GNU Linux-libre 4.14.259-gnu1
[releases.git] / net / openvswitch / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2017 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51
52 #include "flow_netlink.h"
53
54 struct ovs_len_tbl {
55         int len;
56         const struct ovs_len_tbl *next;
57 };
58
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61
62 static bool actions_may_change_flow(const struct nlattr *actions)
63 {
64         struct nlattr *nla;
65         int rem;
66
67         nla_for_each_nested(nla, actions, rem) {
68                 u16 action = nla_type(nla);
69
70                 switch (action) {
71                 case OVS_ACTION_ATTR_OUTPUT:
72                 case OVS_ACTION_ATTR_RECIRC:
73                 case OVS_ACTION_ATTR_TRUNC:
74                 case OVS_ACTION_ATTR_USERSPACE:
75                         break;
76
77                 case OVS_ACTION_ATTR_CT:
78                 case OVS_ACTION_ATTR_HASH:
79                 case OVS_ACTION_ATTR_POP_ETH:
80                 case OVS_ACTION_ATTR_POP_MPLS:
81                 case OVS_ACTION_ATTR_POP_VLAN:
82                 case OVS_ACTION_ATTR_PUSH_ETH:
83                 case OVS_ACTION_ATTR_PUSH_MPLS:
84                 case OVS_ACTION_ATTR_PUSH_VLAN:
85                 case OVS_ACTION_ATTR_SAMPLE:
86                 case OVS_ACTION_ATTR_SET:
87                 case OVS_ACTION_ATTR_SET_MASKED:
88                 default:
89                         return true;
90                 }
91         }
92         return false;
93 }
94
95 static void update_range(struct sw_flow_match *match,
96                          size_t offset, size_t size, bool is_mask)
97 {
98         struct sw_flow_key_range *range;
99         size_t start = rounddown(offset, sizeof(long));
100         size_t end = roundup(offset + size, sizeof(long));
101
102         if (!is_mask)
103                 range = &match->range;
104         else
105                 range = &match->mask->range;
106
107         if (range->start == range->end) {
108                 range->start = start;
109                 range->end = end;
110                 return;
111         }
112
113         if (range->start > start)
114                 range->start = start;
115
116         if (range->end < end)
117                 range->end = end;
118 }
119
120 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
121         do { \
122                 update_range(match, offsetof(struct sw_flow_key, field),    \
123                              sizeof((match)->key->field), is_mask);         \
124                 if (is_mask)                                                \
125                         (match)->mask->key.field = value;                   \
126                 else                                                        \
127                         (match)->key->field = value;                        \
128         } while (0)
129
130 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
131         do {                                                                \
132                 update_range(match, offset, len, is_mask);                  \
133                 if (is_mask)                                                \
134                         memcpy((u8 *)&(match)->mask->key + offset, value_p, \
135                                len);                                       \
136                 else                                                        \
137                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
138         } while (0)
139
140 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
141         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
142                                   value_p, len, is_mask)
143
144 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
145         do {                                                                \
146                 update_range(match, offsetof(struct sw_flow_key, field),    \
147                              sizeof((match)->key->field), is_mask);         \
148                 if (is_mask)                                                \
149                         memset((u8 *)&(match)->mask->key.field, value,      \
150                                sizeof((match)->mask->key.field));           \
151                 else                                                        \
152                         memset((u8 *)&(match)->key->field, value,           \
153                                sizeof((match)->key->field));                \
154         } while (0)
155
156 static bool match_validate(const struct sw_flow_match *match,
157                            u64 key_attrs, u64 mask_attrs, bool log)
158 {
159         u64 key_expected = 0;
160         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
161
162         /* The following mask attributes allowed only if they
163          * pass the validation tests. */
164         mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
165                         | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
166                         | (1 << OVS_KEY_ATTR_IPV6)
167                         | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
168                         | (1 << OVS_KEY_ATTR_TCP)
169                         | (1 << OVS_KEY_ATTR_TCP_FLAGS)
170                         | (1 << OVS_KEY_ATTR_UDP)
171                         | (1 << OVS_KEY_ATTR_SCTP)
172                         | (1 << OVS_KEY_ATTR_ICMP)
173                         | (1 << OVS_KEY_ATTR_ICMPV6)
174                         | (1 << OVS_KEY_ATTR_ARP)
175                         | (1 << OVS_KEY_ATTR_ND)
176                         | (1 << OVS_KEY_ATTR_MPLS));
177
178         /* Always allowed mask fields. */
179         mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
180                        | (1 << OVS_KEY_ATTR_IN_PORT)
181                        | (1 << OVS_KEY_ATTR_ETHERTYPE));
182
183         /* Check key attributes. */
184         if (match->key->eth.type == htons(ETH_P_ARP)
185                         || match->key->eth.type == htons(ETH_P_RARP)) {
186                 key_expected |= 1 << OVS_KEY_ATTR_ARP;
187                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
188                         mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
189         }
190
191         if (eth_p_mpls(match->key->eth.type)) {
192                 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
193                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
194                         mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
195         }
196
197         if (match->key->eth.type == htons(ETH_P_IP)) {
198                 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
199                 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
200                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
201                         mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
202                 }
203
204                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
205                         if (match->key->ip.proto == IPPROTO_UDP) {
206                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
207                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
208                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
209                         }
210
211                         if (match->key->ip.proto == IPPROTO_SCTP) {
212                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
213                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
214                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
215                         }
216
217                         if (match->key->ip.proto == IPPROTO_TCP) {
218                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
219                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
221                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
222                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
223                                 }
224                         }
225
226                         if (match->key->ip.proto == IPPROTO_ICMP) {
227                                 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
228                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
229                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
230                         }
231                 }
232         }
233
234         if (match->key->eth.type == htons(ETH_P_IPV6)) {
235                 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
236                 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
237                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
238                         mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
239                 }
240
241                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
242                         if (match->key->ip.proto == IPPROTO_UDP) {
243                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
244                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
245                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
246                         }
247
248                         if (match->key->ip.proto == IPPROTO_SCTP) {
249                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
250                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
251                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
252                         }
253
254                         if (match->key->ip.proto == IPPROTO_TCP) {
255                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
256                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
257                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
258                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
259                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
260                                 }
261                         }
262
263                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
264                                 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
265                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
266                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
267
268                                 if (match->key->tp.src ==
269                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
270                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
271                                         key_expected |= 1 << OVS_KEY_ATTR_ND;
272                                         /* Original direction conntrack tuple
273                                          * uses the same space as the ND fields
274                                          * in the key, so both are not allowed
275                                          * at the same time.
276                                          */
277                                         mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
278                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
279                                                 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
280                                 }
281                         }
282                 }
283         }
284
285         if ((key_attrs & key_expected) != key_expected) {
286                 /* Key attributes check failed. */
287                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
288                           (unsigned long long)key_attrs,
289                           (unsigned long long)key_expected);
290                 return false;
291         }
292
293         if ((mask_attrs & mask_allowed) != mask_attrs) {
294                 /* Mask attributes check failed. */
295                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
296                           (unsigned long long)mask_attrs,
297                           (unsigned long long)mask_allowed);
298                 return false;
299         }
300
301         return true;
302 }
303
304 size_t ovs_tun_key_attr_size(void)
305 {
306         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
307          * updating this function.
308          */
309         return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
310                 + nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
311                 + nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
312                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
313                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
314                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
315                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
316                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
317                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
318                 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
319                  * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
320                  */
321                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
322                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
323 }
324
325 size_t ovs_key_attr_size(void)
326 {
327         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
328          * updating this function.
