1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
91 #define FLAG_ECE 0x40 /* ECE in this ACK */
92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 #define REXMIT_NONE 0 /* no loss recovery to do */
112 #define REXMIT_LOST 1 /* retransmit packets marked lost */
113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
121 icsk->icsk_clean_acked = cad;
122 static_branch_inc(&clean_acked_data_enabled);
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 static_branch_dec(&clean_acked_data_enabled);
129 icsk->icsk_clean_acked = NULL;
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
137 static bool __once __read_mostly;
140 struct net_device *dev;
145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 if (!dev || len >= dev->mtu)
147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 dev ? dev->name : "Unknown driver");
153 /* Adapt the MSS value used to make delayed ack decision to the
156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
158 struct inet_connection_sock *icsk = inet_csk(sk);
159 const unsigned int lss = icsk->icsk_ack.last_seg_size;
162 icsk->icsk_ack.last_seg_size = 0;
164 /* skb->len may jitter because of SACKs, even if peer
165 * sends good full-sized frames.
167 len = skb_shinfo(skb)->gso_size ? : skb->len;
168 if (len >= icsk->icsk_ack.rcv_mss) {
169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
171 /* Account for possibly-removed options */
172 if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 MAX_TCP_OPTION_SPACE))
174 tcp_gro_dev_warn(sk, skb, len);
176 /* Otherwise, we make more careful check taking into account,
177 * that SACKs block is variable.
179 * "len" is invariant segment length, including TCP header.
181 len += skb->data - skb_transport_header(skb);
182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 /* If PSH is not set, packet should be
184 * full sized, provided peer TCP is not badly broken.
185 * This observation (if it is correct 8)) allows
186 * to handle super-low mtu links fairly.
188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 /* Subtract also invariant (if peer is RFC compliant),
191 * tcp header plus fixed timestamp option length.
192 * Resulting "len" is MSS free of SACK jitter.
194 len -= tcp_sk(sk)->tcp_header_len;
195 icsk->icsk_ack.last_seg_size = len;
197 icsk->icsk_ack.rcv_mss = len;
201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
209 struct inet_connection_sock *icsk = inet_csk(sk);
210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
214 quickacks = min(quickacks, max_quickacks);
215 if (quickacks > icsk->icsk_ack.quick)
216 icsk->icsk_ack.quick = quickacks;
219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
221 struct inet_connection_sock *icsk = inet_csk(sk);
223 tcp_incr_quickack(sk, max_quickacks);
224 icsk->icsk_ack.pingpong = 0;
225 icsk->icsk_ack.ato = TCP_ATO_MIN;
227 EXPORT_SYMBOL(tcp_enter_quickack_mode);
229 /* Send ACKs quickly, if "quick" count is not exhausted
230 * and the session is not interactive.
233 static bool tcp_in_quickack_mode(struct sock *sk)
235 const struct inet_connection_sock *icsk = inet_csk(sk);
236 const struct dst_entry *dst = __sk_dst_get(sk);
238 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
244 if (tp->ecn_flags & TCP_ECN_OK)
245 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
250 if (tcp_hdr(skb)->cwr) {
251 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
253 /* If the sender is telling us it has entered CWR, then its
254 * cwnd may be very low (even just 1 packet), so we should ACK
257 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
258 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
262 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
264 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
267 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
269 struct tcp_sock *tp = tcp_sk(sk);
271 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
272 case INET_ECN_NOT_ECT:
273 /* Funny extension: if ECT is not set on a segment,
274 * and we already seen ECT on a previous segment,
275 * it is probably a retransmit.
277 if (tp->ecn_flags & TCP_ECN_SEEN)
278 tcp_enter_quickack_mode(sk, 2);
281 if (tcp_ca_needs_ecn(sk))
282 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
284 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
285 /* Better not delay acks, sender can have a very low cwnd */
286 tcp_enter_quickack_mode(sk, 2);
287 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
289 tp->ecn_flags |= TCP_ECN_SEEN;
292 if (tcp_ca_needs_ecn(sk))
293 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
294 tp->ecn_flags |= TCP_ECN_SEEN;
299 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
301 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
302 __tcp_ecn_check_ce(sk, skb);
305 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
307 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
308 tp->ecn_flags &= ~TCP_ECN_OK;
311 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
313 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
314 tp->ecn_flags &= ~TCP_ECN_OK;
317 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
319 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
324 /* Buffer size and advertised window tuning.
326 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
329 static void tcp_sndbuf_expand(struct sock *sk)
331 const struct tcp_sock *tp = tcp_sk(sk);
332 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
336 /* Worst case is non GSO/TSO : each frame consumes one skb
337 * and skb->head is kmalloced using power of two area of memory
339 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
341 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
343 per_mss = roundup_pow_of_two(per_mss) +
344 SKB_DATA_ALIGN(sizeof(struct sk_buff));
346 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
347 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
349 /* Fast Recovery (RFC 5681 3.2) :
350 * Cubic needs 1.7 factor, rounded to 2 to include
351 * extra cushion (application might react slowly to EPOLLOUT)
353 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
354 sndmem *= nr_segs * per_mss;
356 if (sk->sk_sndbuf < sndmem)
357 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
360 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
362 * All tcp_full_space() is split to two parts: "network" buffer, allocated
363 * forward and advertised in receiver window (tp->rcv_wnd) and
364 * "application buffer", required to isolate scheduling/application
365 * latencies from network.
366 * window_clamp is maximal advertised window. It can be less than
367 * tcp_full_space(), in this case tcp_full_space() - window_clamp
368 * is reserved for "application" buffer. The less window_clamp is
369 * the smoother our behaviour from viewpoint of network, but the lower
370 * throughput and the higher sensitivity of the connection to losses. 8)
372 * rcv_ssthresh is more strict window_clamp used at "slow start"
373 * phase to predict further behaviour of this connection.
374 * It is used for two goals:
375 * - to enforce header prediction at sender, even when application
376 * requires some significant "application buffer". It is check #1.
377 * - to prevent pruning of receive queue because of misprediction
378 * of receiver window. Check #2.
380 * The scheme does not work when sender sends good segments opening
381 * window and then starts to feed us spaghetti. But it should work
382 * in common situations. Otherwise, we have to rely on queue collapsing.
385 /* Slow part of check#2. */
386 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
388 struct tcp_sock *tp = tcp_sk(sk);
390 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
391 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
393 while (tp->rcv_ssthresh <= window) {
394 if (truesize <= skb->len)
395 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
403 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
405 struct tcp_sock *tp = tcp_sk(sk);
408 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
411 if (room > 0 && !tcp_under_memory_pressure(sk)) {
414 /* Check #2. Increase window, if skb with such overhead
415 * will fit to rcvbuf in future.
417 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
418 incr = 2 * tp->advmss;
420 incr = __tcp_grow_window(sk, skb);
423 incr = max_t(int, incr, 2 * skb->len);
424 tp->rcv_ssthresh += min(room, incr);
425 inet_csk(sk)->icsk_ack.quick |= 1;
430 /* 3. Try to fixup all. It is made immediately after connection enters
433 void tcp_init_buffer_space(struct sock *sk)
435 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
436 struct tcp_sock *tp = tcp_sk(sk);
439 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
440 tcp_sndbuf_expand(sk);
442 tcp_mstamp_refresh(tp);
443 tp->rcvq_space.time = tp->tcp_mstamp;
444 tp->rcvq_space.seq = tp->copied_seq;
446 maxwin = tcp_full_space(sk);
448 if (tp->window_clamp >= maxwin) {
449 tp->window_clamp = maxwin;
451 if (tcp_app_win && maxwin > 4 * tp->advmss)
452 tp->window_clamp = max(maxwin -
453 (maxwin >> tcp_app_win),
457 /* Force reservation of one segment. */
459 tp->window_clamp > 2 * tp->advmss &&
460 tp->window_clamp + tp->advmss > maxwin)
461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
464 tp->snd_cwnd_stamp = tcp_jiffies32;
465 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
466 (u32)TCP_INIT_CWND * tp->advmss);
469 /* 4. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock *sk)
472 struct tcp_sock *tp = tcp_sk(sk);
473 struct inet_connection_sock *icsk = inet_csk(sk);
474 struct net *net = sock_net(sk);
476 icsk->icsk_ack.quick = 0;
478 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
479 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
480 !tcp_under_memory_pressure(sk) &&
481 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
482 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
483 net->ipv4.sysctl_tcp_rmem[2]);
485 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
486 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
489 /* Initialize RCV_MSS value.
490 * RCV_MSS is an our guess about MSS used by the peer.
491 * We haven't any direct information about the MSS.
492 * It's better to underestimate the RCV_MSS rather than overestimate.
493 * Overestimations make us ACKing less frequently than needed.
494 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
496 void tcp_initialize_rcv_mss(struct sock *sk)
498 const struct tcp_sock *tp = tcp_sk(sk);
499 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
501 hint = min(hint, tp->rcv_wnd / 2);
502 hint = min(hint, TCP_MSS_DEFAULT);
503 hint = max(hint, TCP_MIN_MSS);
505 inet_csk(sk)->icsk_ack.rcv_mss = hint;
507 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
509 /* Receiver "autotuning" code.
511 * The algorithm for RTT estimation w/o timestamps is based on
512 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
513 * <http://public.lanl.gov/radiant/pubs.html#DRS>
515 * More detail on this code can be found at
516 * <http://staff.psc.edu/jheffner/>,
517 * though this reference is out of date. A new paper
520 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
522 u32 new_sample = tp->rcv_rtt_est.rtt_us;
525 if (new_sample != 0) {
526 /* If we sample in larger samples in the non-timestamp
527 * case, we could grossly overestimate the RTT especially
528 * with chatty applications or bulk transfer apps which
529 * are stalled on filesystem I/O.
531 * Also, since we are only going for a minimum in the
532 * non-timestamp case, we do not smooth things out
533 * else with timestamps disabled convergence takes too
537 m -= (new_sample >> 3);
545 /* No previous measure. */
549 tp->rcv_rtt_est.rtt_us = new_sample;
552 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
556 if (tp->rcv_rtt_est.time == 0)
558 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
563 tcp_rcv_rtt_update(tp, delta_us, 1);
566 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
567 tp->rcv_rtt_est.time = tp->tcp_mstamp;
570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
571 const struct sk_buff *skb)
573 struct tcp_sock *tp = tcp_sk(sk);
575 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
577 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
579 if (TCP_SKB_CB(skb)->end_seq -
580 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
581 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
584 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
587 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
588 tcp_rcv_rtt_update(tp, delta_us, 0);
594 * This function should be called every time data is copied to user space.
595 * It calculates the appropriate TCP receive buffer space.
597 void tcp_rcv_space_adjust(struct sock *sk)
599 struct tcp_sock *tp = tcp_sk(sk);
603 trace_tcp_rcv_space_adjust(sk);
605 tcp_mstamp_refresh(tp);
606 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
607 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
610 /* Number of bytes copied to user in last RTT */
611 copied = tp->copied_seq - tp->rcvq_space.seq;
612 if (copied <= tp->rcvq_space.space)
616 * copied = bytes received in previous RTT, our base window
617 * To cope with packet losses, we need a 2x factor
618 * To cope with slow start, and sender growing its cwin by 100 %
619 * every RTT, we need a 4x factor, because the ACK we are sending
620 * now is for the next RTT, not the current one :
621 * <prev RTT . ><current RTT .. ><next RTT .... >
624 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
625 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
629 /* minimal window to cope with packet losses, assuming
630 * steady state. Add some cushion because of small variations.
632 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
634 /* Accommodate for sender rate increase (eg. slow start) */
635 grow = rcvwin * (copied - tp->rcvq_space.space);
636 do_div(grow, tp->rcvq_space.space);
637 rcvwin += (grow << 1);
639 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
640 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
643 do_div(rcvwin, tp->advmss);
644 rcvbuf = min_t(u64, rcvwin * rcvmem,
645 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
646 if (rcvbuf > sk->sk_rcvbuf) {
647 sk->sk_rcvbuf = rcvbuf;
649 /* Make the window clamp follow along. */
650 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
653 tp->rcvq_space.space = copied;
656 tp->rcvq_space.seq = tp->copied_seq;
657 tp->rcvq_space.time = tp->tcp_mstamp;
660 /* There is something which you must keep in mind when you analyze the
661 * behavior of the tp->ato delayed ack timeout interval. When a
662 * connection starts up, we want to ack as quickly as possible. The
663 * problem is that "good" TCP's do slow start at the beginning of data
664 * transmission. The means that until we send the first few ACK's the
665 * sender will sit on his end and only queue most of his data, because
666 * he can only send snd_cwnd unacked packets at any given time. For
667 * each ACK we send, he increments snd_cwnd and transmits more of his
670 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
672 struct tcp_sock *tp = tcp_sk(sk);
673 struct inet_connection_sock *icsk = inet_csk(sk);
676 inet_csk_schedule_ack(sk);
678 tcp_measure_rcv_mss(sk, skb);
680 tcp_rcv_rtt_measure(tp);
684 if (!icsk->icsk_ack.ato) {
685 /* The _first_ data packet received, initialize
686 * delayed ACK engine.
688 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
689 icsk->icsk_ack.ato = TCP_ATO_MIN;
691 int m = now - icsk->icsk_ack.lrcvtime;
693 if (m <= TCP_ATO_MIN / 2) {
694 /* The fastest case is the first. */
695 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
696 } else if (m < icsk->icsk_ack.ato) {
697 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
698 if (icsk->icsk_ack.ato > icsk->icsk_rto)
699 icsk->icsk_ack.ato = icsk->icsk_rto;
700 } else if (m > icsk->icsk_rto) {
701 /* Too long gap. Apparently sender failed to
702 * restart window, so that we send ACKs quickly.
704 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
708 icsk->icsk_ack.lrcvtime = now;
710 tcp_ecn_check_ce(sk, skb);
713 tcp_grow_window(sk, skb);
716 /* Called to compute a smoothed rtt estimate. The data fed to this
717 * routine either comes from timestamps, or from segments that were
718 * known _not_ to have been retransmitted [see Karn/Partridge
719 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
720 * piece by Van Jacobson.
721 * NOTE: the next three routines used to be one big routine.
722 * To save cycles in the RFC 1323 implementation it was better to break
723 * it up into three procedures. -- erics
725 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
727 struct tcp_sock *tp = tcp_sk(sk);
728 long m = mrtt_us; /* RTT */
729 u32 srtt = tp->srtt_us;
731 /* The following amusing code comes from Jacobson's
732 * article in SIGCOMM '88. Note that rtt and mdev
733 * are scaled versions of rtt and mean deviation.
734 * This is designed to be as fast as possible
735 * m stands for "measurement".
737 * On a 1990 paper the rto value is changed to:
738 * RTO = rtt + 4 * mdev
740 * Funny. This algorithm seems to be very broken.
741 * These formulae increase RTO, when it should be decreased, increase
742 * too slowly, when it should be increased quickly, decrease too quickly
743 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
744 * does not matter how to _calculate_ it. Seems, it was trap
745 * that VJ failed to avoid. 8)
748 m -= (srtt >> 3); /* m is now error in rtt est */
749 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
751 m = -m; /* m is now abs(error) */
752 m -= (tp->mdev_us >> 2); /* similar update on mdev */
753 /* This is similar to one of Eifel findings.
754 * Eifel blocks mdev updates when rtt decreases.
755 * This solution is a bit different: we use finer gain
756 * for mdev in this case (alpha*beta).
757 * Like Eifel it also prevents growth of rto,
758 * but also it limits too fast rto decreases,
759 * happening in pure Eifel.
764 m -= (tp->mdev_us >> 2); /* similar update on mdev */
766 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
767 if (tp->mdev_us > tp->mdev_max_us) {
768 tp->mdev_max_us = tp->mdev_us;
769 if (tp->mdev_max_us > tp->rttvar_us)
770 tp->rttvar_us = tp->mdev_max_us;
772 if (after(tp->snd_una, tp->rtt_seq)) {
773 if (tp->mdev_max_us < tp->rttvar_us)
774 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
775 tp->rtt_seq = tp->snd_nxt;
776 tp->mdev_max_us = tcp_rto_min_us(sk);
779 /* no previous measure. */
780 srtt = m << 3; /* take the measured time to be rtt */
781 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
782 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
783 tp->mdev_max_us = tp->rttvar_us;
784 tp->rtt_seq = tp->snd_nxt;
786 tp->srtt_us = max(1U, srtt);
789 static void tcp_update_pacing_rate(struct sock *sk)
791 const struct tcp_sock *tp = tcp_sk(sk);
794 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
795 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
797 /* current rate is (cwnd * mss) / srtt
798 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
799 * In Congestion Avoidance phase, set it to 120 % the current rate.
801 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
802 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
803 * end of slow start and should slow down.
805 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
806 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
808 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
810 rate *= max(tp->snd_cwnd, tp->packets_out);
812 if (likely(tp->srtt_us))
813 do_div(rate, tp->srtt_us);
815 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
816 * without any lock. We want to make sure compiler wont store
817 * intermediate values in this location.
819 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
820 sk->sk_max_pacing_rate));
823 /* Calculate rto without backoff. This is the second half of Van Jacobson's
824 * routine referred to above.
826 static void tcp_set_rto(struct sock *sk)
828 const struct tcp_sock *tp = tcp_sk(sk);
829 /* Old crap is replaced with new one. 8)
832 * 1. If rtt variance happened to be less 50msec, it is hallucination.
833 * It cannot be less due to utterly erratic ACK generation made
834 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
835 * to do with delayed acks, because at cwnd>2 true delack timeout
836 * is invisible. Actually, Linux-2.4 also generates erratic
837 * ACKs in some circumstances.
839 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
841 /* 2. Fixups made earlier cannot be right.
842 * If we do not estimate RTO correctly without them,
843 * all the algo is pure shit and should be replaced
844 * with correct one. It is exactly, which we pretend to do.
847 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
848 * guarantees that rto is higher.
853 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
855 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
858 cwnd = TCP_INIT_CWND;
859 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
862 /* Take a notice that peer is sending D-SACKs */
863 static void tcp_dsack_seen(struct tcp_sock *tp)
865 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
866 tp->rack.dsack_seen = 1;
870 /* It's reordering when higher sequence was delivered (i.e. sacked) before
871 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
872 * distance is approximated in full-mss packet distance ("reordering").
874 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
877 struct tcp_sock *tp = tcp_sk(sk);
878 const u32 mss = tp->mss_cache;
881 fack = tcp_highest_sack_seq(tp);
882 if (!before(low_seq, fack))
885 metric = fack - low_seq;
886 if ((metric > tp->reordering * mss) && mss) {
887 #if FASTRETRANS_DEBUG > 1
888 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
889 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
893 tp->undo_marker ? tp->undo_retrans : 0);
895 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
896 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
899 /* This exciting event is worth to be remembered. 8) */
901 NET_INC_STATS(sock_net(sk),
902 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
905 /* This must be called before lost_out is incremented */
906 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
908 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
909 (tp->retransmit_skb_hint &&
910 before(TCP_SKB_CB(skb)->seq,
911 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
912 tp->retransmit_skb_hint = skb;
915 /* Sum the number of packets on the wire we have marked as lost.
