GNU Linux-libre 4.14.257-gnu1
[releases.git] / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
34 #include <linux/ip.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <net/ip.h>
45 #include <net/ip_tunnels.h>
46 #include <net/ipv6.h>
47 #include <net/mpls.h>
48 #include <net/ndisc.h>
49
50 #include "conntrack.h"
51 #include "datapath.h"
52 #include "flow.h"
53 #include "flow_netlink.h"
54 #include "vport.h"
55
56 u64 ovs_flow_used_time(unsigned long flow_jiffies)
57 {
58         struct timespec cur_ts;
59         u64 cur_ms, idle_ms;
60
61         ktime_get_ts(&cur_ts);
62         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
63         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
64                  cur_ts.tv_nsec / NSEC_PER_MSEC;
65
66         return cur_ms - idle_ms;
67 }
68
69 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
70
71 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
72                            const struct sk_buff *skb)
73 {
74         struct flow_stats *stats;
75         unsigned int cpu = smp_processor_id();
76         int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
77
78         stats = rcu_dereference(flow->stats[cpu]);
79
80         /* Check if already have CPU-specific stats. */
81         if (likely(stats)) {
82                 spin_lock(&stats->lock);
83                 /* Mark if we write on the pre-allocated stats. */
84                 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
85                         flow->stats_last_writer = cpu;
86         } else {
87                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
88                 spin_lock(&stats->lock);
89
90                 /* If the current CPU is the only writer on the
91                  * pre-allocated stats keep using them.
92                  */
93                 if (unlikely(flow->stats_last_writer != cpu)) {
94                         /* A previous locker may have already allocated the
95                          * stats, so we need to check again.  If CPU-specific
96                          * stats were already allocated, we update the pre-
97                          * allocated stats as we have already locked them.
98                          */
99                         if (likely(flow->stats_last_writer != -1) &&
100                             likely(!rcu_access_pointer(flow->stats[cpu]))) {
101                                 /* Try to allocate CPU-specific stats. */
102                                 struct flow_stats *new_stats;
103
104                                 new_stats =
105                                         kmem_cache_alloc_node(flow_stats_cache,
106                                                               GFP_NOWAIT |
107                                                               __GFP_THISNODE |
108                                                               __GFP_NOWARN |
109                                                               __GFP_NOMEMALLOC,
110                                                               numa_node_id());
111                                 if (likely(new_stats)) {
112                                         new_stats->used = jiffies;
113                                         new_stats->packet_count = 1;
114                                         new_stats->byte_count = len;
115                                         new_stats->tcp_flags = tcp_flags;
116                                         spin_lock_init(&new_stats->lock);
117
118                                         rcu_assign_pointer(flow->stats[cpu],
119                                                            new_stats);
120                                         cpumask_set_cpu(cpu, &flow->cpu_used_mask);
121                                         goto unlock;
122                                 }
123                         }
124                         flow->stats_last_writer = cpu;
125                 }
126         }
127
128         stats->used = jiffies;
129         stats->packet_count++;
130         stats->byte_count += len;
131         stats->tcp_flags |= tcp_flags;
132 unlock:
133         spin_unlock(&stats->lock);
134 }
135
136 /* Must be called with rcu_read_lock or ovs_mutex. */
137 void ovs_flow_stats_get(const struct sw_flow *flow,
138                         struct ovs_flow_stats *ovs_stats,
139                         unsigned long *used, __be16 *tcp_flags)
140 {
141         int cpu;
142
143         *used = 0;
144         *tcp_flags = 0;
145         memset(ovs_stats, 0, sizeof(*ovs_stats));
146
147         /* We open code this to make sure cpu 0 is always considered */
148         for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
149                 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
150
151                 if (stats) {
152                         /* Local CPU may write on non-local stats, so we must
153                          * block bottom-halves here.