329          */
330         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 28);
331
332         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
333                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
334                   + ovs_tun_key_attr_size()
335                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
336                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
337                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
338                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
339                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
340                 + nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
341                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
342                 + nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
343                 + nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
344                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
345                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
346                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
347                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
348                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
349                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
350                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
351                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
352 }
353
354 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
355         [OVS_VXLAN_EXT_GBP]         = { .len = sizeof(u32) },
356 };
357
358 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
359         [OVS_TUNNEL_KEY_ATTR_ID]            = { .len = sizeof(u64) },
360         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC]      = { .len = sizeof(u32) },
361         [OVS_TUNNEL_KEY_ATTR_IPV4_DST]      = { .len = sizeof(u32) },
362         [OVS_TUNNEL_KEY_ATTR_TOS]           = { .len = 1 },
363         [OVS_TUNNEL_KEY_ATTR_TTL]           = { .len = 1 },
364         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
365         [OVS_TUNNEL_KEY_ATTR_CSUM]          = { .len = 0 },
366         [OVS_TUNNEL_KEY_ATTR_TP_SRC]        = { .len = sizeof(u16) },
367         [OVS_TUNNEL_KEY_ATTR_TP_DST]        = { .len = sizeof(u16) },
368         [OVS_TUNNEL_KEY_ATTR_OAM]           = { .len = 0 },
369         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
370         [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
371                                                 .next = ovs_vxlan_ext_key_lens },
372         [OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
373         [OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
374 };
375
376 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
377 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
378         [OVS_KEY_ATTR_ENCAP]     = { .len = OVS_ATTR_NESTED },
379         [OVS_KEY_ATTR_PRIORITY]  = { .len = sizeof(u32) },
380         [OVS_KEY_ATTR_IN_PORT]   = { .len = sizeof(u32) },
381         [OVS_KEY_ATTR_SKB_MARK]  = { .len = sizeof(u32) },
382         [OVS_KEY_ATTR_ETHERNET]  = { .len = sizeof(struct ovs_key_ethernet) },
383         [OVS_KEY_ATTR_VLAN]      = { .len = sizeof(__be16) },
384         [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
385         [OVS_KEY_ATTR_IPV4]      = { .len = sizeof(struct ovs_key_ipv4) },
386         [OVS_KEY_ATTR_IPV6]      = { .len = sizeof(struct ovs_key_ipv6) },
387         [OVS_KEY_ATTR_TCP]       = { .len = sizeof(struct ovs_key_tcp) },
388         [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
389         [OVS_KEY_ATTR_UDP]       = { .len = sizeof(struct ovs_key_udp) },
390         [OVS_KEY_ATTR_SCTP]      = { .len = sizeof(struct ovs_key_sctp) },
391         [OVS_KEY_ATTR_ICMP]      = { .len = sizeof(struct ovs_key_icmp) },
392         [OVS_KEY_ATTR_ICMPV6]    = { .len = sizeof(struct ovs_key_icmpv6) },
393         [OVS_KEY_ATTR_ARP]       = { .len = sizeof(struct ovs_key_arp) },
394         [OVS_KEY_ATTR_ND]        = { .len = sizeof(struct ovs_key_nd) },
395         [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
396         [OVS_KEY_ATTR_DP_HASH]   = { .len = sizeof(u32) },
397         [OVS_KEY_ATTR_TUNNEL]    = { .len = OVS_ATTR_NESTED,
398                                      .next = ovs_tunnel_key_lens, },
399         [OVS_KEY_ATTR_MPLS]      = { .len = sizeof(struct ovs_key_mpls) },
400         [OVS_KEY_ATTR_CT_STATE]  = { .len = sizeof(u32) },
401         [OVS_KEY_ATTR_CT_ZONE]   = { .len = sizeof(u16) },
402         [OVS_KEY_ATTR_CT_MARK]   = { .len = sizeof(u32) },
403         [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
404         [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
405                 .len = sizeof(struct ovs_key_ct_tuple_ipv4) },
406         [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
407                 .len = sizeof(struct ovs_key_ct_tuple_ipv6) },
408 };
409
410 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
411 {
412         return expected_len == attr_len ||
413                expected_len == OVS_ATTR_NESTED ||
414                expected_len == OVS_ATTR_VARIABLE;
415 }
416
417 static bool is_all_zero(const u8 *fp, size_t size)
418 {
419         int i;
420
421         if (!fp)
422                 return false;
423
424         for (i = 0; i < size; i++)
425                 if (fp[i])
426                         return false;
427
428         return true;
429 }
430
431 static int __parse_flow_nlattrs(const struct nlattr *attr,
432                                 const struct nlattr *a[],
433                                 u64 *attrsp, bool log, bool nz)
434 {
435         const struct nlattr *nla;
436         u64 attrs;
437         int rem;
438
439         attrs = *attrsp;
440         nla_for_each_nested(nla, attr, rem) {
441                 u16 type = nla_type(nla);
442                 int expected_len;
443
444                 if (type > OVS_KEY_ATTR_MAX) {
445                         OVS_NLERR(log, "Key type %d is out of range max %d",
446                                   type, OVS_KEY_ATTR_MAX);
447                         return -EINVAL;
448                 }
449
450                 if (attrs & (1 << type)) {
451                         OVS_NLERR(log, "Duplicate key (type %d).", type);
452                         return -EINVAL;
453                 }
454
455                 expected_len = ovs_key_lens[type].len;
456                 if (!check_attr_len(nla_len(nla), expected_len)) {
457                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
458                                   type, nla_len(nla), expected_len);
459                         return -EINVAL;
460                 }
461
462                 if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
463                         attrs |= 1 << type;
464                         a[type] = nla;
465                 }
466         }
467         if (rem) {
468                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
469                 return -EINVAL;
470         }
471
472         *attrsp = attrs;
473         return 0;
474 }
475
476 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
477                                    const struct nlattr *a[], u64 *attrsp,
478                                    bool log)
479 {
480         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
481 }
482
483 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
484                        u64 *attrsp, bool log)
485 {
486         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
487 }
488
489 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
490                                      struct sw_flow_match *match, bool is_mask,
491                                      bool log)
492 {
493         unsigned long opt_key_offset;
494
495         if (nla_len(a) > sizeof(match->key->tun_opts)) {
496                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
497                           nla_len(a), sizeof(match->key->tun_opts));
498                 return -EINVAL;
499         }
500
501         if (nla_len(a) % 4 != 0) {
502                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
503                           nla_len(a));
504                 return -EINVAL;
505         }
506
507         /* We need to record the length of the options passed
508          * down, otherwise packets with the same format but
509          * additional options will be silently matched.
510          */
511         if (!is_mask) {
512                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
513                                 false);
514         } else {
515                 /* This is somewhat unusual because it looks at
516                  * both the key and mask while parsing the
517                  * attributes (and by extension assumes the key
518                  * is parsed first). Normally, we would verify
519                  * that each is the correct length and that the
520                  * attributes line up in the validate function.
521                  * However, that is difficult because this is
522                  * variable length and we won't have the
523                  * information later.
524                  */
525                 if (match->key->tun_opts_len != nla_len(a)) {
526                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
527                                   match->key->tun_opts_len, nla_len(a));
528                         return -EINVAL;
529                 }
530
531                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
532         }
533
534         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
535         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
536                                   nla_len(a), is_mask);
537         return 0;
538 }
539
540 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
541                                      struct sw_flow_match *match, bool is_mask,
542                                      bool log)
543 {
544         struct nlattr *a;
545         int rem;
546         unsigned long opt_key_offset;
547         struct vxlan_metadata opts;
548
549         BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
550
551         memset(&opts, 0, sizeof(opts));
552         nla_for_each_nested(a, attr, rem) {
553                 int type = nla_type(a);
554
555                 if (type > OVS_VXLAN_EXT_MAX) {
556                         OVS_NLERR(log, "VXLAN extension %d out of range max %d",
557                                   type, OVS_VXLAN_EXT_MAX);
558                         return -EINVAL;
559                 }
560
561                 if (!check_attr_len(nla_len(a),
562                                     ovs_vxlan_ext_key_lens[type].len)) {
563                         OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
564                                   type, nla_len(a),
565                                   ovs_vxlan_ext_key_lens[type].len);
566                         return -EINVAL;
567                 }
568
569                 switch (type) {
570                 case OVS_VXLAN_EXT_GBP:
571                         opts.gbp = nla_get_u32(a);
572                         break;
573                 default:
574                         OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
575                                   type);
576                         return -EINVAL;
577                 }
578         }
579         if (rem) {
580                 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
581                           rem);
582                 return -EINVAL;
583         }
584
585         if (!is_mask)
586                 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
587         else
588                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
589
590         opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
591         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
592                                   is_mask);
593         return 0;
594 }
595
596 static int ip_tun_from_nlattr(const struct nlattr *attr,
597                               struct sw_flow_match *match, bool is_mask,
598                               bool log)
599 {
600         bool ttl = false, ipv4 = false, ipv6 = false;
601         __be16 tun_flags = 0;
602         int opts_type = 0;
603         struct nlattr *a;
604         int rem;
605
606         nla_for_each_nested(a, attr, rem) {
607                 int type = nla_type(a);
608                 int err;
609
610                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
611                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
612                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
613                         return -EINVAL;
614                 }
615
616                 if (!check_attr_len(nla_len(a),
617                                     ovs_tunnel_key_lens[type].len)) {
618                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
619                                   type, nla_len(a), ovs_tunnel_key_lens[type].len);
620                         return -EINVAL;
621                 }
622
623                 switch (type) {
624                 case OVS_TUNNEL_KEY_ATTR_ID:
625                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
626                                         nla_get_be64(a), is_mask);
627                         tun_flags |= TUNNEL_KEY;
628                         break;
629                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
630                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
631                                         nla_get_in_addr(a), is_mask);
632                         ipv4 = true;
633                         break;
634                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
635                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
636                                         nla_get_in_addr(a), is_mask);
637                         ipv4 = true;
638                         break;
639                 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
640                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
641                                         nla_get_in6_addr(a), is_mask);
642                         ipv6 = true;
643                         break;
644                 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
645                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
646                                         nla_get_in6_addr(a), is_mask);
647                         ipv6 = true;
648                         break;
649                 case OVS_TUNNEL_KEY_ATTR_TOS:
650                         SW_FLOW_KEY_PUT(match, tun_key.tos,
651                                         nla_get_u8(a), is_mask);
652                         break;
653                 case OVS_TUNNEL_KEY_ATTR_TTL:
654                         SW_FLOW_KEY_PUT(match, tun_key.ttl,
655                                         nla_get_u8(a), is_mask);
656                         ttl = true;
657                         break;
658                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
659                         tun_flags |= TUNNEL_DONT_FRAGMENT;
660                         break;
661                 case OVS_TUNNEL_KEY_ATTR_CSUM:
662                         tun_flags |= TUNNEL_CSUM;
663                         break;
664                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
665                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
666                                         nla_get_be16(a), is_mask);
667                         break;
668                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
669                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
670                                         nla_get_be16(a), is_mask);
671                         break;
672                 case OVS_TUNNEL_KEY_ATTR_OAM:
673                         tun_flags |= TUNNEL_OAM;
674                         break;
675                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
676                         if (opts_type) {
677                                 OVS_NLERR(log, "Multiple metadata blocks provided");
678                                 return -EINVAL;
679                         }
680
681                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
682                         if (err)
683                                 return err;
684
685                         tun_flags |= TUNNEL_GENEVE_OPT;
686                         opts_type = type;
687                         break;
688                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
689                         if (opts_type) {
690                                 OVS_NLERR(log, "Multiple metadata blocks provided");
691                                 return -EINVAL;
692                         }
693
694                         err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
695                         if (err)
696                                 return err;
697
698                         tun_flags |= TUNNEL_VXLAN_OPT;
699                         opts_type = type;
700                         break;
701                 case OVS_TUNNEL_KEY_ATTR_PAD:
702                         break;
703                 default:
704                         OVS_NLERR(log, "Unknown IP tunnel attribute %d",
705                                   type);
706                         return -EINVAL;
707                 }
708         }
709
710         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
711         if (is_mask)
712                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
713         else
714                 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
715                                 false);
716
717         if (rem > 0) {
718                 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
719                           rem);
720                 return -EINVAL;
721         }
722
723         if (ipv4 && ipv6) {
724                 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
725                 return -EINVAL;
726         }
727
728         if (!is_mask) {
729                 if (!ipv4 && !ipv6) {
730                         OVS_NLERR(log, "IP tunnel dst address not specified");
731                         return -EINVAL;
732                 }
733                 if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
734                         OVS_NLERR(log, "IPv4 tunnel dst address is zero");