916 * There are two cases we care about here:
917 * a) Packet hasn't been marked lost (nor retransmitted),
918 * and this is the first loss.
919 * b) Packet has been marked both lost and retransmitted,
920 * and this means we think it was lost again.
922 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
924 __u8 sacked = TCP_SKB_CB(skb)->sacked;
926 if (!(sacked & TCPCB_LOST) ||
927 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
928 tp->lost += tcp_skb_pcount(skb);
931 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
933 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
934 tcp_verify_retransmit_hint(tp, skb);
936 tp->lost_out += tcp_skb_pcount(skb);
937 tcp_sum_lost(tp, skb);
938 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
942 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
944 tcp_verify_retransmit_hint(tp, skb);
946 tcp_sum_lost(tp, skb);
947 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
948 tp->lost_out += tcp_skb_pcount(skb);
949 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
953 /* This procedure tags the retransmission queue when SACKs arrive.
955 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
956 * Packets in queue with these bits set are counted in variables
957 * sacked_out, retrans_out and lost_out, correspondingly.
959 * Valid combinations are:
960 * Tag InFlight Description
961 * 0 1 - orig segment is in flight.
962 * S 0 - nothing flies, orig reached receiver.
963 * L 0 - nothing flies, orig lost by net.
964 * R 2 - both orig and retransmit are in flight.
965 * L|R 1 - orig is lost, retransmit is in flight.
966 * S|R 1 - orig reached receiver, retrans is still in flight.
967 * (L|S|R is logically valid, it could occur when L|R is sacked,
968 * but it is equivalent to plain S and code short-curcuits it to S.
969 * L|S is logically invalid, it would mean -1 packet in flight 8))
971 * These 6 states form finite state machine, controlled by the following events:
972 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
973 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974 * 3. Loss detection event of two flavors:
975 * A. Scoreboard estimator decided the packet is lost.
976 * A'. Reno "three dupacks" marks head of queue lost.
977 * B. SACK arrives sacking SND.NXT at the moment, when the
978 * segment was retransmitted.
979 * 4. D-SACK added new rule: D-SACK changes any tag to S.
981 * It is pleasant to note, that state diagram turns out to be commutative,
982 * so that we are allowed not to be bothered by order of our actions,
983 * when multiple events arrive simultaneously. (see the function below).
985 * Reordering detection.
986 * --------------------
987 * Reordering metric is maximal distance, which a packet can be displaced
988 * in packet stream. With SACKs we can estimate it:
990 * 1. SACK fills old hole and the corresponding segment was not
991 * ever retransmitted -> reordering. Alas, we cannot use it
992 * when segment was retransmitted.
993 * 2. The last flaw is solved with D-SACK. D-SACK arrives
994 * for retransmitted and already SACKed segment -> reordering..
995 * Both of these heuristics are not used in Loss state, when we cannot
996 * account for retransmits accurately.
998 * SACK block validation.
999 * ----------------------
1001 * SACK block range validation checks that the received SACK block fits to
1002 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1003 * Note that SND.UNA is not included to the range though being valid because
1004 * it means that the receiver is rather inconsistent with itself reporting
1005 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1006 * perfectly valid, however, in light of RFC2018 which explicitly states
1007 * that "SACK block MUST reflect the newest segment. Even if the newest
1008 * segment is going to be discarded ...", not that it looks very clever
1009 * in case of head skb. Due to potentional receiver driven attacks, we
1010 * choose to avoid immediate execution of a walk in write queue due to
1011 * reneging and defer head skb's loss recovery to standard loss recovery
1012 * procedure that will eventually trigger (nothing forbids us doing this).
1014 * Implements also blockage to start_seq wrap-around. Problem lies in the
1015 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1016 * there's no guarantee that it will be before snd_nxt (n). The problem
1017 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1020 * <- outs wnd -> <- wrapzone ->
1021 * u e n u_w e_w s n_w
1023 * |<------------+------+----- TCP seqno space --------------+---------->|
1024 * ...-- <2^31 ->| |<--------...
1025 * ...---- >2^31 ------>| |<--------...
1027 * Current code wouldn't be vulnerable but it's better still to discard such
1028 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1029 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1030 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1031 * equal to the ideal case (infinite seqno space without wrap caused issues).
1033 * With D-SACK the lower bound is extended to cover sequence space below
1034 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1035 * again, D-SACK block must not to go across snd_una (for the same reason as
1036 * for the normal SACK blocks, explained above). But there all simplicity
1037 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1038 * fully below undo_marker they do not affect behavior in anyway and can
1039 * therefore be safely ignored. In rare cases (which are more or less
1040 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1041 * fragmentation and packet reordering past skb's retransmission. To consider
1042 * them correctly, the acceptable range must be extended even more though
1043 * the exact amount is rather hard to quantify. However, tp->max_window can
1044 * be used as an exaggerated estimate.
1046 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1047 u32 start_seq, u32 end_seq)
1049 /* Too far in future, or reversed (interpretation is ambiguous) */
1050 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1053 /* Nasty start_seq wrap-around check (see comments above) */
1054 if (!before(start_seq, tp->snd_nxt))
1057 /* In outstanding window? ...This is valid exit for D-SACKs too.
1058 * start_seq == snd_una is non-sensical (see comments above)
1060 if (after(start_seq, tp->snd_una))
1063 if (!is_dsack || !tp->undo_marker)
1066 /* ...Then it's D-SACK, and must reside below snd_una completely */
1067 if (after(end_seq, tp->snd_una))
1070 if (!before(start_seq, tp->undo_marker))
1074 if (!after(end_seq, tp->undo_marker))
1077 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1078 * start_seq < undo_marker and end_seq >= undo_marker.
1080 return !before(start_seq, end_seq - tp->max_window);
1083 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1084 struct tcp_sack_block_wire *sp, int num_sacks,
1087 struct tcp_sock *tp = tcp_sk(sk);
1088 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1089 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1090 bool dup_sack = false;
1092 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1095 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1096 } else if (num_sacks > 1) {
1097 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1098 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1100 if (!after(end_seq_0, end_seq_1) &&
1101 !before(start_seq_0, start_seq_1)) {
1104 NET_INC_STATS(sock_net(sk),
1105 LINUX_MIB_TCPDSACKOFORECV);
1109 /* D-SACK for already forgotten data... Do dumb counting. */
1110 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1111 !after(end_seq_0, prior_snd_una) &&
1112 after(end_seq_0, tp->undo_marker))
1118 struct tcp_sacktag_state {
1120 /* Timestamps for earliest and latest never-retransmitted segment
1121 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1122 * but congestion control should still get an accurate delay signal.
1126 struct rate_sample *rate;
1128 unsigned int mss_now;
1131 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1132 * the incoming SACK may not exactly match but we can find smaller MSS
1133 * aligned portion of it that matches. Therefore we might need to fragment
1134 * which may fail and creates some hassle (caller must handle error case
1137 * FIXME: this could be merged to shift decision code
1139 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1140 u32 start_seq, u32 end_seq)
1144 unsigned int pkt_len;
1147 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1148 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1150 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1151 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1152 mss = tcp_skb_mss(skb);
1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1156 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1160 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1165 /* Round if necessary so that SACKs cover only full MSSes
1166 * and/or the remaining small portion (if present)
1168 if (pkt_len > mss) {
1169 unsigned int new_len = (pkt_len / mss) * mss;
1170 if (!in_sack && new_len < pkt_len)
1175 if (pkt_len >= skb->len && !in_sack)
1178 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1179 pkt_len, mss, GFP_ATOMIC);
1187 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1188 static u8 tcp_sacktag_one(struct sock *sk,
1189 struct tcp_sacktag_state *state, u8 sacked,
1190 u32 start_seq, u32 end_seq,
1191 int dup_sack, int pcount,
1194 struct tcp_sock *tp = tcp_sk(sk);
1196 /* Account D-SACK for retransmitted packet. */
1197 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1198 if (tp->undo_marker && tp->undo_retrans > 0 &&
1199 after(end_seq, tp->undo_marker))
1200 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1201 if ((sacked & TCPCB_SACKED_ACKED) &&
1202 before(start_seq, state->reord))
1203 state->reord = start_seq;
1206 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1207 if (!after(end_seq, tp->snd_una))
1210 if (!(sacked & TCPCB_SACKED_ACKED)) {
1211 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1213 if (sacked & TCPCB_SACKED_RETRANS) {
1214 /* If the segment is not tagged as lost,
1215 * we do not clear RETRANS, believing
1216 * that retransmission is still in flight.
1218 if (sacked & TCPCB_LOST) {
1219 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1220 tp->lost_out -= pcount;
1221 tp->retrans_out -= pcount;
1224 if (!(sacked & TCPCB_RETRANS)) {
1225 /* New sack for not retransmitted frame,
1226 * which was in hole. It is reordering.
1228 if (before(start_seq,
1229 tcp_highest_sack_seq(tp)) &&
1230 before(start_seq, state->reord))
1231 state->reord = start_seq;
1233 if (!after(end_seq, tp->high_seq))
1234 state->flag |= FLAG_ORIG_SACK_ACKED;
1235 if (state->first_sackt == 0)
1236 state->first_sackt = xmit_time;
1237 state->last_sackt = xmit_time;
1240 if (sacked & TCPCB_LOST) {
1241 sacked &= ~TCPCB_LOST;
1242 tp->lost_out -= pcount;
1246 sacked |= TCPCB_SACKED_ACKED;
1247 state->flag |= FLAG_DATA_SACKED;
1248 tp->sacked_out += pcount;
1249 tp->delivered += pcount; /* Out-of-order packets delivered */
1251 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1252 if (tp->lost_skb_hint &&
1253 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1254 tp->lost_cnt_hint += pcount;
1257 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1258 * frames and clear it. undo_retrans is decreased above, L|R frames
1259 * are accounted above as well.
1261 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1262 sacked &= ~TCPCB_SACKED_RETRANS;
1263 tp->retrans_out -= pcount;
1269 /* Shift newly-SACKed bytes from this skb to the immediately previous
1270 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1272 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1273 struct sk_buff *skb,
1274 struct tcp_sacktag_state *state,
1275 unsigned int pcount, int shifted, int mss,
1278 struct tcp_sock *tp = tcp_sk(sk);
1279 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1280 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1284 /* Adjust counters and hints for the newly sacked sequence
1285 * range but discard the return value since prev is already
1286 * marked. We must tag the range first because the seq
1287 * advancement below implicitly advances
1288 * tcp_highest_sack_seq() when skb is highest_sack.
1290 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1291 start_seq, end_seq, dup_sack, pcount,
1293 tcp_rate_skb_delivered(sk, skb, state->rate);
1295 if (skb == tp->lost_skb_hint)
1296 tp->lost_cnt_hint += pcount;
1298 TCP_SKB_CB(prev)->end_seq += shifted;
1299 TCP_SKB_CB(skb)->seq += shifted;
1301 tcp_skb_pcount_add(prev, pcount);
1302 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1303 tcp_skb_pcount_add(skb, -pcount);
1305 /* When we're adding to gso_segs == 1, gso_size will be zero,
1306 * in theory this shouldn't be necessary but as long as DSACK
1307 * code can come after this skb later on it's better to keep
1308 * setting gso_size to something.
1310 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1311 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1313 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1314 if (tcp_skb_pcount(skb) <= 1)
1315 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1317 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1318 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1321 BUG_ON(!tcp_skb_pcount(skb));
1322 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1326 /* Whole SKB was eaten :-) */
1328 if (skb == tp->retransmit_skb_hint)
1329 tp->retransmit_skb_hint = prev;
1330 if (skb == tp->lost_skb_hint) {
1331 tp->lost_skb_hint = prev;
1332 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1335 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1336 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1337 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1338 TCP_SKB_CB(prev)->end_seq++;
1340 if (skb == tcp_highest_sack(sk))
1341 tcp_advance_highest_sack(sk, skb);
1343 tcp_skb_collapse_tstamp(prev, skb);
1344 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1345 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1347 tcp_rtx_queue_unlink_and_free(skb, sk);
1349 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1354 /* I wish gso_size would have a bit more sane initialization than
1355 * something-or-zero which complicates things
1357 static int tcp_skb_seglen(const struct sk_buff *skb)
1359 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1362 /* Shifting pages past head area doesn't work */
1363 static int skb_can_shift(const struct sk_buff *skb)
1365 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1368 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1369 int pcount, int shiftlen)
1371 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1372 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1373 * to make sure not storing more than 65535 * 8 bytes per skb,
1374 * even if current MSS is bigger.
1376 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1378 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1380 return skb_shift(to, from, shiftlen);
1383 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1386 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1387 struct tcp_sacktag_state *state,
1388 u32 start_seq, u32 end_seq,
1391 struct tcp_sock *tp = tcp_sk(sk);
1392 struct sk_buff *prev;
1398 /* Normally R but no L won't result in plain S */
1400 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1402 if (!skb_can_shift(skb))
1404 /* This frame is about to be dropped (was ACKed). */
1405 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1408 /* Can only happen with delayed DSACK + discard craziness */
1409 prev = skb_rb_prev(skb);
1413 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1416 if (!tcp_skb_can_collapse_to(prev))
1419 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1420 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1424 pcount = tcp_skb_pcount(skb);
1425 mss = tcp_skb_seglen(skb);
1427 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1428 * drop this restriction as unnecessary
1430 if (mss != tcp_skb_seglen(prev))
1433 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1435 /* CHECKME: This is non-MSS split case only?, this will
1436 * cause skipped skbs due to advancing loop btw, original
1437 * has that feature too
1439 if (tcp_skb_pcount(skb) <= 1)
1442 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1444 /* TODO: head merge to next could be attempted here
1445 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1446 * though it might not be worth of the additional hassle
1448 * ...we can probably just fallback to what was done
1449 * previously. We could try merging non-SACKed ones
1450 * as well but it probably isn't going to buy off
1451 * because later SACKs might again split them, and
1452 * it would make skb timestamp tracking considerably
1458 len = end_seq - TCP_SKB_CB(skb)->seq;
1460 BUG_ON(len > skb->len);
1462 /* MSS boundaries should be honoured or else pcount will
1463 * severely break even though it makes things bit trickier.
1464 * Optimize common case to avoid most of the divides
1466 mss = tcp_skb_mss(skb);
1468 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1469 * drop this restriction as unnecessary
1471 if (mss != tcp_skb_seglen(prev))
1476 } else if (len < mss) {
1484 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1485 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1488 if (!tcp_skb_shift(prev, skb, pcount, len))
1490 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1493 /* Hole filled allows collapsing with the next as well, this is very
1494 * useful when hole on every nth skb pattern happens
1496 skb = skb_rb_next(prev);
1500 if (!skb_can_shift(skb) ||
1501 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1502 (mss != tcp_skb_seglen(skb)))
1506 pcount = tcp_skb_pcount(skb);
1507 if (tcp_skb_shift(prev, skb, pcount, len))
1508 tcp_shifted_skb(sk, prev, skb, state, pcount,
1518 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1522 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1523 struct tcp_sack_block *next_dup,
1524 struct tcp_sacktag_state *state,
1525 u32 start_seq, u32 end_seq,
1528 struct tcp_sock *tp = tcp_sk(sk);
1529 struct sk_buff *tmp;
1531 skb_rbtree_walk_from(skb) {
1533 bool dup_sack = dup_sack_in;
1535 /* queue is in-order => we can short-circuit the walk early */
1536 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1540 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1541 in_sack = tcp_match_skb_to_sack(sk, skb,
1542 next_dup->start_seq,
1548 /* skb reference here is a bit tricky to get right, since
1549 * shifting can eat and free both this skb and the next,
1550 * so not even _safe variant of the loop is enough.
1553 tmp = tcp_shift_skb_data(sk, skb, state,
1554 start_seq, end_seq, dup_sack);
1563 in_sack = tcp_match_skb_to_sack(sk, skb,
1569 if (unlikely(in_sack < 0))
1573 TCP_SKB_CB(skb)->sacked =
1576 TCP_SKB_CB(skb)->sacked,
1577 TCP_SKB_CB(skb)->seq,
1578 TCP_SKB_CB(skb)->end_seq,
1580 tcp_skb_pcount(skb),
1582 tcp_rate_skb_delivered(sk, skb, state->rate);
1583 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1584 list_del_init(&skb->tcp_tsorted_anchor);
1586 if (!before(TCP_SKB_CB(skb)->seq,
1587 tcp_highest_sack_seq(tp)))
1588 tcp_advance_highest_sack(sk, skb);
1594 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1595 struct tcp_sacktag_state *state,
1598 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1599 struct sk_buff *skb;
1603 skb = rb_to_skb(parent);
1604 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1605 p = &parent->rb_left;
1608 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1609 p = &parent->rb_right;
1617 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1618 struct tcp_sacktag_state *state,
1621 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1624 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1627 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1629 struct tcp_sack_block *next_dup,
1630 struct tcp_sacktag_state *state,
1636 if (before(next_dup->start_seq, skip_to_seq)) {
1637 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1638 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1639 next_dup->start_seq, next_dup->end_seq,
1646 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1648 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1652 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1653 u32 prior_snd_una, struct tcp_sacktag_state *state)
1655 struct tcp_sock *tp = tcp_sk(sk);
1656 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1657 TCP_SKB_CB(ack_skb)->sacked);
1658 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1659 struct tcp_sack_block sp[TCP_NUM_SACKS];
1660 struct tcp_sack_block *cache;
1661 struct sk_buff *skb;
1662 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1664 bool found_dup_sack = false;
1666 int first_sack_index;
1669 state->reord = tp->snd_nxt;
1671 if (!tp->sacked_out)
1672 tcp_highest_sack_reset(sk);
1674 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1675 num_sacks, prior_snd_una);
1676 if (found_dup_sack) {
1677 state->flag |= FLAG_DSACKING_ACK;
1678 tp->delivered++; /* A spurious retransmission is delivered */
1681 /* Eliminate too old ACKs, but take into
1682 * account more or less fresh ones, they can
1683 * contain valid SACK info.
