GNU Linux-libre 4.14.332-gnu1
[releases.git] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Changes:
14  *      Yuji SEKIYA @USAGI:     Support default route on router node;
15  *                              remove ip6_null_entry from the top of
16  *                              routing table.
17  *      Ville Nuorvala:         Fixed routing subtrees.
18  */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 #include <net/fib_notifier.h>
37
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40
41 #define RT6_DEBUG 2
42
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) pr_debug(x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48
49 static struct kmem_cache *fib6_node_kmem __read_mostly;
50
51 struct fib6_cleaner {
52         struct fib6_walker w;
53         struct net *net;
54         int (*func)(struct rt6_info *, void *arg);
55         int sernum;
56         void *arg;
57 };
58
59 #ifdef CONFIG_IPV6_SUBTREES
60 #define FWS_INIT FWS_S
61 #else
62 #define FWS_INIT FWS_L
63 #endif
64
65 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
66 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
67 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
68 static int fib6_walk(struct net *net, struct fib6_walker *w);
69 static int fib6_walk_continue(struct fib6_walker *w);
70
71 /*
72  *      A routing update causes an increase of the serial number on the
73  *      affected subtree. This allows for cached routes to be asynchronously
74  *      tested when modifications are made to the destination cache as a
75  *      result of redirects, path MTU changes, etc.
76  */
77
78 static void fib6_gc_timer_cb(unsigned long arg);
79
80 #define FOR_WALKERS(net, w) \
81         list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
82
83 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
84 {
85         write_lock_bh(&net->ipv6.fib6_walker_lock);
86         list_add(&w->lh, &net->ipv6.fib6_walkers);
87         write_unlock_bh(&net->ipv6.fib6_walker_lock);
88 }
89
90 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
91 {
92         write_lock_bh(&net->ipv6.fib6_walker_lock);
93         list_del(&w->lh);
94         write_unlock_bh(&net->ipv6.fib6_walker_lock);
95 }
96
97 static int fib6_new_sernum(struct net *net)
98 {
99         int new, old;
100
101         do {
102                 old = atomic_read(&net->ipv6.fib6_sernum);
103                 new = old < INT_MAX ? old + 1 : 1;
104         } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
105                                 old, new) != old);
106         return new;
107 }
108
109 enum {
110         FIB6_NO_SERNUM_CHANGE = 0,
111 };
112
113 /*
114  *      Auxiliary address test functions for the radix tree.
115  *
116  *      These assume a 32bit processor (although it will work on
117  *      64bit processors)
118  */
119
120 /*
121  *      test bit
122  */
123 #if defined(__LITTLE_ENDIAN)
124 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
125 #else
126 # define BITOP_BE32_SWIZZLE     0
127 #endif
128
129 static __be32 addr_bit_set(const void *token, int fn_bit)
130 {
131         const __be32 *addr = token;
132         /*
133          * Here,
134          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
135          * is optimized version of
136          *      htonl(1 << ((~fn_bit)&0x1F))
137          * See include/asm-generic/bitops/le.h.
138          */
139         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
140                addr[fn_bit >> 5];
141 }
142
143 static struct fib6_node *node_alloc(void)
144 {
145         struct fib6_node *fn;
146
147         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
148
149         return fn;
150 }
151
152 static void node_free_immediate(struct fib6_node *fn)
153 {
154         kmem_cache_free(fib6_node_kmem, fn);
155 }
156
157 static void node_free_rcu(struct rcu_head *head)
158 {
159         struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
160
161         kmem_cache_free(fib6_node_kmem, fn);
162 }
163
164 static void node_free(struct fib6_node *fn)
165 {
166         call_rcu(&fn->rcu, node_free_rcu);
167 }
168
169 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
170 {
171         int cpu;
172
173         if (!non_pcpu_rt->rt6i_pcpu)
174                 return;
175
176         for_each_possible_cpu(cpu) {
177                 struct rt6_info **ppcpu_rt;
178                 struct rt6_info *pcpu_rt;
179
180                 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
181                 pcpu_rt = *ppcpu_rt;
182                 if (pcpu_rt) {
183                         dst_dev_put(&pcpu_rt->dst);
184                         dst_release(&pcpu_rt->dst);
185                         *ppcpu_rt = NULL;
186                 }
187         }
188
189         free_percpu(non_pcpu_rt->rt6i_pcpu);
190         non_pcpu_rt->rt6i_pcpu = NULL;
191 }
192 EXPORT_SYMBOL_GPL(rt6_free_pcpu);
193
194 static void fib6_free_table(struct fib6_table *table)
195 {
196         inetpeer_invalidate_tree(&table->tb6_peers);
197         kfree(table);
198 }
199
200 static void fib6_link_table(struct net *net, struct fib6_table *tb)
201 {
202         unsigned int h;
203
204         /*
205          * Initialize table lock at a single place to give lockdep a key,
206          * tables aren't visible prior to being linked to the list.
207          */
208         rwlock_init(&tb->tb6_lock);
209
210         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
211
212         /*
213          * No protection necessary, this is the only list mutatation
214          * operation, tables never disappear once they exist.
215          */
216         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
217 }
218
219 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
220
221 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
222 {
223         struct fib6_table *table;
224
225         table = kzalloc(sizeof(*table), GFP_ATOMIC);
226         if (table) {
227                 table->tb6_id = id;
228                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
229                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
230                 inet_peer_base_init(&table->tb6_peers);
231         }
232
233         return table;
234 }
235
236 struct fib6_table *fib6_new_table(struct net *net, u32 id)
237 {
238         struct fib6_table *tb;
239
240         if (id == 0)
241                 id = RT6_TABLE_MAIN;
242         tb = fib6_get_table(net, id);
243         if (tb)
244                 return tb;
245
246         tb = fib6_alloc_table(net, id);
247         if (tb)
248                 fib6_link_table(net, tb);
249
250         return tb;
251 }
252 EXPORT_SYMBOL_GPL(fib6_new_table);
253
254 struct fib6_table *fib6_get_table(struct net *net, u32 id)
255 {
256         struct fib6_table *tb;
257         struct hlist_head *head;
258         unsigned int h;
259
260         if (id == 0)
261                 id = RT6_TABLE_MAIN;
262         h = id & (FIB6_TABLE_HASHSZ - 1);
263         rcu_read_lock();
264         head = &net->ipv6.fib_table_hash[h];
265         hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
266                 if (tb->tb6_id == id) {
267                         rcu_read_unlock();
268                         return tb;
269                 }
270         }
271         rcu_read_unlock();
272
273         return NULL;
274 }
275 EXPORT_SYMBOL_GPL(fib6_get_table);
276
277 static void __net_init fib6_tables_init(struct net *net)
278 {
279         fib6_link_table(net, net->ipv6.fib6_main_tbl);
280         fib6_link_table(net, net->ipv6.fib6_local_tbl);
281 }
282 #else
283
284 struct fib6_table *fib6_new_table(struct net *net, u32 id)
285 {
286         return fib6_get_table(net, id);
287 }
288
289 struct fib6_table *fib6_get_table(struct net *net, u32 id)
290 {
291           return net->ipv6.fib6_main_tbl;
292 }
293
294 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
295                                    int flags, pol_lookup_t lookup)
296 {
297         struct rt6_info *rt;
298
299         rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
300         if (rt->dst.error == -EAGAIN) {
301                 ip6_rt_put(rt);
302                 rt = net->ipv6.ip6_null_entry;
303                 dst_hold(&rt->dst);
304         }
305
306         return &rt->dst;
307 }
308
309 static void __net_init fib6_tables_init(struct net *net)
310 {
311         fib6_link_table(net, net->ipv6.fib6_main_tbl);
312 }
313
314 #endif
315
316 unsigned int fib6_tables_seq_read(struct net *net)
317 {
318         unsigned int h, fib_seq = 0;
319
320         rcu_read_lock();
321         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
322                 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
323                 struct fib6_table *tb;
324
325                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
326                         read_lock_bh(&tb->tb6_lock);
327                         fib_seq += tb->fib_seq;
328                         read_unlock_bh(&tb->tb6_lock);
329                 }
330         }
331         rcu_read_unlock();
332
333         return fib_seq;
334 }
335
336 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
337                                     enum fib_event_type event_type,
338                                     struct rt6_info *rt)
339 {
340         struct fib6_entry_notifier_info info = {