735                         return -EINVAL;
736                 }
737                 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
738                         OVS_NLERR(log, "IPv6 tunnel dst address is zero");
739                         return -EINVAL;
740                 }
741
742                 if (!ttl) {
743                         OVS_NLERR(log, "IP tunnel TTL not specified.");
744                         return -EINVAL;
745                 }
746         }
747
748         return opts_type;
749 }
750
751 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
752                                const void *tun_opts, int swkey_tun_opts_len)
753 {
754         const struct vxlan_metadata *opts = tun_opts;
755         struct nlattr *nla;
756
757         nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
758         if (!nla)
759                 return -EMSGSIZE;
760
761         if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
762                 return -EMSGSIZE;
763
764         nla_nest_end(skb, nla);
765         return 0;
766 }
767
768 static int __ip_tun_to_nlattr(struct sk_buff *skb,
769                               const struct ip_tunnel_key *output,
770                               const void *tun_opts, int swkey_tun_opts_len,
771                               unsigned short tun_proto)
772 {
773         if (output->tun_flags & TUNNEL_KEY &&
774             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
775                          OVS_TUNNEL_KEY_ATTR_PAD))
776                 return -EMSGSIZE;
777         switch (tun_proto) {
778         case AF_INET:
779                 if (output->u.ipv4.src &&
780                     nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
781                                     output->u.ipv4.src))
782                         return -EMSGSIZE;
783                 if (output->u.ipv4.dst &&
784                     nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
785                                     output->u.ipv4.dst))
786                         return -EMSGSIZE;
787                 break;
788         case AF_INET6:
789                 if (!ipv6_addr_any(&output->u.ipv6.src) &&
790                     nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
791                                      &output->u.ipv6.src))
792                         return -EMSGSIZE;
793                 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
794                     nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
795                                      &output->u.ipv6.dst))
796                         return -EMSGSIZE;
797                 break;
798         }
799         if (output->tos &&
800             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
801                 return -EMSGSIZE;
802         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
803                 return -EMSGSIZE;
804         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
805             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
806                 return -EMSGSIZE;
807         if ((output->tun_flags & TUNNEL_CSUM) &&
808             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
809                 return -EMSGSIZE;
810         if (output->tp_src &&
811             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
812                 return -EMSGSIZE;
813         if (output->tp_dst &&
814             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
815                 return -EMSGSIZE;
816         if ((output->tun_flags & TUNNEL_OAM) &&
817             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
818                 return -EMSGSIZE;
819         if (swkey_tun_opts_len) {
820                 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
821                     nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
822                             swkey_tun_opts_len, tun_opts))
823                         return -EMSGSIZE;
824                 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
825                          vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
826                         return -EMSGSIZE;
827         }
828
829         return 0;
830 }
831
832 static int ip_tun_to_nlattr(struct sk_buff *skb,
833                             const struct ip_tunnel_key *output,
834                             const void *tun_opts, int swkey_tun_opts_len,
835                             unsigned short tun_proto)
836 {
837         struct nlattr *nla;
838         int err;
839
840         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
841         if (!nla)
842                 return -EMSGSIZE;
843
844         err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
845                                  tun_proto);
846         if (err)
847                 return err;
848
849         nla_nest_end(skb, nla);
850         return 0;
851 }
852
853 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
854                             struct ip_tunnel_info *tun_info)
855 {
856         return __ip_tun_to_nlattr(skb, &tun_info->key,
857                                   ip_tunnel_info_opts(tun_info),
858                                   tun_info->options_len,
859                                   ip_tunnel_info_af(tun_info));
860 }
861
862 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
863                                     const struct nlattr *a[],
864                                     bool is_mask, bool inner)
865 {
866         __be16 tci = 0;
867         __be16 tpid = 0;
868
869         if (a[OVS_KEY_ATTR_VLAN])
870                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
871
872         if (a[OVS_KEY_ATTR_ETHERTYPE])
873                 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
874
875         if (likely(!inner)) {
876                 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
877                 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
878         } else {
879                 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
880                 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
881         }
882         return 0;
883 }
884
885 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
886                                       u64 key_attrs, bool inner,
887                                       const struct nlattr **a, bool log)
888 {
889         __be16 tci = 0;
890
891         if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
892               (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
893                eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
894                 /* Not a VLAN. */
895                 return 0;
896         }
897
898         if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
899               (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
900                 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
901                 return -EINVAL;
902         }
903
904         if (a[OVS_KEY_ATTR_VLAN])
905                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
906
907         if (!(tci & htons(VLAN_TAG_PRESENT))) {
908                 if (tci) {
909                         OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
910                                   (inner) ? "C-VLAN" : "VLAN");
911                         return -EINVAL;
912                 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
913                         /* Corner case for truncated VLAN header. */
914                         OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
915                                   (inner) ? "C-VLAN" : "VLAN");
916                         return -EINVAL;
917                 }
918         }
919
920         return 1;
921 }
922
923 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
924                                            u64 key_attrs, bool inner,
925                                            const struct nlattr **a, bool log)
926 {
927         __be16 tci = 0;
928         __be16 tpid = 0;
929         bool encap_valid = !!(match->key->eth.vlan.tci &
930                               htons(VLAN_TAG_PRESENT));
931         bool i_encap_valid = !!(match->key->eth.cvlan.tci &
932                                 htons(VLAN_TAG_PRESENT));
933
934         if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
935                 /* Not a VLAN. */
936                 return 0;
937         }
938
939         if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
940                 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
941                           (inner) ? "C-VLAN" : "VLAN");
942                 return -EINVAL;
943         }
944
945         if (a[OVS_KEY_ATTR_VLAN])
946                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
947
948         if (a[OVS_KEY_ATTR_ETHERTYPE])
949                 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
950
951         if (tpid != htons(0xffff)) {
952                 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
953                           (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
954                 return -EINVAL;
955         }
956         if (!(tci & htons(VLAN_TAG_PRESENT))) {
957                 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
958                           (inner) ? "C-VLAN" : "VLAN");
959                 return -EINVAL;
960         }
961
962         return 1;
963 }
964
965 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
966                                      u64 *key_attrs, bool inner,
967                                      const struct nlattr **a, bool is_mask,
968                                      bool log)
969 {
970         int err;
971         const struct nlattr *encap;
972
973         if (!is_mask)
974                 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
975                                                  a, log);
976         else
977                 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
978                                                       a, log);
979         if (err <= 0)
980                 return err;
981
982         err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
983         if (err)
984                 return err;
985
986         *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
987         *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
988         *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
989
990         encap = a[OVS_KEY_ATTR_ENCAP];
991
992         if (!is_mask)
993                 err = parse_flow_nlattrs(encap, a, key_attrs, log);
994         else
995                 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
996
997         return err;
998 }
999
1000 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1001                                    u64 *key_attrs, const struct nlattr **a,
1002                                    bool is_mask, bool log)
1003 {
1004         int err;
1005         bool encap_valid = false;
1006
1007         err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1008                                         is_mask, log);
1009         if (err)
1010                 return err;
1011
1012         encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
1013         if (encap_valid) {
1014                 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1015                                                 is_mask, log);
1016                 if (err)
1017                         return err;
1018         }
1019
1020         return 0;
1021 }
1022
1023 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1024                                        u64 *attrs, const struct nlattr **a,
1025                                        bool is_mask, bool log)
1026 {
1027         __be16 eth_type;
1028
1029         eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1030         if (is_mask) {
1031                 /* Always exact match EtherType. */
1032                 eth_type = htons(0xffff);
1033         } else if (!eth_proto_is_802_3(eth_type)) {
1034                 OVS_NLERR(log, "EtherType %x is less than min %x",
1035                                 ntohs(eth_type), ETH_P_802_3_MIN);
1036                 return -EINVAL;
1037         }
1038
1039         SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1040         *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1041         return 0;
1042 }
1043
1044 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1045                                  u64 *attrs, const struct nlattr **a,
1046                                  bool is_mask, bool log)
1047 {
1048         u8 mac_proto = MAC_PROTO_ETHERNET;
1049
1050         if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1051                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1052
1053                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1054                 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1055         }
1056
1057         if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1058                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1059
1060                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1061                 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1062         }
1063
1064         if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1065                 SW_FLOW_KEY_PUT(match, phy.priority,
1066                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1067                 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1068         }
1069
1070         if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1071                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1072
1073                 if (is_mask) {
1074                         in_port = 0xffffffff; /* Always exact match in_port. */
1075                 } else if (in_port >= DP_MAX_PORTS) {
1076                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
1077                                   in_port, DP_MAX_PORTS);
1078                         return -EINVAL;
1079                 }
1080
1081                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1082                 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1083         } else if (!is_mask) {
1084                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1085         }
1086
1087         if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1088                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1089
1090                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1091                 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1092         }
1093         if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1094                 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1095                                        is_mask, log) < 0)
1096                         return -EINVAL;
1097                 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1098         }
1099
1100         if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1101             ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1102                 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1103
1104                 if (ct_state & ~CT_SUPPORTED_MASK) {
1105                         OVS_NLERR(log, "ct_state flags %08x unsupported",
1106                                   ct_state);
1107                         return -EINVAL;
1108                 }
1109
1110                 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1111                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1112         }
1113         if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1114             ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1115                 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1116
1117                 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1118                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1119         }
1120         if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1121             ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1122                 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1123
1124                 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1125                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1126         }
1127         if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1128             ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1129                 const struct ovs_key_ct_labels *cl;
1130
1131                 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1132                 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1133                                    sizeof(*cl), is_mask);
1134                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1135         }
1136         if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1137                 const struct ovs_key_ct_tuple_ipv4 *ct;
1138
1139                 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1140
1141                 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1142                 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1143                 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1144                 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1145                 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1146                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1147         }
1148         if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1149                 const struct ovs_key_ct_tuple_ipv6 *ct;
1150
1151                 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1152
1153                 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1154                                    sizeof(match->key->ipv6.ct_orig.src),
1155                                    is_mask);
1156                 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1157                                    sizeof(match->key->ipv6.ct_orig.dst),
1158                                    is_mask);
1159                 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1160                 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1161                 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1162                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1163         }
1164
1165         /* For layer 3 packets the Ethernet type is provided
1166          * and treated as metadata but no MAC addresses are provided.