1685 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1688 if (!tp->packets_out)
1692 first_sack_index = 0;
1693 for (i = 0; i < num_sacks; i++) {
1694 bool dup_sack = !i && found_dup_sack;
1696 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1697 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1699 if (!tcp_is_sackblock_valid(tp, dup_sack,
1700 sp[used_sacks].start_seq,
1701 sp[used_sacks].end_seq)) {
1705 if (!tp->undo_marker)
1706 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1710 /* Don't count olds caused by ACK reordering */
1711 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1712 !after(sp[used_sacks].end_seq, tp->snd_una))
1714 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1717 NET_INC_STATS(sock_net(sk), mib_idx);
1719 first_sack_index = -1;
1723 /* Ignore very old stuff early */
1724 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1726 first_sack_index = -1;
1733 /* order SACK blocks to allow in order walk of the retrans queue */
1734 for (i = used_sacks - 1; i > 0; i--) {
1735 for (j = 0; j < i; j++) {
1736 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1737 swap(sp[j], sp[j + 1]);
1739 /* Track where the first SACK block goes to */
1740 if (j == first_sack_index)
1741 first_sack_index = j + 1;
1746 state->mss_now = tcp_current_mss(sk);
1750 if (!tp->sacked_out) {
1751 /* It's already past, so skip checking against it */
1752 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1754 cache = tp->recv_sack_cache;
1755 /* Skip empty blocks in at head of the cache */
1756 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1761 while (i < used_sacks) {
1762 u32 start_seq = sp[i].start_seq;
1763 u32 end_seq = sp[i].end_seq;
1764 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1765 struct tcp_sack_block *next_dup = NULL;
1767 if (found_dup_sack && ((i + 1) == first_sack_index))
1768 next_dup = &sp[i + 1];
1770 /* Skip too early cached blocks */
1771 while (tcp_sack_cache_ok(tp, cache) &&
1772 !before(start_seq, cache->end_seq))
1775 /* Can skip some work by looking recv_sack_cache? */
1776 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1777 after(end_seq, cache->start_seq)) {
1780 if (before(start_seq, cache->start_seq)) {
1781 skb = tcp_sacktag_skip(skb, sk, state,
1783 skb = tcp_sacktag_walk(skb, sk, next_dup,
1790 /* Rest of the block already fully processed? */
1791 if (!after(end_seq, cache->end_seq))
1794 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1798 /* ...tail remains todo... */
1799 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1800 /* ...but better entrypoint exists! */
1801 skb = tcp_highest_sack(sk);
1808 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1809 /* Check overlap against next cached too (past this one already) */
1814 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1815 skb = tcp_highest_sack(sk);
1819 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1822 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1823 start_seq, end_seq, dup_sack);
1829 /* Clear the head of the cache sack blocks so we can skip it next time */
1830 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1831 tp->recv_sack_cache[i].start_seq = 0;
1832 tp->recv_sack_cache[i].end_seq = 0;
1834 for (j = 0; j < used_sacks; j++)
1835 tp->recv_sack_cache[i++] = sp[j];
1837 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1838 tcp_check_sack_reordering(sk, state->reord, 0);
1840 tcp_verify_left_out(tp);
1843 #if FASTRETRANS_DEBUG > 0
1844 WARN_ON((int)tp->sacked_out < 0);
1845 WARN_ON((int)tp->lost_out < 0);
1846 WARN_ON((int)tp->retrans_out < 0);
1847 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1852 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1853 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1855 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1859 holes = max(tp->lost_out, 1U);
1860 holes = min(holes, tp->packets_out);
1862 if ((tp->sacked_out + holes) > tp->packets_out) {
1863 tp->sacked_out = tp->packets_out - holes;
1869 /* If we receive more dupacks than we expected counting segments
1870 * in assumption of absent reordering, interpret this as reordering.
1871 * The only another reason could be bug in receiver TCP.
1873 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1875 struct tcp_sock *tp = tcp_sk(sk);
1877 if (!tcp_limit_reno_sacked(tp))
1880 tp->reordering = min_t(u32, tp->packets_out + addend,
1881 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1883 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1886 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1888 static void tcp_add_reno_sack(struct sock *sk)
1890 struct tcp_sock *tp = tcp_sk(sk);
1891 u32 prior_sacked = tp->sacked_out;
1894 tcp_check_reno_reordering(sk, 0);
1895 if (tp->sacked_out > prior_sacked)
1896 tp->delivered++; /* Some out-of-order packet is delivered */
1897 tcp_verify_left_out(tp);
1900 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1902 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1904 struct tcp_sock *tp = tcp_sk(sk);
1907 /* One ACK acked hole. The rest eat duplicate ACKs. */
1908 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1909 if (acked - 1 >= tp->sacked_out)
1912 tp->sacked_out -= acked - 1;
1914 tcp_check_reno_reordering(sk, acked);
1915 tcp_verify_left_out(tp);
1918 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1923 void tcp_clear_retrans(struct tcp_sock *tp)
1925 tp->retrans_out = 0;
1927 tp->undo_marker = 0;
1928 tp->undo_retrans = -1;
1932 static inline void tcp_init_undo(struct tcp_sock *tp)
1934 tp->undo_marker = tp->snd_una;
1935 /* Retransmission still in flight may cause DSACKs later. */
1936 tp->undo_retrans = tp->retrans_out ? : -1;
1939 static bool tcp_is_rack(const struct sock *sk)
1941 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1944 /* If we detect SACK reneging, forget all SACK information
1945 * and reset tags completely, otherwise preserve SACKs. If receiver
1946 * dropped its ofo queue, we will know this due to reneging detection.
1948 static void tcp_timeout_mark_lost(struct sock *sk)
1950 struct tcp_sock *tp = tcp_sk(sk);
1951 struct sk_buff *skb, *head;
1952 bool is_reneg; /* is receiver reneging on SACKs? */
1954 head = tcp_rtx_queue_head(sk);
1955 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1957 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1959 /* Mark SACK reneging until we recover from this loss event. */
1960 tp->is_sack_reneg = 1;
1961 } else if (tcp_is_reno(tp)) {
1962 tcp_reset_reno_sack(tp);
1966 skb_rbtree_walk_from(skb) {
1968 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1969 else if (tcp_is_rack(sk) && skb != head &&
1970 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1971 continue; /* Don't mark recently sent ones lost yet */
1972 tcp_mark_skb_lost(sk, skb);
1974 tcp_verify_left_out(tp);
1975 tcp_clear_all_retrans_hints(tp);
1978 /* Enter Loss state. */
1979 void tcp_enter_loss(struct sock *sk)
1981 const struct inet_connection_sock *icsk = inet_csk(sk);
1982 struct tcp_sock *tp = tcp_sk(sk);
1983 struct net *net = sock_net(sk);
1984 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1986 tcp_timeout_mark_lost(sk);
1988 /* Reduce ssthresh if it has not yet been made inside this window. */
1989 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1990 !after(tp->high_seq, tp->snd_una) ||
1991 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1992 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1993 tp->prior_cwnd = tp->snd_cwnd;
1994 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1995 tcp_ca_event(sk, CA_EVENT_LOSS);
1998 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
1999 tp->snd_cwnd_cnt = 0;
2000 tp->snd_cwnd_stamp = tcp_jiffies32;
2002 /* Timeout in disordered state after receiving substantial DUPACKs
2003 * suggests that the degree of reordering is over-estimated.
2005 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2006 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2007 tp->reordering = min_t(unsigned int, tp->reordering,
2008 net->ipv4.sysctl_tcp_reordering);
2009 tcp_set_ca_state(sk, TCP_CA_Loss);
2010 tp->high_seq = tp->snd_nxt;
2011 tcp_ecn_queue_cwr(tp);
2013 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2014 * loss recovery is underway except recurring timeout(s) on
2015 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2017 tp->frto = net->ipv4.sysctl_tcp_frto &&
2018 (new_recovery || icsk->icsk_retransmits) &&
2019 !inet_csk(sk)->icsk_mtup.probe_size;
2022 /* If ACK arrived pointing to a remembered SACK, it means that our
2023 * remembered SACKs do not reflect real state of receiver i.e.
2024 * receiver _host_ is heavily congested (or buggy).
2026 * To avoid big spurious retransmission bursts due to transient SACK
2027 * scoreboard oddities that look like reneging, we give the receiver a
2028 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2029 * restore sanity to the SACK scoreboard. If the apparent reneging
2030 * persists until this RTO then we'll clear the SACK scoreboard.
2032 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2034 if (flag & FLAG_SACK_RENEGING) {
2035 struct tcp_sock *tp = tcp_sk(sk);
2036 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2037 msecs_to_jiffies(10));
2039 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2040 delay, TCP_RTO_MAX);
2046 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2047 * counter when SACK is enabled (without SACK, sacked_out is used for
2050 * With reordering, holes may still be in flight, so RFC3517 recovery
2051 * uses pure sacked_out (total number of SACKed segments) even though
2052 * it violates the RFC that uses duplicate ACKs, often these are equal
2053 * but when e.g. out-of-window ACKs or packet duplication occurs,
2054 * they differ. Since neither occurs due to loss, TCP should really
2057 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2059 return tp->sacked_out + 1;
2062 /* Linux NewReno/SACK/ECN state machine.
2063 * --------------------------------------
2065 * "Open" Normal state, no dubious events, fast path.
2066 * "Disorder" In all the respects it is "Open",
2067 * but requires a bit more attention. It is entered when
2068 * we see some SACKs or dupacks. It is split of "Open"
2069 * mainly to move some processing from fast path to slow one.
2070 * "CWR" CWND was reduced due to some Congestion Notification event.
2071 * It can be ECN, ICMP source quench, local device congestion.
2072 * "Recovery" CWND was reduced, we are fast-retransmitting.
2073 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2075 * tcp_fastretrans_alert() is entered:
2076 * - each incoming ACK, if state is not "Open"
2077 * - when arrived ACK is unusual, namely:
2082 * Counting packets in flight is pretty simple.
2084 * in_flight = packets_out - left_out + retrans_out
2086 * packets_out is SND.NXT-SND.UNA counted in packets.
2088 * retrans_out is number of retransmitted segments.
2090 * left_out is number of segments left network, but not ACKed yet.
2092 * left_out = sacked_out + lost_out
2094 * sacked_out: Packets, which arrived to receiver out of order
2095 * and hence not ACKed. With SACKs this number is simply
2096 * amount of SACKed data. Even without SACKs
2097 * it is easy to give pretty reliable estimate of this number,
2098 * counting duplicate ACKs.
2100 * lost_out: Packets lost by network. TCP has no explicit
2101 * "loss notification" feedback from network (for now).
2102 * It means that this number can be only _guessed_.
2103 * Actually, it is the heuristics to predict lossage that
2104 * distinguishes different algorithms.
2106 * F.e. after RTO, when all the queue is considered as lost,
2107 * lost_out = packets_out and in_flight = retrans_out.
2109 * Essentially, we have now a few algorithms detecting
2112 * If the receiver supports SACK:
2114 * RFC6675/3517: It is the conventional algorithm. A packet is
2115 * considered lost if the number of higher sequence packets
2116 * SACKed is greater than or equal the DUPACK thoreshold
2117 * (reordering). This is implemented in tcp_mark_head_lost and
2118 * tcp_update_scoreboard.
2120 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2121 * (2017-) that checks timing instead of counting DUPACKs.
2122 * Essentially a packet is considered lost if it's not S/ACKed
2123 * after RTT + reordering_window, where both metrics are
2124 * dynamically measured and adjusted. This is implemented in
2125 * tcp_rack_mark_lost.
2127 * If the receiver does not support SACK:
2129 * NewReno (RFC6582): in Recovery we assume that one segment
2130 * is lost (classic Reno). While we are in Recovery and
2131 * a partial ACK arrives, we assume that one more packet
2132 * is lost (NewReno). This heuristics are the same in NewReno
2135 * Really tricky (and requiring careful tuning) part of algorithm
2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137 * The first determines the moment _when_ we should reduce CWND and,
2138 * hence, slow down forward transmission. In fact, it determines the moment
2139 * when we decide that hole is caused by loss, rather than by a reorder.
2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142 * holes, caused by lost packets.
2144 * And the most logically complicated part of algorithm is undo
2145 * heuristics. We detect false retransmits due to both too early
2146 * fast retransmit (reordering) and underestimated RTO, analyzing
2147 * timestamps and D-SACKs. When we detect that some segments were
2148 * retransmitted by mistake and CWND reduction was wrong, we undo
2149 * window reduction and abort recovery phase. This logic is hidden
2150 * inside several functions named tcp_try_undo_<something>.
2153 /* This function decides, when we should leave Disordered state
2154 * and enter Recovery phase, reducing congestion window.
2156 * Main question: may we further continue forward transmission
2157 * with the same cwnd?
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2161 struct tcp_sock *tp = tcp_sk(sk);
2163 /* Trick#1: The loss is proven. */
2167 /* Not-A-Trick#2 : Classic rule... */
2168 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2174 /* Detect loss in event "A" above by marking head of queue up as lost.
2175 * For non-SACK(Reno) senders, the first "packets" number of segments
2176 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2177 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2178 * the maximum SACKed segments to pass before reaching this limit.
2180 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct sk_buff *skb;
2184 int cnt, oldcnt, lost;
2186 /* Use SACK to deduce losses of new sequences sent during recovery */
2187 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2189 WARN_ON(packets > tp->packets_out);
2190 skb = tp->lost_skb_hint;
2192 /* Head already handled? */
2193 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2195 cnt = tp->lost_cnt_hint;
2197 skb = tcp_rtx_queue_head(sk);
2201 skb_rbtree_walk_from(skb) {
2202 /* TODO: do this better */
2203 /* this is not the most efficient way to do this... */
2204 tp->lost_skb_hint = skb;
2205 tp->lost_cnt_hint = cnt;
2207 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2211 if (tcp_is_reno(tp) ||
2212 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2213 cnt += tcp_skb_pcount(skb);
2215 if (cnt > packets) {
2216 if (tcp_is_sack(tp) ||
2217 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2218 (oldcnt >= packets))
2221 mss = tcp_skb_mss(skb);
2222 /* If needed, chop off the prefix to mark as lost. */
2223 lost = (packets - oldcnt) * mss;
2224 if (lost < skb->len &&
2225 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2226 lost, mss, GFP_ATOMIC) < 0)
2231 tcp_skb_mark_lost(tp, skb);
2236 tcp_verify_left_out(tp);
2239 /* Account newly detected lost packet(s) */
2241 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2243 struct tcp_sock *tp = tcp_sk(sk);
2245 if (tcp_is_sack(tp)) {
2246 int sacked_upto = tp->sacked_out - tp->reordering;
2247 if (sacked_upto >= 0)
2248 tcp_mark_head_lost(sk, sacked_upto, 0);
2249 else if (fast_rexmit)
2250 tcp_mark_head_lost(sk, 1, 1);
2254 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2256 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2257 before(tp->rx_opt.rcv_tsecr, when);
2260 /* skb is spurious retransmitted if the returned timestamp echo
2261 * reply is prior to the skb transmission time
2263 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2264 const struct sk_buff *skb)
2266 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2267 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2270 /* Nothing was retransmitted or returned timestamp is less
2271 * than timestamp of the first retransmission.
2273 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2275 return !tp->retrans_stamp ||
2276 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2279 /* Undo procedures. */
2281 /* We can clear retrans_stamp when there are no retransmissions in the
2282 * window. It would seem that it is trivially available for us in
2283 * tp->retrans_out, however, that kind of assumptions doesn't consider
2284 * what will happen if errors occur when sending retransmission for the
2285 * second time. ...It could the that such segment has only
2286 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2287 * the head skb is enough except for some reneging corner cases that
2288 * are not worth the effort.
2290 * Main reason for all this complexity is the fact that connection dying
2291 * time now depends on the validity of the retrans_stamp, in particular,
2292 * that successive retransmissions of a segment must not advance
2293 * retrans_stamp under any conditions.
2295 static bool tcp_any_retrans_done(const struct sock *sk)
2297 const struct tcp_sock *tp = tcp_sk(sk);
2298 struct sk_buff *skb;
2300 if (tp->retrans_out)
2303 skb = tcp_rtx_queue_head(sk);
2304 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2310 static void DBGUNDO(struct sock *sk, const char *msg)
2312 #if FASTRETRANS_DEBUG > 1
2313 struct tcp_sock *tp = tcp_sk(sk);
2314 struct inet_sock *inet = inet_sk(sk);
2316 if (sk->sk_family == AF_INET) {
2317 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2319 &inet->inet_daddr, ntohs(inet->inet_dport),
2320 tp->snd_cwnd, tcp_left_out(tp),
2321 tp->snd_ssthresh, tp->prior_ssthresh,
2324 #if IS_ENABLED(CONFIG_IPV6)
2325 else if (sk->sk_family == AF_INET6) {
2326 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2328 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2329 tp->snd_cwnd, tcp_left_out(tp),
2330 tp->snd_ssthresh, tp->prior_ssthresh,
2337 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2339 struct tcp_sock *tp = tcp_sk(sk);
2342 struct sk_buff *skb;
2344 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2345 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2348 tcp_clear_all_retrans_hints(tp);
2351 if (tp->prior_ssthresh) {
2352 const struct inet_connection_sock *icsk = inet_csk(sk);
2354 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2356 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2357 tp->snd_ssthresh = tp->prior_ssthresh;
2358 tcp_ecn_withdraw_cwr(tp);
2361 tp->snd_cwnd_stamp = tcp_jiffies32;
2362 tp->undo_marker = 0;
2363 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2366 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2368 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2371 /* People celebrate: "We love our President!" */
2372 static bool tcp_try_undo_recovery(struct sock *sk)
2374 struct tcp_sock *tp = tcp_sk(sk);
2376 if (tcp_may_undo(tp)) {
2379 /* Happy end! We did not retransmit anything
2380 * or our original transmission succeeded.
2382 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2383 tcp_undo_cwnd_reduction(sk, false);
2384 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2385 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2387 mib_idx = LINUX_MIB_TCPFULLUNDO;
2389 NET_INC_STATS(sock_net(sk), mib_idx);
2390 } else if (tp->rack.reo_wnd_persist) {
2391 tp->rack.reo_wnd_persist--;
2393 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2394 /* Hold old state until something *above* high_seq
2395 * is ACKed. For Reno it is MUST to prevent false
2396 * fast retransmits (RFC2582). SACK TCP is safe. */
2397 if (!tcp_any_retrans_done(sk))
2398 tp->retrans_stamp = 0;
2401 tcp_set_ca_state(sk, TCP_CA_Open);
2402 tp->is_sack_reneg = 0;
2406 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2407 static bool tcp_try_undo_dsack(struct sock *sk)
2409 struct tcp_sock *tp = tcp_sk(sk);
2411 if (tp->undo_marker && !tp->undo_retrans) {
2412 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2413 tp->rack.reo_wnd_persist + 1);
2414 DBGUNDO(sk, "D-SACK");
2415 tcp_undo_cwnd_reduction(sk, false);
2416 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2422 /* Undo during loss recovery after partial ACK or using F-RTO. */
2423 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2425 struct tcp_sock *tp = tcp_sk(sk);
2427 if (frto_undo || tcp_may_undo(tp)) {
2428 tcp_undo_cwnd_reduction(sk, true);
2430 DBGUNDO(sk, "partial loss");
2431 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2433 NET_INC_STATS(sock_net(sk),
2434 LINUX_MIB_TCPSPURIOUSRTOS);
2435 inet_csk(sk)->icsk_retransmits = 0;
2436 if (frto_undo || tcp_is_sack(tp)) {
2437 tcp_set_ca_state(sk, TCP_CA_Open);
2438 tp->is_sack_reneg = 0;
2445 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2446 * It computes the number of packets to send (sndcnt) based on packets newly
2448 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2449 * cwnd reductions across a full RTT.
2450 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2451 * But when the retransmits are acked without further losses, PRR
2452 * slow starts cwnd up to ssthresh to speed up the recovery.