341                 .rt = rt,
342         };
343
344         return call_fib6_notifier(nb, net, event_type, &info.info);
345 }
346
347 static int call_fib6_entry_notifiers(struct net *net,
348                                      enum fib_event_type event_type,
349                                      struct rt6_info *rt)
350 {
351         struct fib6_entry_notifier_info info = {
352                 .rt = rt,
353         };
354
355         rt->rt6i_table->fib_seq++;
356         return call_fib6_notifiers(net, event_type, &info.info);
357 }
358
359 struct fib6_dump_arg {
360         struct net *net;
361         struct notifier_block *nb;
362 };
363
364 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
365 {
366         if (rt == arg->net->ipv6.ip6_null_entry)
367                 return;
368         call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
369 }
370
371 static int fib6_node_dump(struct fib6_walker *w)
372 {
373         struct rt6_info *rt;
374
375         for (rt = w->leaf; rt; rt = rt->dst.rt6_next)
376                 fib6_rt_dump(rt, w->args);
377         w->leaf = NULL;
378         return 0;
379 }
380
381 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
382                             struct fib6_walker *w)
383 {
384         w->root = &tb->tb6_root;
385         read_lock_bh(&tb->tb6_lock);
386         fib6_walk(net, w);
387         read_unlock_bh(&tb->tb6_lock);
388 }
389
390 /* Called with rcu_read_lock() */
391 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
392 {
393         struct fib6_dump_arg arg;
394         struct fib6_walker *w;
395         unsigned int h;
396
397         w = kzalloc(sizeof(*w), GFP_ATOMIC);
398         if (!w)
399                 return -ENOMEM;
400
401         w->func = fib6_node_dump;
402         arg.net = net;
403         arg.nb = nb;
404         w->args = &arg;
405
406         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
407                 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
408                 struct fib6_table *tb;
409
410                 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
411                         fib6_table_dump(net, tb, w);
412         }
413
414         kfree(w);
415
416         return 0;
417 }
418
419 static int fib6_dump_node(struct fib6_walker *w)
420 {
421         int res;
422         struct rt6_info *rt;
423
424         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
425                 res = rt6_dump_route(rt, w->args);
426                 if (res < 0) {
427                         /* Frame is full, suspend walking */
428                         w->leaf = rt;
429                         return 1;
430                 }
431
432                 /* Multipath routes are dumped in one route with the
433                  * RTA_MULTIPATH attribute. Jump 'rt' to point to the
434                  * last sibling of this route (no need to dump the
435                  * sibling routes again)
436                  */
437                 if (rt->rt6i_nsiblings)
438                         rt = list_last_entry(&rt->rt6i_siblings,
439                                              struct rt6_info,
440                                              rt6i_siblings);
441         }
442         w->leaf = NULL;
443         return 0;
444 }
445
446 static void fib6_dump_end(struct netlink_callback *cb)
447 {
448         struct net *net = sock_net(cb->skb->sk);
449         struct fib6_walker *w = (void *)cb->args[2];
450
451         if (w) {
452                 if (cb->args[4]) {
453                         cb->args[4] = 0;
454                         fib6_walker_unlink(net, w);
455                 }
456                 cb->args[2] = 0;
457                 kfree(w);
458         }
459         cb->done = (void *)cb->args[3];
460         cb->args[1] = 3;
461 }
462
463 static int fib6_dump_done(struct netlink_callback *cb)
464 {
465         fib6_dump_end(cb);
466         return cb->done ? cb->done(cb) : 0;
467 }
468
469 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
470                            struct netlink_callback *cb)
471 {
472         struct net *net = sock_net(skb->sk);
473         struct fib6_walker *w;
474         int res;
475
476         w = (void *)cb->args[2];
477         w->root = &table->tb6_root;
478
479         if (cb->args[4] == 0) {
480                 w->count = 0;
481                 w->skip = 0;
482
483                 read_lock_bh(&table->tb6_lock);
484                 res = fib6_walk(net, w);
485                 read_unlock_bh(&table->tb6_lock);
486                 if (res > 0) {
487                         cb->args[4] = 1;
488                         cb->args[5] = w->root->fn_sernum;
489                 }
490         } else {
491                 if (cb->args[5] != w->root->fn_sernum) {
492                         /* Begin at the root if the tree changed */
493                         cb->args[5] = w->root->fn_sernum;
494                         w->state = FWS_INIT;
495                         w->node = w->root;
496                         w->skip = w->count;
497                 } else
498                         w->skip = 0;
499
500                 read_lock_bh(&table->tb6_lock);
501                 res = fib6_walk_continue(w);
502                 read_unlock_bh(&table->tb6_lock);
503                 if (res <= 0) {
504                         fib6_walker_unlink(net, w);
505                         cb->args[4] = 0;
506                 }
507         }
508
509         return res;
510 }
511
512 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
513 {
514         struct net *net = sock_net(skb->sk);
515         unsigned int h, s_h;
516         unsigned int e = 0, s_e;
517         struct rt6_rtnl_dump_arg arg;
518         struct fib6_walker *w;
519         struct fib6_table *tb;
520         struct hlist_head *head;
521         int res = 0;
522
523         s_h = cb->args[0];
524         s_e = cb->args[1];
525
526         w = (void *)cb->args[2];
527         if (!w) {
528                 /* New dump:
529                  *
530                  * 1. hook callback destructor.
531                  */
532                 cb->args[3] = (long)cb->done;
533                 cb->done = fib6_dump_done;
534
535                 /*
536                  * 2. allocate and initialize walker.
537                  */
538                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
539                 if (!w)
540                         return -ENOMEM;
541                 w->func = fib6_dump_node;
542                 cb->args[2] = (long)w;
543         }
544
545         arg.skb = skb;
546         arg.cb = cb;
547         arg.net = net;
548         w->args = &arg;
549
550         rcu_read_lock();
551         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
552                 e = 0;
553                 head = &net->ipv6.fib_table_hash[h];
554                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
555                         if (e < s_e)
556                                 goto next;
557                         res = fib6_dump_table(tb, skb, cb);
558                         if (res != 0)
559                                 goto out;
560 next:
561                         e++;
562                 }
563         }
564 out:
565         rcu_read_unlock();
566         cb->args[1] = e;
567         cb->args[0] = h;
568
569         res = res < 0 ? res : skb->len;
570         if (res <= 0)
571                 fib6_dump_end(cb);
572         return res;
573 }
574
575 /*
576  *      Routing Table
577  *
578  *      return the appropriate node for a routing tree "add" operation
579  *      by either creating and inserting or by returning an existing
580  *      node.
581  */
582
583 static struct fib6_node *fib6_add_1(struct fib6_node *root,
584                                      struct in6_addr *addr, int plen,
585                                      int offset, int allow_create,
586                                      int replace_required, int sernum,
587                                      struct netlink_ext_ack *extack)
588 {
589         struct fib6_node *fn, *in, *ln;
590         struct fib6_node *pn = NULL;
591         struct rt6key *key;
592         int     bit;
593         __be32  dir = 0;
594
595         RT6_TRACE("fib6_add_1\n");
596
597         /* insert node in tree */
598
599         fn = root;
600
601         do {
602                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
603
604                 /*
605                  *      Prefix match
606                  */
607                 if (plen < fn->fn_bit ||
608                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
609                         if (!allow_create) {
610                                 if (replace_required) {
611                                         NL_SET_ERR_MSG(extack,
612                                                        "Can not replace route - no match found");
613                                         pr_warn("Can't replace route, no match found\n");
614                                         return ERR_PTR(-ENOENT);
615                                 }
616                                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
617                         }
618                         goto insert_above;
619                 }
620
621                 /*
622                  *      Exact match ?