1167          */
1168         if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1169             (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1170                 mac_proto = MAC_PROTO_NONE;
1171
1172         /* Always exact match mac_proto */
1173         SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1174
1175         if (mac_proto == MAC_PROTO_NONE)
1176                 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1177                                                    log);
1178
1179         return 0;
1180 }
1181
1182 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1183                                 u64 attrs, const struct nlattr **a,
1184                                 bool is_mask, bool log)
1185 {
1186         int err;
1187
1188         err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1189         if (err)
1190                 return err;
1191
1192         if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1193                 const struct ovs_key_ethernet *eth_key;
1194
1195                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1196                 SW_FLOW_KEY_MEMCPY(match, eth.src,
1197                                 eth_key->eth_src, ETH_ALEN, is_mask);
1198                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1199                                 eth_key->eth_dst, ETH_ALEN, is_mask);
1200                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1201
1202                 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1203                         /* VLAN attribute is always parsed before getting here since it
1204                          * may occur multiple times.
1205                          */
1206                         OVS_NLERR(log, "VLAN attribute unexpected.");
1207                         return -EINVAL;
1208                 }
1209
1210                 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1211                         err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1212                                                           log);
1213                         if (err)
1214                                 return err;
1215                 } else if (!is_mask) {
1216                         SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1217                 }
1218         } else if (!match->key->eth.type) {
1219                 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1220                 return -EINVAL;
1221         }
1222
1223         if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1224                 const struct ovs_key_ipv4 *ipv4_key;
1225
1226                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1227                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1228                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1229                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1230                         return -EINVAL;
1231                 }
1232                 SW_FLOW_KEY_PUT(match, ip.proto,
1233                                 ipv4_key->ipv4_proto, is_mask);
1234                 SW_FLOW_KEY_PUT(match, ip.tos,
1235                                 ipv4_key->ipv4_tos, is_mask);
1236                 SW_FLOW_KEY_PUT(match, ip.ttl,
1237                                 ipv4_key->ipv4_ttl, is_mask);
1238                 SW_FLOW_KEY_PUT(match, ip.frag,
1239                                 ipv4_key->ipv4_frag, is_mask);
1240                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1241                                 ipv4_key->ipv4_src, is_mask);
1242                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1243                                 ipv4_key->ipv4_dst, is_mask);
1244                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1245         }
1246
1247         if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1248                 const struct ovs_key_ipv6 *ipv6_key;
1249
1250                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1251                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1252                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1253                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1254                         return -EINVAL;
1255                 }
1256
1257                 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1258                         OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1259                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1260                         return -EINVAL;
1261                 }
1262
1263                 SW_FLOW_KEY_PUT(match, ipv6.label,
1264                                 ipv6_key->ipv6_label, is_mask);
1265                 SW_FLOW_KEY_PUT(match, ip.proto,
1266                                 ipv6_key->ipv6_proto, is_mask);
1267                 SW_FLOW_KEY_PUT(match, ip.tos,
1268                                 ipv6_key->ipv6_tclass, is_mask);
1269                 SW_FLOW_KEY_PUT(match, ip.ttl,
1270                                 ipv6_key->ipv6_hlimit, is_mask);
1271                 SW_FLOW_KEY_PUT(match, ip.frag,
1272                                 ipv6_key->ipv6_frag, is_mask);
1273                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1274                                 ipv6_key->ipv6_src,
1275                                 sizeof(match->key->ipv6.addr.src),
1276                                 is_mask);
1277                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1278                                 ipv6_key->ipv6_dst,
1279                                 sizeof(match->key->ipv6.addr.dst),
1280                                 is_mask);
1281
1282                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1283         }
1284
1285         if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1286                 const struct ovs_key_arp *arp_key;
1287
1288                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1289                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1290                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1291                                   arp_key->arp_op);
1292                         return -EINVAL;
1293                 }
1294
1295                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1296                                 arp_key->arp_sip, is_mask);
1297                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1298                         arp_key->arp_tip, is_mask);
1299                 SW_FLOW_KEY_PUT(match, ip.proto,
1300                                 ntohs(arp_key->arp_op), is_mask);
1301                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1302                                 arp_key->arp_sha, ETH_ALEN, is_mask);
1303                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1304                                 arp_key->arp_tha, ETH_ALEN, is_mask);
1305
1306                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1307         }
1308
1309         if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1310                 const struct ovs_key_mpls *mpls_key;
1311
1312                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1313                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1314                                 mpls_key->mpls_lse, is_mask);
1315
1316                 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1317          }
1318
1319         if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1320                 const struct ovs_key_tcp *tcp_key;
1321
1322                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1323                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1324                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1325                 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1326         }
1327
1328         if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1329                 SW_FLOW_KEY_PUT(match, tp.flags,
1330                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1331                                 is_mask);
1332                 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1333         }
1334
1335         if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1336                 const struct ovs_key_udp *udp_key;
1337
1338                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1339                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1340                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1341                 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1342         }
1343
1344         if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1345                 const struct ovs_key_sctp *sctp_key;
1346
1347                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1348                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1349                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1350                 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1351         }
1352
1353         if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1354                 const struct ovs_key_icmp *icmp_key;
1355
1356                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1357                 SW_FLOW_KEY_PUT(match, tp.src,
1358                                 htons(icmp_key->icmp_type), is_mask);
1359                 SW_FLOW_KEY_PUT(match, tp.dst,
1360                                 htons(icmp_key->icmp_code), is_mask);
1361                 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1362         }
1363
1364         if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1365                 const struct ovs_key_icmpv6 *icmpv6_key;
1366
1367                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1368                 SW_FLOW_KEY_PUT(match, tp.src,
1369                                 htons(icmpv6_key->icmpv6_type), is_mask);
1370                 SW_FLOW_KEY_PUT(match, tp.dst,
1371                                 htons(icmpv6_key->icmpv6_code), is_mask);
1372                 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1373         }
1374
1375         if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1376                 const struct ovs_key_nd *nd_key;
1377
1378                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1379                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1380                         nd_key->nd_target,
1381                         sizeof(match->key->ipv6.nd.target),
1382                         is_mask);
1383                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1384                         nd_key->nd_sll, ETH_ALEN, is_mask);
1385                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1386                                 nd_key->nd_tll, ETH_ALEN, is_mask);
1387                 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1388         }
1389
1390         if (attrs != 0) {
1391                 OVS_NLERR(log, "Unknown key attributes %llx",
1392                           (unsigned long long)attrs);
1393                 return -EINVAL;
1394         }
1395
1396         return 0;
1397 }
1398
1399 static void nlattr_set(struct nlattr *attr, u8 val,
1400                        const struct ovs_len_tbl *tbl)
1401 {
1402         struct nlattr *nla;
1403         int rem;
1404
1405         /* The nlattr stream should already have been validated */
1406         nla_for_each_nested(nla, attr, rem) {
1407                 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1408                         nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1409                 else
1410                         memset(nla_data(nla), val, nla_len(nla));
1411
1412                 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1413                         *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1414         }
1415 }
1416
1417 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1418 {
1419         nlattr_set(attr, val, ovs_key_lens);
1420 }
1421
1422 /**
1423  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1424  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1425  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1426  * does not include any don't care bit.
1427  * @net: Used to determine per-namespace field support.
1428  * @match: receives the extracted flow match information.
1429  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1430  * sequence. The fields should of the packet that triggered the creation
1431  * of this flow.
1432  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1433  * attribute specifies the mask field of the wildcarded flow.
1434  * @log: Boolean to allow kernel error logging.  Normally true, but when
1435  * probing for feature compatibility this should be passed in as false to
1436  * suppress unnecessary error logging.
1437  */
1438 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1439                       const struct nlattr *nla_key,
1440                       const struct nlattr *nla_mask,
1441                       bool log)
1442 {
1443         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1444         struct nlattr *newmask = NULL;
1445         u64 key_attrs = 0;
1446         u64 mask_attrs = 0;
1447         int err;
1448
1449         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1450         if (err)
1451                 return err;
1452
1453         err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1454         if (err)
1455                 return err;
1456
1457         err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1458         if (err)
1459                 return err;
1460
1461         if (match->mask) {
1462                 if (!nla_mask) {
1463                         /* Create an exact match mask. We need to set to 0xff
1464                          * all the 'match->mask' fields that have been touched
1465                          * in 'match->key'. We cannot simply memset
1466                          * 'match->mask', because padding bytes and fields not
1467                          * specified in 'match->key' should be left to 0.
1468                          * Instead, we use a stream of netlink attributes,
1469                          * copied from 'key' and set to 0xff.
1470                          * ovs_key_from_nlattrs() will take care of filling
1471                          * 'match->mask' appropriately.
1472                          */
1473                         newmask = kmemdup(nla_key,
1474                                           nla_total_size(nla_len(nla_key)),
1475                                           GFP_KERNEL);
1476                         if (!newmask)
1477                                 return -ENOMEM;
1478
1479                         mask_set_nlattr(newmask, 0xff);
1480
1481                         /* The userspace does not send tunnel attributes that
1482                          * are 0, but we should not wildcard them nonetheless.