2454 static void tcp_init_cwnd_reduction(struct sock *sk)
2456 struct tcp_sock *tp = tcp_sk(sk);
2458 tp->high_seq = tp->snd_nxt;
2459 tp->tlp_high_seq = 0;
2460 tp->snd_cwnd_cnt = 0;
2461 tp->prior_cwnd = tp->snd_cwnd;
2462 tp->prr_delivered = 0;
2464 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2465 tcp_ecn_queue_cwr(tp);
2468 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2470 struct tcp_sock *tp = tcp_sk(sk);
2472 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2474 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2477 tp->prr_delivered += newly_acked_sacked;
2479 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2481 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2482 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2483 !(flag & FLAG_LOST_RETRANS)) {
2484 sndcnt = min_t(int, delta,
2485 max_t(int, tp->prr_delivered - tp->prr_out,
2486 newly_acked_sacked) + 1);
2488 sndcnt = min(delta, newly_acked_sacked);
2490 /* Force a fast retransmit upon entering fast recovery */
2491 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2492 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2495 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2497 struct tcp_sock *tp = tcp_sk(sk);
2499 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2502 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2503 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2504 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2505 tp->snd_cwnd = tp->snd_ssthresh;
2506 tp->snd_cwnd_stamp = tcp_jiffies32;
2508 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2511 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2512 void tcp_enter_cwr(struct sock *sk)
2514 struct tcp_sock *tp = tcp_sk(sk);
2516 tp->prior_ssthresh = 0;
2517 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2518 tp->undo_marker = 0;
2519 tcp_init_cwnd_reduction(sk);
2520 tcp_set_ca_state(sk, TCP_CA_CWR);
2523 EXPORT_SYMBOL(tcp_enter_cwr);
2525 static void tcp_try_keep_open(struct sock *sk)
2527 struct tcp_sock *tp = tcp_sk(sk);
2528 int state = TCP_CA_Open;
2530 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2531 state = TCP_CA_Disorder;
2533 if (inet_csk(sk)->icsk_ca_state != state) {
2534 tcp_set_ca_state(sk, state);
2535 tp->high_seq = tp->snd_nxt;
2539 static void tcp_try_to_open(struct sock *sk, int flag)
2541 struct tcp_sock *tp = tcp_sk(sk);
2543 tcp_verify_left_out(tp);
2545 if (!tcp_any_retrans_done(sk))
2546 tp->retrans_stamp = 0;
2548 if (flag & FLAG_ECE)
2551 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2552 tcp_try_keep_open(sk);
2556 static void tcp_mtup_probe_failed(struct sock *sk)
2558 struct inet_connection_sock *icsk = inet_csk(sk);
2560 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2561 icsk->icsk_mtup.probe_size = 0;
2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2565 static void tcp_mtup_probe_success(struct sock *sk)
2567 struct tcp_sock *tp = tcp_sk(sk);
2568 struct inet_connection_sock *icsk = inet_csk(sk);
2570 /* FIXME: breaks with very large cwnd */
2571 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2572 tp->snd_cwnd = tp->snd_cwnd *
2573 tcp_mss_to_mtu(sk, tp->mss_cache) /
2574 icsk->icsk_mtup.probe_size;
2575 tp->snd_cwnd_cnt = 0;
2576 tp->snd_cwnd_stamp = tcp_jiffies32;
2577 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2579 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2580 icsk->icsk_mtup.probe_size = 0;
2581 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2582 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2585 /* Do a simple retransmit without using the backoff mechanisms in
2586 * tcp_timer. This is used for path mtu discovery.
2587 * The socket is already locked here.
2589 void tcp_simple_retransmit(struct sock *sk)
2591 const struct inet_connection_sock *icsk = inet_csk(sk);
2592 struct tcp_sock *tp = tcp_sk(sk);
2593 struct sk_buff *skb;
2594 unsigned int mss = tcp_current_mss(sk);
2596 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2597 if (tcp_skb_seglen(skb) > mss &&
2598 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2599 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2600 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2601 tp->retrans_out -= tcp_skb_pcount(skb);
2603 tcp_skb_mark_lost_uncond_verify(tp, skb);
2607 tcp_clear_retrans_hints_partial(tp);
2612 if (tcp_is_reno(tp))
2613 tcp_limit_reno_sacked(tp);
2615 tcp_verify_left_out(tp);
2617 /* Don't muck with the congestion window here.
2618 * Reason is that we do not increase amount of _data_
2619 * in network, but units changed and effective
2620 * cwnd/ssthresh really reduced now.
2622 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2623 tp->high_seq = tp->snd_nxt;
2624 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2625 tp->prior_ssthresh = 0;
2626 tp->undo_marker = 0;
2627 tcp_set_ca_state(sk, TCP_CA_Loss);
2629 tcp_xmit_retransmit_queue(sk);
2631 EXPORT_SYMBOL(tcp_simple_retransmit);
2633 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2635 struct tcp_sock *tp = tcp_sk(sk);
2638 if (tcp_is_reno(tp))
2639 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2641 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2643 NET_INC_STATS(sock_net(sk), mib_idx);
2645 tp->prior_ssthresh = 0;
2648 if (!tcp_in_cwnd_reduction(sk)) {
2650 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2651 tcp_init_cwnd_reduction(sk);
2653 tcp_set_ca_state(sk, TCP_CA_Recovery);
2656 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2657 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2659 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2662 struct tcp_sock *tp = tcp_sk(sk);
2663 bool recovered = !before(tp->snd_una, tp->high_seq);
2665 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2666 tcp_try_undo_loss(sk, false))
2669 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2670 /* Step 3.b. A timeout is spurious if not all data are
2671 * lost, i.e., never-retransmitted data are (s)acked.
2673 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2674 tcp_try_undo_loss(sk, true))
2677 if (after(tp->snd_nxt, tp->high_seq)) {
2678 if (flag & FLAG_DATA_SACKED || is_dupack)
2679 tp->frto = 0; /* Step 3.a. loss was real */
2680 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2681 tp->high_seq = tp->snd_nxt;
2682 /* Step 2.b. Try send new data (but deferred until cwnd
2683 * is updated in tcp_ack()). Otherwise fall back to
2684 * the conventional recovery.
2686 if (!tcp_write_queue_empty(sk) &&
2687 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2688 *rexmit = REXMIT_NEW;
2696 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2697 tcp_try_undo_recovery(sk);
2700 if (tcp_is_reno(tp)) {
2701 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2702 * delivered. Lower inflight to clock out (re)tranmissions.
2704 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2705 tcp_add_reno_sack(sk);
2706 else if (flag & FLAG_SND_UNA_ADVANCED)
2707 tcp_reset_reno_sack(tp);
2709 *rexmit = REXMIT_LOST;
2712 /* Undo during fast recovery after partial ACK. */
2713 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2715 struct tcp_sock *tp = tcp_sk(sk);
2717 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2718 /* Plain luck! Hole if filled with delayed
2719 * packet, rather than with a retransmit. Check reordering.
2721 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2723 /* We are getting evidence that the reordering degree is higher
2724 * than we realized. If there are no retransmits out then we
2725 * can undo. Otherwise we clock out new packets but do not
2726 * mark more packets lost or retransmit more.
2728 if (tp->retrans_out)
2731 if (!tcp_any_retrans_done(sk))
2732 tp->retrans_stamp = 0;
2734 DBGUNDO(sk, "partial recovery");
2735 tcp_undo_cwnd_reduction(sk, true);
2736 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2737 tcp_try_keep_open(sk);
2743 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2745 struct tcp_sock *tp = tcp_sk(sk);
2747 if (tcp_rtx_queue_empty(sk))
2750 if (unlikely(tcp_is_reno(tp))) {
2751 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2752 } else if (tcp_is_rack(sk)) {
2753 u32 prior_retrans = tp->retrans_out;
2755 if (tcp_rack_mark_lost(sk))
2756 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2757 if (prior_retrans > tp->retrans_out)
2758 *ack_flag |= FLAG_LOST_RETRANS;
2762 static bool tcp_force_fast_retransmit(struct sock *sk)
2764 struct tcp_sock *tp = tcp_sk(sk);
2766 return after(tcp_highest_sack_seq(tp),
2767 tp->snd_una + tp->reordering * tp->mss_cache);
2770 /* Process an event, which can update packets-in-flight not trivially.
2771 * Main goal of this function is to calculate new estimate for left_out,
2772 * taking into account both packets sitting in receiver's buffer and
2773 * packets lost by network.
2775 * Besides that it updates the congestion state when packet loss or ECN
2776 * is detected. But it does not reduce the cwnd, it is done by the
2777 * congestion control later.
2779 * It does _not_ decide what to send, it is made in function
2780 * tcp_xmit_retransmit_queue().
2782 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2783 bool is_dupack, int *ack_flag, int *rexmit)
2785 struct inet_connection_sock *icsk = inet_csk(sk);
2786 struct tcp_sock *tp = tcp_sk(sk);
2787 int fast_rexmit = 0, flag = *ack_flag;
2788 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2789 tcp_force_fast_retransmit(sk));
2791 if (!tp->packets_out && tp->sacked_out)
2794 /* Now state machine starts.
2795 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2796 if (flag & FLAG_ECE)
2797 tp->prior_ssthresh = 0;
2799 /* B. In all the states check for reneging SACKs. */
2800 if (tcp_check_sack_reneging(sk, flag))
2803 /* C. Check consistency of the current state. */
2804 tcp_verify_left_out(tp);
2806 /* D. Check state exit conditions. State can be terminated
2807 * when high_seq is ACKed. */
2808 if (icsk->icsk_ca_state == TCP_CA_Open) {
2809 WARN_ON(tp->retrans_out != 0);
2810 tp->retrans_stamp = 0;
2811 } else if (!before(tp->snd_una, tp->high_seq)) {
2812 switch (icsk->icsk_ca_state) {
2814 /* CWR is to be held something *above* high_seq
2815 * is ACKed for CWR bit to reach receiver. */
2816 if (tp->snd_una != tp->high_seq) {
2817 tcp_end_cwnd_reduction(sk);
2818 tcp_set_ca_state(sk, TCP_CA_Open);
2822 case TCP_CA_Recovery:
2823 if (tcp_is_reno(tp))
2824 tcp_reset_reno_sack(tp);
2825 if (tcp_try_undo_recovery(sk))
2827 tcp_end_cwnd_reduction(sk);
2832 /* E. Process state. */
2833 switch (icsk->icsk_ca_state) {
2834 case TCP_CA_Recovery:
2835 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2836 if (tcp_is_reno(tp) && is_dupack)
2837 tcp_add_reno_sack(sk);
2839 if (tcp_try_undo_partial(sk, prior_snd_una))
2841 /* Partial ACK arrived. Force fast retransmit. */
2842 do_lost = tcp_is_reno(tp) ||
2843 tcp_force_fast_retransmit(sk);
2845 if (tcp_try_undo_dsack(sk)) {
2846 tcp_try_keep_open(sk);
2849 tcp_identify_packet_loss(sk, ack_flag);
2852 tcp_process_loss(sk, flag, is_dupack, rexmit);
2853 tcp_identify_packet_loss(sk, ack_flag);
2854 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2855 (*ack_flag & FLAG_LOST_RETRANS)))
2857 /* Change state if cwnd is undone or retransmits are lost */
2860 if (tcp_is_reno(tp)) {
2861 if (flag & FLAG_SND_UNA_ADVANCED)
2862 tcp_reset_reno_sack(tp);
2864 tcp_add_reno_sack(sk);
2867 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2868 tcp_try_undo_dsack(sk);
2870 tcp_identify_packet_loss(sk, ack_flag);
2871 if (!tcp_time_to_recover(sk, flag)) {
2872 tcp_try_to_open(sk, flag);
2876 /* MTU probe failure: don't reduce cwnd */
2877 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2878 icsk->icsk_mtup.probe_size &&
2879 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2880 tcp_mtup_probe_failed(sk);
2881 /* Restores the reduction we did in tcp_mtup_probe() */
2883 tcp_simple_retransmit(sk);
2887 /* Otherwise enter Recovery state */
2888 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2892 if (!tcp_is_rack(sk) && do_lost)
2893 tcp_update_scoreboard(sk, fast_rexmit);
2894 *rexmit = REXMIT_LOST;
2897 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2899 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2900 struct tcp_sock *tp = tcp_sk(sk);
2902 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2903 /* If the remote keeps returning delayed ACKs, eventually
2904 * the min filter would pick it up and overestimate the
2905 * prop. delay when it expires. Skip suspected delayed ACKs.
2909 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2910 rtt_us ? : jiffies_to_usecs(1));
2913 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2914 long seq_rtt_us, long sack_rtt_us,
2915 long ca_rtt_us, struct rate_sample *rs)
2917 const struct tcp_sock *tp = tcp_sk(sk);
2919 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2920 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2921 * Karn's algorithm forbids taking RTT if some retransmitted data
2922 * is acked (RFC6298).
2925 seq_rtt_us = sack_rtt_us;
2927 /* RTTM Rule: A TSecr value received in a segment is used to
2928 * update the averaged RTT measurement only if the segment
2929 * acknowledges some new data, i.e., only if it advances the
2930 * left edge of the send window.
2931 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2933 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2934 flag & FLAG_ACKED) {
2935 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2937 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2938 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2939 ca_rtt_us = seq_rtt_us;
2942 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2946 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2947 * always taken together with ACK, SACK, or TS-opts. Any negative
2948 * values will be skipped with the seq_rtt_us < 0 check above.
2950 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2951 tcp_rtt_estimator(sk, seq_rtt_us);
2954 /* RFC6298: only reset backoff on valid RTT measurement. */
2955 inet_csk(sk)->icsk_backoff = 0;
2959 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2960 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2962 struct rate_sample rs;
2965 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2966 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2968 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2972 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2974 const struct inet_connection_sock *icsk = inet_csk(sk);
2976 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2977 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2980 /* Restart timer after forward progress on connection.
2981 * RFC2988 recommends to restart timer to now+rto.
2983 void tcp_rearm_rto(struct sock *sk)
2985 const struct inet_connection_sock *icsk = inet_csk(sk);
2986 struct tcp_sock *tp = tcp_sk(sk);
2988 /* If the retrans timer is currently being used by Fast Open
2989 * for SYN-ACK retrans purpose, stay put.
2991 if (tp->fastopen_rsk)
2994 if (!tp->packets_out) {
2995 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2997 u32 rto = inet_csk(sk)->icsk_rto;
2998 /* Offset the time elapsed after installing regular RTO */
2999 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3000 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3001 s64 delta_us = tcp_rto_delta_us(sk);
3002 /* delta_us may not be positive if the socket is locked
3003 * when the retrans timer fires and is rescheduled.
3005 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3007 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3012 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3013 static void tcp_set_xmit_timer(struct sock *sk)
3015 if (!tcp_schedule_loss_probe(sk, true))
3019 /* If we get here, the whole TSO packet has not been acked. */
3020 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3022 struct tcp_sock *tp = tcp_sk(sk);
3025 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3027 packets_acked = tcp_skb_pcount(skb);
3028 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3030 packets_acked -= tcp_skb_pcount(skb);
3032 if (packets_acked) {
3033 BUG_ON(tcp_skb_pcount(skb) == 0);
3034 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3037 return packets_acked;
3040 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3043 const struct skb_shared_info *shinfo;
3045 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3046 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3049 shinfo = skb_shinfo(skb);
3050 if (!before(shinfo->tskey, prior_snd_una) &&
3051 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3052 tcp_skb_tsorted_save(skb) {
3053 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3054 } tcp_skb_tsorted_restore(skb);
3058 /* Remove acknowledged frames from the retransmission queue. If our packet
3059 * is before the ack sequence we can discard it as it's confirmed to have
3060 * arrived at the other end.
3062 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3064 struct tcp_sacktag_state *sack)
3066 const struct inet_connection_sock *icsk = inet_csk(sk);
3067 u64 first_ackt, last_ackt;
3068 struct tcp_sock *tp = tcp_sk(sk);
3069 u32 prior_sacked = tp->sacked_out;
3070 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3071 struct sk_buff *skb, *next;
3072 bool fully_acked = true;
3073 long sack_rtt_us = -1L;
3074 long seq_rtt_us = -1L;
3075 long ca_rtt_us = -1L;
3077 u32 last_in_flight = 0;
3083 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3084 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3085 const u32 start_seq = scb->seq;
3086 u8 sacked = scb->sacked;
3089 tcp_ack_tstamp(sk, skb, prior_snd_una);
3091 /* Determine how many packets and what bytes were acked, tso and else */
3092 if (after(scb->end_seq, tp->snd_una)) {
3093 if (tcp_skb_pcount(skb) == 1 ||
3094 !after(tp->snd_una, scb->seq))
3097 acked_pcount = tcp_tso_acked(sk, skb);
3100 fully_acked = false;
3102 acked_pcount = tcp_skb_pcount(skb);
3105 if (unlikely(sacked & TCPCB_RETRANS)) {
3106 if (sacked & TCPCB_SACKED_RETRANS)
3107 tp->retrans_out -= acked_pcount;
3108 flag |= FLAG_RETRANS_DATA_ACKED;
3109 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3110 last_ackt = skb->skb_mstamp;
3111 WARN_ON_ONCE(last_ackt == 0);
3113 first_ackt = last_ackt;
3115 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3116 if (before(start_seq, reord))
3118 if (!after(scb->end_seq, tp->high_seq))
3119 flag |= FLAG_ORIG_SACK_ACKED;
3122 if (sacked & TCPCB_SACKED_ACKED) {
3123 tp->sacked_out -= acked_pcount;
3124 } else if (tcp_is_sack(tp)) {
3125 tp->delivered += acked_pcount;
3126 if (!tcp_skb_spurious_retrans(tp, skb))
3127 tcp_rack_advance(tp, sacked, scb->end_seq,
3130 if (sacked & TCPCB_LOST)
3131 tp->lost_out -= acked_pcount;
3133 tp->packets_out -= acked_pcount;
3134 pkts_acked += acked_pcount;
3135 tcp_rate_skb_delivered(sk, skb, sack->rate);
3137 /* Initial outgoing SYN's get put onto the write_queue
3138 * just like anything else we transmit. It is not
3139 * true data, and if we misinform our callers that
3140 * this ACK acks real data, we will erroneously exit
3141 * connection startup slow start one packet too
3142 * quickly. This is severely frowned upon behavior.
3144 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3145 flag |= FLAG_DATA_ACKED;
3147 flag |= FLAG_SYN_ACKED;
3148 tp->retrans_stamp = 0;
3154 next = skb_rb_next(skb);
3155 if (unlikely(skb == tp->retransmit_skb_hint))
3156 tp->retransmit_skb_hint = NULL;
3157 if (unlikely(skb == tp->lost_skb_hint))
3158 tp->lost_skb_hint = NULL;
3159 tcp_highest_sack_replace(sk, skb, next);
3160 tcp_rtx_queue_unlink_and_free(skb, sk);
3164 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3166 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3167 tp->snd_up = tp->snd_una;
3169 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3170 flag |= FLAG_SACK_RENEGING;
3172 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3173 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3174 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3176 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3177 last_in_flight && !prior_sacked && fully_acked &&
3178 sack->rate->prior_delivered + 1 == tp->delivered &&
3179 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3180 /* Conservatively mark a delayed ACK. It's typically
3181 * from a lone runt packet over the round trip to
3182 * a receiver w/o out-of-order or CE events.