623                  */
624
625                 if (plen == fn->fn_bit) {
626                         /* clean up an intermediate node */
627                         if (!(fn->fn_flags & RTN_RTINFO)) {
628                                 rt6_release(fn->leaf);
629                                 fn->leaf = NULL;
630                         }
631
632                         fn->fn_sernum = sernum;
633
634                         return fn;
635                 }
636
637                 /*
638                  *      We have more bits to go
639                  */
640
641                 /* Try to walk down on tree. */
642                 fn->fn_sernum = sernum;
643                 dir = addr_bit_set(addr, fn->fn_bit);
644                 pn = fn;
645                 fn = dir ? fn->right : fn->left;
646         } while (fn);
647
648         if (!allow_create) {
649                 /* We should not create new node because
650                  * NLM_F_REPLACE was specified without NLM_F_CREATE
651                  * I assume it is safe to require NLM_F_CREATE when
652                  * REPLACE flag is used! Later we may want to remove the
653                  * check for replace_required, because according
654                  * to netlink specification, NLM_F_CREATE
655                  * MUST be specified if new route is created.
656                  * That would keep IPv6 consistent with IPv4
657                  */
658                 if (replace_required) {
659                         NL_SET_ERR_MSG(extack,
660                                        "Can not replace route - no match found");
661                         pr_warn("Can't replace route, no match found\n");
662                         return ERR_PTR(-ENOENT);
663                 }
664                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
665         }
666         /*
667          *      We walked to the bottom of tree.
668          *      Create new leaf node without children.
669          */
670
671         ln = node_alloc();
672
673         if (!ln)
674                 return ERR_PTR(-ENOMEM);
675         ln->fn_bit = plen;
676
677         ln->parent = pn;
678         ln->fn_sernum = sernum;
679
680         if (dir)
681                 pn->right = ln;
682         else
683                 pn->left  = ln;
684
685         return ln;
686
687
688 insert_above:
689         /*
690          * split since we don't have a common prefix anymore or
691          * we have a less significant route.
692          * we've to insert an intermediate node on the list
693          * this new node will point to the one we need to create
694          * and the current
695          */
696
697         pn = fn->parent;
698
699         /* find 1st bit in difference between the 2 addrs.
700
701            See comment in __ipv6_addr_diff: bit may be an invalid value,
702            but if it is >= plen, the value is ignored in any case.
703          */
704
705         bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
706
707         /*
708          *              (intermediate)[in]
709          *                /        \
710          *      (new leaf node)[ln] (old node)[fn]
711          */
712         if (plen > bit) {
713                 in = node_alloc();
714                 ln = node_alloc();
715
716                 if (!in || !ln) {
717                         if (in)
718                                 node_free_immediate(in);
719                         if (ln)
720                                 node_free_immediate(ln);
721                         return ERR_PTR(-ENOMEM);
722                 }
723
724                 /*
725                  * new intermediate node.
726                  * RTN_RTINFO will
727                  * be off since that an address that chooses one of
728                  * the branches would not match less specific routes
729                  * in the other branch
730                  */
731
732                 in->fn_bit = bit;
733
734                 in->parent = pn;
735                 in->leaf = fn->leaf;
736                 atomic_inc(&in->leaf->rt6i_ref);
737
738                 in->fn_sernum = sernum;
739
740                 /* update parent pointer */
741                 if (dir)
742                         pn->right = in;
743                 else
744                         pn->left  = in;
745
746                 ln->fn_bit = plen;
747
748                 ln->parent = in;
749                 fn->parent = in;
750
751                 ln->fn_sernum = sernum;
752
753                 if (addr_bit_set(addr, bit)) {
754                         in->right = ln;
755                         in->left  = fn;
756                 } else {
757                         in->left  = ln;
758                         in->right = fn;
759                 }
760         } else { /* plen <= bit */
761
762                 /*
763                  *              (new leaf node)[ln]
764                  *                /        \
765                  *           (old node)[fn] NULL
766                  */
767
768                 ln = node_alloc();
769
770                 if (!ln)
771                         return ERR_PTR(-ENOMEM);
772
773                 ln->fn_bit = plen;
774
775                 ln->parent = pn;
776
777                 ln->fn_sernum = sernum;
778
779                 if (dir)
780                         pn->right = ln;
781                 else
782                         pn->left  = ln;
783
784                 if (addr_bit_set(&key->addr, plen))
785                         ln->right = fn;
786                 else
787                         ln->left  = fn;
788
789                 fn->parent = ln;
790         }
791         return ln;
792 }
793
794 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
795 {
796         return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
797                RTF_GATEWAY;
798 }
799
800 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
801 {
802         int i;
803
804         for (i = 0; i < RTAX_MAX; i++) {
805                 if (test_bit(i, mxc->mx_valid))
806                         mp[i] = mxc->mx[i];
807         }
808 }
809
810 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
811 {
812         if (!mxc->mx)
813                 return 0;
814
815         if (dst->flags & DST_HOST) {
816                 u32 *mp = dst_metrics_write_ptr(dst);
817
818                 if (unlikely(!mp))
819                         return -ENOMEM;
820
821                 fib6_copy_metrics(mp, mxc);
822         } else {
823                 dst_init_metrics(dst, mxc->mx, false);
824
825                 /* We've stolen mx now. */
826                 mxc->mx = NULL;
827         }
828
829         return 0;
830 }
831
832 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
833                           struct net *net)
834 {
835         if (atomic_read(&rt->rt6i_ref) != 1) {
836                 /* This route is used as dummy address holder in some split
837                  * nodes. It is not leaked, but it still holds other resources,
838                  * which must be released in time. So, scan ascendant nodes
839                  * and replace dummy references to this route with references
840                  * to still alive ones.
841                  */
842                 while (fn) {
843                         if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
844                                 fn->leaf = fib6_find_prefix(net, fn);
845                                 atomic_inc(&fn->leaf->rt6i_ref);
846                                 rt6_release(rt);
847                         }
848                         fn = fn->parent;
849                 }
850         }
851 }
852
853 /*
854  *      Insert routing information in a node.
855  */
856
857 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
858                             struct nl_info *info, struct mx6_config *mxc)
859 {
860         struct rt6_info *iter = NULL;
861         struct rt6_info **ins;
862         struct rt6_info **fallback_ins = NULL;
863         int replace = (info->nlh &&
864                        (info->nlh->nlmsg_flags & NLM_F_REPLACE));
865         int add = (!info->nlh ||
866                    (info->nlh->nlmsg_flags & NLM_F_CREATE));
867         int found = 0;
868         bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
869         u16 nlflags = NLM_F_EXCL;
870         int err;
871
872         if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
873                 nlflags |= NLM_F_APPEND;
874
875         ins = &fn->leaf;
876
877         for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
878                 /*
879                  *      Search for duplicates
880                  */
881
882                 if (iter->rt6i_metric == rt->rt6i_metric) {
883                         /*
884                          *      Same priority level
885                          */
886                         if (info->nlh &&
887                             (info->nlh->nlmsg_flags & NLM_F_EXCL))
888                                 return -EEXIST;
889
890                         nlflags &= ~NLM_F_EXCL;
891                         if (replace) {
892                                 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
893                                         found++;
894                                         break;
895                                 }
896                                 fallback_ins = fallback_ins ?: ins;
897                                 goto next_iter;
898                         }
899
900                         if (rt6_duplicate_nexthop(iter, rt)) {
901                                 if (rt->rt6i_nsiblings)
902                                         rt->rt6i_nsiblings = 0;
903                                 if (!(iter->rt6i_flags & RTF_EXPIRES))
904                                         return -EEXIST;
905                                 if (!(rt->rt6i_flags & RTF_EXPIRES))
906                                         rt6_clean_expires(iter);
907                                 else
908                                         rt6_set_expires(iter, rt->dst.expires);
909                                 iter->rt6i_pmtu = rt->rt6i_pmtu;
910                                 return -EEXIST;
911                         }
912                         /* If we have the same destination and the same metric,
913                          * but not the same gateway, then the route we try to
914                          * add is sibling to this route, increment our counter
915                          * of siblings, and later we will add our route to the
916                          * list.
917                          * Only static routes (which don't have flag
918                          * RTF_EXPIRES) are used for ECMPv6.
919                          *
920                          * To avoid long list, we only had siblings if the
921                          * route have a gateway.