1483                          */
1484                         if (match->key->tun_proto)
1485                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1486                                                          0xff, true);
1487
1488                         nla_mask = newmask;
1489                 }
1490
1491                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1492                 if (err)
1493                         goto free_newmask;
1494
1495                 /* Always match on tci. */
1496                 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1497                 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1498
1499                 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1500                 if (err)
1501                         goto free_newmask;
1502
1503                 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1504                                            log);
1505                 if (err)
1506                         goto free_newmask;
1507         }
1508
1509         if (!match_validate(match, key_attrs, mask_attrs, log))
1510                 err = -EINVAL;
1511
1512 free_newmask:
1513         kfree(newmask);
1514         return err;
1515 }
1516
1517 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1518 {
1519         size_t len;
1520
1521         if (!attr)
1522                 return 0;
1523
1524         len = nla_len(attr);
1525         if (len < 1 || len > MAX_UFID_LENGTH) {
1526                 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1527                           nla_len(attr), MAX_UFID_LENGTH);
1528                 return 0;
1529         }
1530
1531         return len;
1532 }
1533
1534 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1535  * or false otherwise.
1536  */
1537 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1538                       bool log)
1539 {
1540         sfid->ufid_len = get_ufid_len(attr, log);
1541         if (sfid->ufid_len)
1542                 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1543
1544         return sfid->ufid_len;
1545 }
1546
1547 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1548                            const struct sw_flow_key *key, bool log)
1549 {
1550         struct sw_flow_key *new_key;
1551
1552         if (ovs_nla_get_ufid(sfid, ufid, log))
1553                 return 0;
1554
1555         /* If UFID was not provided, use unmasked key. */
1556         new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1557         if (!new_key)
1558                 return -ENOMEM;
1559         memcpy(new_key, key, sizeof(*key));
1560         sfid->unmasked_key = new_key;
1561
1562         return 0;
1563 }
1564
1565 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1566 {
1567         return attr ? nla_get_u32(attr) : 0;
1568 }
1569
1570 /**
1571  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1572  * @net: Network namespace.
1573  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1574  * metadata.
1575  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1576  * attributes.
1577  * @attrs: Bit mask for the netlink attributes included in @a.
1578  * @log: Boolean to allow kernel error logging.  Normally true, but when
1579  * probing for feature compatibility this should be passed in as false to
1580  * suppress unnecessary error logging.
1581  *
1582  * This parses a series of Netlink attributes that form a flow key, which must
1583  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1584  * get the metadata, that is, the parts of the flow key that cannot be
1585  * extracted from the packet itself.
1586  *
1587  * This must be called before the packet key fields are filled in 'key'.
1588  */
1589
1590 int ovs_nla_get_flow_metadata(struct net *net,
1591                               const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1592                               u64 attrs, struct sw_flow_key *key, bool log)
1593 {
1594         struct sw_flow_match match;
1595
1596         memset(&match, 0, sizeof(match));
1597         match.key = key;
1598
1599         key->ct_state = 0;
1600         key->ct_zone = 0;
1601         key->ct_orig_proto = 0;
1602         memset(&key->ct, 0, sizeof(key->ct));
1603         memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1604         memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1605
1606         key->phy.in_port = DP_MAX_PORTS;
1607
1608         return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1609 }
1610
1611 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1612                             bool is_mask)
1613 {
1614         __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1615
1616         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1617             nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1618                 return -EMSGSIZE;
1619         return 0;
1620 }
1621
1622 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1623                              const struct sw_flow_key *output, bool is_mask,
1624                              struct sk_buff *skb)
1625 {
1626         struct ovs_key_ethernet *eth_key;
1627         struct nlattr *nla;
1628         struct nlattr *encap = NULL;
1629         struct nlattr *in_encap = NULL;
1630
1631         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1632                 goto nla_put_failure;
1633
1634         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1635                 goto nla_put_failure;
1636
1637         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1638                 goto nla_put_failure;
1639
1640         if ((swkey->tun_proto || is_mask)) {
1641                 const void *opts = NULL;
1642
1643                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1644                         opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1645
1646                 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1647                                      swkey->tun_opts_len, swkey->tun_proto))
1648                         goto nla_put_failure;
1649         }
1650
1651         if (swkey->phy.in_port == DP_MAX_PORTS) {
1652                 if (is_mask && (output->phy.in_port == 0xffff))
1653                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1654                                 goto nla_put_failure;
1655         } else {
1656                 u16 upper_u16;
1657                 upper_u16 = !is_mask ? 0 : 0xffff;
1658
1659                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1660                                 (upper_u16 << 16) | output->phy.in_port))
1661                         goto nla_put_failure;
1662         }
1663
1664         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1665                 goto nla_put_failure;
1666
1667         if (ovs_ct_put_key(swkey, output, skb))
1668                 goto nla_put_failure;
1669
1670         if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1671                 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1672                 if (!nla)
1673                         goto nla_put_failure;
1674
1675                 eth_key = nla_data(nla);
1676                 ether_addr_copy(eth_key->eth_src, output->eth.src);
1677                 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1678
1679                 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1680                         if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1681                                 goto nla_put_failure;
1682                         encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1683                         if (!swkey->eth.vlan.tci)
1684                                 goto unencap;
1685
1686                         if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1687                                 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1688                                         goto nla_put_failure;
1689                                 in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1690                                 if (!swkey->eth.cvlan.tci)
1691                                         goto unencap;
1692                         }
1693                 }
1694
1695                 if (swkey->eth.type == htons(ETH_P_802_2)) {
1696                         /*
1697                         * Ethertype 802.2 is represented in the netlink with omitted
1698                         * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1699                         * 0xffff in the mask attribute.  Ethertype can also
1700                         * be wildcarded.
1701                         */
1702                         if (is_mask && output->eth.type)
1703                                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1704                                                         output->eth.type))
1705                                         goto nla_put_failure;
1706                         goto unencap;
1707                 }
1708         }
1709
1710         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1711                 goto nla_put_failure;
1712
1713         if (eth_type_vlan(swkey->eth.type)) {
1714                 /* There are 3 VLAN tags, we don't know anything about the rest
1715                  * of the packet, so truncate here.
1716                  */
1717                 WARN_ON_ONCE(!(encap && in_encap));
1718                 goto unencap;
1719         }
1720
1721         if (swkey->eth.type == htons(ETH_P_IP)) {
1722                 struct ovs_key_ipv4 *ipv4_key;
1723
1724                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1725                 if (!nla)
1726                         goto nla_put_failure;
1727                 ipv4_key = nla_data(nla);
1728                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1729                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1730                 ipv4_key->ipv4_proto = output->ip.proto;
1731                 ipv4_key->ipv4_tos = output->ip.tos;
1732                 ipv4_key->ipv4_ttl = output->ip.ttl;
1733                 ipv4_key->ipv4_frag = output->ip.frag;
1734         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1735                 struct ovs_key_ipv6 *ipv6_key;
1736
1737                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1738                 if (!nla)
1739                         goto nla_put_failure;
1740                 ipv6_key = nla_data(nla);
1741                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1742                                 sizeof(ipv6_key->ipv6_src));
1743                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1744                                 sizeof(ipv6_key->ipv6_dst));
1745                 ipv6_key->ipv6_label = output->ipv6.label;
1746                 ipv6_key->ipv6_proto = output->ip.proto;
1747                 ipv6_key->ipv6_tclass = output->ip.tos;
1748                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1749                 ipv6_key->ipv6_frag = output->ip.frag;
1750         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1751                    swkey->eth.type == htons(ETH_P_RARP)) {
1752                 struct ovs_key_arp *arp_key;
1753
1754                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1755                 if (!nla)
1756                         goto nla_put_failure;
1757                 arp_key = nla_data(nla);
1758                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1759                 arp_key->arp_sip = output->ipv4.addr.src;
1760                 arp_key->arp_tip = output->ipv4.addr.dst;
1761                 arp_key->arp_op = htons(output->ip.proto);
1762                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1763                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1764         } else if (eth_p_mpls(swkey->eth.type)) {
1765                 struct ovs_key_mpls *mpls_key;
1766
1767                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1768                 if (!nla)
1769                         goto nla_put_failure;
1770                 mpls_key = nla_data(nla);
1771                 mpls_key->mpls_lse = output->mpls.top_lse;
1772         }
1773
1774         if ((swkey->eth.type == htons(ETH_P_IP) ||
1775              swkey->eth.type == htons(ETH_P_IPV6)) &&
1776              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1777
1778                 if (swkey->ip.proto == IPPROTO_TCP) {
1779                         struct ovs_key_tcp *tcp_key;
1780
1781                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1782                         if (!nla)
1783                                 goto nla_put_failure;
1784                         tcp_key = nla_data(nla);
1785                         tcp_key->tcp_src = output->tp.src;
1786                         tcp_key->tcp_dst = output->tp.dst;
1787                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1788                                          output->tp.flags))
1789                                 goto nla_put_failure;
1790                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1791                         struct ovs_key_udp *udp_key;
1792
1793                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1794                         if (!nla)
1795                                 goto nla_put_failure;
1796                         udp_key = nla_data(nla);
1797                         udp_key->udp_src = output->tp.src;
1798                         udp_key->udp_dst = output->tp.dst;
1799                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1800                         struct ovs_key_sctp *sctp_key;
1801
1802                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1803                         if (!nla)
1804                                 goto nla_put_failure;
1805                         sctp_key = nla_data(nla);
1806                         sctp_key->sctp_src = output->tp.src;
1807                         sctp_key->sctp_dst = output->tp.dst;
1808                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1809                            swkey->ip.proto == IPPROTO_ICMP) {
1810                         struct ovs_key_icmp *icmp_key;
1811
1812                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1813                         if (!nla)
1814                                 goto nla_put_failure;
1815                         icmp_key = nla_data(nla);
1816                         icmp_key->icmp_type = ntohs(output->tp.src);
1817                         icmp_key->icmp_code = ntohs(output->tp.dst);
1818                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1819                            swkey->ip.proto == IPPROTO_ICMPV6) {
1820                         struct ovs_key_icmpv6 *icmpv6_key;
1821