3184 flag |= FLAG_ACK_MAYBE_DELAYED;
3187 if (sack->first_sackt) {
3188 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3189 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3191 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3192 ca_rtt_us, sack->rate);
3194 if (flag & FLAG_ACKED) {
3195 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3196 if (unlikely(icsk->icsk_mtup.probe_size &&
3197 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3198 tcp_mtup_probe_success(sk);
3201 if (tcp_is_reno(tp)) {
3202 tcp_remove_reno_sacks(sk, pkts_acked);
3204 /* If any of the cumulatively ACKed segments was
3205 * retransmitted, non-SACK case cannot confirm that
3206 * progress was due to original transmission due to
3207 * lack of TCPCB_SACKED_ACKED bits even if some of
3208 * the packets may have been never retransmitted.
3210 if (flag & FLAG_RETRANS_DATA_ACKED)
3211 flag &= ~FLAG_ORIG_SACK_ACKED;
3215 /* Non-retransmitted hole got filled? That's reordering */
3216 if (before(reord, prior_fack))
3217 tcp_check_sack_reordering(sk, reord, 0);
3219 delta = prior_sacked - tp->sacked_out;
3220 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3222 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3223 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3224 /* Do not re-arm RTO if the sack RTT is measured from data sent
3225 * after when the head was last (re)transmitted. Otherwise the
3226 * timeout may continue to extend in loss recovery.
3228 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3231 if (icsk->icsk_ca_ops->pkts_acked) {
3232 struct ack_sample sample = { .pkts_acked = pkts_acked,
3233 .rtt_us = sack->rate->rtt_us,
3234 .in_flight = last_in_flight };
3236 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3239 #if FASTRETRANS_DEBUG > 0
3240 WARN_ON((int)tp->sacked_out < 0);
3241 WARN_ON((int)tp->lost_out < 0);
3242 WARN_ON((int)tp->retrans_out < 0);
3243 if (!tp->packets_out && tcp_is_sack(tp)) {
3244 icsk = inet_csk(sk);
3246 pr_debug("Leak l=%u %d\n",
3247 tp->lost_out, icsk->icsk_ca_state);
3250 if (tp->sacked_out) {
3251 pr_debug("Leak s=%u %d\n",
3252 tp->sacked_out, icsk->icsk_ca_state);
3255 if (tp->retrans_out) {
3256 pr_debug("Leak r=%u %d\n",
3257 tp->retrans_out, icsk->icsk_ca_state);
3258 tp->retrans_out = 0;
3265 static void tcp_ack_probe(struct sock *sk)
3267 struct inet_connection_sock *icsk = inet_csk(sk);
3268 struct sk_buff *head = tcp_send_head(sk);
3269 const struct tcp_sock *tp = tcp_sk(sk);
3271 /* Was it a usable window open? */
3274 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3275 icsk->icsk_backoff = 0;
3276 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3277 /* Socket must be waked up by subsequent tcp_data_snd_check().
3278 * This function is not for random using!
3281 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3283 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3288 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3290 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3291 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3294 /* Decide wheather to run the increase function of congestion control. */
3295 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3297 /* If reordering is high then always grow cwnd whenever data is
3298 * delivered regardless of its ordering. Otherwise stay conservative
3299 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3300 * new SACK or ECE mark may first advance cwnd here and later reduce
3301 * cwnd in tcp_fastretrans_alert() based on more states.
3303 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3304 return flag & FLAG_FORWARD_PROGRESS;
3306 return flag & FLAG_DATA_ACKED;
3309 /* The "ultimate" congestion control function that aims to replace the rigid
3310 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3311 * It's called toward the end of processing an ACK with precise rate
3312 * information. All transmission or retransmission are delayed afterwards.
3314 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3315 int flag, const struct rate_sample *rs)
3317 const struct inet_connection_sock *icsk = inet_csk(sk);
3319 if (icsk->icsk_ca_ops->cong_control) {
3320 icsk->icsk_ca_ops->cong_control(sk, rs);
3324 if (tcp_in_cwnd_reduction(sk)) {
3325 /* Reduce cwnd if state mandates */
3326 tcp_cwnd_reduction(sk, acked_sacked, flag);
3327 } else if (tcp_may_raise_cwnd(sk, flag)) {
3328 /* Advance cwnd if state allows */
3329 tcp_cong_avoid(sk, ack, acked_sacked);
3331 tcp_update_pacing_rate(sk);
3334 /* Check that window update is acceptable.
3335 * The function assumes that snd_una<=ack<=snd_next.
3337 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3338 const u32 ack, const u32 ack_seq,
3341 return after(ack, tp->snd_una) ||
3342 after(ack_seq, tp->snd_wl1) ||
3343 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3346 /* If we update tp->snd_una, also update tp->bytes_acked */
3347 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3349 u32 delta = ack - tp->snd_una;
3351 sock_owned_by_me((struct sock *)tp);
3352 tp->bytes_acked += delta;
3356 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3357 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3359 u32 delta = seq - tp->rcv_nxt;
3361 sock_owned_by_me((struct sock *)tp);
3362 tp->bytes_received += delta;
3363 WRITE_ONCE(tp->rcv_nxt, seq);
3366 /* Update our send window.
3368 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3369 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3371 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3374 struct tcp_sock *tp = tcp_sk(sk);
3376 u32 nwin = ntohs(tcp_hdr(skb)->window);
3378 if (likely(!tcp_hdr(skb)->syn))
3379 nwin <<= tp->rx_opt.snd_wscale;
3381 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3382 flag |= FLAG_WIN_UPDATE;
3383 tcp_update_wl(tp, ack_seq);
3385 if (tp->snd_wnd != nwin) {
3388 /* Note, it is the only place, where
3389 * fast path is recovered for sending TCP.
3392 tcp_fast_path_check(sk);
3394 if (!tcp_write_queue_empty(sk))
3395 tcp_slow_start_after_idle_check(sk);
3397 if (nwin > tp->max_window) {
3398 tp->max_window = nwin;
3399 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3404 tcp_snd_una_update(tp, ack);
3409 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3410 u32 *last_oow_ack_time)
3412 if (*last_oow_ack_time) {
3413 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3415 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3416 NET_INC_STATS(net, mib_idx);
3417 return true; /* rate-limited: don't send yet! */
3421 *last_oow_ack_time = tcp_jiffies32;
3423 return false; /* not rate-limited: go ahead, send dupack now! */
3426 /* Return true if we're currently rate-limiting out-of-window ACKs and
3427 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3428 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3429 * attacks that send repeated SYNs or ACKs for the same connection. To
3430 * do this, we do not send a duplicate SYNACK or ACK if the remote
3431 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3433 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3434 int mib_idx, u32 *last_oow_ack_time)
3436 /* Data packets without SYNs are not likely part of an ACK loop. */
3437 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3441 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3444 /* RFC 5961 7 [ACK Throttling] */
3445 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3447 /* unprotected vars, we dont care of overwrites */
3448 static u32 challenge_timestamp;
3449 static unsigned int challenge_count;
3450 struct tcp_sock *tp = tcp_sk(sk);
3451 struct net *net = sock_net(sk);
3454 /* First check our per-socket dupack rate limit. */
3455 if (__tcp_oow_rate_limited(net,
3456 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3457 &tp->last_oow_ack_time))
3460 /* Then check host-wide RFC 5961 rate limit. */
3462 if (now != challenge_timestamp) {
3463 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3464 u32 half = (ack_limit + 1) >> 1;
3466 challenge_timestamp = now;
3467 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3469 count = READ_ONCE(challenge_count);
3471 WRITE_ONCE(challenge_count, count - 1);
3472 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3477 static void tcp_store_ts_recent(struct tcp_sock *tp)
3479 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3480 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3483 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3485 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3486 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3487 * extra check below makes sure this can only happen
3488 * for pure ACK frames. -DaveM
3490 * Not only, also it occurs for expired timestamps.
3493 if (tcp_paws_check(&tp->rx_opt, 0))
3494 tcp_store_ts_recent(tp);
3498 /* This routine deals with acks during a TLP episode and ends an episode by
3499 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3501 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3503 struct tcp_sock *tp = tcp_sk(sk);
3505 if (before(ack, tp->tlp_high_seq))
3508 if (!tp->tlp_retrans) {
3509 /* TLP of new data has been acknowledged */
3510 tp->tlp_high_seq = 0;
3511 } else if (flag & FLAG_DSACKING_ACK) {
3512 /* This DSACK means original and TLP probe arrived; no loss */
3513 tp->tlp_high_seq = 0;
3514 } else if (after(ack, tp->tlp_high_seq)) {
3515 /* ACK advances: there was a loss, so reduce cwnd. Reset
3516 * tlp_high_seq in tcp_init_cwnd_reduction()
3518 tcp_init_cwnd_reduction(sk);
3519 tcp_set_ca_state(sk, TCP_CA_CWR);
3520 tcp_end_cwnd_reduction(sk);
3521 tcp_try_keep_open(sk);
3522 NET_INC_STATS(sock_net(sk),
3523 LINUX_MIB_TCPLOSSPROBERECOVERY);
3524 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3525 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3526 /* Pure dupack: original and TLP probe arrived; no loss */
3527 tp->tlp_high_seq = 0;
3531 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3533 const struct inet_connection_sock *icsk = inet_csk(sk);
3535 if (icsk->icsk_ca_ops->in_ack_event)
3536 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3539 /* Congestion control has updated the cwnd already. So if we're in
3540 * loss recovery then now we do any new sends (for FRTO) or
3541 * retransmits (for CA_Loss or CA_recovery) that make sense.
3543 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3545 struct tcp_sock *tp = tcp_sk(sk);
3547 if (rexmit == REXMIT_NONE)
3550 if (unlikely(rexmit == 2)) {
3551 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3553 if (after(tp->snd_nxt, tp->high_seq))
3557 tcp_xmit_retransmit_queue(sk);
3560 /* Returns the number of packets newly acked or sacked by the current ACK */
3561 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3563 const struct net *net = sock_net(sk);
3564 struct tcp_sock *tp = tcp_sk(sk);
3567 delivered = tp->delivered - prior_delivered;
3568 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3569 if (flag & FLAG_ECE) {
3570 tp->delivered_ce += delivered;
3571 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3576 /* This routine deals with incoming acks, but not outgoing ones. */
3577 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3579 struct inet_connection_sock *icsk = inet_csk(sk);
3580 struct tcp_sock *tp = tcp_sk(sk);
3581 struct tcp_sacktag_state sack_state;
3582 struct rate_sample rs = { .prior_delivered = 0 };
3583 u32 prior_snd_una = tp->snd_una;
3584 bool is_sack_reneg = tp->is_sack_reneg;
3585 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3586 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3587 bool is_dupack = false;
3588 int prior_packets = tp->packets_out;
3589 u32 delivered = tp->delivered;
3590 u32 lost = tp->lost;
3591 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3594 sack_state.first_sackt = 0;
3595 sack_state.rate = &rs;
3597 /* We very likely will need to access rtx queue. */
3598 prefetch(sk->tcp_rtx_queue.rb_node);
3600 /* If the ack is older than previous acks
3601 * then we can probably ignore it.
3603 if (before(ack, prior_snd_una)) {
3604 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3605 if (before(ack, prior_snd_una - tp->max_window)) {
3606 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3607 tcp_send_challenge_ack(sk, skb);
3613 /* If the ack includes data we haven't sent yet, discard
3614 * this segment (RFC793 Section 3.9).
3616 if (after(ack, tp->snd_nxt))
3619 if (after(ack, prior_snd_una)) {
3620 flag |= FLAG_SND_UNA_ADVANCED;
3621 icsk->icsk_retransmits = 0;
3623 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3624 if (static_branch_unlikely(&clean_acked_data_enabled))
3625 if (icsk->icsk_clean_acked)
3626 icsk->icsk_clean_acked(sk, ack);
3630 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3631 rs.prior_in_flight = tcp_packets_in_flight(tp);
3633 /* ts_recent update must be made after we are sure that the packet
3636 if (flag & FLAG_UPDATE_TS_RECENT)
3637 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3639 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3640 /* Window is constant, pure forward advance.
3641 * No more checks are required.
3642 * Note, we use the fact that SND.UNA>=SND.WL2.
3644 tcp_update_wl(tp, ack_seq);
3645 tcp_snd_una_update(tp, ack);
3646 flag |= FLAG_WIN_UPDATE;
3648 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3652 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3654 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3657 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3659 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3661 if (TCP_SKB_CB(skb)->sacked)
3662 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3665 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3667 ack_ev_flags |= CA_ACK_ECE;
3670 if (flag & FLAG_WIN_UPDATE)
3671 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3673 tcp_in_ack_event(sk, ack_ev_flags);
3676 /* This is a deviation from RFC3168 since it states that:
3677 * "When the TCP data sender is ready to set the CWR bit after reducing
3678 * the congestion window, it SHOULD set the CWR bit only on the first
3679 * new data packet that it transmits."
3680 * We accept CWR on pure ACKs to be more robust
3681 * with widely-deployed TCP implementations that do this.
3683 tcp_ecn_accept_cwr(sk, skb);
3685 /* We passed data and got it acked, remove any soft error
3686 * log. Something worked...
3688 sk->sk_err_soft = 0;
3689 icsk->icsk_probes_out = 0;
3690 tp->rcv_tstamp = tcp_jiffies32;
3694 /* See if we can take anything off of the retransmit queue. */
3695 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3697 tcp_rack_update_reo_wnd(sk, &rs);
3699 if (tp->tlp_high_seq)
3700 tcp_process_tlp_ack(sk, ack, flag);
3702 if (tcp_ack_is_dubious(sk, flag)) {
3703 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3704 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3708 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3709 if (flag & FLAG_SET_XMIT_TIMER)
3710 tcp_set_xmit_timer(sk);
3712 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3715 delivered = tcp_newly_delivered(sk, delivered, flag);
3716 lost = tp->lost - lost; /* freshly marked lost */
3717 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3718 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3719 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3720 tcp_xmit_recovery(sk, rexmit);
3724 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3725 if (flag & FLAG_DSACKING_ACK) {
3726 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3728 tcp_newly_delivered(sk, delivered, flag);
3730 /* If this ack opens up a zero window, clear backoff. It was
3731 * being used to time the probes, and is probably far higher than
3732 * it needs to be for normal retransmission.
3736 if (tp->tlp_high_seq)
3737 tcp_process_tlp_ack(sk, ack, flag);
3741 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3745 /* If data was SACKed, tag it and see if we should send more data.
3746 * If data was DSACKed, see if we can undo a cwnd reduction.
3748 if (TCP_SKB_CB(skb)->sacked) {
3749 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3751 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3753 tcp_newly_delivered(sk, delivered, flag);
3754 tcp_xmit_recovery(sk, rexmit);
3757 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3761 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3762 bool syn, struct tcp_fastopen_cookie *foc,
3765 /* Valid only in SYN or SYN-ACK with an even length. */
3766 if (!foc || !syn || len < 0 || (len & 1))
3769 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3770 len <= TCP_FASTOPEN_COOKIE_MAX)
3771 memcpy(foc->val, cookie, len);
3778 static void smc_parse_options(const struct tcphdr *th,
3779 struct tcp_options_received *opt_rx,
3780 const unsigned char *ptr,
3783 #if IS_ENABLED(CONFIG_SMC)
3784 if (static_branch_unlikely(&tcp_have_smc)) {
3785 if (th->syn && !(opsize & 1) &&
3786 opsize >= TCPOLEN_EXP_SMC_BASE &&
3787 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3793 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3794 * But, this can also be called on packets in the established flow when
3795 * the fast version below fails.
3797 void tcp_parse_options(const struct net *net,
3798 const struct sk_buff *skb,
3799 struct tcp_options_received *opt_rx, int estab,
3800 struct tcp_fastopen_cookie *foc)
3802 const unsigned char *ptr;
3803 const struct tcphdr *th = tcp_hdr(skb);
3804 int length = (th->doff * 4) - sizeof(struct tcphdr);
3806 ptr = (const unsigned char *)(th + 1);
3807 opt_rx->saw_tstamp = 0;
3809 while (length > 0) {
3810 int opcode = *ptr++;
3816 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3821 if (opsize < 2) /* "silly options" */
3823 if (opsize > length)
3824 return; /* don't parse partial options */
3827 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3828 u16 in_mss = get_unaligned_be16(ptr);
3830 if (opt_rx->user_mss &&
3831 opt_rx->user_mss < in_mss)
3832 in_mss = opt_rx->user_mss;
3833 opt_rx->mss_clamp = in_mss;
3838 if (opsize == TCPOLEN_WINDOW && th->syn &&
3839 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3840 __u8 snd_wscale = *(__u8 *)ptr;
3841 opt_rx->wscale_ok = 1;
3842 if (snd_wscale > TCP_MAX_WSCALE) {
3843 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3847 snd_wscale = TCP_MAX_WSCALE;
3849 opt_rx->snd_wscale = snd_wscale;
3852 case TCPOPT_TIMESTAMP:
3853 if ((opsize == TCPOLEN_TIMESTAMP) &&
3854 ((estab && opt_rx->tstamp_ok) ||
3855 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3856 opt_rx->saw_tstamp = 1;
3857 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3858 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3861 case TCPOPT_SACK_PERM:
3862 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3863 !estab && net->ipv4.sysctl_tcp_sack) {
3864 opt_rx->sack_ok = TCP_SACK_SEEN;
3865 tcp_sack_reset(opt_rx);
3870 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3871 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3873 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3876 #ifdef CONFIG_TCP_MD5SIG
3879 * The MD5 Hash has already been
3880 * checked (see tcp_v{4,6}_do_rcv()).
3884 case TCPOPT_FASTOPEN:
3885 tcp_parse_fastopen_option(
3886 opsize - TCPOLEN_FASTOPEN_BASE,
3887 ptr, th->syn, foc, false);
3891 /* Fast Open option shares code 254 using a
3892 * 16 bits magic number.
3894 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3895 get_unaligned_be16(ptr) ==
3896 TCPOPT_FASTOPEN_MAGIC)
3897 tcp_parse_fastopen_option(opsize -
3898 TCPOLEN_EXP_FASTOPEN_BASE,
3899 ptr + 2, th->syn, foc, true);
3901 smc_parse_options(th, opt_rx, ptr,
3911 EXPORT_SYMBOL(tcp_parse_options);
3913 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3915 const __be32 *ptr = (const __be32 *)(th + 1);
3917 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3918 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3919 tp->rx_opt.saw_tstamp = 1;
3921 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3924 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3926 tp->rx_opt.rcv_tsecr = 0;
3932 /* Fast parse options. This hopes to only see timestamps.
3933 * If it is wrong it falls back on tcp_parse_options().
3935 static bool tcp_fast_parse_options(const struct net *net,
3936 const struct sk_buff *skb,
3937 const struct tcphdr *th, struct tcp_sock *tp)
3939 /* In the spirit of fast parsing, compare doff directly to constant
3940 * values. Because equality is used, short doff can be ignored here.