154                          */
155                         spin_lock_bh(&stats->lock);
156                         if (!*used || time_after(stats->used, *used))
157                                 *used = stats->used;
158                         *tcp_flags |= stats->tcp_flags;
159                         ovs_stats->n_packets += stats->packet_count;
160                         ovs_stats->n_bytes += stats->byte_count;
161                         spin_unlock_bh(&stats->lock);
162                 }
163         }
164 }
165
166 /* Called with ovs_mutex. */
167 void ovs_flow_stats_clear(struct sw_flow *flow)
168 {
169         int cpu;
170
171         /* We open code this to make sure cpu 0 is always considered */
172         for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
173                 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
174
175                 if (stats) {
176                         spin_lock_bh(&stats->lock);
177                         stats->used = 0;
178                         stats->packet_count = 0;
179                         stats->byte_count = 0;
180                         stats->tcp_flags = 0;
181                         spin_unlock_bh(&stats->lock);
182                 }
183         }
184 }
185
186 static int check_header(struct sk_buff *skb, int len)
187 {
188         if (unlikely(skb->len < len))
189                 return -EINVAL;
190         if (unlikely(!pskb_may_pull(skb, len)))
191                 return -ENOMEM;
192         return 0;
193 }
194
195 static bool arphdr_ok(struct sk_buff *skb)
196 {
197         return pskb_may_pull(skb, skb_network_offset(skb) +
198                                   sizeof(struct arp_eth_header));
199 }
200
201 static int check_iphdr(struct sk_buff *skb)
202 {
203         unsigned int nh_ofs = skb_network_offset(skb);
204         unsigned int ip_len;
205         int err;
206
207         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
208         if (unlikely(err))
209                 return err;
210
211         ip_len = ip_hdrlen(skb);
212         if (unlikely(ip_len < sizeof(struct iphdr) ||
213                      skb->len < nh_ofs + ip_len))
214                 return -EINVAL;
215
216         skb_set_transport_header(skb, nh_ofs + ip_len);
217         return 0;
218 }
219
220 static bool tcphdr_ok(struct sk_buff *skb)
221 {
222         int th_ofs = skb_transport_offset(skb);
223         int tcp_len;
224
225         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
226                 return false;
227
228         tcp_len = tcp_hdrlen(skb);
229         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
230                      skb->len < th_ofs + tcp_len))
231                 return false;
232
233         return true;
234 }
235
236 static bool udphdr_ok(struct sk_buff *skb)
237 {
238         return pskb_may_pull(skb, skb_transport_offset(skb) +
239                                   sizeof(struct udphdr));
240 }
241
242 static bool sctphdr_ok(struct sk_buff *skb)
243 {
244         return pskb_may_pull(skb, skb_transport_offset(skb) +
245                                   sizeof(struct sctphdr));
246 }
247
248 static bool icmphdr_ok(struct sk_buff *skb)
249 {
250         return pskb_may_pull(skb, skb_transport_offset(skb) +
251                                   sizeof(struct icmphdr));
252 }
253
254 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
255 {
256         unsigned int nh_ofs = skb_network_offset(skb);
257         unsigned int nh_len;
258         int payload_ofs;
259         struct ipv6hdr *nh;
260         uint8_t nexthdr;
261         __be16 frag_off;
262         int err;
263
264         err = check_header(skb, nh_ofs + sizeof(*nh));
265         if (unlikely(err))
266                 return err;
267
268         nh = ipv6_hdr(skb);
269         nexthdr = nh->nexthdr;
270         payload_ofs = (u8 *)(nh + 1) - skb->data;
271
272         key->ip.proto = NEXTHDR_NONE;
273         key->ip.tos = ipv6_get_dsfield(nh);
274         key->ip.ttl = nh->hop_limit;
275         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
276         key->ipv6.addr.src = nh->saddr;
277         key->ipv6.addr.dst = nh->daddr;
278
279         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
280
281         if (frag_off) {
282                 if (frag_off & htons(~0x7))
283                         key->ip.frag = OVS_FRAG_TYPE_LATER;
284                 else
285                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
286         } else {
287                 key->ip.frag = OVS_FRAG_TYPE_NONE;
288         }
289
290         /* Delayed handling of error in ipv6_skip_exthdr() as it
291          * always sets frag_off to a valid value which may be
292          * used to set key->ip.frag above.