1822                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1823                                                 sizeof(*icmpv6_key));
1824                         if (!nla)
1825                                 goto nla_put_failure;
1826                         icmpv6_key = nla_data(nla);
1827                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1828                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1829
1830                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1831                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1832                                 struct ovs_key_nd *nd_key;
1833
1834                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1835                                 if (!nla)
1836                                         goto nla_put_failure;
1837                                 nd_key = nla_data(nla);
1838                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1839                                                         sizeof(nd_key->nd_target));
1840                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1841                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1842                         }
1843                 }
1844         }
1845
1846 unencap:
1847         if (in_encap)
1848                 nla_nest_end(skb, in_encap);
1849         if (encap)
1850                 nla_nest_end(skb, encap);
1851
1852         return 0;
1853
1854 nla_put_failure:
1855         return -EMSGSIZE;
1856 }
1857
1858 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1859                     const struct sw_flow_key *output, int attr, bool is_mask,
1860                     struct sk_buff *skb)
1861 {
1862         int err;
1863         struct nlattr *nla;
1864
1865         nla = nla_nest_start(skb, attr);
1866         if (!nla)
1867                 return -EMSGSIZE;
1868         err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1869         if (err)
1870                 return err;
1871         nla_nest_end(skb, nla);
1872
1873         return 0;
1874 }
1875
1876 /* Called with ovs_mutex or RCU read lock. */
1877 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1878 {
1879         if (ovs_identifier_is_ufid(&flow->id))
1880                 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1881                                flow->id.ufid);
1882
1883         return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1884                                OVS_FLOW_ATTR_KEY, false, skb);
1885 }
1886
1887 /* Called with ovs_mutex or RCU read lock. */
1888 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1889 {
1890         return ovs_nla_put_key(&flow->key, &flow->key,
1891                                 OVS_FLOW_ATTR_KEY, false, skb);
1892 }
1893
1894 /* Called with ovs_mutex or RCU read lock. */
1895 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1896 {
1897         return ovs_nla_put_key(&flow->key, &flow->mask->key,
1898                                 OVS_FLOW_ATTR_MASK, true, skb);
1899 }
1900
1901 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
1902
1903 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
1904 {
1905         struct sw_flow_actions *sfa;
1906
1907         WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
1908
1909         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1910         if (!sfa)
1911                 return ERR_PTR(-ENOMEM);
1912
1913         sfa->actions_len = 0;
1914         return sfa;
1915 }
1916
1917 static void ovs_nla_free_set_action(const struct nlattr *a)
1918 {
1919         const struct nlattr *ovs_key = nla_data(a);
1920         struct ovs_tunnel_info *ovs_tun;
1921
1922         switch (nla_type(ovs_key)) {
1923         case OVS_KEY_ATTR_TUNNEL_INFO:
1924                 ovs_tun = nla_data(ovs_key);
1925                 dst_release((struct dst_entry *)ovs_tun->tun_dst);
1926                 break;
1927         }
1928 }
1929
1930 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1931 {
1932         const struct nlattr *a;
1933         int rem;
1934
1935         if (!sf_acts)
1936                 return;
1937
1938         nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1939                 switch (nla_type(a)) {
1940                 case OVS_ACTION_ATTR_SET:
1941                         ovs_nla_free_set_action(a);
1942                         break;
1943                 case OVS_ACTION_ATTR_CT:
1944                         ovs_ct_free_action(a);
1945                         break;
1946                 }
1947         }
1948
1949         kfree(sf_acts);
1950 }
1951
1952 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1953 {
1954         ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1955 }
1956
1957 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1958  * The caller must hold rcu_read_lock for this to be sensible. */
1959 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1960 {
1961         call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1962 }
1963
1964 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1965                                        int attr_len, bool log)
1966 {
1967
1968         struct sw_flow_actions *acts;
1969         int new_acts_size;
1970         size_t req_size = NLA_ALIGN(attr_len);
1971         int next_offset = offsetof(struct sw_flow_actions, actions) +
1972                                         (*sfa)->actions_len;
1973
1974         if (req_size <= (ksize(*sfa) - next_offset))
1975                 goto out;
1976
1977         new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
1978
1979         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1980                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
1981                         OVS_NLERR(log, "Flow action size exceeds max %u",
1982                                   MAX_ACTIONS_BUFSIZE);
1983                         return ERR_PTR(-EMSGSIZE);
1984                 }
1985                 new_acts_size = MAX_ACTIONS_BUFSIZE;
1986         }
1987
1988         acts = nla_alloc_flow_actions(new_acts_size);
1989         if (IS_ERR(acts))
1990                 return (void *)acts;
1991
1992         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1993         acts->actions_len = (*sfa)->actions_len;
1994         acts->orig_len = (*sfa)->orig_len;
1995         kfree(*sfa);
1996         *sfa = acts;
1997
1998 out:
1999         (*sfa)->actions_len += req_size;
2000         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2001 }
2002
2003 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2004                                    int attrtype, void *data, int len, bool log)
2005 {
2006         struct nlattr *a;
2007
2008         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2009         if (IS_ERR(a))
2010                 return a;
2011
2012         a->nla_type = attrtype;
2013         a->nla_len = nla_attr_size(len);
2014
2015         if (data)
2016                 memcpy(nla_data(a), data, len);
2017         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2018
2019         return a;
2020 }
2021
2022 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2023                        int len, bool log)
2024 {
2025         struct nlattr *a;
2026
2027         a = __add_action(sfa, attrtype, data, len, log);
2028
2029         return PTR_ERR_OR_ZERO(a);
2030 }
2031
2032 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2033                                           int attrtype, bool log)
2034 {
2035         int used = (*sfa)->actions_len;
2036         int err;
2037
2038         err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2039         if (err)
2040                 return err;
2041
2042         return used;
2043 }
2044
2045 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2046                                          int st_offset)
2047 {
2048         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2049                                                                st_offset);
2050
2051         a->nla_len = sfa->actions_len - st_offset;
2052 }
2053
2054 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2055                                   const struct sw_flow_key *key,
2056                                   struct sw_flow_actions **sfa,
2057                                   __be16 eth_type, __be16 vlan_tci, bool log);
2058
2059 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2060                                     const struct sw_flow_key *key,
2061                                     struct sw_flow_actions **sfa,
2062                                     __be16 eth_type, __be16 vlan_tci,
2063                                     bool log, bool last)
2064 {
2065         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2066         const struct nlattr *probability, *actions;
2067         const struct nlattr *a;
2068         int rem, start, err;
2069         struct sample_arg arg;
2070
2071         memset(attrs, 0, sizeof(attrs));
2072         nla_for_each_nested(a, attr, rem) {
2073                 int type = nla_type(a);
2074                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2075                         return -EINVAL;
2076                 attrs[type] = a;
2077         }
2078         if (rem)
2079                 return -EINVAL;
2080
2081         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2082         if (!probability || nla_len(probability) != sizeof(u32))
2083                 return -EINVAL;
2084
2085         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2086         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2087                 return -EINVAL;
2088
2089         /* validation done, copy sample action. */
2090         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2091         if (start < 0)
2092                 return start;
2093
2094         /* When both skb and flow may be changed, put the sample
2095          * into a deferred fifo. On the other hand, if only skb
2096          * may be modified, the actions can be executed in place.
2097          *
2098          * Do this analysis at the flow installation time.
2099          * Set 'clone_action->exec' to true if the actions can be
2100          * executed without being deferred.
2101          *
2102          * If the sample is the last action, it can always be excuted
2103          * rather than deferred.
2104          */
2105         arg.exec = last || !actions_may_change_flow(actions);
2106         arg.probability = nla_get_u32(probability);
2107
2108         err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2109                                  log);
2110         if (err)
2111                 return err;
2112
2113         err = __ovs_nla_copy_actions(net, actions, key, sfa,
2114                                      eth_type, vlan_tci, log);
2115
2116         if (err)
2117                 return err;
2118
2119         add_nested_action_end(*sfa, start);
2120
2121         return 0;
2122 }
2123
2124 void ovs_match_init(struct sw_flow_match *match,
2125                     struct sw_flow_key *key,
2126                     bool reset_key,
2127                     struct sw_flow_mask *mask)
2128 {
2129         memset(match, 0, sizeof(*match));
2130         match->key = key;
2131         match->mask = mask;
2132
2133         if (reset_key)
2134                 memset(key, 0, sizeof(*key));
2135
2136         if (mask) {
2137                 memset(&mask->key, 0, sizeof(mask->key));
2138                 mask->range.start = mask->range.end = 0;
2139         }
2140 }
2141
2142 static int validate_geneve_opts(struct sw_flow_key *key)
2143 {
2144         struct geneve_opt *option;
2145         int opts_len = key->tun_opts_len;
2146         bool crit_opt = false;
2147
2148         option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2149         while (opts_len > 0) {
2150                 int len;
2151
2152                 if (opts_len < sizeof(*option))
2153                         return -EINVAL;
2154
2155                 len = sizeof(*option) + option->length * 4;
2156                 if (len > opts_len)
2157                         return -EINVAL;
2158
2159                 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2160
2161                 option = (struct geneve_opt *)((u8 *)option + len);
2162                 opts_len -= len;
2163         };
2164
2165         key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2166
2167         return 0;
2168 }
2169
2170 static int validate_and_copy_set_tun(const struct nlattr *attr,
2171                                      struct sw_flow_actions **sfa, bool log)
2172 {
2173         struct sw_flow_match match;
2174         struct sw_flow_key key;
2175         struct metadata_dst *tun_dst;
2176         struct ip_tunnel_info *tun_info;
2177         struct ovs_tunnel_info *ovs_tun;
2178         struct nlattr *a;
2179         int err = 0, start, opts_type;
2180
2181         ovs_match_init(&match, &key, true, NULL);
2182         opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2183         if (opts_type < 0)
2184                 return opts_type;
2185
2186         if (key.tun_opts_len) {
2187                 switch (opts_type) {
2188                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2189                         err = validate_geneve_opts(&key);
2190                         if (err < 0)
2191                                 return err;
2192                         break;
2193                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2194                         break;
2195                 }
2196         };
2197
2198         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2199         if (start < 0)
2200                 return start;
2201
2202         tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2203                                      GFP_KERNEL);
2204
2205         if (!tun_dst)
2206                 return -ENOMEM;
2207
2208         err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2209         if (err) {
2210                 dst_release((struct dst_entry *)tun_dst);
2211                 return err;
2212         }
2213
2214         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2215                          sizeof(*ovs_tun), log);
2216         if (IS_ERR(a)) {
2217                 dst_release((struct dst_entry *)tun_dst);
2218                 return PTR_ERR(a);
2219         }
2220
2221         ovs_tun = nla_data(a);
2222         ovs_tun->tun_dst = tun_dst;
2223
2224         tun_info = &tun_dst->u.tun_info;
2225         tun_info->mode = IP_TUNNEL_INFO_TX;
2226         if (key.tun_proto == AF_INET6)
2227                 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2228         tun_info->key = key.tun_key;
2229
2230         /* We need to store the options in the action itself since
2231          * everything else will go away after flow setup. We can append
2232          * it to tun_info and then point there.
