* place conn on nodev_conns_list */
146         spin_lock(&ib_nodev_conns_lock);
147
148         spin_lock_irq(&rds_ibdev->spinlock);
149         BUG_ON(list_empty(&ic->ib_node));
150         list_del(&ic->ib_node);
151         spin_unlock_irq(&rds_ibdev->spinlock);
152
153         list_add_tail(&ic->ib_node, &ib_nodev_conns);
154
155         spin_unlock(&ib_nodev_conns_lock);
156
157         ic->rds_ibdev = NULL;
158         rds_ib_dev_put(rds_ibdev);
159 }
160
161 void rds_ib_destroy_nodev_conns(void)
162 {
163         struct rds_ib_connection *ic, *_ic;
164         LIST_HEAD(tmp_list);
165
166         /* avoid calling conn_destroy with irqs off */
167         spin_lock_irq(&ib_nodev_conns_lock);
168         list_splice(&ib_nodev_conns, &tmp_list);
169         spin_unlock_irq(&ib_nodev_conns_lock);
170
171         list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
172                 rds_conn_destroy(ic->conn);
173 }
174
175 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
176 {
177         struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
178
179         iinfo->rdma_mr_max = pool_1m->max_items;
180         iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages;
181 }
182
183 #if IS_ENABLED(CONFIG_IPV6)
184 void rds6_ib_get_mr_info(struct rds_ib_device *rds_ibdev,
185                          struct rds6_info_rdma_connection *iinfo6)
186 {
187         struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
188
189         iinfo6->rdma_mr_max = pool_1m->max_items;
190         iinfo6->rdma_mr_size = pool_1m->fmr_attr.max_pages;
191 }
192 #endif
193
194 struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool)
195 {
196         struct rds_ib_mr *ibmr = NULL;
197         struct llist_node *ret;
198         unsigned long *flag;
199
200         preempt_disable();
201         flag = this_cpu_ptr(&clean_list_grace);
202         set_bit(CLEAN_LIST_BUSY_BIT, flag);
203         ret = llist_del_first(&pool->clean_list);
204         if (ret) {
205                 ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
206                 if (pool->pool_type == RDS_IB_MR_8K_POOL)
207                         rds_ib_stats_inc(s_ib_rdma_mr_8k_reused);
208                 else
209                         rds_ib_stats_inc(s_ib_rdma_mr_1m_reused);
210         }
211
212         clear_bit(CLEAN_LIST_BUSY_BIT, flag);
213         preempt_enable();
214         return ibmr;
215 }
216
217 static inline void wait_clean_list_grace(void)
218 {
219         int cpu;
220         unsigned long *flag;
221
222         for_each_online_cpu(cpu) {
223                 flag = &per_cpu(clean_list_grace, cpu);
224                 while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
225                         cpu_relax();
226         }
227 }
228
229 void rds_ib_sync_mr(void *trans_private, int direction)
230 {
231         struct rds_ib_mr *ibmr = trans_private;
232         struct rds_ib_device *rds_ibdev = ibmr->device;
233
234         switch (direction) {
235         case DMA_FROM_DEVICE:
236                 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
237                         ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
238                 break;
239         case DMA_TO_DEVICE:
240                 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
241                         ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
242                 break;
243         }
244 }
245
246 void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
247 {
248         struct rds_ib_device *rds_ibdev = ibmr->device;
249
250         if (ibmr->sg_dma_len) {
251                 ib_dma_unmap_sg(rds_ibdev->dev,
252                                 ibmr->sg, ibmr->sg_len,
253                                 DMA_BIDIRECTIONAL);
254                 ibmr->sg_dma_len = 0;
255         }
256
257         /* Release the s/g list */
258         if (ibmr->sg_len) {
259                 unsigned int i;
260
261                 for (i = 0; i < ibmr->sg_len; ++i) {
262                         struct page *page = sg_page(&ibmr->sg[i]);
263
264                         /* FIXME we need a way to tell a r/w MR
265                          * from a r/o MR */
266                         WARN_ON(!page->mapping && irqs_disabled());
267                         set_page_dirty(page);
268                         put_page(page);
269                 }
270                 kfree(ibmr->sg);
271
272                 ibmr->sg = NULL;
273                 ibmr->sg_len = 0;
274         }
275 }
276