293          */
294         if (unlikely(payload_ofs < 0))
295                 return -EPROTO;
296
297         nh_len = payload_ofs - nh_ofs;
298         skb_set_transport_header(skb, nh_ofs + nh_len);
299         key->ip.proto = nexthdr;
300         return nh_len;
301 }
302
303 static bool icmp6hdr_ok(struct sk_buff *skb)
304 {
305         return pskb_may_pull(skb, skb_transport_offset(skb) +
306                                   sizeof(struct icmp6hdr));
307 }
308
309 /**
310  * Parse vlan tag from vlan header.
311  * Returns ERROR on memory error.
312  * Returns 0 if it encounters a non-vlan or incomplete packet.
313  * Returns 1 after successfully parsing vlan tag.
314  */
315 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
316                           bool untag_vlan)
317 {
318         struct vlan_head *vh = (struct vlan_head *)skb->data;
319
320         if (likely(!eth_type_vlan(vh->tpid)))
321                 return 0;
322
323         if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
324                 return 0;
325
326         if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
327                                  sizeof(__be16))))
328                 return -ENOMEM;
329
330         vh = (struct vlan_head *)skb->data;
331         key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
332         key_vh->tpid = vh->tpid;
333
334         if (unlikely(untag_vlan)) {
335                 int offset = skb->data - skb_mac_header(skb);
336                 u16 tci;
337                 int err;
338
339                 __skb_push(skb, offset);
340                 err = __skb_vlan_pop(skb, &tci);
341                 __skb_pull(skb, offset);
342                 if (err)
343                         return err;
344                 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
345         } else {
346                 __skb_pull(skb, sizeof(struct vlan_head));
347         }
348         return 1;
349 }
350
351 static void clear_vlan(struct sw_flow_key *key)
352 {
353         key->eth.vlan.tci = 0;
354         key->eth.vlan.tpid = 0;
355         key->eth.cvlan.tci = 0;
356         key->eth.cvlan.tpid = 0;
357 }
358
359 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
360 {
361         int res;
362
363         if (skb_vlan_tag_present(skb)) {
364                 key->eth.vlan.tci = htons(skb->vlan_tci);
365                 key->eth.vlan.tpid = skb->vlan_proto;
366         } else {
367                 /* Parse outer vlan tag in the non-accelerated case. */
368                 res = parse_vlan_tag(skb, &key->eth.vlan, true);
369                 if (res <= 0)
370                         return res;
371         }
372
373         /* Parse inner vlan tag. */
374         res = parse_vlan_tag(skb, &key->eth.cvlan, false);
375         if (res <= 0)
376                 return res;
377
378         return 0;
379 }
380
381 static __be16 parse_ethertype(struct sk_buff *skb)
382 {
383         struct llc_snap_hdr {
384                 u8  dsap;  /* Always 0xAA */
385                 u8  ssap;  /* Always 0xAA */
386                 u8  ctrl;
387                 u8  oui[3];
388                 __be16 ethertype;
389         };
390         struct llc_snap_hdr *llc;
391         __be16 proto;
392
393         proto = *(__be16 *) skb->data;
394         __skb_pull(skb, sizeof(__be16));
395
396         if (eth_proto_is_802_3(proto))
397                 return proto;
398
399         if (skb->len < sizeof(struct llc_snap_hdr))
400                 return htons(ETH_P_802_2);
401
402         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
403                 return htons(0);
404
405         llc = (struct llc_snap_hdr *) skb->data;
406         if (llc->dsap != LLC_SAP_SNAP ||
407             llc->ssap != LLC_SAP_SNAP ||
408             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
409                 return htons(ETH_P_802_2);
410
411         __skb_pull(skb, sizeof(struct llc_snap_hdr));
412
413         if (eth_proto_is_802_3(llc->ethertype))
414                 return llc->ethertype;
415
416         return htons(ETH_P_802_2);
417 }
418
419 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
420                         int nh_len)
421 {
422         struct icmp6hdr *icmp = icmp6_hdr(skb);
423
424         /* The ICMPv6 type and code fields use the 16-bit transport port
425          * fields, so we need to store them in 16-bit network byte order.