3942 if (th->doff == (sizeof(*th) / 4)) {
3943 tp->rx_opt.saw_tstamp = 0;
3945 } else if (tp->rx_opt.tstamp_ok &&
3946 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3947 if (tcp_parse_aligned_timestamp(tp, th))
3951 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3952 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3953 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3958 #ifdef CONFIG_TCP_MD5SIG
3960 * Parse MD5 Signature option
3962 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3964 int length = (th->doff << 2) - sizeof(*th);
3965 const u8 *ptr = (const u8 *)(th + 1);
3967 /* If not enough data remaining, we can short cut */
3968 while (length >= TCPOLEN_MD5SIG) {
3969 int opcode = *ptr++;
3980 if (opsize < 2 || opsize > length)
3982 if (opcode == TCPOPT_MD5SIG)
3983 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3990 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3993 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3995 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3996 * it can pass through stack. So, the following predicate verifies that
3997 * this segment is not used for anything but congestion avoidance or
3998 * fast retransmit. Moreover, we even are able to eliminate most of such
3999 * second order effects, if we apply some small "replay" window (~RTO)
4000 * to timestamp space.
4002 * All these measures still do not guarantee that we reject wrapped ACKs
4003 * on networks with high bandwidth, when sequence space is recycled fastly,
4004 * but it guarantees that such events will be very rare and do not affect
4005 * connection seriously. This doesn't look nice, but alas, PAWS is really
4008 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4009 * states that events when retransmit arrives after original data are rare.
4010 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4011 * the biggest problem on large power networks even with minor reordering.
4012 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4013 * up to bandwidth of 18Gigabit/sec. 8) ]
4016 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4018 const struct tcp_sock *tp = tcp_sk(sk);
4019 const struct tcphdr *th = tcp_hdr(skb);
4020 u32 seq = TCP_SKB_CB(skb)->seq;
4021 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4023 return (/* 1. Pure ACK with correct sequence number. */
4024 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4026 /* 2. ... and duplicate ACK. */
4027 ack == tp->snd_una &&
4029 /* 3. ... and does not update window. */
4030 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4032 /* 4. ... and sits in replay window. */
4033 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4036 static inline bool tcp_paws_discard(const struct sock *sk,
4037 const struct sk_buff *skb)
4039 const struct tcp_sock *tp = tcp_sk(sk);
4041 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4042 !tcp_disordered_ack(sk, skb);
4045 /* Check segment sequence number for validity.
4047 * Segment controls are considered valid, if the segment
4048 * fits to the window after truncation to the window. Acceptability
4049 * of data (and SYN, FIN, of course) is checked separately.
4050 * See tcp_data_queue(), for example.
4052 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4053 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4054 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4055 * (borrowed from freebsd)
4058 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4060 return !before(end_seq, tp->rcv_wup) &&
4061 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4064 /* When we get a reset we do this. */
4065 void tcp_reset(struct sock *sk)
4067 trace_tcp_receive_reset(sk);
4069 /* We want the right error as BSD sees it (and indeed as we do). */
4070 switch (sk->sk_state) {
4072 sk->sk_err = ECONNREFUSED;
4074 case TCP_CLOSE_WAIT:
4080 sk->sk_err = ECONNRESET;
4082 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4085 tcp_write_queue_purge(sk);
4088 if (!sock_flag(sk, SOCK_DEAD))
4089 sk->sk_error_report(sk);
4093 * Process the FIN bit. This now behaves as it is supposed to work
4094 * and the FIN takes effect when it is validly part of sequence
4095 * space. Not before when we get holes.
4097 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4098 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4101 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4102 * close and we go into CLOSING (and later onto TIME-WAIT)
4104 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4106 void tcp_fin(struct sock *sk)
4108 struct tcp_sock *tp = tcp_sk(sk);
4110 inet_csk_schedule_ack(sk);
4112 sk->sk_shutdown |= RCV_SHUTDOWN;
4113 sock_set_flag(sk, SOCK_DONE);
4115 switch (sk->sk_state) {
4117 case TCP_ESTABLISHED:
4118 /* Move to CLOSE_WAIT */
4119 tcp_set_state(sk, TCP_CLOSE_WAIT);
4120 inet_csk(sk)->icsk_ack.pingpong = 1;
4123 case TCP_CLOSE_WAIT:
4125 /* Received a retransmission of the FIN, do
4130 /* RFC793: Remain in the LAST-ACK state. */
4134 /* This case occurs when a simultaneous close
4135 * happens, we must ack the received FIN and
4136 * enter the CLOSING state.
4139 tcp_set_state(sk, TCP_CLOSING);
4142 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4144 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4147 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4148 * cases we should never reach this piece of code.
4150 pr_err("%s: Impossible, sk->sk_state=%d\n",
4151 __func__, sk->sk_state);
4155 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4156 * Probably, we should reset in this case. For now drop them.
4158 skb_rbtree_purge(&tp->out_of_order_queue);
4159 if (tcp_is_sack(tp))
4160 tcp_sack_reset(&tp->rx_opt);
4163 if (!sock_flag(sk, SOCK_DEAD)) {
4164 sk->sk_state_change(sk);
4166 /* Do not send POLL_HUP for half duplex close. */
4167 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4168 sk->sk_state == TCP_CLOSE)
4169 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4171 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4175 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4178 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4179 if (before(seq, sp->start_seq))
4180 sp->start_seq = seq;
4181 if (after(end_seq, sp->end_seq))
4182 sp->end_seq = end_seq;
4188 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4190 struct tcp_sock *tp = tcp_sk(sk);
4192 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4195 if (before(seq, tp->rcv_nxt))
4196 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4198 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4200 NET_INC_STATS(sock_net(sk), mib_idx);
4202 tp->rx_opt.dsack = 1;
4203 tp->duplicate_sack[0].start_seq = seq;
4204 tp->duplicate_sack[0].end_seq = end_seq;
4208 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4210 struct tcp_sock *tp = tcp_sk(sk);
4212 if (!tp->rx_opt.dsack)
4213 tcp_dsack_set(sk, seq, end_seq);
4215 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4218 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4220 struct tcp_sock *tp = tcp_sk(sk);
4222 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4223 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4224 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4225 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4227 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4228 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4230 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4231 end_seq = tp->rcv_nxt;
4232 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4239 /* These routines update the SACK block as out-of-order packets arrive or
4240 * in-order packets close up the sequence space.
4242 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4245 struct tcp_sack_block *sp = &tp->selective_acks[0];
4246 struct tcp_sack_block *swalk = sp + 1;
4248 /* See if the recent change to the first SACK eats into
4249 * or hits the sequence space of other SACK blocks, if so coalesce.
4251 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4252 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4255 /* Zap SWALK, by moving every further SACK up by one slot.
4256 * Decrease num_sacks.
4258 tp->rx_opt.num_sacks--;
4259 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4263 this_sack++, swalk++;
4267 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4269 struct tcp_sock *tp = tcp_sk(sk);
4270 struct tcp_sack_block *sp = &tp->selective_acks[0];
4271 int cur_sacks = tp->rx_opt.num_sacks;
4277 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4278 if (tcp_sack_extend(sp, seq, end_seq)) {
4279 /* Rotate this_sack to the first one. */
4280 for (; this_sack > 0; this_sack--, sp--)
4281 swap(*sp, *(sp - 1));
4283 tcp_sack_maybe_coalesce(tp);
4288 /* Could not find an adjacent existing SACK, build a new one,
4289 * put it at the front, and shift everyone else down. We
4290 * always know there is at least one SACK present already here.
4292 * If the sack array is full, forget about the last one.
4294 if (this_sack >= TCP_NUM_SACKS) {
4295 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4298 tp->rx_opt.num_sacks--;
4301 for (; this_sack > 0; this_sack--, sp--)
4305 /* Build the new head SACK, and we're done. */
4306 sp->start_seq = seq;
4307 sp->end_seq = end_seq;
4308 tp->rx_opt.num_sacks++;
4311 /* RCV.NXT advances, some SACKs should be eaten. */
4313 static void tcp_sack_remove(struct tcp_sock *tp)
4315 struct tcp_sack_block *sp = &tp->selective_acks[0];
4316 int num_sacks = tp->rx_opt.num_sacks;
4319 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4320 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4321 tp->rx_opt.num_sacks = 0;
4325 for (this_sack = 0; this_sack < num_sacks;) {
4326 /* Check if the start of the sack is covered by RCV.NXT. */
4327 if (!before(tp->rcv_nxt, sp->start_seq)) {
4330 /* RCV.NXT must cover all the block! */
4331 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4333 /* Zap this SACK, by moving forward any other SACKS. */
4334 for (i = this_sack+1; i < num_sacks; i++)
4335 tp->selective_acks[i-1] = tp->selective_acks[i];
4342 tp->rx_opt.num_sacks = num_sacks;
4346 * tcp_try_coalesce - try to merge skb to prior one
4348 * @dest: destination queue
4350 * @from: buffer to add in queue
4351 * @fragstolen: pointer to boolean
4353 * Before queueing skb @from after @to, try to merge them
4354 * to reduce overall memory use and queue lengths, if cost is small.
4355 * Packets in ofo or receive queues can stay a long time.
4356 * Better try to coalesce them right now to avoid future collapses.
4357 * Returns true if caller should free @from instead of queueing it
4359 static bool tcp_try_coalesce(struct sock *sk,
4361 struct sk_buff *from,
4366 *fragstolen = false;
4368 /* Its possible this segment overlaps with prior segment in queue */
4369 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4372 #ifdef CONFIG_TLS_DEVICE
4373 if (from->decrypted != to->decrypted)
4377 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4380 atomic_add(delta, &sk->sk_rmem_alloc);
4381 sk_mem_charge(sk, delta);
4382 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4383 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4384 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4385 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4387 if (TCP_SKB_CB(from)->has_rxtstamp) {
4388 TCP_SKB_CB(to)->has_rxtstamp = true;
4389 to->tstamp = from->tstamp;
4390 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4396 static bool tcp_ooo_try_coalesce(struct sock *sk,
4398 struct sk_buff *from,
4401 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4403 /* In case tcp_drop() is called later, update to->gso_segs */
4405 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4406 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4408 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4413 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4415 sk_drops_add(sk, skb);
4419 /* This one checks to see if we can put data from the
4420 * out_of_order queue into the receive_queue.
4422 static void tcp_ofo_queue(struct sock *sk)
4424 struct tcp_sock *tp = tcp_sk(sk);
4425 __u32 dsack_high = tp->rcv_nxt;
4426 bool fin, fragstolen, eaten;
4427 struct sk_buff *skb, *tail;
4430 p = rb_first(&tp->out_of_order_queue);
4433 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4436 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4437 __u32 dsack = dsack_high;
4438 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4439 dsack_high = TCP_SKB_CB(skb)->end_seq;
4440 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4443 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4445 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4446 SOCK_DEBUG(sk, "ofo packet was already received\n");
4450 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4451 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4452 TCP_SKB_CB(skb)->end_seq);
4454 tail = skb_peek_tail(&sk->sk_receive_queue);
4455 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4456 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4457 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4459 __skb_queue_tail(&sk->sk_receive_queue, skb);
4461 kfree_skb_partial(skb, fragstolen);
4463 if (unlikely(fin)) {
4465 /* tcp_fin() purges tp->out_of_order_queue,
4466 * so we must end this loop right now.
4473 static bool tcp_prune_ofo_queue(struct sock *sk);
4474 static int tcp_prune_queue(struct sock *sk);
4476 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4479 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4480 !sk_rmem_schedule(sk, skb, size)) {
4482 if (tcp_prune_queue(sk) < 0)
4485 while (!sk_rmem_schedule(sk, skb, size)) {
4486 if (!tcp_prune_ofo_queue(sk))
4493 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4495 struct tcp_sock *tp = tcp_sk(sk);
4496 struct rb_node **p, *parent;
4497 struct sk_buff *skb1;
4501 tcp_ecn_check_ce(sk, skb);
4503 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4504 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4505 sk->sk_data_ready(sk);
4510 /* Disable header prediction. */
4512 inet_csk_schedule_ack(sk);
4514 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4515 seq = TCP_SKB_CB(skb)->seq;
4516 end_seq = TCP_SKB_CB(skb)->end_seq;
4517 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4518 tp->rcv_nxt, seq, end_seq);
4520 p = &tp->out_of_order_queue.rb_node;
4521 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4522 /* Initial out of order segment, build 1 SACK. */
4523 if (tcp_is_sack(tp)) {
4524 tp->rx_opt.num_sacks = 1;
4525 tp->selective_acks[0].start_seq = seq;
4526 tp->selective_acks[0].end_seq = end_seq;
4528 rb_link_node(&skb->rbnode, NULL, p);
4529 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4530 tp->ooo_last_skb = skb;
4534 /* In the typical case, we are adding an skb to the end of the list.
4535 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4537 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4538 skb, &fragstolen)) {
4540 /* For non sack flows, do not grow window to force DUPACK
4541 * and trigger fast retransmit.
4543 if (tcp_is_sack(tp))
4544 tcp_grow_window(sk, skb);
4545 kfree_skb_partial(skb, fragstolen);
4549 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4550 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4551 parent = &tp->ooo_last_skb->rbnode;
4552 p = &parent->rb_right;
4556 /* Find place to insert this segment. Handle overlaps on the way. */
4560 skb1 = rb_to_skb(parent);
4561 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4562 p = &parent->rb_left;
4565 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4566 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4567 /* All the bits are present. Drop. */
4568 NET_INC_STATS(sock_net(sk),
4569 LINUX_MIB_TCPOFOMERGE);
4572 tcp_dsack_set(sk, seq, end_seq);
4575 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4576 /* Partial overlap. */
4577 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4579 /* skb's seq == skb1's seq and skb covers skb1.
4580 * Replace skb1 with skb.
4582 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4583 &tp->out_of_order_queue);
4584 tcp_dsack_extend(sk,
4585 TCP_SKB_CB(skb1)->seq,
4586 TCP_SKB_CB(skb1)->end_seq);
4587 NET_INC_STATS(sock_net(sk),
4588 LINUX_MIB_TCPOFOMERGE);
4592 } else if (tcp_ooo_try_coalesce(sk, skb1,
4593 skb, &fragstolen)) {
4596 p = &parent->rb_right;
4599 /* Insert segment into RB tree. */
4600 rb_link_node(&skb->rbnode, parent, p);
4601 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4604 /* Remove other segments covered by skb. */
4605 while ((skb1 = skb_rb_next(skb)) != NULL) {
4606 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4608 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4609 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4613 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4614 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4615 TCP_SKB_CB(skb1)->end_seq);
4616 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4619 /* If there is no skb after us, we are the last_skb ! */
4621 tp->ooo_last_skb = skb;
4624 if (tcp_is_sack(tp))
4625 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4628 /* For non sack flows, do not grow window to force DUPACK
4629 * and trigger fast retransmit.
4631 if (tcp_is_sack(tp))
4632 tcp_grow_window(sk, skb);
4634 skb_set_owner_r(skb, sk);
4638 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4642 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4644 __skb_pull(skb, hdrlen);
4646 tcp_try_coalesce(sk, tail,
4647 skb, fragstolen)) ? 1 : 0;
4648 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4650 __skb_queue_tail(&sk->sk_receive_queue, skb);
4651 skb_set_owner_r(skb, sk);
4656 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4658 struct sk_buff *skb;
4666 if (size > PAGE_SIZE) {
4667 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4669 data_len = npages << PAGE_SHIFT;
4670 size = data_len + (size & ~PAGE_MASK);
4672 skb = alloc_skb_with_frags(size - data_len, data_len,
4673 PAGE_ALLOC_COSTLY_ORDER,
4674 &err, sk->sk_allocation);
4678 skb_put(skb, size - data_len);
4679 skb->data_len = data_len;
4682 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4683 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4687 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4691 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4692 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4693 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4695 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4696 WARN_ON_ONCE(fragstolen); /* should not happen */
4708 void tcp_data_ready(struct sock *sk)
4710 const struct tcp_sock *tp = tcp_sk(sk);
4711 int avail = tp->rcv_nxt - tp->copied_seq;
4713 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4714 !sock_flag(sk, SOCK_DONE) &&
4715 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4718 sk->sk_data_ready(sk);
4721 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4723 struct tcp_sock *tp = tcp_sk(sk);
4727 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4732 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4734 tp->rx_opt.dsack = 0;
4736 /* Queue data for delivery to the user.
4737 * Packets in sequence go to the receive queue.
4738 * Out of sequence packets to the out_of_order_queue.
4740 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4741 if (tcp_receive_window(tp) == 0) {
4742 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4746 /* Ok. In sequence. In window. */
4748 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4749 sk_forced_mem_schedule(sk, skb->truesize);
4750 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4751 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4752 sk->sk_data_ready(sk);
4756 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4758 tcp_event_data_recv(sk, skb);
4759 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4762 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4765 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4766 * gap in queue is filled.
4768 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4769 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4772 if (tp->rx_opt.num_sacks)
4773 tcp_sack_remove(tp);
4775 tcp_fast_path_check(sk);
4778 kfree_skb_partial(skb, fragstolen);
4779 if (!sock_flag(sk, SOCK_DEAD))
4784 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4785 /* A retransmit, 2nd most common case. Force an immediate ack. */
4786 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4787 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4790 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4791 inet_csk_schedule_ack(sk);
4797 /* Out of window. F.e. zero window probe. */
4798 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4801 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4802 /* Partial packet, seq < rcv_next < end_seq */
4803 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4804 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4805 TCP_SKB_CB(skb)->end_seq);
4807 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4809 /* If window is closed, drop tail of packet. But after
4810 * remembering D-SACK for its head made in previous line.
4812 if (!tcp_receive_window(tp)) {
4813 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4819 tcp_data_queue_ofo(sk, skb);
4822 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4825 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4827 return skb_rb_next(skb);
4830 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4831 struct sk_buff_head *list,
4832 struct rb_root *root)
4834 struct sk_buff *next = tcp_skb_next(skb, list);
4837 __skb_unlink(skb, list);
4839 rb_erase(&skb->rbnode, root);
4842 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4847 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4848 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4850 struct rb_node **p = &root->rb_node;
4851 struct rb_node *parent = NULL;
4852 struct sk_buff *skb1;
4856 skb1 = rb_to_skb(parent);
4857 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4858 p = &parent->rb_left;
4860 p = &parent->rb_right;
4862 rb_link_node(&skb->rbnode, parent, p);
4863 rb_insert_color(&skb->rbnode, root);
4866 /* Collapse contiguous sequence of skbs head..tail with
4867 * sequence numbers start..end.
4869 * If tail is NULL, this means until the end of the queue.
4871 * Segments with FIN/SYN are not collapsed (only because this
4875 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4876 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4878 struct sk_buff *skb = head, *n;
4879 struct sk_buff_head tmp;
4882 /* First, check that queue is collapsible and find
4883 * the point where collapsing can be useful.
4886 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4887 n = tcp_skb_next(skb, list);
4889 /* No new bits? It is possible on ofo queue. */
4890 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4891 skb = tcp_collapse_one(sk, skb, list, root);
4897 /* The first skb to collapse is:
4899 * - bloated or contains data before "start" or
4900 * overlaps to the next one.