922                          */
923                         if (rt_can_ecmp &&
924                             rt6_qualify_for_ecmp(iter))
925                                 rt->rt6i_nsiblings++;
926                 }
927
928                 if (iter->rt6i_metric > rt->rt6i_metric)
929                         break;
930
931 next_iter:
932                 ins = &iter->dst.rt6_next;
933         }
934
935         if (fallback_ins && !found) {
936                 /* No matching route with same ecmp-able-ness found, replace
937                  * first matching route
938                  */
939                 ins = fallback_ins;
940                 iter = *ins;
941                 found++;
942         }
943
944         /* Reset round-robin state, if necessary */
945         if (ins == &fn->leaf)
946                 fn->rr_ptr = NULL;
947
948         /* Link this route to others same route. */
949         if (rt->rt6i_nsiblings) {
950                 unsigned int rt6i_nsiblings;
951                 struct rt6_info *sibling, *temp_sibling;
952
953                 /* Find the first route that have the same metric */
954                 sibling = fn->leaf;
955                 while (sibling) {
956                         if (sibling->rt6i_metric == rt->rt6i_metric &&
957                             rt6_qualify_for_ecmp(sibling)) {
958                                 list_add_tail(&rt->rt6i_siblings,
959                                               &sibling->rt6i_siblings);
960                                 break;
961                         }
962                         sibling = sibling->dst.rt6_next;
963                 }
964                 /* For each sibling in the list, increment the counter of
965                  * siblings. BUG() if counters does not match, list of siblings
966                  * is broken!
967                  */
968                 rt6i_nsiblings = 0;
969                 list_for_each_entry_safe(sibling, temp_sibling,
970                                          &rt->rt6i_siblings, rt6i_siblings) {
971                         sibling->rt6i_nsiblings++;
972                         BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
973                         rt6i_nsiblings++;
974                 }
975                 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
976         }
977
978         /*
979          *      insert node
980          */
981         if (!replace) {
982                 if (!add)
983                         pr_warn("NLM_F_CREATE should be set when creating new route\n");
984
985 add:
986                 nlflags |= NLM_F_CREATE;
987                 err = fib6_commit_metrics(&rt->dst, mxc);
988                 if (err)
989                         return err;
990
991                 rt->dst.rt6_next = iter;
992                 *ins = rt;
993                 rcu_assign_pointer(rt->rt6i_node, fn);
994                 atomic_inc(&rt->rt6i_ref);
995                 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD,
996                                           rt);
997                 if (!info->skip_notify)
998                         inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
999                 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1000
1001                 if (!(fn->fn_flags & RTN_RTINFO)) {
1002                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1003                         fn->fn_flags |= RTN_RTINFO;
1004                 }
1005
1006         } else {
1007                 int nsiblings;
1008
1009                 if (!found) {
1010                         if (add)
1011                                 goto add;
1012                         pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1013                         return -ENOENT;
1014                 }
1015
1016                 err = fib6_commit_metrics(&rt->dst, mxc);
1017                 if (err)
1018                         return err;
1019
1020                 *ins = rt;
1021                 rcu_assign_pointer(rt->rt6i_node, fn);
1022                 rt->dst.rt6_next = iter->dst.rt6_next;
1023                 atomic_inc(&rt->rt6i_ref);
1024                 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE,
1025                                           rt);
1026                 if (!info->skip_notify)
1027                         inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1028                 if (!(fn->fn_flags & RTN_RTINFO)) {
1029                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1030                         fn->fn_flags |= RTN_RTINFO;
1031                 }
1032                 nsiblings = iter->rt6i_nsiblings;
1033                 iter->rt6i_node = NULL;
1034                 fib6_purge_rt(iter, fn, info->nl_net);
1035                 if (fn->rr_ptr == iter)
1036                         fn->rr_ptr = NULL;
1037                 rt6_release(iter);
1038
1039                 if (nsiblings) {
1040                         /* Replacing an ECMP route, remove all siblings */
1041                         ins = &rt->dst.rt6_next;
1042                         iter = *ins;
1043                         while (iter) {
1044                                 if (iter->rt6i_metric > rt->rt6i_metric)
1045                                         break;
1046                                 if (rt6_qualify_for_ecmp(iter)) {
1047                                         *ins = iter->dst.rt6_next;
1048                                         iter->rt6i_node = NULL;
1049                                         fib6_purge_rt(iter, fn, info->nl_net);
1050                                         if (fn->rr_ptr == iter)
1051                                                 fn->rr_ptr = NULL;
1052                                         rt6_release(iter);
1053                                         nsiblings--;
1054                                 } else {
1055                                         ins = &iter->dst.rt6_next;
1056                                 }
1057                                 iter = *ins;
1058                         }
1059                         WARN_ON(nsiblings != 0);
1060                 }
1061         }
1062
1063         return 0;
1064 }
1065
1066 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1067 {
1068         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1069             (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1070                 mod_timer(&net->ipv6.ip6_fib_timer,
1071                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1072 }
1073
1074 void fib6_force_start_gc(struct net *net)
1075 {
1076         if (!timer_pending(&net->ipv6.ip6_fib_timer))
1077                 mod_timer(&net->ipv6.ip6_fib_timer,
1078                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1079 }
1080
1081 /*
1082  *      Add routing information to the routing tree.
1083  *      <destination addr>/<source addr>
1084  *      with source addr info in sub-trees
1085  */
1086
1087 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1088              struct nl_info *info, struct mx6_config *mxc,
1089              struct netlink_ext_ack *extack)
1090 {
1091         struct fib6_node *fn, *pn = NULL;
1092         int err = -ENOMEM;
1093         int allow_create = 1;
1094         int replace_required = 0;
1095         int sernum = fib6_new_sernum(info->nl_net);
1096
1097         if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1098                 return -EINVAL;
1099
1100         if (info->nlh) {
1101                 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1102                         allow_create = 0;
1103                 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1104                         replace_required = 1;
1105         }
1106         if (!allow_create && !replace_required)
1107                 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1108
1109         fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1110                         offsetof(struct rt6_info, rt6i_dst), allow_create,
1111                         replace_required, sernum, extack);
1112         if (IS_ERR(fn)) {
1113                 err = PTR_ERR(fn);
1114                 fn = NULL;
1115                 goto out;
1116         }
1117
1118         pn = fn;
1119
1120 #ifdef CONFIG_IPV6_SUBTREES
1121         if (rt->rt6i_src.plen) {
1122                 struct fib6_node *sn;
1123
1124                 if (!fn->subtree) {
1125                         struct fib6_node *sfn;
1126
1127                         /*
1128                          * Create subtree.
1129                          *
1130                          *              fn[main tree]
1131                          *              |
1132                          *              sfn[subtree root]
1133                          *                 \
1134                          *                  sn[new leaf node]
1135                          */
1136
1137                         /* Create subtree root node */
1138                         sfn = node_alloc();
1139                         if (!sfn)
1140                                 goto failure;
1141
1142                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1143                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1144                         sfn->fn_flags = RTN_ROOT;
1145                         sfn->fn_sernum = sernum;
1146
1147                         /* Now add the first leaf node to new subtree */
1148
1149                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1150                                         rt->rt6i_src.plen,
1151                                         offsetof(struct rt6_info, rt6i_src),
1152                                         allow_create, replace_required, sernum,
1153                                         extack);
1154
1155                         if (IS_ERR(sn)) {
1156                                 /* If it is failed, discard just allocated
1157                                    root, and then (in failure) stale node
1158                                    in main tree.
1159                                  */
1160                                 node_free_immediate(sfn);
1161                                 err = PTR_ERR(sn);
1162                                 goto failure;
1163                         }
1164
1165                         /* Now link new subtree to main tree */
1166                         sfn->parent = fn;
1167                         fn->subtree = sfn;
1168                 } else {
1169                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1170                                         rt->rt6i_src.plen,
1171                                         offsetof(struct rt6_info, rt6i_src),
1172                                         allow_create, replace_required, sernum,
1173                                         extack);
1174
1175                         if (IS_ERR(sn)) {
1176                                 err = PTR_ERR(sn);
1177                                 goto failure;
1178                         }
1179                 }
1180
1181                 if (!fn->leaf) {
1182                         fn->leaf = rt;
1183                         atomic_inc(&rt->rt6i_ref);
1184                 }
1185                 fn = sn;
1186         }
1187 #endif
1188
1189         err = fib6_add_rt2node(fn, rt, info, mxc);
1190         if (!err) {
1191                 fib6_start_gc(info->nl_net, rt);
1192                 if (!(rt->rt6i_flags & RTF_CACHE))
1193                         fib6_prune_clones(info->nl_net, pn);
1194         }
1195
1196 out:
1197         if (err) {
1198 #ifdef CONFIG_IPV6_SUBTREES
1199                 /*
1200                  * If fib6_add_1 has cleared the old leaf pointer in the
1201                  * super-tree leaf node we have to find a new one for it.