426          */
427         key->tp.src = htons(icmp->icmp6_type);
428         key->tp.dst = htons(icmp->icmp6_code);
429         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
430
431         if (icmp->icmp6_code == 0 &&
432             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
433              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
434                 int icmp_len = skb->len - skb_transport_offset(skb);
435                 struct nd_msg *nd;
436                 int offset;
437
438                 /* In order to process neighbor discovery options, we need the
439                  * entire packet.
440                  */
441                 if (unlikely(icmp_len < sizeof(*nd)))
442                         return 0;
443
444                 if (unlikely(skb_linearize(skb)))
445                         return -ENOMEM;
446
447                 nd = (struct nd_msg *)skb_transport_header(skb);
448                 key->ipv6.nd.target = nd->target;
449
450                 icmp_len -= sizeof(*nd);
451                 offset = 0;
452                 while (icmp_len >= 8) {
453                         struct nd_opt_hdr *nd_opt =
454                                  (struct nd_opt_hdr *)(nd->opt + offset);
455                         int opt_len = nd_opt->nd_opt_len * 8;
456
457                         if (unlikely(!opt_len || opt_len > icmp_len))
458                                 return 0;
459
460                         /* Store the link layer address if the appropriate
461                          * option is provided.  It is considered an error if
462                          * the same link layer option is specified twice.
463                          */
464                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
465                             && opt_len == 8) {
466                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
467                                         goto invalid;
468                                 ether_addr_copy(key->ipv6.nd.sll,
469                                                 &nd->opt[offset+sizeof(*nd_opt)]);
470                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
471                                    && opt_len == 8) {
472                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
473                                         goto invalid;
474                                 ether_addr_copy(key->ipv6.nd.tll,
475                                                 &nd->opt[offset+sizeof(*nd_opt)]);
476                         }
477
478                         icmp_len -= opt_len;
479                         offset += opt_len;
480                 }
481         }
482
483         return 0;
484
485 invalid:
486         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
487         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
488         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
489
490         return 0;
491 }
492
493 /**
494  * key_extract - extracts a flow key from an Ethernet frame.
495  * @skb: sk_buff that contains the frame, with skb->data pointing to the
496  * Ethernet header
497  * @key: output flow key
498  *
499  * The caller must ensure that skb->len >= ETH_HLEN.
500  *
501  * Returns 0 if successful, otherwise a negative errno value.
502  *
503  * Initializes @skb header fields as follows:
504  *
505  *    - skb->mac_header: the L2 header.
506  *
507  *    - skb->network_header: just past the L2 header, or just past the
508  *      VLAN header, to the first byte of the L2 payload.
509  *
510  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
511  *      on output, then just past the IP header, if one is present and
512  *      of a correct length, otherwise the same as skb->network_header.
513  *      For other key->eth.type values it is left untouched.
514  *
515  *    - skb->protocol: the type of the data starting at skb->network_header.
516  *      Equals to key->eth.type.