277 void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
278 {
279         unsigned int pinned = ibmr->sg_len;
280
281         __rds_ib_teardown_mr(ibmr);
282         if (pinned) {
283                 struct rds_ib_mr_pool *pool = ibmr->pool;
284
285                 atomic_sub(pinned, &pool->free_pinned);
286         }
287 }
288
289 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
290 {
291         unsigned int item_count;
292
293         item_count = atomic_read(&pool->item_count);
294         if (free_all)
295                 return item_count;
296
297         return 0;
298 }
299
300 /*
301  * given an llist of mrs, put them all into the list_head for more processing
302  */
303 static unsigned int llist_append_to_list(struct llist_head *llist,
304                                          struct list_head *list)
305 {
306         struct rds_ib_mr *ibmr;
307         struct llist_node *node;
308         struct llist_node *next;
309         unsigned int count = 0;
310
311         node = llist_del_all(llist);
312         while (node) {
313                 next = node->next;
314                 ibmr = llist_entry(node, struct rds_ib_mr, llnode);
315                 list_add_tail(&ibmr->unmap_list, list);
316                 node = next;
317                 count++;
318         }
319         return count;
320 }
321
322 /*
323  * this takes a list head of mrs and turns it into linked llist nodes
324  * of clusters.  Each cluster has linked llist nodes of
325  * MR_CLUSTER_SIZE mrs that are ready for reuse.
326  */
327 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
328                                 struct list_head *list,
329                                 struct llist_node **nodes_head,
330                                 struct llist_node **nodes_tail)
331 {
332         struct rds_ib_mr *ibmr;
333         struct llist_node *cur = NULL;
334         struct llist_node **next = nodes_head;
335
336         list_for_each_entry(ibmr, list, unmap_list) {
337                 cur = &ibmr->llnode;
338                 *next = cur;
339                 next = &cur->next;
340         }
341         *next = NULL;
342         *nodes_tail = cur;
343 }
344
345 /*
346  * Flush our pool of MRs.
347  * At a minimum, all currently unused MRs are unmapped.
348  * If the number of MRs allocated exceeds the limit, we also try
349  * to free as many MRs as needed to get back to this limit.
350  */
351 int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
352                          int free_all, struct rds_ib_mr **ibmr_ret)
353 {
354         struct rds_ib_mr *ibmr;
355         struct llist_node *clean_nodes;
356         struct llist_node *clean_tail;
357         LIST_HEAD(unmap_list);
358         unsigned long unpinned = 0;
359         unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
360
361         if (pool->pool_type == RDS_IB_MR_8K_POOL)
362                 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush);
363         else
364                 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush);
365
366         if (ibmr_ret) {
367                 DEFINE_WAIT(wait);
368                 while (!mutex_trylock(&pool->flush_lock)) {
369                         ibmr = rds_ib_reuse_mr(pool);
370                         if (ibmr) {
371                                 *ibmr_ret = ibmr;
372                                 finish_wait(&pool->flush_wait, &wait);
373                                 goto out_nolock;
374                         }
375
376                         prepare_to_wait(&pool->flush_wait, &wait,
377                                         TASK_UNINTERRUPTIBLE);
378                         if (llist_empty(&pool->clean_list))
379                                 schedule();
380
381                         ibmr = rds_ib_reuse_mr(pool);
382                         if (ibmr) {
383                                 *ibmr_ret = ibmr;
384                                 finish_wait(&pool->flush_wait, &wait);
385                                 goto out_nolock;
386                         }
387                 }
388                 finish_wait(&pool->flush_wait, &wait);
389         } else
390                 mutex_lock(&pool->flush_lock);
391
392         if (ibmr_ret) {
393                 ibmr = rds_ib_reuse_mr(pool);
394                 if (ibmr) {
395                         *ibmr_ret = ibmr;
396                         goto out;
397                 }
398         }
399
400         /* Get the list of all MRs to be dropped. Ordering matters -
401          * we want to put drop_list ahead of free_list.