1202                  */
1203                 if (pn != fn && pn->leaf == rt) {
1204                         pn->leaf = NULL;
1205                         atomic_dec(&rt->rt6i_ref);
1206                 }
1207                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1208                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
1209 #if RT6_DEBUG >= 2
1210                         if (!pn->leaf) {
1211                                 WARN_ON(pn->leaf == NULL);
1212                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1213                         }
1214 #endif
1215                         atomic_inc(&pn->leaf->rt6i_ref);
1216                 }
1217 #endif
1218                 goto failure;
1219         }
1220         return err;
1221
1222 failure:
1223         /* fn->leaf could be NULL if fn is an intermediate node and we
1224          * failed to add the new route to it in both subtree creation
1225          * failure and fib6_add_rt2node() failure case.
1226          * In both cases, fib6_repair_tree() should be called to fix
1227          * fn->leaf.
1228          */
1229         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1230                 fib6_repair_tree(info->nl_net, fn);
1231         /* Always release dst as dst->__refcnt is guaranteed
1232          * to be taken before entering this function
1233          */
1234         dst_release_immediate(&rt->dst);
1235         return err;
1236 }
1237
1238 /*
1239  *      Routing tree lookup
1240  *
1241  */
1242
1243 struct lookup_args {
1244         int                     offset;         /* key offset on rt6_info       */
1245         const struct in6_addr   *addr;          /* search key                   */
1246 };
1247
1248 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1249                                        struct lookup_args *args)
1250 {
1251         struct fib6_node *fn;
1252         __be32 dir;
1253
1254         if (unlikely(args->offset == 0))
1255                 return NULL;
1256
1257         /*
1258          *      Descend on a tree
1259          */
1260
1261         fn = root;
1262
1263         for (;;) {
1264                 struct fib6_node *next;
1265
1266                 dir = addr_bit_set(args->addr, fn->fn_bit);
1267
1268                 next = dir ? fn->right : fn->left;
1269
1270                 if (next) {
1271                         fn = next;
1272                         continue;
1273                 }
1274                 break;
1275         }
1276
1277         while (fn) {
1278                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1279                         struct rt6key *key;
1280
1281                         key = (struct rt6key *) ((u8 *) fn->leaf +
1282                                                  args->offset);
1283
1284                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1285 #ifdef CONFIG_IPV6_SUBTREES
1286                                 if (fn->subtree) {
1287                                         struct fib6_node *sfn;
1288                                         sfn = fib6_lookup_1(fn->subtree,
1289                                                             args + 1);
1290                                         if (!sfn)
1291                                                 goto backtrack;
1292                                         fn = sfn;
1293                                 }
1294 #endif
1295                                 if (fn->fn_flags & RTN_RTINFO)
1296                                         return fn;
1297                         }
1298                 }
1299 #ifdef CONFIG_IPV6_SUBTREES
1300 backtrack:
1301 #endif
1302                 if (fn->fn_flags & RTN_ROOT)
1303                         break;
1304
1305                 fn = fn->parent;
1306         }
1307
1308         return NULL;
1309 }
1310
1311 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1312                               const struct in6_addr *saddr)
1313 {
1314         struct fib6_node *fn;
1315         struct lookup_args args[] = {
1316                 {
1317                         .offset = offsetof(struct rt6_info, rt6i_dst),
1318                         .addr = daddr,
1319                 },
1320 #ifdef CONFIG_IPV6_SUBTREES
1321                 {
1322                         .offset = offsetof(struct rt6_info, rt6i_src),
1323                         .addr = saddr,
1324                 },
1325 #endif
1326                 {
1327                         .offset = 0,    /* sentinel */
1328                 }
1329         };
1330
1331         fn = fib6_lookup_1(root, daddr ? args : args + 1);
1332         if (!fn || fn->fn_flags & RTN_TL_ROOT)
1333                 fn = root;
1334
1335         return fn;
1336 }
1337
1338 /*
1339  *      Get node with specified destination prefix (and source prefix,
1340  *      if subtrees are used)
1341  */
1342
1343
1344 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1345                                        const struct in6_addr *addr,
1346                                        int plen, int offset)
1347 {
1348         struct fib6_node *fn;
1349
1350         for (fn = root; fn ; ) {
1351                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1352
1353                 /*
1354                  *      Prefix match
1355                  */
1356                 if (plen < fn->fn_bit ||
1357                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1358                         return NULL;
1359
1360                 if (plen == fn->fn_bit)
1361                         return fn;
1362
1363                 /*
1364                  *      We have more bits to go
1365                  */
1366                 if (addr_bit_set(addr, fn->fn_bit))
1367                         fn = fn->right;
1368                 else
1369                         fn = fn->left;
1370         }
1371         return NULL;
1372 }
1373
1374 struct fib6_node *fib6_locate(struct fib6_node *root,
1375                               const struct in6_addr *daddr, int dst_len,
1376                               const struct in6_addr *saddr, int src_len)
1377 {
1378         struct fib6_node *fn;
1379
1380         fn = fib6_locate_1(root, daddr, dst_len,
1381                            offsetof(struct rt6_info, rt6i_dst));
1382
1383 #ifdef CONFIG_IPV6_SUBTREES
1384         if (src_len) {
1385                 WARN_ON(saddr == NULL);
1386                 if (fn && fn->subtree)
1387                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
1388                                            offsetof(struct rt6_info, rt6i_src));
1389         }
1390 #endif
1391
1392         if (fn && fn->fn_flags & RTN_RTINFO)
1393                 return fn;
1394
1395         return NULL;
1396 }
1397
1398
1399 /*
1400  *      Deletion
1401  *
1402  */
1403
1404 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1405 {
1406         if (fn->fn_flags & RTN_ROOT)
1407                 return net->ipv6.ip6_null_entry;
1408
1409         while (fn) {
1410                 if (fn->left)
1411                         return fn->left->leaf;
1412                 if (fn->right)
1413                         return fn->right->leaf;
1414
1415                 fn = FIB6_SUBTREE(fn);
1416         }
1417         return NULL;
1418 }
1419
1420 /*
1421  *      Called to trim the tree of intermediate nodes when possible. "fn"
1422  *      is the node we want to try and remove.