2233          */
2234         ip_tunnel_info_opts_set(tun_info,
2235                                 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2236                                 key.tun_opts_len);
2237         add_nested_action_end(*sfa, start);
2238
2239         return err;
2240 }
2241
2242 /* Return false if there are any non-masked bits set.
2243  * Mask follows data immediately, before any netlink padding.
2244  */
2245 static bool validate_masked(u8 *data, int len)
2246 {
2247         u8 *mask = data + len;
2248
2249         while (len--)
2250                 if (*data++ & ~*mask++)
2251                         return false;
2252
2253         return true;
2254 }
2255
2256 static int validate_set(const struct nlattr *a,
2257                         const struct sw_flow_key *flow_key,
2258                         struct sw_flow_actions **sfa, bool *skip_copy,
2259                         u8 mac_proto, __be16 eth_type, bool masked, bool log)
2260 {
2261         const struct nlattr *ovs_key = nla_data(a);
2262         int key_type = nla_type(ovs_key);
2263         size_t key_len;
2264
2265         /* There can be only one key in a action */
2266         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2267                 return -EINVAL;
2268
2269         key_len = nla_len(ovs_key);
2270         if (masked)
2271                 key_len /= 2;
2272
2273         if (key_type > OVS_KEY_ATTR_MAX ||
2274             !check_attr_len(key_len, ovs_key_lens[key_type].len))
2275                 return -EINVAL;
2276
2277         if (masked && !validate_masked(nla_data(ovs_key), key_len))
2278                 return -EINVAL;
2279
2280         switch (key_type) {
2281         const struct ovs_key_ipv4 *ipv4_key;
2282         const struct ovs_key_ipv6 *ipv6_key;
2283         int err;
2284
2285         case OVS_KEY_ATTR_PRIORITY:
2286         case OVS_KEY_ATTR_SKB_MARK:
2287         case OVS_KEY_ATTR_CT_MARK:
2288         case OVS_KEY_ATTR_CT_LABELS:
2289                 break;
2290
2291         case OVS_KEY_ATTR_ETHERNET:
2292                 if (mac_proto != MAC_PROTO_ETHERNET)
2293                         return -EINVAL;
2294                 break;
2295
2296         case OVS_KEY_ATTR_TUNNEL:
2297                 if (masked)
2298                         return -EINVAL; /* Masked tunnel set not supported. */
2299
2300                 *skip_copy = true;
2301                 err = validate_and_copy_set_tun(a, sfa, log);
2302                 if (err)
2303                         return err;
2304                 break;
2305
2306         case OVS_KEY_ATTR_IPV4:
2307                 if (eth_type != htons(ETH_P_IP))
2308                         return -EINVAL;
2309
2310                 ipv4_key = nla_data(ovs_key);
2311
2312                 if (masked) {
2313                         const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2314
2315                         /* Non-writeable fields. */
2316                         if (mask->ipv4_proto || mask->ipv4_frag)
2317                                 return -EINVAL;
2318                 } else {
2319                         if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2320                                 return -EINVAL;
2321
2322                         if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2323                                 return -EINVAL;
2324                 }
2325                 break;
2326
2327         case OVS_KEY_ATTR_IPV6:
2328                 if (eth_type != htons(ETH_P_IPV6))
2329                         return -EINVAL;
2330
2331                 ipv6_key = nla_data(ovs_key);
2332
2333                 if (masked) {
2334                         const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2335
2336                         /* Non-writeable fields. */
2337                         if (mask->ipv6_proto || mask->ipv6_frag)
2338                                 return -EINVAL;
2339
2340                         /* Invalid bits in the flow label mask? */
2341                         if (ntohl(mask->ipv6_label) & 0xFFF00000)
2342                                 return -EINVAL;
2343                 } else {
2344                         if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2345                                 return -EINVAL;
2346
2347                         if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2348                                 return -EINVAL;
2349                 }
2350                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2351                         return -EINVAL;
2352
2353                 break;
2354
2355         case OVS_KEY_ATTR_TCP:
2356                 if ((eth_type != htons(ETH_P_IP) &&
2357                      eth_type != htons(ETH_P_IPV6)) ||
2358                     flow_key->ip.proto != IPPROTO_TCP)
2359                         return -EINVAL;
2360
2361                 break;
2362
2363         case OVS_KEY_ATTR_UDP:
2364                 if ((eth_type != htons(ETH_P_IP) &&
2365                      eth_type != htons(ETH_P_IPV6)) ||
2366                     flow_key->ip.proto != IPPROTO_UDP)
2367                         return -EINVAL;
2368
2369                 break;
2370
2371         case OVS_KEY_ATTR_MPLS:
2372                 if (!eth_p_mpls(eth_type))
2373                         return -EINVAL;
2374                 break;
2375
2376         case OVS_KEY_ATTR_SCTP:
2377                 if ((eth_type != htons(ETH_P_IP) &&
2378                      eth_type != htons(ETH_P_IPV6)) ||
2379                     flow_key->ip.proto != IPPROTO_SCTP)
2380                         return -EINVAL;
2381
2382                 break;
2383
2384         default:
2385                 return -EINVAL;
2386         }
2387
2388         /* Convert non-masked non-tunnel set actions to masked set actions. */
2389         if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2390                 int start, len = key_len * 2;
2391                 struct nlattr *at;
2392
2393                 *skip_copy = true;
2394
2395                 start = add_nested_action_start(sfa,
2396                                                 OVS_ACTION_ATTR_SET_TO_MASKED,
2397                                                 log);
2398                 if (start < 0)
2399                         return start;
2400
2401                 at = __add_action(sfa, key_type, NULL, len, log);
2402                 if (IS_ERR(at))
2403                         return PTR_ERR(at);
2404
2405                 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2406                 memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2407                 /* Clear non-writeable bits from otherwise writeable fields. */
2408                 if (key_type == OVS_KEY_ATTR_IPV6) {
2409                         struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2410
2411                         mask->ipv6_label &= htonl(0x000FFFFF);
2412                 }
2413                 add_nested_action_end(*sfa, start);
2414         }
2415
2416         return 0;
2417 }
2418
2419 static int validate_userspace(const struct nlattr *attr)
2420 {
2421         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2422                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2423                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2424                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2425         };
2426         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2427         int error;
2428
2429         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr,
2430                                  userspace_policy, NULL);
2431         if (error)
2432                 return error;
2433
2434         if (!a[OVS_USERSPACE_ATTR_PID] ||
2435             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2436                 return -EINVAL;
2437
2438         return 0;
2439 }
2440
2441 static int copy_action(const struct nlattr *from,
2442                        struct sw_flow_actions **sfa, bool log)
2443 {
2444         int totlen = NLA_ALIGN(from->nla_len);
2445         struct nlattr *to;
2446
2447         to = reserve_sfa_size(sfa, from->nla_len, log);
2448         if (IS_ERR(to))
2449                 return PTR_ERR(to);
2450
2451         memcpy(to, from, totlen);
2452         return 0;
2453 }
2454
2455 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2456                                   const struct sw_flow_key *key,
2457                                   struct sw_flow_actions **sfa,
2458                                   __be16 eth_type, __be16 vlan_tci, bool log)
2459 {
2460         u8 mac_proto = ovs_key_mac_proto(key);
2461         const struct nlattr *a;
2462         int rem, err;
2463
2464         nla_for_each_nested(a, attr, rem) {
2465                 /* Expected argument lengths, (u32)-1 for variable length. */
2466                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2467                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2468                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2469                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2470                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2471                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2472                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2473                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
2474                         [OVS_ACTION_ATTR_SET] = (u32)-1,
2475                         [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2476                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2477                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2478                         [OVS_ACTION_ATTR_CT] = (u32)-1,
2479                         [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2480                         [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2481                         [OVS_ACTION_ATTR_POP_ETH] = 0,
2482                 };
2483                 const struct ovs_action_push_vlan *vlan;
2484                 int type = nla_type(a);
2485                 bool skip_copy;
2486
2487                 if (type > OVS_ACTION_ATTR_MAX ||
2488                     (action_lens[type] != nla_len(a) &&
2489                      action_lens[type] != (u32)-1))
2490                         return -EINVAL;
2491
2492                 skip_copy = false;
2493                 switch (type) {
2494                 case OVS_ACTION_ATTR_UNSPEC:
2495                         return -EINVAL;
2496
2497                 case OVS_ACTION_ATTR_USERSPACE:
2498                         err = validate_userspace(a);
2499                         if (err)
2500                                 return err;
2501                         break;
2502
2503                 case OVS_ACTION_ATTR_OUTPUT:
2504                         if (nla_get_u32(a) >= DP_MAX_PORTS)
2505                                 return -EINVAL;
2506                         break;
2507
2508                 case OVS_ACTION_ATTR_TRUNC: {
2509                         const struct ovs_action_trunc *trunc = nla_data(a);
2510
2511                         if (trunc->max_len < ETH_HLEN)
2512                                 return -EINVAL;
2513                         break;
2514                 }
2515
2516                 case OVS_ACTION_ATTR_HASH: {
2517                         const struct ovs_action_hash *act_hash = nla_data(a);
2518
2519                         switch (act_hash->hash_alg) {
2520                         case OVS_HASH_ALG_L4:
2521                                 break;
2522                         default:
2523                                 return  -EINVAL;
2524                         }
2525
2526                         break;
2527                 }
2528
2529                 case OVS_ACTION_ATTR_POP_VLAN:
2530                         if (mac_proto != MAC_PROTO_ETHERNET)
2531                                 return -EINVAL;
2532                         vlan_tci = htons(0);
2533                         break;
2534
2535                 case OVS_ACTION_ATTR_PUSH_VLAN:
2536                         if (mac_proto != MAC_PROTO_ETHERNET)
2537                                 return -EINVAL;
2538                         vlan = nla_data(a);
2539                         if (!eth_type_vlan(vlan->vlan_tpid))
2540                                 return -EINVAL;
2541                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2542                                 return -EINVAL;
2543                         vlan_tci = vlan->vlan_tci;
2544                         break;
2545
2546                 case OVS_ACTION_ATTR_RECIRC:
2547                         break;
2548
2549                 case OVS_ACTION_ATTR_PUSH_MPLS: {
2550                         const struct ovs_action_push_mpls *mpls = nla_data(a);
2551
2552                         if (!eth_p_mpls(mpls->mpls_ethertype))
2553                                 return -EINVAL;
2554                         /* Prohibit push MPLS other than to a white list
2555                          * for packets that have a known tag order.