517  */
518 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
519 {
520         int error;
521         struct ethhdr *eth;
522
523         /* Flags are always used as part of stats */
524         key->tp.flags = 0;
525
526         skb_reset_mac_header(skb);
527
528         /* Link layer. */
529         clear_vlan(key);
530         if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
531                 if (unlikely(eth_type_vlan(skb->protocol)))
532                         return -EINVAL;
533
534                 skb_reset_network_header(skb);
535                 key->eth.type = skb->protocol;
536         } else {
537                 eth = eth_hdr(skb);
538                 ether_addr_copy(key->eth.src, eth->h_source);
539                 ether_addr_copy(key->eth.dst, eth->h_dest);
540
541                 __skb_pull(skb, 2 * ETH_ALEN);
542                 /* We are going to push all headers that we pull, so no need to
543                 * update skb->csum here.
544                 */
545
546                 if (unlikely(parse_vlan(skb, key)))
547                         return -ENOMEM;
548
549                 key->eth.type = parse_ethertype(skb);
550                 if (unlikely(key->eth.type == htons(0)))
551                         return -ENOMEM;
552
553                 /* Multiple tagged packets need to retain TPID to satisfy
554                  * skb_vlan_pop(), which will later shift the ethertype into
555                  * skb->protocol.
556                  */
557                 if (key->eth.cvlan.tci & htons(VLAN_TAG_PRESENT))
558                         skb->protocol = key->eth.cvlan.tpid;
559                 else
560                         skb->protocol = key->eth.type;
561
562                 skb_reset_network_header(skb);
563                 __skb_push(skb, skb->data - skb_mac_header(skb));
564         }
565         skb_reset_mac_len(skb);
566
567         /* Network layer. */
568         if (key->eth.type == htons(ETH_P_IP)) {
569                 struct iphdr *nh;
570                 __be16 offset;
571
572                 error = check_iphdr(skb);
573                 if (unlikely(error)) {
574                         memset(&key->ip, 0, sizeof(key->ip));
575                         memset(&key->ipv4, 0, sizeof(key->ipv4));
576                         if (error == -EINVAL) {
577                                 skb->transport_header = skb->network_header;
578                                 error = 0;
579                         }
580                         return error;
581                 }
582
583                 nh = ip_hdr(skb);
584                 key->ipv4.addr.src = nh->saddr;
585                 key->ipv4.addr.dst = nh->daddr;
586
587                 key->ip.proto = nh->protocol;
588                 key->ip.tos = nh->tos;
589                 key->ip.ttl = nh->ttl;
590
591                 offset = nh->frag_off & htons(IP_OFFSET);
592                 if (offset) {
593                         key->ip.frag = OVS_FRAG_TYPE_LATER;
594                         return 0;
595                 }
596                 if (nh->frag_off & htons(IP_MF) ||
597                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
598                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
599                 else
600                         key->ip.frag = OVS_FRAG_TYPE_NONE;
601
602                 /* Transport layer. */
603                 if (key->ip.proto == IPPROTO_TCP) {
604                         if (tcphdr_ok(skb)) {
605                                 struct tcphdr *tcp = tcp_hdr(skb);
606                                 key->tp.src = tcp->source;
607                                 key->tp.dst = tcp->dest;
608                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
609                         } else {
610                                 memset(&key->tp, 0, sizeof(key->tp));
611                         }
612
613                 } else if (key->ip.proto == IPPROTO_UDP) {
614                         if (udphdr_ok(skb)) {
615                                 struct udphdr *udp = udp_hdr(skb);
616                                 key->tp.src = udp->source;
617                                 key->tp.dst = udp->dest;
618                         } else {
619                                 memset(&key->tp, 0, sizeof(key->tp));
620                         }
621                 } else if (key->ip.proto == IPPROTO_SCTP) {
622                         if (sctphdr_ok(skb)) {
623                                 struct sctphdr *sctp = sctp_hdr(skb);
624                                 key->tp.src = sctp->source;
625                                 key->tp.dst = sctp->dest;
626                         } else {
627                                 memset(&key->tp, 0, sizeof(key->tp));
628                         }
629                 } else if (key->ip.proto == IPPROTO_ICMP) {
630                         if (icmphdr_ok(skb)) {
631                                 struct icmphdr *icmp = icmp_hdr(skb);
632                                 /* The ICMP type and code fields use the 16-bit