4902 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4903 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4904 before(TCP_SKB_CB(skb)->seq, start))) {
4905 end_of_skbs = false;
4909 if (n && n != tail &&
4910 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4911 end_of_skbs = false;
4915 /* Decided to skip this, advance start seq. */
4916 start = TCP_SKB_CB(skb)->end_seq;
4919 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4922 __skb_queue_head_init(&tmp);
4924 while (before(start, end)) {
4925 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4926 struct sk_buff *nskb;
4928 nskb = alloc_skb(copy, GFP_ATOMIC);
4932 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4933 #ifdef CONFIG_TLS_DEVICE
4934 nskb->decrypted = skb->decrypted;
4936 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4938 __skb_queue_before(list, skb, nskb);
4940 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4941 skb_set_owner_r(nskb, sk);
4943 /* Copy data, releasing collapsed skbs. */
4945 int offset = start - TCP_SKB_CB(skb)->seq;
4946 int size = TCP_SKB_CB(skb)->end_seq - start;
4950 size = min(copy, size);
4951 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4953 TCP_SKB_CB(nskb)->end_seq += size;
4957 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4958 skb = tcp_collapse_one(sk, skb, list, root);
4961 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4963 #ifdef CONFIG_TLS_DEVICE
4964 if (skb->decrypted != nskb->decrypted)
4971 skb_queue_walk_safe(&tmp, skb, n)
4972 tcp_rbtree_insert(root, skb);
4975 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4976 * and tcp_collapse() them until all the queue is collapsed.
4978 static void tcp_collapse_ofo_queue(struct sock *sk)
4980 struct tcp_sock *tp = tcp_sk(sk);
4981 u32 range_truesize, sum_tiny = 0;
4982 struct sk_buff *skb, *head;
4985 skb = skb_rb_first(&tp->out_of_order_queue);
4988 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4991 start = TCP_SKB_CB(skb)->seq;
4992 end = TCP_SKB_CB(skb)->end_seq;
4993 range_truesize = skb->truesize;
4995 for (head = skb;;) {
4996 skb = skb_rb_next(skb);
4998 /* Range is terminated when we see a gap or when
4999 * we are at the queue end.
5002 after(TCP_SKB_CB(skb)->seq, end) ||
5003 before(TCP_SKB_CB(skb)->end_seq, start)) {
5004 /* Do not attempt collapsing tiny skbs */
5005 if (range_truesize != head->truesize ||
5006 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5007 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5008 head, skb, start, end);
5010 sum_tiny += range_truesize;
5011 if (sum_tiny > sk->sk_rcvbuf >> 3)
5017 range_truesize += skb->truesize;
5018 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5019 start = TCP_SKB_CB(skb)->seq;
5020 if (after(TCP_SKB_CB(skb)->end_seq, end))
5021 end = TCP_SKB_CB(skb)->end_seq;
5026 * Clean the out-of-order queue to make room.
5027 * We drop high sequences packets to :
5028 * 1) Let a chance for holes to be filled.
5029 * 2) not add too big latencies if thousands of packets sit there.
5030 * (But if application shrinks SO_RCVBUF, we could still end up
5031 * freeing whole queue here)
5032 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5034 * Return true if queue has shrunk.
5036 static bool tcp_prune_ofo_queue(struct sock *sk)
5038 struct tcp_sock *tp = tcp_sk(sk);
5039 struct rb_node *node, *prev;
5042 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5045 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5046 goal = sk->sk_rcvbuf >> 3;
5047 node = &tp->ooo_last_skb->rbnode;
5049 prev = rb_prev(node);
5050 rb_erase(node, &tp->out_of_order_queue);
5051 goal -= rb_to_skb(node)->truesize;
5052 tcp_drop(sk, rb_to_skb(node));
5053 if (!prev || goal <= 0) {
5055 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5056 !tcp_under_memory_pressure(sk))
5058 goal = sk->sk_rcvbuf >> 3;
5062 tp->ooo_last_skb = rb_to_skb(prev);
5064 /* Reset SACK state. A conforming SACK implementation will
5065 * do the same at a timeout based retransmit. When a connection
5066 * is in a sad state like this, we care only about integrity
5067 * of the connection not performance.
5069 if (tp->rx_opt.sack_ok)
5070 tcp_sack_reset(&tp->rx_opt);
5074 /* Reduce allocated memory if we can, trying to get
5075 * the socket within its memory limits again.
5077 * Return less than zero if we should start dropping frames
5078 * until the socket owning process reads some of the data
5079 * to stabilize the situation.
5081 static int tcp_prune_queue(struct sock *sk)
5083 struct tcp_sock *tp = tcp_sk(sk);
5085 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5087 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5089 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5090 tcp_clamp_window(sk);
5091 else if (tcp_under_memory_pressure(sk))
5092 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5094 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5097 tcp_collapse_ofo_queue(sk);
5098 if (!skb_queue_empty(&sk->sk_receive_queue))
5099 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5100 skb_peek(&sk->sk_receive_queue),
5102 tp->copied_seq, tp->rcv_nxt);
5105 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5108 /* Collapsing did not help, destructive actions follow.
5109 * This must not ever occur. */
5111 tcp_prune_ofo_queue(sk);
5113 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5116 /* If we are really being abused, tell the caller to silently
5117 * drop receive data on the floor. It will get retransmitted
5118 * and hopefully then we'll have sufficient space.
5120 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5122 /* Massive buffer overcommit. */
5127 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5129 const struct tcp_sock *tp = tcp_sk(sk);
5131 /* If the user specified a specific send buffer setting, do
5134 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5137 /* If we are under global TCP memory pressure, do not expand. */
5138 if (tcp_under_memory_pressure(sk))
5141 /* If we are under soft global TCP memory pressure, do not expand. */
5142 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5145 /* If we filled the congestion window, do not expand. */
5146 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5152 /* When incoming ACK allowed to free some skb from write_queue,
5153 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5154 * on the exit from tcp input handler.
5156 * PROBLEM: sndbuf expansion does not work well with largesend.
5158 static void tcp_new_space(struct sock *sk)
5160 struct tcp_sock *tp = tcp_sk(sk);
5162 if (tcp_should_expand_sndbuf(sk)) {
5163 tcp_sndbuf_expand(sk);
5164 tp->snd_cwnd_stamp = tcp_jiffies32;
5167 sk->sk_write_space(sk);
5170 static void tcp_check_space(struct sock *sk)
5172 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5173 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5174 /* pairs with tcp_poll() */
5176 if (sk->sk_socket &&
5177 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5179 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5180 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5185 static inline void tcp_data_snd_check(struct sock *sk)
5187 tcp_push_pending_frames(sk);
5188 tcp_check_space(sk);
5192 * Check if sending an ack is needed.
5194 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5196 struct tcp_sock *tp = tcp_sk(sk);
5197 unsigned long rtt, delay;
5199 /* More than one full frame received... */
5200 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5201 /* ... and right edge of window advances far enough.
5202 * (tcp_recvmsg() will send ACK otherwise).
5203 * If application uses SO_RCVLOWAT, we want send ack now if
5204 * we have not received enough bytes to satisfy the condition.
5206 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5207 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5208 /* We ACK each frame or... */
5209 tcp_in_quickack_mode(sk) ||
5210 /* Protocol state mandates a one-time immediate ACK */
5211 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5217 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5218 tcp_send_delayed_ack(sk);
5222 if (!tcp_is_sack(tp) ||
5223 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5226 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5227 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5228 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5229 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5230 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5231 tp->compressed_ack = 0;
5234 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5237 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5240 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5242 rtt = tp->rcv_rtt_est.rtt_us;
5243 if (tp->srtt_us && tp->srtt_us < rtt)
5246 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5247 rtt * (NSEC_PER_USEC >> 3)/20);
5249 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5250 HRTIMER_MODE_REL_PINNED_SOFT);
5253 static inline void tcp_ack_snd_check(struct sock *sk)
5255 if (!inet_csk_ack_scheduled(sk)) {
5256 /* We sent a data segment already. */
5259 __tcp_ack_snd_check(sk, 1);
5263 * This routine is only called when we have urgent data
5264 * signaled. Its the 'slow' part of tcp_urg. It could be
5265 * moved inline now as tcp_urg is only called from one
5266 * place. We handle URGent data wrong. We have to - as
5267 * BSD still doesn't use the correction from RFC961.
5268 * For 1003.1g we should support a new option TCP_STDURG to permit
5269 * either form (or just set the sysctl tcp_stdurg).
5272 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5274 struct tcp_sock *tp = tcp_sk(sk);
5275 u32 ptr = ntohs(th->urg_ptr);
5277 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5279 ptr += ntohl(th->seq);
5281 /* Ignore urgent data that we've already seen and read. */
5282 if (after(tp->copied_seq, ptr))
5285 /* Do not replay urg ptr.
5287 * NOTE: interesting situation not covered by specs.
5288 * Misbehaving sender may send urg ptr, pointing to segment,
5289 * which we already have in ofo queue. We are not able to fetch
5290 * such data and will stay in TCP_URG_NOTYET until will be eaten
5291 * by recvmsg(). Seems, we are not obliged to handle such wicked
5292 * situations. But it is worth to think about possibility of some
5293 * DoSes using some hypothetical application level deadlock.
5295 if (before(ptr, tp->rcv_nxt))
5298 /* Do we already have a newer (or duplicate) urgent pointer? */
5299 if (tp->urg_data && !after(ptr, tp->urg_seq))
5302 /* Tell the world about our new urgent pointer. */
5305 /* We may be adding urgent data when the last byte read was
5306 * urgent. To do this requires some care. We cannot just ignore
5307 * tp->copied_seq since we would read the last urgent byte again
5308 * as data, nor can we alter copied_seq until this data arrives
5309 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5311 * NOTE. Double Dutch. Rendering to plain English: author of comment
5312 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5313 * and expect that both A and B disappear from stream. This is _wrong_.
5314 * Though this happens in BSD with high probability, this is occasional.
5315 * Any application relying on this is buggy. Note also, that fix "works"
5316 * only in this artificial test. Insert some normal data between A and B and we will
5317 * decline of BSD again. Verdict: it is better to remove to trap
5320 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5321 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5322 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5324 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5325 __skb_unlink(skb, &sk->sk_receive_queue);
5330 tp->urg_data = TCP_URG_NOTYET;
5333 /* Disable header prediction. */
5337 /* This is the 'fast' part of urgent handling. */
5338 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5340 struct tcp_sock *tp = tcp_sk(sk);
5342 /* Check if we get a new urgent pointer - normally not. */
5344 tcp_check_urg(sk, th);
5346 /* Do we wait for any urgent data? - normally not... */
5347 if (tp->urg_data == TCP_URG_NOTYET) {
5348 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5351 /* Is the urgent pointer pointing into this packet? */
5352 if (ptr < skb->len) {
5354 if (skb_copy_bits(skb, ptr, &tmp, 1))
5356 tp->urg_data = TCP_URG_VALID | tmp;
5357 if (!sock_flag(sk, SOCK_DEAD))
5358 sk->sk_data_ready(sk);
5363 /* Accept RST for rcv_nxt - 1 after a FIN.
5364 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5365 * FIN is sent followed by a RST packet. The RST is sent with the same
5366 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5367 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5368 * ACKs on the closed socket. In addition middleboxes can drop either the
5369 * challenge ACK or a subsequent RST.
5371 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5373 struct tcp_sock *tp = tcp_sk(sk);
5375 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5376 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5380 /* Does PAWS and seqno based validation of an incoming segment, flags will
5381 * play significant role here.
5383 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5384 const struct tcphdr *th, int syn_inerr)
5386 struct tcp_sock *tp = tcp_sk(sk);
5387 bool rst_seq_match = false;
5389 /* RFC1323: H1. Apply PAWS check first. */
5390 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5391 tp->rx_opt.saw_tstamp &&
5392 tcp_paws_discard(sk, skb)) {
5394 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5395 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5396 LINUX_MIB_TCPACKSKIPPEDPAWS,
5397 &tp->last_oow_ack_time))
5398 tcp_send_dupack(sk, skb);
5401 /* Reset is accepted even if it did not pass PAWS. */
5404 /* Step 1: check sequence number */
5405 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5406 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5407 * (RST) segments are validated by checking their SEQ-fields."
5408 * And page 69: "If an incoming segment is not acceptable,
5409 * an acknowledgment should be sent in reply (unless the RST
5410 * bit is set, if so drop the segment and return)".
5415 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5416 LINUX_MIB_TCPACKSKIPPEDSEQ,
5417 &tp->last_oow_ack_time))
5418 tcp_send_dupack(sk, skb);
5419 } else if (tcp_reset_check(sk, skb)) {
5425 /* Step 2: check RST bit */
5427 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5428 * FIN and SACK too if available):
5429 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5430 * the right-most SACK block,
5432 * RESET the connection
5434 * Send a challenge ACK
5436 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5437 tcp_reset_check(sk, skb)) {
5438 rst_seq_match = true;
5439 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5440 struct tcp_sack_block *sp = &tp->selective_acks[0];
5441 int max_sack = sp[0].end_seq;
5444 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5446 max_sack = after(sp[this_sack].end_seq,
5448 sp[this_sack].end_seq : max_sack;
5451 if (TCP_SKB_CB(skb)->seq == max_sack)
5452 rst_seq_match = true;
5458 /* Disable TFO if RST is out-of-order
5459 * and no data has been received
5460 * for current active TFO socket
5462 if (tp->syn_fastopen && !tp->data_segs_in &&
5463 sk->sk_state == TCP_ESTABLISHED)
5464 tcp_fastopen_active_disable(sk);
5465 tcp_send_challenge_ack(sk, skb);
5470 /* step 3: check security and precedence [ignored] */
5472 /* step 4: Check for a SYN
5473 * RFC 5961 4.2 : Send a challenge ack
5478 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5479 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5480 tcp_send_challenge_ack(sk, skb);
5492 * TCP receive function for the ESTABLISHED state.
5494 * It is split into a fast path and a slow path. The fast path is
5496 * - A zero window was announced from us - zero window probing
5497 * is only handled properly in the slow path.
5498 * - Out of order segments arrived.
5499 * - Urgent data is expected.
5500 * - There is no buffer space left
5501 * - Unexpected TCP flags/window values/header lengths are received
5502 * (detected by checking the TCP header against pred_flags)
5503 * - Data is sent in both directions. Fast path only supports pure senders
5504 * or pure receivers (this means either the sequence number or the ack
5505 * value must stay constant)
5506 * - Unexpected TCP option.
5508 * When these conditions are not satisfied it drops into a standard
5509 * receive procedure patterned after RFC793 to handle all cases.
5510 * The first three cases are guaranteed by proper pred_flags setting,
5511 * the rest is checked inline. Fast processing is turned on in
5512 * tcp_data_queue when everything is OK.
5514 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5516 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5517 struct tcp_sock *tp = tcp_sk(sk);
5518 unsigned int len = skb->len;
5520 /* TCP congestion window tracking */
5521 trace_tcp_probe(sk, skb);
5523 tcp_mstamp_refresh(tp);
5524 if (unlikely(!sk->sk_rx_dst))
5525 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5527 * Header prediction.
5528 * The code loosely follows the one in the famous
5529 * "30 instruction TCP receive" Van Jacobson mail.
5531 * Van's trick is to deposit buffers into socket queue
5532 * on a device interrupt, to call tcp_recv function
5533 * on the receive process context and checksum and copy
5534 * the buffer to user space. smart...
5536 * Our current scheme is not silly either but we take the
5537 * extra cost of the net_bh soft interrupt processing...
5538 * We do checksum and copy also but from device to kernel.
5541 tp->rx_opt.saw_tstamp = 0;
5543 /* pred_flags is 0xS?10 << 16 + snd_wnd
5544 * if header_prediction is to be made
5545 * 'S' will always be tp->tcp_header_len >> 2
5546 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5547 * turn it off (when there are holes in the receive
5548 * space for instance)
5549 * PSH flag is ignored.
5552 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5553 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5554 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5555 int tcp_header_len = tp->tcp_header_len;
5557 /* Timestamp header prediction: tcp_header_len
5558 * is automatically equal to th->doff*4 due to pred_flags
5562 /* Check timestamp */
5563 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5564 /* No? Slow path! */
5565 if (!tcp_parse_aligned_timestamp(tp, th))
5568 /* If PAWS failed, check it more carefully in slow path */
5569 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5572 /* DO NOT update ts_recent here, if checksum fails
5573 * and timestamp was corrupted part, it will result
5574 * in a hung connection since we will drop all
5575 * future packets due to the PAWS test.
5579 if (len <= tcp_header_len) {
5580 /* Bulk data transfer: sender */
5581 if (len == tcp_header_len) {
5582 /* Predicted packet is in window by definition.
5583 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5584 * Hence, check seq<=rcv_wup reduces to:
5586 if (tcp_header_len ==
5587 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5588 tp->rcv_nxt == tp->rcv_wup)
5589 tcp_store_ts_recent(tp);
5591 /* We know that such packets are checksummed
5594 tcp_ack(sk, skb, 0);
5596 tcp_data_snd_check(sk);
5597 /* When receiving pure ack in fast path, update
5598 * last ts ecr directly instead of calling
5599 * tcp_rcv_rtt_measure_ts()
5601 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5603 } else { /* Header too small */
5604 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5609 bool fragstolen = false;
5611 if (tcp_checksum_complete(skb))
5614 if ((int)skb->truesize > sk->sk_forward_alloc)
5617 /* Predicted packet is in window by definition.
5618 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5619 * Hence, check seq<=rcv_wup reduces to:
5621 if (tcp_header_len ==
5622 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5623 tp->rcv_nxt == tp->rcv_wup)
5624 tcp_store_ts_recent(tp);
5626 tcp_rcv_rtt_measure_ts(sk, skb);
5628 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5630 /* Bulk data transfer: receiver */
5631 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5634 tcp_event_data_recv(sk, skb);
5636 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5637 /* Well, only one small jumplet in fast path... */
5638 tcp_ack(sk, skb, FLAG_DATA);
5639 tcp_data_snd_check(sk);
5640 if (!inet_csk_ack_scheduled(sk))
5643 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5646 __tcp_ack_snd_check(sk, 0);
5649 kfree_skb_partial(skb, fragstolen);
5656 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5659 if (!th->ack && !th->rst && !th->syn)
5663 * Standard slow path.
5666 if (!tcp_validate_incoming(sk, skb, th, 1))
5670 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5673 tcp_rcv_rtt_measure_ts(sk, skb);
5675 /* Process urgent data. */
5676 tcp_urg(sk, skb, th);
5678 /* step 7: process the segment text */
5679 tcp_data_queue(sk, skb);
5681 tcp_data_snd_check(sk);
5682 tcp_ack_snd_check(sk);
5686 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5687 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5692 EXPORT_SYMBOL(tcp_rcv_established);
5694 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5696 struct tcp_sock *tp = tcp_sk(sk);
5697 struct inet_connection_sock *icsk = inet_csk(sk);
5699 tcp_set_state(sk, TCP_ESTABLISHED);
5700 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5703 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5704 security_inet_conn_established(sk, skb);
5705 sk_mark_napi_id(sk, skb);
5708 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5710 /* Prevent spurious tcp_cwnd_restart() on first data
5713 tp->lsndtime = tcp_jiffies32;
5715 if (sock_flag(sk, SOCK_KEEPOPEN))
5716 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5718 if (!tp->rx_opt.snd_wscale)
5719 __tcp_fast_path_on(tp, tp->snd_wnd);
5724 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5725 struct tcp_fastopen_cookie *cookie)
5727 struct tcp_sock *tp = tcp_sk(sk);
5728 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5729 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5730 bool syn_drop = false;
5732 if (mss == tp->rx_opt.user_mss) {
5733 struct tcp_options_received opt;
5735 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5736 tcp_clear_options(&opt);
5737 opt.user_mss = opt.mss_clamp = 0;
5738 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5739 mss = opt.mss_clamp;
5742 if (!tp->syn_fastopen) {
5743 /* Ignore an unsolicited cookie */
5745 } else if (tp->total_retrans) {
5746 /* SYN timed out and the SYN-ACK neither has a cookie nor
5747 * acknowledges data. Presumably the remote received only
5748 * the retransmitted (regular) SYNs: either the original
5749 * SYN-data or the corresponding SYN-ACK was dropped.