402          */
403         dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
404         dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
405         if (free_all)
406                 llist_append_to_list(&pool->clean_list, &unmap_list);
407
408         free_goal = rds_ib_flush_goal(pool, free_all);
409
410         if (list_empty(&unmap_list))
411                 goto out;
412
413         if (pool->use_fastreg)
414                 rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal);
415         else
416                 rds_ib_unreg_fmr(&unmap_list, &nfreed, &unpinned, free_goal);
417
418         if (!list_empty(&unmap_list)) {
419                 /* we have to make sure that none of the things we're about
420                  * to put on the clean list would race with other cpus trying
421                  * to pull items off.  The llist would explode if we managed to
422                  * remove something from the clean list and then add it back again
423                  * while another CPU was spinning on that same item in llist_del_first.
424                  *
425                  * This is pretty unlikely, but just in case  wait for an llist grace period
426                  * here before adding anything back into the clean list.
427                  */
428                 wait_clean_list_grace();
429
430                 list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
431                 if (ibmr_ret) {
432                         *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
433                         clean_nodes = clean_nodes->next;
434                 }
435                 /* more than one entry in llist nodes */
436                 if (clean_nodes)
437                         llist_add_batch(clean_nodes, clean_tail,
438                                         &pool->clean_list);
439
440         }
441
442         atomic_sub(unpinned, &pool->free_pinned);
443         atomic_sub(dirty_to_clean, &pool->dirty_count);
444         atomic_sub(nfreed, &pool->item_count);
445
446 out:
447         mutex_unlock(&pool->flush_lock);
448         if (waitqueue_active(&pool->flush_wait))
449                 wake_up(&pool->flush_wait);
450 out_nolock:
451         return 0;
452 }
453
454 struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool)
455 {
456         struct rds_ib_mr *ibmr = NULL;
457         int iter = 0;
458
459         while (1) {
460                 ibmr = rds_ib_reuse_mr(pool);
461                 if (ibmr)
462                         return ibmr;
463
464                 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
465                         break;
466
467                 atomic_dec(&pool->item_count);
468
469                 if (++iter > 2) {
470                         if (pool->pool_type == RDS_IB_MR_8K_POOL)
471                                 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted);
472                         else
473                                 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted);
474                         return ERR_PTR(-EAGAIN);
475                 }
476
477                 /* We do have some empty MRs. Flush them out. */
478                 if (pool->pool_type == RDS_IB_MR_8K_POOL)
479                         rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait);
480                 else
481                         rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait);
482
483                 rds_ib_flush_mr_pool(pool, 0, &ibmr);
484                 if (ibmr)
485                         return ibmr;
486         }
487
488         return ibmr;
489 }
490
491 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
492 {
493         struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
494
495         rds_ib_flush_mr_pool(pool, 0, NULL);
496 }
497
498 void rds_ib_free_mr(void *trans_private, int invalidate)
499 {
500         struct rds_ib_mr *ibmr = trans_private;
501         struct rds_ib_mr_pool *pool = ibmr->pool;
502         struct rds_ib_device *rds_ibdev = ibmr->device;
503
504         rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
505
506         /* Return it to the pool's free list */
507         if (rds_ibdev->use_fastreg)
508                 rds_ib_free_frmr_list(ibmr);
509         else
510                 rds_ib_free_fmr_list(ibmr);
511
512         atomic_add(ibmr->sg_len, &pool->free_pinned);
513         atomic_inc(&pool->dirty_count);
514
515         /* If we've pinned too many pages, request a flush */
516         if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
517             atomic_read(&pool->dirty_count) >= pool->max_items / 5)
518                 queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10);
519
520         if (invalidate) {
521                 if (likely(!in_interrupt())) {
522                         rds_ib_flush_mr_pool(pool, 0, NULL);
523                 } else {
524                         /* We get here if the user created a MR marked
525                          * as use_once and invalidate at the same time.