633                                  * transport port fields, so we need to store
634                                  * them in 16-bit network byte order. */
635                                 key->tp.src = htons(icmp->type);
636                                 key->tp.dst = htons(icmp->code);
637                         } else {
638                                 memset(&key->tp, 0, sizeof(key->tp));
639                         }
640                 }
641
642         } else if (key->eth.type == htons(ETH_P_ARP) ||
643                    key->eth.type == htons(ETH_P_RARP)) {
644                 struct arp_eth_header *arp;
645                 bool arp_available = arphdr_ok(skb);
646
647                 arp = (struct arp_eth_header *)skb_network_header(skb);
648
649                 if (arp_available &&
650                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
651                     arp->ar_pro == htons(ETH_P_IP) &&
652                     arp->ar_hln == ETH_ALEN &&
653                     arp->ar_pln == 4) {
654
655                         /* We only match on the lower 8 bits of the opcode. */
656                         if (ntohs(arp->ar_op) <= 0xff)
657                                 key->ip.proto = ntohs(arp->ar_op);
658                         else
659                                 key->ip.proto = 0;
660
661                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
662                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
663                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
664                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
665                 } else {
666                         memset(&key->ip, 0, sizeof(key->ip));
667                         memset(&key->ipv4, 0, sizeof(key->ipv4));
668                 }
669         } else if (eth_p_mpls(key->eth.type)) {
670                 size_t stack_len = MPLS_HLEN;
671
672                 skb_set_inner_network_header(skb, skb->mac_len);
673                 while (1) {
674                         __be32 lse;
675
676                         error = check_header(skb, skb->mac_len + stack_len);
677                         if (unlikely(error))
678                                 return 0;
679
680                         memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
681
682                         if (stack_len == MPLS_HLEN)
683                                 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
684
685                         skb_set_inner_network_header(skb, skb->mac_len + stack_len);
686                         if (lse & htonl(MPLS_LS_S_MASK))
687                                 break;
688
689                         stack_len += MPLS_HLEN;
690                 }
691         } else if (key->eth.type == htons(ETH_P_IPV6)) {
692                 int nh_len;             /* IPv6 Header + Extensions */
693
694                 nh_len = parse_ipv6hdr(skb, key);
695                 if (unlikely(nh_len < 0)) {
696                         switch (nh_len) {
697                         case -EINVAL:
698                                 memset(&key->ip, 0, sizeof(key->ip));
699                                 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
700                                 /* fall-through */
701                         case -EPROTO:
702                                 skb->transport_header = skb->network_header;
703                                 error = 0;
704                                 break;
705                         default:
706                                 error = nh_len;
707                         }
708                         return error;
709                 }
710
711                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
712                         return 0;
713                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
714                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
715
716                 /* Transport layer. */
717                 if (key->ip.proto == NEXTHDR_TCP) {
718                         if (tcphdr_ok(skb)) {
719                                 struct tcphdr *tcp = tcp_hdr(skb);
720                                 key->tp.src = tcp->source;
721                                 key->tp.dst = tcp->dest;
722                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
723                         } else {
724                                 memset(&key->tp, 0, sizeof(key->tp));
725                         }
726                 } else if (key->ip.proto == NEXTHDR_UDP) {
727                         if (udphdr_ok(skb)) {
728                                 struct udphdr *udp = udp_hdr(skb);
729                                 key->tp.src = udp->source;
730                                 key->tp.dst = udp->dest;
731                         } else {
732                                 memset(&key->tp, 0, sizeof(key->tp));
733                         }
734                 } else if (key->ip.proto == NEXTHDR_SCTP) {
735                         if (sctphdr_ok(skb)) {