2556                          */
2557                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2558                             (eth_type != htons(ETH_P_IP) &&
2559                              eth_type != htons(ETH_P_IPV6) &&
2560                              eth_type != htons(ETH_P_ARP) &&
2561                              eth_type != htons(ETH_P_RARP) &&
2562                              !eth_p_mpls(eth_type)))
2563                                 return -EINVAL;
2564                         eth_type = mpls->mpls_ethertype;
2565                         break;
2566                 }
2567
2568                 case OVS_ACTION_ATTR_POP_MPLS:
2569                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2570                             !eth_p_mpls(eth_type))
2571                                 return -EINVAL;
2572
2573                         /* Disallow subsequent L2.5+ set and mpls_pop actions
2574                          * as there is no check here to ensure that the new
2575                          * eth_type is valid and thus set actions could
2576                          * write off the end of the packet or otherwise
2577                          * corrupt it.
2578                          *
2579                          * Support for these actions is planned using packet
2580                          * recirculation.
2581                          */
2582                         eth_type = htons(0);
2583                         break;
2584
2585                 case OVS_ACTION_ATTR_SET:
2586                         err = validate_set(a, key, sfa,
2587                                            &skip_copy, mac_proto, eth_type,
2588                                            false, log);
2589                         if (err)
2590                                 return err;
2591                         break;
2592
2593                 case OVS_ACTION_ATTR_SET_MASKED:
2594                         err = validate_set(a, key, sfa,
2595                                            &skip_copy, mac_proto, eth_type,
2596                                            true, log);
2597                         if (err)
2598                                 return err;
2599                         break;
2600
2601                 case OVS_ACTION_ATTR_SAMPLE: {
2602                         bool last = nla_is_last(a, rem);
2603
2604                         err = validate_and_copy_sample(net, a, key, sfa,
2605                                                        eth_type, vlan_tci,
2606                                                        log, last);
2607                         if (err)
2608                                 return err;
2609                         skip_copy = true;
2610                         break;
2611                 }
2612
2613                 case OVS_ACTION_ATTR_CT:
2614                         err = ovs_ct_copy_action(net, a, key, sfa, log);
2615                         if (err)
2616                                 return err;
2617                         skip_copy = true;
2618                         break;
2619
2620                 case OVS_ACTION_ATTR_PUSH_ETH:
2621                         /* Disallow pushing an Ethernet header if one
2622                          * is already present */
2623                         if (mac_proto != MAC_PROTO_NONE)
2624                                 return -EINVAL;
2625                         mac_proto = MAC_PROTO_ETHERNET;
2626                         break;
2627
2628                 case OVS_ACTION_ATTR_POP_ETH:
2629                         if (mac_proto != MAC_PROTO_ETHERNET)
2630                                 return -EINVAL;
2631                         if (vlan_tci & htons(VLAN_TAG_PRESENT))
2632                                 return -EINVAL;
2633                         mac_proto = MAC_PROTO_NONE;
2634                         break;
2635
2636                 default:
2637                         OVS_NLERR(log, "Unknown Action type %d", type);
2638                         return -EINVAL;
2639                 }
2640                 if (!skip_copy) {
2641                         err = copy_action(a, sfa, log);
2642                         if (err)
2643                                 return err;
2644                 }
2645         }
2646
2647         if (rem > 0)
2648                 return -EINVAL;
2649
2650         return 0;
2651 }
2652
2653 /* 'key' must be the masked key. */
2654 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2655                          const struct sw_flow_key *key,
2656                          struct sw_flow_actions **sfa, bool log)
2657 {
2658         int err;
2659
2660         *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
2661         if (IS_ERR(*sfa))
2662                 return PTR_ERR(*sfa);
2663
2664         (*sfa)->orig_len = nla_len(attr);
2665         err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
2666                                      key->eth.vlan.tci, log);
2667         if (err)
2668                 ovs_nla_free_flow_actions(*sfa);
2669
2670         return err;
2671 }
2672
2673 static int sample_action_to_attr(const struct nlattr *attr,
2674                                  struct sk_buff *skb)
2675 {
2676         struct nlattr *start, *ac_start = NULL, *sample_arg;
2677         int err = 0, rem = nla_len(attr);
2678         const struct sample_arg *arg;
2679         struct nlattr *actions;
2680
2681         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2682         if (!start)
2683                 return -EMSGSIZE;
2684
2685         sample_arg = nla_data(attr);
2686         arg = nla_data(sample_arg);
2687         actions = nla_next(sample_arg, &rem);
2688
2689         if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
2690                 err = -EMSGSIZE;
2691                 goto out;
2692         }
2693
2694         ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2695         if (!ac_start) {
2696                 err = -EMSGSIZE;
2697                 goto out;
2698         }
2699
2700         err = ovs_nla_put_actions(actions, rem, skb);
2701
2702 out:
2703         if (err) {
2704                 nla_nest_cancel(skb, ac_start);
2705                 nla_nest_cancel(skb, start);
2706         } else {
2707                 nla_nest_end(skb, ac_start);
2708                 nla_nest_end(skb, start);
2709         }
2710
2711         return err;
2712 }
2713
2714 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2715 {
2716         const struct nlattr *ovs_key = nla_data(a);
2717         int key_type = nla_type(ovs_key);
2718         struct nlattr *start;
2719         int err;
2720
2721         switch (key_type) {
2722         case OVS_KEY_ATTR_TUNNEL_INFO: {
2723                 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2724                 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2725
2726                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2727                 if (!start)
2728                         return -EMSGSIZE;
2729
2730                 err =  ip_tun_to_nlattr(skb, &tun_info->key,
2731                                         ip_tunnel_info_opts(tun_info),
2732                                         tun_info->options_len,
2733                                         ip_tunnel_info_af(tun_info));
2734                 if (err)
2735                         return err;
2736                 nla_nest_end(skb, start);
2737                 break;
2738         }
2739         default:
2740                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2741                         return -EMSGSIZE;
2742                 break;
2743         }
2744
2745         return 0;
2746 }
2747
2748 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2749                                                 struct sk_buff *skb)
2750 {
2751         const struct nlattr *ovs_key = nla_data(a);
2752         struct nlattr *nla;
2753         size_t key_len = nla_len(ovs_key) / 2;
2754
2755         /* Revert the conversion we did from a non-masked set action to
2756          * masked set action.
2757          */
2758         nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2759         if (!nla)
2760                 return -EMSGSIZE;
2761
2762         if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2763                 return -EMSGSIZE;
2764
2765         nla_nest_end(skb, nla);
2766         return 0;
2767 }
2768
2769 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2770 {
2771         const struct nlattr *a;
2772         int rem, err;
2773
2774         nla_for_each_attr(a, attr, len, rem) {
2775                 int type = nla_type(a);
2776
2777                 switch (type) {
2778                 case OVS_ACTION_ATTR_SET:
2779                         err = set_action_to_attr(a, skb);
2780                         if (err)
2781                                 return err;
2782                         break;
2783
2784                 case OVS_ACTION_ATTR_SET_TO_MASKED:
2785                         err = masked_set_action_to_set_action_attr(a, skb);
2786                         if (err)
2787                                 return err;
2788                         break;
2789
2790                 case OVS_ACTION_ATTR_SAMPLE:
2791                         err = sample_action_to_attr(a, skb);
2792                         if (err)
2793                                 return err;
2794                         break;
2795
2796                 case OVS_ACTION_ATTR_CT:
2797                         err = ovs_ct_action_to_attr(nla_data(a), skb);
2798                         if (err)
2799                                 return err;
2800                         break;
2801
2802                 default:
2803                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
2804                                 return -EMSGSIZE;
2805                         break;
2806                 }
2807         }
2808
2809         return 0;
2810 }