1423  */
1424
1425 static struct fib6_node *fib6_repair_tree(struct net *net,
1426                                            struct fib6_node *fn)
1427 {
1428         int children;
1429         int nstate;
1430         struct fib6_node *child, *pn;
1431         struct fib6_walker *w;
1432         int iter = 0;
1433
1434         for (;;) {
1435                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1436                 iter++;
1437
1438                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1439                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1440                 WARN_ON(fn->leaf);
1441
1442                 children = 0;
1443                 child = NULL;
1444                 if (fn->right)
1445                         child = fn->right, children |= 1;
1446                 if (fn->left)
1447                         child = fn->left, children |= 2;
1448
1449                 if (children == 3 || FIB6_SUBTREE(fn)
1450 #ifdef CONFIG_IPV6_SUBTREES
1451                     /* Subtree root (i.e. fn) may have one child */
1452                     || (children && fn->fn_flags & RTN_ROOT)
1453 #endif
1454                     ) {
1455                         fn->leaf = fib6_find_prefix(net, fn);
1456 #if RT6_DEBUG >= 2
1457                         if (!fn->leaf) {
1458                                 WARN_ON(!fn->leaf);
1459                                 fn->leaf = net->ipv6.ip6_null_entry;
1460                         }
1461 #endif
1462                         atomic_inc(&fn->leaf->rt6i_ref);
1463                         return fn->parent;
1464                 }
1465
1466                 pn = fn->parent;
1467 #ifdef CONFIG_IPV6_SUBTREES
1468                 if (FIB6_SUBTREE(pn) == fn) {
1469                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1470                         FIB6_SUBTREE(pn) = NULL;
1471                         nstate = FWS_L;
1472                 } else {
1473                         WARN_ON(fn->fn_flags & RTN_ROOT);
1474 #endif
1475                         if (pn->right == fn)
1476                                 pn->right = child;
1477                         else if (pn->left == fn)
1478                                 pn->left = child;
1479 #if RT6_DEBUG >= 2
1480                         else
1481                                 WARN_ON(1);
1482 #endif
1483                         if (child)
1484                                 child->parent = pn;
1485                         nstate = FWS_R;
1486 #ifdef CONFIG_IPV6_SUBTREES
1487                 }
1488 #endif
1489
1490                 read_lock(&net->ipv6.fib6_walker_lock);
1491                 FOR_WALKERS(net, w) {
1492                         if (!child) {
1493                                 if (w->root == fn) {
1494                                         w->root = w->node = NULL;
1495                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1496                                 } else if (w->node == fn) {
1497                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1498                                         w->node = pn;
1499                                         w->state = nstate;
1500                                 }
1501                         } else {
1502                                 if (w->root == fn) {
1503                                         w->root = child;
1504                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1505                                 }
1506                                 if (w->node == fn) {
1507                                         w->node = child;
1508                                         if (children&2) {
1509                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1510                                                 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1511                                         } else {
1512                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1513                                                 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1514                                         }
1515                                 }
1516                         }
1517                 }
1518                 read_unlock(&net->ipv6.fib6_walker_lock);
1519
1520                 node_free(fn);
1521                 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1522                         return pn;
1523
1524                 rt6_release(pn->leaf);
1525                 pn->leaf = NULL;
1526                 fn = pn;
1527         }
1528 }
1529
1530 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1531                            struct nl_info *info)
1532 {
1533         struct fib6_walker *w;
1534         struct rt6_info *rt = *rtp;
1535         struct net *net = info->nl_net;
1536
1537         RT6_TRACE("fib6_del_route\n");
1538
1539         /* Unlink it */
1540         *rtp = rt->dst.rt6_next;
1541         rt->rt6i_node = NULL;
1542         net->ipv6.rt6_stats->fib_rt_entries--;
1543         net->ipv6.rt6_stats->fib_discarded_routes++;
1544
1545         /* Reset round-robin state, if necessary */
1546         if (fn->rr_ptr == rt)
1547                 fn->rr_ptr = NULL;
1548
1549         /* Remove this entry from other siblings */
1550         if (rt->rt6i_nsiblings) {
1551                 struct rt6_info *sibling, *next_sibling;
1552
1553                 list_for_each_entry_safe(sibling, next_sibling,
1554                                          &rt->rt6i_siblings, rt6i_siblings)
1555                         sibling->rt6i_nsiblings--;
1556                 rt->rt6i_nsiblings = 0;
1557                 list_del_init(&rt->rt6i_siblings);
1558         }
1559
1560         /* Adjust walkers */
1561         read_lock(&net->ipv6.fib6_walker_lock);
1562         FOR_WALKERS(net, w) {
1563                 if (w->state == FWS_C && w->leaf == rt) {
1564                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1565                         w->leaf = rt->dst.rt6_next;
1566                         if (!w->leaf)
1567                                 w->state = FWS_U;
1568                 }
1569         }
1570         read_unlock(&net->ipv6.fib6_walker_lock);
1571
1572         rt->dst.rt6_next = NULL;
1573
1574         /* If it was last route, expunge its radix tree node */
1575         if (!fn->leaf) {
1576                 fn->fn_flags &= ~RTN_RTINFO;
1577                 net->ipv6.rt6_stats->fib_route_nodes--;
1578                 fn = fib6_repair_tree(net, fn);
1579         }
1580
1581         fib6_purge_rt(rt, fn, net);
1582
1583         call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt);
1584         if (!info->skip_notify)
1585                 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1586         rt6_release(rt);
1587 }
1588
1589 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1590 {
1591         struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1592                                     lockdep_is_held(&rt->rt6i_table->tb6_lock));
1593         struct net *net = info->nl_net;
1594         struct rt6_info **rtp;
1595
1596 #if RT6_DEBUG >= 2
1597         if (rt->dst.obsolete > 0) {
1598                 WARN_ON(fn);
1599                 return -ENOENT;
1600         }
1601 #endif
1602         if (!fn || rt == net->ipv6.ip6_null_entry)
1603                 return -ENOENT;
1604
1605         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1606
1607         if (!(rt->rt6i_flags & RTF_CACHE)) {
1608                 struct fib6_node *pn = fn;
1609 #ifdef CONFIG_IPV6_SUBTREES
1610                 /* clones of this route might be in another subtree */
1611                 if (rt->rt6i_src.plen) {
1612                         while (!(pn->fn_flags & RTN_ROOT))
1613                                 pn = pn->parent;
1614                         pn = pn->parent;
1615                 }
1616 #endif
1617                 fib6_prune_clones(info->nl_net, pn);
1618         }
1619
1620         /*
1621          *      Walk the leaf entries looking for ourself
1622          */
1623
1624         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1625                 if (*rtp == rt) {
1626                         fib6_del_route(fn, rtp, info);
1627                         return 0;
1628                 }
1629         }
1630         return -ENOENT;
1631 }
1632
1633 /*
1634  *      Tree traversal function.
1635  *
1636  *      Certainly, it is not interrupt safe.
1637  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1638  *      It means, that we can modify tree during walking
1639  *      and use this function for garbage collection, clone pruning,
1640  *      cleaning tree when a device goes down etc. etc.
1641  *
1642  *      It guarantees that every node will be traversed,
1643  *      and that it will be traversed only once.
1644  *
1645  *      Callback function w->func may return:
1646  *      0 -> continue walking.
1647  *      positive value -> walking is suspended (used by tree dumps,
1648  *      and probably by gc, if it will be split to several slices)
1649  *      negative value -> terminate walking.
1650  *
1651  *      The function itself returns:
1652  *      0   -> walk is complete.
1653  *      >0  -> walk is incomplete (i.e. suspended)
1654  *      <0  -> walk is terminated by an error.
1655  */
1656
1657 static int fib6_walk_continue(struct fib6_walker *w)
1658 {
1659         struct fib6_node *fn, *pn;
1660
1661         for (;;) {
1662                 fn = w->node;
1663                 if (!fn)
1664                         return 0;
1665
1666                 if (w->prune && fn != w->root &&
1667                     fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1668                         w->state = FWS_C;
1669                         w->leaf = fn->leaf;
1670                 }
1671                 switch (w->state) {
1672 #ifdef CONFIG_IPV6_SUBTREES
1673                 case FWS_S:
1674                         if (FIB6_SUBTREE(fn)) {
1675                                 w->node = FIB6_SUBTREE(fn);
1676                                 continue;
1677                         }
1678                         w->state = FWS_L;
1679 #endif
1680                 case FWS_L:
1681                         if (fn->left) {
1682                                 w->node = fn->left;
1683                                 w->state = FWS_INIT;
1684                                 continue;
1685                         }
1686                         w->state = FWS_R;
1687                 case FWS_R:
1688                         if (fn->right) {
1689                                 w->node = fn->right;
1690                                 w->state = FWS_INIT;
1691                                 continue;
1692                         }
1693                         w->state = FWS_C;
1694                         w->leaf = fn->leaf;
1695                 case FWS_C:
1696                         if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1697                                 int err;
1698
1699                                 if (w->skip) {
1700                                         w->skip--;
1701                                         goto skip;
1702                                 }
1703
1704                                 err = w->func(w);
1705                                 if (err)
1706                                         return err;
1707
1708                                 w->count++;
1709                                 continue;
1710                         }
1711 skip:
1712                         w->state = FWS_U;
1713                 case FWS_U:
1714                         if (fn == w->root)
1715                                 return 0;
1716                         pn = fn->parent;
1717                         w->node = pn;
1718 #ifdef CONFIG_IPV6_SUBTREES
1719                         if (FIB6_SUBTREE(pn) == fn) {
1720                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1721                                 w->state = FWS_L;
1722                                 continue;
1723                         }
1724 #endif
1725                         if (pn->left == fn) {
1726                                 w->state = FWS_R;
1727                                 continue;
1728                         }
1729                         if (pn->right == fn) {
1730                                 w->state = FWS_C;
1731                                 w->leaf = w->node->leaf;
1732                                 continue;
1733                         }
1734 #if RT6_DEBUG >= 2
1735                         WARN_ON(1);
1736 #endif
1737                 }
1738         }
1739 }
1740
1741 static int fib6_walk(struct net *net, struct fib6_walker *w)
1742 {
1743         int res;
1744
1745         w->state = FWS_INIT;
1746         w->node = w->root;
1747
1748         fib6_walker_link(net, w);
1749         res = fib6_walk_continue(w);
1750         if (res <= 0)
1751                 fib6_walker_unlink(net, w);
1752         return res;
1753 }
1754
1755 static int fib6_clean_node(struct fib6_walker *w)
1756 {
1757         int res;
1758         struct rt6_info *rt;
1759         struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1760         struct nl_info info = {
1761                 .nl_net = c->net,
1762         };
1763
1764         if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1765             w->node->fn_sernum != c->sernum)
1766                 w->node->fn_sernum = c->sernum;
1767
1768         if (!c->func) {
1769                 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1770                 w->leaf = NULL;
1771                 return 0;
1772         }
1773
1774         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1775                 res = c->func(rt, c->arg);
1776                 if (res < 0) {
1777                         w->leaf = rt;
1778                         res = fib6_del(rt, &info);
1779                         if (res) {
1780 #if RT6_DEBUG >= 2
1781                                 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1782                                          __func__, rt,
1783                                          rcu_access_pointer(rt->rt6i_node),
1784                                          res);
1785 #endif
1786                                 continue;
1787                         }
1788                         return 0;
1789                 }
1790                 WARN_ON(res != 0);
1791         }
1792         w->leaf = rt;
1793         return 0;
1794 }
1795
1796 /*
1797  *      Convenient frontend to tree walker.