736                                 struct sctphdr *sctp = sctp_hdr(skb);
737                                 key->tp.src = sctp->source;
738                                 key->tp.dst = sctp->dest;
739                         } else {
740                                 memset(&key->tp, 0, sizeof(key->tp));
741                         }
742                 } else if (key->ip.proto == NEXTHDR_ICMP) {
743                         if (icmp6hdr_ok(skb)) {
744                                 error = parse_icmpv6(skb, key, nh_len);
745                                 if (error)
746                                         return error;
747                         } else {
748                                 memset(&key->tp, 0, sizeof(key->tp));
749                         }
750                 }
751         }
752         return 0;
753 }
754
755 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
756 {
757         int res;
758
759         res = key_extract(skb, key);
760         if (!res)
761                 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
762
763         return res;
764 }
765
766 static int key_extract_mac_proto(struct sk_buff *skb)
767 {
768         switch (skb->dev->type) {
769         case ARPHRD_ETHER:
770                 return MAC_PROTO_ETHERNET;
771         case ARPHRD_NONE:
772                 if (skb->protocol == htons(ETH_P_TEB))
773                         return MAC_PROTO_ETHERNET;
774                 return MAC_PROTO_NONE;
775         }
776         WARN_ON_ONCE(1);
777         return -EINVAL;
778 }
779
780 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
781                          struct sk_buff *skb, struct sw_flow_key *key)
782 {
783         int res, err;
784
785         /* Extract metadata from packet. */
786         if (tun_info) {
787                 key->tun_proto = ip_tunnel_info_af(tun_info);
788                 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
789
790                 if (tun_info->options_len) {
791                         BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
792                                                    8)) - 1
793                                         > sizeof(key->tun_opts));
794
795                         ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
796                                                 tun_info);
797                         key->tun_opts_len = tun_info->options_len;
798                 } else {
799                         key->tun_opts_len = 0;
800                 }
801         } else  {
802                 key->tun_proto = 0;
803                 key->tun_opts_len = 0;
804                 memset(&key->tun_key, 0, sizeof(key->tun_key));
805         }
806
807         key->phy.priority = skb->priority;
808         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
809         key->phy.skb_mark = skb->mark;
810         key->ovs_flow_hash = 0;
811         res = key_extract_mac_proto(skb);
812         if (res < 0)
813                 return res;
814         key->mac_proto = res;
815         key->recirc_id = 0;
816
817         err = key_extract(skb, key);
818         if (!err)
819                 ovs_ct_fill_key(skb, key);   /* Must be after key_extract(). */
820         return err;
821 }
822
823 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
824                                    struct sk_buff *skb,
825                                    struct sw_flow_key *key, bool log)
826 {
827         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
828         u64 attrs = 0;
829         int err;
830
831         err = parse_flow_nlattrs(attr, a, &attrs, log);
832         if (err)
833                 return -EINVAL;
834
835         /* Extract metadata from netlink attributes. */
836         err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
837         if (err)
838                 return err;
839
840         /* key_extract assumes that skb->protocol is set-up for
841          * layer 3 packets which is the case for other callers,
842          * in particular packets received from the network stack.
843          * Here the correct value can be set from the metadata
844          * extracted above.
845          * For L2 packet key eth type would be zero. skb protocol
846          * would be set to correct value later during key-extact.
847          */
848
849         skb->protocol = key->eth.type;
850         err = key_extract(skb, key);
851         if (err)
852                 return err;
853
854         /* Check that we have conntrack original direction tuple metadata only
855          * for packets for which it makes sense.  Otherwise the key may be
856          * corrupted due to overlapping key fields.
857          */
858         if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
859             key->eth.type != htons(ETH_P_IP))
860                 return -EINVAL;
861         if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
862             (key->eth.type != htons(ETH_P_IPV6) ||
863              sw_flow_key_is_nd(key)))
864                 return -EINVAL;
865
866         return 0;
867 }