526                          */
527                         queue_delayed_work(rds_ib_mr_wq,
528                                            &pool->flush_worker, 10);
529                 }
530         }
531
532         rds_ib_dev_put(rds_ibdev);
533 }
534
535 void rds_ib_flush_mrs(void)
536 {
537         struct rds_ib_device *rds_ibdev;
538
539         down_read(&rds_ib_devices_lock);
540         list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
541                 if (rds_ibdev->mr_8k_pool)
542                         rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL);
543
544                 if (rds_ibdev->mr_1m_pool)
545                         rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL);
546         }
547         up_read(&rds_ib_devices_lock);
548 }
549
550 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
551                     struct rds_sock *rs, u32 *key_ret,
552                     struct rds_connection *conn)
553 {
554         struct rds_ib_device *rds_ibdev;
555         struct rds_ib_mr *ibmr = NULL;
556         struct rds_ib_connection *ic = NULL;
557         int ret;
558
559         rds_ibdev = rds_ib_get_device(rs->rs_bound_addr.s6_addr32[3]);
560         if (!rds_ibdev) {
561                 ret = -ENODEV;
562                 goto out;
563         }
564
565         if (conn)
566                 ic = conn->c_transport_data;
567
568         if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) {
569                 ret = -ENODEV;
570                 goto out;
571         }
572
573         if (rds_ibdev->use_fastreg)
574                 ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret);
575         else
576                 ibmr = rds_ib_reg_fmr(rds_ibdev, sg, nents, key_ret);
577         if (IS_ERR(ibmr)) {
578                 ret = PTR_ERR(ibmr);
579                 pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret);
580         } else {
581                 return ibmr;
582         }
583
584  out:
585         if (rds_ibdev)
586                 rds_ib_dev_put(rds_ibdev);
587
588         return ERR_PTR(ret);
589 }
590
591 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
592 {
593         cancel_delayed_work_sync(&pool->flush_worker);
594         rds_ib_flush_mr_pool(pool, 1, NULL);
595         WARN_ON(atomic_read(&pool->item_count));
596         WARN_ON(atomic_read(&pool->free_pinned));
597         kfree(pool);
598 }
599
600 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev,
601                                              int pool_type)
602 {
603         struct rds_ib_mr_pool *pool;
604
605         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
606         if (!pool)
607                 return ERR_PTR(-ENOMEM);
608
609         pool->pool_type = pool_type;
610         init_llist_head(&pool->free_list);
611         init_llist_head(&pool->drop_list);
612         init_llist_head(&pool->clean_list);
613         mutex_init(&pool->flush_lock);
614         init_waitqueue_head(&pool->flush_wait);
615         INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
616
617         if (pool_type == RDS_IB_MR_1M_POOL) {
618                 /* +1 allows for unaligned MRs */
619                 pool->fmr_attr.max_pages = RDS_MR_1M_MSG_SIZE + 1;
620                 pool->max_items = rds_ibdev->max_1m_mrs;
621         } else {
622                 /* pool_type == RDS_IB_MR_8K_POOL */
623                 pool->fmr_attr.max_pages = RDS_MR_8K_MSG_SIZE + 1;
624                 pool->max_items = rds_ibdev->max_8k_mrs;
625         }
626
627         pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4;
628         pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
629         pool->fmr_attr.page_shift = PAGE_SHIFT;
630         pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4;
631         pool->use_fastreg = rds_ibdev->use_fastreg;
632
633         return pool;
634 }
635
636 int rds_ib_mr_init(void)
637 {
638         rds_ib_mr_wq = alloc_workqueue("rds_mr_flushd", WQ_MEM_RECLAIM, 0);
639         if (!rds_ib_mr_wq)
640                 return -ENOMEM;
641         return 0;
642 }
643
644 /* By the time this is called all the IB devices should have been torn down and
645  * had their pools freed.  As each pool is freed its work struct is waited on,
646  * so the pool flushing work queue should be idle by the time we get here.
647  */
648 void rds_ib_mr_exit(void)
649 {
650         destroy_workqueue(rds_ib_mr_wq);
651 }