1798  *
1799  *      func is called on each route.
1800  *              It may return -1 -> delete this route.
1801  *                            0  -> continue walking
1802  *
1803  *      prune==1 -> only immediate children of node (certainly,
1804  *      ignoring pure split nodes) will be scanned.
1805  */
1806
1807 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1808                             int (*func)(struct rt6_info *, void *arg),
1809                             bool prune, int sernum, void *arg)
1810 {
1811         struct fib6_cleaner c;
1812
1813         c.w.root = root;
1814         c.w.func = fib6_clean_node;
1815         c.w.prune = prune;
1816         c.w.count = 0;
1817         c.w.skip = 0;
1818         c.func = func;
1819         c.sernum = sernum;
1820         c.arg = arg;
1821         c.net = net;
1822
1823         fib6_walk(net, &c.w);
1824 }
1825
1826 static void __fib6_clean_all(struct net *net,
1827                              int (*func)(struct rt6_info *, void *),
1828                              int sernum, void *arg)
1829 {
1830         struct fib6_table *table;
1831         struct hlist_head *head;
1832         unsigned int h;
1833
1834         rcu_read_lock();
1835         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1836                 head = &net->ipv6.fib_table_hash[h];
1837                 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1838                         write_lock_bh(&table->tb6_lock);
1839                         fib6_clean_tree(net, &table->tb6_root,
1840                                         func, false, sernum, arg);
1841                         write_unlock_bh(&table->tb6_lock);
1842                 }
1843         }
1844         rcu_read_unlock();
1845 }
1846
1847 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1848                     void *arg)
1849 {
1850         __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1851 }
1852
1853 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1854 {
1855         if (rt->rt6i_flags & RTF_CACHE) {
1856                 RT6_TRACE("pruning clone %p\n", rt);
1857                 return -1;
1858         }
1859
1860         return 0;
1861 }
1862
1863 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1864 {
1865         fib6_clean_tree(net, fn, fib6_prune_clone, true,
1866                         FIB6_NO_SERNUM_CHANGE, NULL);
1867 }
1868
1869 static void fib6_flush_trees(struct net *net)
1870 {
1871         int new_sernum = fib6_new_sernum(net);
1872
1873         __fib6_clean_all(net, NULL, new_sernum, NULL);
1874 }
1875
1876 /*
1877  *      Garbage collection
1878  */
1879
1880 struct fib6_gc_args
1881 {
1882         int                     timeout;
1883         int                     more;
1884 };
1885
1886 static int fib6_age(struct rt6_info *rt, void *arg)
1887 {
1888         struct fib6_gc_args *gc_args = arg;
1889         unsigned long now = jiffies;
1890
1891         /*
1892          *      check addrconf expiration here.
1893          *      Routes are expired even if they are in use.
1894          *
1895          *      Also age clones. Note, that clones are aged out
1896          *      only if they are not in use now.
1897          */
1898
1899         if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1900                 if (time_after(now, rt->dst.expires)) {
1901                         RT6_TRACE("expiring %p\n", rt);
1902                         return -1;
1903                 }
1904                 gc_args->more++;
1905         } else if (rt->rt6i_flags & RTF_CACHE) {
1906                 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout))
1907                         rt->dst.obsolete = DST_OBSOLETE_KILL;
1908                 if (atomic_read(&rt->dst.__refcnt) == 1 &&
1909                     rt->dst.obsolete == DST_OBSOLETE_KILL) {
1910                         RT6_TRACE("aging clone %p\n", rt);
1911                         return -1;
1912                 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1913                         struct neighbour *neigh;
1914                         __u8 neigh_flags = 0;
1915
1916                         neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1917                         if (neigh) {
1918                                 neigh_flags = neigh->flags;
1919                                 neigh_release(neigh);
1920                         }
1921                         if (!(neigh_flags & NTF_ROUTER)) {
1922                                 RT6_TRACE("purging route %p via non-router but gateway\n",
1923                                           rt);
1924                                 return -1;
1925                         }
1926                 }
1927                 gc_args->more++;
1928         }
1929
1930         return 0;
1931 }
1932
1933 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1934 {
1935         struct fib6_gc_args gc_args;
1936         unsigned long now;
1937
1938         if (force) {
1939                 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1940         } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1941                 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1942                 return;
1943         }
1944         gc_args.timeout = expires ? (int)expires :
1945                           net->ipv6.sysctl.ip6_rt_gc_interval;
1946         gc_args.more = 0;
1947
1948         fib6_clean_all(net, fib6_age, &gc_args);
1949         now = jiffies;
1950         net->ipv6.ip6_rt_last_gc = now;
1951
1952         if (gc_args.more)
1953                 mod_timer(&net->ipv6.ip6_fib_timer,
1954                           round_jiffies(now
1955                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1956         else
1957                 del_timer(&net->ipv6.ip6_fib_timer);
1958         spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1959 }
1960
1961 static void fib6_gc_timer_cb(unsigned long arg)
1962 {
1963         fib6_run_gc(0, (struct net *)arg, true);
1964 }
1965
1966 static int __net_init fib6_net_init(struct net *net)
1967 {
1968         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1969         int err;
1970
1971         err = fib6_notifier_init(net);
1972         if (err)
1973                 return err;
1974
1975         spin_lock_init(&net->ipv6.fib6_gc_lock);
1976         rwlock_init(&net->ipv6.fib6_walker_lock);
1977         INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1978         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1979
1980         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1981         if (!net->ipv6.rt6_stats)
1982                 goto out_timer;
1983
1984         /* Avoid false sharing : Use at least a full cache line */
1985         size = max_t(size_t, size, L1_CACHE_BYTES);
1986
1987         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1988         if (!net->ipv6.fib_table_hash)
1989                 goto out_rt6_stats;
1990
1991         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1992                                           GFP_KERNEL);
1993         if (!net->ipv6.fib6_main_tbl)
1994                 goto out_fib_table_hash;
1995
1996         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1997         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1998         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1999                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2000         inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2001
2002 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2003         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2004                                            GFP_KERNEL);
2005         if (!net->ipv6.fib6_local_tbl)
2006                 goto out_fib6_main_tbl;
2007         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2008         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
2009         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2010                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2011         inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2012 #endif
2013         fib6_tables_init(net);
2014
2015         return 0;
2016
2017 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2018 out_fib6_main_tbl:
2019         kfree(net->ipv6.fib6_main_tbl);
2020 #endif
2021 out_fib_table_hash:
2022         kfree(net->ipv6.fib_table_hash);
2023 out_rt6_stats:
2024         kfree(net->ipv6.rt6_stats);
2025 out_timer:
2026         fib6_notifier_exit(net);
2027         return -ENOMEM;
2028 }
2029
2030 static void fib6_net_exit(struct net *net)
2031 {
2032         unsigned int i;
2033
2034         rt6_ifdown(net, NULL);
2035         del_timer_sync(&net->ipv6.ip6_fib_timer);
2036
2037         for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2038                 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2039                 struct hlist_node *tmp;
2040                 struct fib6_table *tb;
2041
2042                 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2043                         hlist_del(&tb->tb6_hlist);
2044                         fib6_free_table(tb);
2045                 }
2046         }
2047
2048         kfree(net->ipv6.fib_table_hash);
2049         kfree(net->ipv6.rt6_stats);
2050         fib6_notifier_exit(net);
2051 }
2052
2053 static struct pernet_operations fib6_net_ops = {
2054         .init = fib6_net_init,
2055         .exit = fib6_net_exit,
2056 };
2057
2058 int __init fib6_init(void)
2059 {
2060         int ret = -ENOMEM;
2061
2062         fib6_node_kmem = kmem_cache_create("fib6_nodes",
2063                                            sizeof(struct fib6_node),
2064                                            0, SLAB_HWCACHE_ALIGN,
2065                                            NULL);
2066         if (!fib6_node_kmem)
2067                 goto out;
2068
2069         ret = register_pernet_subsys(&fib6_net_ops);
2070         if (ret)
2071                 goto out_kmem_cache_create;
2072
2073         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
2074                               0);
2075         if (ret)
2076                 goto out_unregister_subsys;
2077
2078         __fib6_flush_trees = fib6_flush_trees;
2079 out:
2080         return ret;
2081
2082 out_unregister_subsys:
2083         unregister_pernet_subsys(&fib6_net_ops);
2084 out_kmem_cache_create:
2085         kmem_cache_destroy(fib6_node_kmem);
2086         goto out;
2087 }
2088
2089 void fib6_gc_cleanup(void)
2090 {
2091         unregister_pernet_subsys(&fib6_net_ops);
2092         kmem_cache_destroy(fib6_node_kmem);
2093 }
2094
2095 #ifdef CONFIG_PROC_FS
2096
2097 struct ipv6_route_iter {
2098         struct seq_net_private p;
2099         struct fib6_walker w;
2100         loff_t skip;
2101         struct fib6_table *tbl;
2102         int sernum;
2103 };
2104
2105 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2106 {
2107         struct rt6_info *rt = v;
2108         struct ipv6_route_iter *iter = seq->private;
2109
2110         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2111
2112 #ifdef CONFIG_IPV6_SUBTREES
2113         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2114 #else
2115         seq_puts(seq, "00000000000000000000000000000000 00 ");
2116 #endif
2117         if (rt->rt6i_flags & RTF_GATEWAY)
2118                 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2119         else
2120                 seq_puts(seq, "00000000000000000000000000000000");
2121
2122         seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2123                    rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2124                    rt->dst.__use, rt->rt6i_flags,
2125                    rt->dst.dev ? rt->dst.dev->name : "");
2126         iter->w.leaf = NULL;
2127         return 0;
2128 }
2129
2130 static int ipv6_route_yield(struct fib6_walker *w)
2131 {
2132         struct ipv6_route_iter *iter = w->args;
2133
2134         if (!iter->skip)
2135                 return 1;
2136
2137         do {
2138                 iter->w.leaf = iter->w.leaf->dst.rt6_next;
2139                 iter->skip--;
2140                 if (!iter->skip && iter->w.leaf)
2141                         return 1;
2142         } while (iter->w.leaf);
2143
2144         return 0;
2145 }
2146
2147 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2148                                       struct net *net)
2149 {
2150         memset(&iter->w, 0, sizeof(iter->w));
2151         iter->w.func = ipv6_route_yield;
2152         iter->w.root = &iter->tbl->tb6_root;
2153         iter->w.state = FWS_INIT;
2154         iter->w.node = iter->w.root;
2155         iter->w.args = iter;
2156         iter->sernum = iter->w.root->fn_sernum;
2157         INIT_LIST_HEAD(&iter->w.lh);
2158         fib6_walker_link(net, &iter->w);
2159 }
2160
2161 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2162                                                     struct net *net)
2163 {
2164         unsigned int h;
2165         struct hlist_node *node;
2166
2167         if (tbl) {
2168                 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2169                 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2170         } else {
2171                 h = 0;
2172                 node = NULL;
2173         }
2174
2175         while (!node && h < FIB6_TABLE_HASHSZ) {
2176                 node = rcu_dereference_bh(
2177                         hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2178         }
2179         return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2180 }
2181
2182 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2183 {
2184         if (iter->sernum != iter->w.root->fn_sernum) {
2185                 iter->sernum = iter->w.root->fn_sernum;
2186                 iter->w.state = FWS_INIT;
2187                 iter->w.node = iter->w.root;
2188                 WARN_ON(iter->w.skip);
2189                 iter->w.skip = iter->w.count;
2190         }
2191 }
2192
2193 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2194 {
2195         int r;
2196         struct rt6_info *n;
2197         struct net *net = seq_file_net(seq);
2198         struct ipv6_route_iter *iter = seq->private;
2199
2200         if (!v)
2201                 goto iter_table;
2202
2203         n = ((struct rt6_info *)v)->dst.rt6_next;
2204         if (n) {
2205                 ++*pos;
2206                 return n;
2207         }
2208
2209 iter_table:
2210         ipv6_route_check_sernum(iter);
2211         read_lock(&iter->tbl->tb6_lock);
2212         r = fib6_walk_continue(&iter->w);
2213         read_unlock(&iter->tbl->tb6_lock);
2214         if (r > 0) {
2215                 if (v)
2216                         ++*pos;
2217                 return iter->w.leaf;
2218         } else if (r < 0) {
2219                 fib6_walker_unlink(net, &iter->w);
2220                 return NULL;
2221         }
2222         fib6_walker_unlink(net, &iter->w);
2223
2224         iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2225         if (!iter->tbl)
2226                 return NULL;
2227
2228         ipv6_route_seq_setup_walk(iter, net);
2229         goto iter_table;
2230 }
2231
2232 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2233         __acquires(RCU_BH)
2234 {
2235         struct net *net = seq_file_net(seq);
2236         struct ipv6_route_iter *iter = seq->private;
2237
2238         rcu_read_lock_bh();
2239         iter->tbl = ipv6_route_seq_next_table(NULL, net);
2240         iter->skip = *pos;
2241
2242         if (iter->tbl) {
2243                 ipv6_route_seq_setup_walk(iter, net);
2244                 return ipv6_route_seq_next(seq, NULL, pos);
2245         } else {
2246                 return NULL;
2247         }
2248 }
2249
2250 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2251 {
2252         struct fib6_walker *w = &iter->w;
2253         return w->node && !(w->state == FWS_U && w->node == w->root);
2254 }
2255
2256 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2257         __releases(RCU_BH)
2258 {
2259         struct net *net = seq_file_net(seq);
2260         struct ipv6_route_iter *iter = seq->private;
2261
2262         if (ipv6_route_iter_active(iter))
2263                 fib6_walker_unlink(net, &iter->w);
2264
2265         rcu_read_unlock_bh();
2266 }
2267
2268 static const struct seq_operations ipv6_route_seq_ops = {
2269         .start  = ipv6_route_seq_start,
2270         .next   = ipv6_route_seq_next,
2271         .stop   = ipv6_route_seq_stop,
2272         .show   = ipv6_route_seq_show
2273 };
2274
2275 int ipv6_route_open(struct inode *inode, struct file *file)
2276 {
2277         return seq_open_net(inode, file, &ipv6_route_seq_ops,
2278                             sizeof(struct ipv6_route_iter));
2279 }
2280
2281 #endif /* CONFIG_PROC_FS */