5751 syn_drop = (cookie->len < 0 && data);
5752 } else if (cookie->len < 0 && !tp->syn_data) {
5753 /* We requested a cookie but didn't get it. If we did not use
5754 * the (old) exp opt format then try so next time (try_exp=1).
5755 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5757 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5760 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5762 if (data) { /* Retransmit unacked data in SYN */
5763 skb_rbtree_walk_from(data) {
5764 if (__tcp_retransmit_skb(sk, data, 1))
5768 NET_INC_STATS(sock_net(sk),
5769 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5772 tp->syn_data_acked = tp->syn_data;
5773 if (tp->syn_data_acked) {
5774 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5775 /* SYN-data is counted as two separate packets in tcp_ack() */
5776 if (tp->delivered > 1)
5780 tcp_fastopen_add_skb(sk, synack);
5785 static void smc_check_reset_syn(struct tcp_sock *tp)
5787 #if IS_ENABLED(CONFIG_SMC)
5788 if (static_branch_unlikely(&tcp_have_smc)) {
5789 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5795 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5796 const struct tcphdr *th)
5798 struct inet_connection_sock *icsk = inet_csk(sk);
5799 struct tcp_sock *tp = tcp_sk(sk);
5800 struct tcp_fastopen_cookie foc = { .len = -1 };
5801 int saved_clamp = tp->rx_opt.mss_clamp;
5804 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5805 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5806 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5810 * "If the state is SYN-SENT then
5811 * first check the ACK bit
5812 * If the ACK bit is set
5813 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5814 * a reset (unless the RST bit is set, if so drop
5815 * the segment and return)"
5817 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5818 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5819 goto reset_and_undo;
5821 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5822 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5823 tcp_time_stamp(tp))) {
5824 NET_INC_STATS(sock_net(sk),
5825 LINUX_MIB_PAWSACTIVEREJECTED);
5826 goto reset_and_undo;
5829 /* Now ACK is acceptable.
5831 * "If the RST bit is set
5832 * If the ACK was acceptable then signal the user "error:
5833 * connection reset", drop the segment, enter CLOSED state,
5834 * delete TCB, and return."
5843 * "fifth, if neither of the SYN or RST bits is set then
5844 * drop the segment and return."
5850 goto discard_and_undo;
5853 * "If the SYN bit is on ...
5854 * are acceptable then ...
5855 * (our SYN has been ACKed), change the connection
5856 * state to ESTABLISHED..."
5859 tcp_ecn_rcv_synack(tp, th);
5861 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5862 tcp_ack(sk, skb, FLAG_SLOWPATH);
5864 /* Ok.. it's good. Set up sequence numbers and
5865 * move to established.
5867 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5868 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5870 /* RFC1323: The window in SYN & SYN/ACK segments is
5873 tp->snd_wnd = ntohs(th->window);
5875 if (!tp->rx_opt.wscale_ok) {
5876 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5877 tp->window_clamp = min(tp->window_clamp, 65535U);
5880 if (tp->rx_opt.saw_tstamp) {
5881 tp->rx_opt.tstamp_ok = 1;
5882 tp->tcp_header_len =
5883 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5884 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5885 tcp_store_ts_recent(tp);
5887 tp->tcp_header_len = sizeof(struct tcphdr);
5890 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5891 tcp_initialize_rcv_mss(sk);
5893 /* Remember, tcp_poll() does not lock socket!
5894 * Change state from SYN-SENT only after copied_seq
5895 * is initialized. */
5896 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
5898 smc_check_reset_syn(tp);
5902 tcp_finish_connect(sk, skb);
5904 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5905 tcp_rcv_fastopen_synack(sk, skb, &foc);
5907 if (!sock_flag(sk, SOCK_DEAD)) {
5908 sk->sk_state_change(sk);
5909 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5913 if (sk->sk_write_pending ||
5914 icsk->icsk_accept_queue.rskq_defer_accept ||
5915 icsk->icsk_ack.pingpong) {
5916 /* Save one ACK. Data will be ready after
5917 * several ticks, if write_pending is set.
5919 * It may be deleted, but with this feature tcpdumps
5920 * look so _wonderfully_ clever, that I was not able
5921 * to stand against the temptation 8) --ANK
5923 inet_csk_schedule_ack(sk);
5924 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5925 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5926 TCP_DELACK_MAX, TCP_RTO_MAX);
5937 /* No ACK in the segment */
5941 * "If the RST bit is set
5943 * Otherwise (no ACK) drop the segment and return."
5946 goto discard_and_undo;
5950 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5951 tcp_paws_reject(&tp->rx_opt, 0))
5952 goto discard_and_undo;
5955 /* We see SYN without ACK. It is attempt of
5956 * simultaneous connect with crossed SYNs.
5957 * Particularly, it can be connect to self.
5959 tcp_set_state(sk, TCP_SYN_RECV);
5961 if (tp->rx_opt.saw_tstamp) {
5962 tp->rx_opt.tstamp_ok = 1;
5963 tcp_store_ts_recent(tp);
5964 tp->tcp_header_len =
5965 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5967 tp->tcp_header_len = sizeof(struct tcphdr);
5970 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5971 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
5972 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5974 /* RFC1323: The window in SYN & SYN/ACK segments is
5977 tp->snd_wnd = ntohs(th->window);
5978 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5979 tp->max_window = tp->snd_wnd;
5981 tcp_ecn_rcv_syn(tp, th);
5984 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5985 tcp_initialize_rcv_mss(sk);
5987 tcp_send_synack(sk);
5989 /* Note, we could accept data and URG from this segment.
5990 * There are no obstacles to make this (except that we must
5991 * either change tcp_recvmsg() to prevent it from returning data
5992 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5994 * However, if we ignore data in ACKless segments sometimes,
5995 * we have no reasons to accept it sometimes.
5996 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5997 * is not flawless. So, discard packet for sanity.
5998 * Uncomment this return to process the data.
6005 /* "fifth, if neither of the SYN or RST bits is set then
6006 * drop the segment and return."
6010 tcp_clear_options(&tp->rx_opt);
6011 tp->rx_opt.mss_clamp = saved_clamp;
6015 tcp_clear_options(&tp->rx_opt);
6016 tp->rx_opt.mss_clamp = saved_clamp;
6021 * This function implements the receiving procedure of RFC 793 for
6022 * all states except ESTABLISHED and TIME_WAIT.
6023 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6024 * address independent.
6027 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6029 struct tcp_sock *tp = tcp_sk(sk);
6030 struct inet_connection_sock *icsk = inet_csk(sk);
6031 const struct tcphdr *th = tcp_hdr(skb);
6032 struct request_sock *req;
6036 switch (sk->sk_state) {
6050 /* It is possible that we process SYN packets from backlog,
6051 * so we need to make sure to disable BH and RCU right there.
6055 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6067 tp->rx_opt.saw_tstamp = 0;
6068 tcp_mstamp_refresh(tp);
6069 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6073 /* Do step6 onward by hand. */
6074 tcp_urg(sk, skb, th);
6076 tcp_data_snd_check(sk);
6080 tcp_mstamp_refresh(tp);
6081 tp->rx_opt.saw_tstamp = 0;
6082 req = tp->fastopen_rsk;
6086 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6087 sk->sk_state != TCP_FIN_WAIT1);
6089 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6093 if (!th->ack && !th->rst && !th->syn)
6096 if (!tcp_validate_incoming(sk, skb, th, 0))
6099 /* step 5: check the ACK field */
6100 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6101 FLAG_UPDATE_TS_RECENT |
6102 FLAG_NO_CHALLENGE_ACK) > 0;
6105 if (sk->sk_state == TCP_SYN_RECV)
6106 return 1; /* send one RST */
6107 tcp_send_challenge_ack(sk, skb);
6110 switch (sk->sk_state) {
6112 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6114 tcp_synack_rtt_meas(sk, req);
6116 /* Once we leave TCP_SYN_RECV, we no longer need req
6120 inet_csk(sk)->icsk_retransmits = 0;
6121 reqsk_fastopen_remove(sk, req, false);
6122 /* Re-arm the timer because data may have been sent out.
6123 * This is similar to the regular data transmission case
6124 * when new data has just been ack'ed.
6126 * (TFO) - we could try to be more aggressive and
6127 * retransmitting any data sooner based on when they
6132 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6133 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6136 tcp_set_state(sk, TCP_ESTABLISHED);
6137 sk->sk_state_change(sk);
6139 /* Note, that this wakeup is only for marginal crossed SYN case.
6140 * Passively open sockets are not waked up, because
6141 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6144 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6146 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6147 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6148 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6150 if (tp->rx_opt.tstamp_ok)
6151 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6153 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6154 tcp_update_pacing_rate(sk);
6156 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6157 tp->lsndtime = tcp_jiffies32;
6159 tcp_initialize_rcv_mss(sk);
6160 tcp_fast_path_on(tp);
6163 case TCP_FIN_WAIT1: {
6166 /* If we enter the TCP_FIN_WAIT1 state and we are a
6167 * Fast Open socket and this is the first acceptable
6168 * ACK we have received, this would have acknowledged
6169 * our SYNACK so stop the SYNACK timer.
6172 /* We no longer need the request sock. */
6173 reqsk_fastopen_remove(sk, req, false);
6176 if (tp->snd_una != tp->write_seq)
6179 tcp_set_state(sk, TCP_FIN_WAIT2);
6180 sk->sk_shutdown |= SEND_SHUTDOWN;
6184 if (!sock_flag(sk, SOCK_DEAD)) {
6185 /* Wake up lingering close() */
6186 sk->sk_state_change(sk);
6190 if (tp->linger2 < 0) {
6192 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6195 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6196 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6197 /* Receive out of order FIN after close() */
6198 if (tp->syn_fastopen && th->fin)
6199 tcp_fastopen_active_disable(sk);
6201 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6205 tmo = tcp_fin_time(sk);
6206 if (tmo > TCP_TIMEWAIT_LEN) {
6207 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6208 } else if (th->fin || sock_owned_by_user(sk)) {
6209 /* Bad case. We could lose such FIN otherwise.
6210 * It is not a big problem, but it looks confusing
6211 * and not so rare event. We still can lose it now,
6212 * if it spins in bh_lock_sock(), but it is really
6215 inet_csk_reset_keepalive_timer(sk, tmo);
6217 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6224 if (tp->snd_una == tp->write_seq) {
6225 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6231 if (tp->snd_una == tp->write_seq) {
6232 tcp_update_metrics(sk);
6239 /* step 6: check the URG bit */
6240 tcp_urg(sk, skb, th);
6242 /* step 7: process the segment text */
6243 switch (sk->sk_state) {
6244 case TCP_CLOSE_WAIT:
6247 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6252 /* RFC 793 says to queue data in these states,
6253 * RFC 1122 says we MUST send a reset.
6254 * BSD 4.4 also does reset.
6256 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6257 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6258 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6259 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6265 case TCP_ESTABLISHED:
6266 tcp_data_queue(sk, skb);
6271 /* tcp_data could move socket to TIME-WAIT */
6272 if (sk->sk_state != TCP_CLOSE) {
6273 tcp_data_snd_check(sk);
6274 tcp_ack_snd_check(sk);
6283 EXPORT_SYMBOL(tcp_rcv_state_process);
6285 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6287 struct inet_request_sock *ireq = inet_rsk(req);
6289 if (family == AF_INET)
6290 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6291 &ireq->ir_rmt_addr, port);
6292 #if IS_ENABLED(CONFIG_IPV6)
6293 else if (family == AF_INET6)
6294 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6295 &ireq->ir_v6_rmt_addr, port);
6299 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6301 * If we receive a SYN packet with these bits set, it means a
6302 * network is playing bad games with TOS bits. In order to
6303 * avoid possible false congestion notifications, we disable
6304 * TCP ECN negotiation.
6306 * Exception: tcp_ca wants ECN. This is required for DCTCP
6307 * congestion control: Linux DCTCP asserts ECT on all packets,
6308 * including SYN, which is most optimal solution; however,
6309 * others, such as FreeBSD do not.
6311 static void tcp_ecn_create_request(struct request_sock *req,
6312 const struct sk_buff *skb,
6313 const struct sock *listen_sk,
6314 const struct dst_entry *dst)
6316 const struct tcphdr *th = tcp_hdr(skb);
6317 const struct net *net = sock_net(listen_sk);
6318 bool th_ecn = th->ece && th->cwr;
6325 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6326 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6327 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6329 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6330 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6331 tcp_bpf_ca_needs_ecn((struct sock *)req))
6332 inet_rsk(req)->ecn_ok = 1;
6335 static void tcp_openreq_init(struct request_sock *req,
6336 const struct tcp_options_received *rx_opt,
6337 struct sk_buff *skb, const struct sock *sk)
6339 struct inet_request_sock *ireq = inet_rsk(req);
6341 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6343 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6344 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6345 tcp_rsk(req)->snt_synack = tcp_clock_us();
6346 tcp_rsk(req)->last_oow_ack_time = 0;
6347 req->mss = rx_opt->mss_clamp;
6348 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6349 ireq->tstamp_ok = rx_opt->tstamp_ok;
6350 ireq->sack_ok = rx_opt->sack_ok;
6351 ireq->snd_wscale = rx_opt->snd_wscale;
6352 ireq->wscale_ok = rx_opt->wscale_ok;
6355 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6356 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6357 ireq->ir_mark = inet_request_mark(sk, skb);
6358 #if IS_ENABLED(CONFIG_SMC)
6359 ireq->smc_ok = rx_opt->smc_ok;
6363 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6364 struct sock *sk_listener,
6365 bool attach_listener)
6367 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6371 struct inet_request_sock *ireq = inet_rsk(req);
6373 ireq->ireq_opt = NULL;
6374 #if IS_ENABLED(CONFIG_IPV6)
6375 ireq->pktopts = NULL;
6377 atomic64_set(&ireq->ir_cookie, 0);
6378 ireq->ireq_state = TCP_NEW_SYN_RECV;
6379 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6380 ireq->ireq_family = sk_listener->sk_family;
6385 EXPORT_SYMBOL(inet_reqsk_alloc);
6388 * Return true if a syncookie should be sent
6390 static bool tcp_syn_flood_action(const struct sock *sk,
6391 const struct sk_buff *skb,
6394 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6395 const char *msg = "Dropping request";
6396 bool want_cookie = false;
6397 struct net *net = sock_net(sk);
6399 #ifdef CONFIG_SYN_COOKIES
6400 if (net->ipv4.sysctl_tcp_syncookies) {
6401 msg = "Sending cookies";
6403 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6406 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6408 if (!queue->synflood_warned &&
6409 net->ipv4.sysctl_tcp_syncookies != 2 &&
6410 xchg(&queue->synflood_warned, 1) == 0)
6411 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6412 proto, ntohs(tcp_hdr(skb)->dest), msg);
6417 static void tcp_reqsk_record_syn(const struct sock *sk,
6418 struct request_sock *req,
6419 const struct sk_buff *skb)
6421 if (tcp_sk(sk)->save_syn) {
6422 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6425 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6428 memcpy(©[1], skb_network_header(skb), len);
6429 req->saved_syn = copy;
6434 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6435 const struct tcp_request_sock_ops *af_ops,
6436 struct sock *sk, struct sk_buff *skb)
6438 struct tcp_fastopen_cookie foc = { .len = -1 };
6439 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6440 struct tcp_options_received tmp_opt;
6441 struct tcp_sock *tp = tcp_sk(sk);
6442 struct net *net = sock_net(sk);
6443 struct sock *fastopen_sk = NULL;
6444 struct request_sock *req;
6445 bool want_cookie = false;
6446 struct dst_entry *dst;
6449 /* TW buckets are converted to open requests without
6450 * limitations, they conserve resources and peer is
6451 * evidently real one.
6453 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6454 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6455 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6460 if (sk_acceptq_is_full(sk)) {
6461 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6465 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6469 tcp_rsk(req)->af_specific = af_ops;
6470 tcp_rsk(req)->ts_off = 0;
6472 tcp_clear_options(&tmp_opt);
6473 tmp_opt.mss_clamp = af_ops->mss_clamp;
6474 tmp_opt.user_mss = tp->rx_opt.user_mss;
6475 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6476 want_cookie ? NULL : &foc);
6478 if (want_cookie && !tmp_opt.saw_tstamp)
6479 tcp_clear_options(&tmp_opt);
6481 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6484 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6485 tcp_openreq_init(req, &tmp_opt, skb, sk);
6486 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6488 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6489 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6491 af_ops->init_req(req, sk, skb);
6493 if (security_inet_conn_request(sk, skb, req))
6496 if (tmp_opt.tstamp_ok)
6497 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6499 dst = af_ops->route_req(sk, &fl, req);
6503 if (!want_cookie && !isn) {
6504 /* Kill the following clause, if you dislike this way. */
6505 if (!net->ipv4.sysctl_tcp_syncookies &&
6506 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6507 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6508 !tcp_peer_is_proven(req, dst)) {
6509 /* Without syncookies last quarter of
6510 * backlog is filled with destinations,
6511 * proven to be alive.
6512 * It means that we continue to communicate
6513 * to destinations, already remembered
6514 * to the moment of synflood.
6516 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6518 goto drop_and_release;
6521 isn = af_ops->init_seq(skb);
6524 tcp_ecn_create_request(req, skb, sk, dst);
6527 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6528 req->cookie_ts = tmp_opt.tstamp_ok;
6529 if (!tmp_opt.tstamp_ok)
6530 inet_rsk(req)->ecn_ok = 0;
6533 tcp_rsk(req)->snt_isn = isn;
6534 tcp_rsk(req)->txhash = net_tx_rndhash();
6535 tcp_openreq_init_rwin(req, sk, dst);
6536 sk_rx_queue_set(req_to_sk(req), skb);
6538 tcp_reqsk_record_syn(sk, req, skb);
6539 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6542 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6543 &foc, TCP_SYNACK_FASTOPEN);
6544 /* Add the child socket directly into the accept queue */
6545 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6546 reqsk_fastopen_remove(fastopen_sk, req, false);
6547 bh_unlock_sock(fastopen_sk);
6548 sock_put(fastopen_sk);
6552 sk->sk_data_ready(sk);
6553 bh_unlock_sock(fastopen_sk);
6554 sock_put(fastopen_sk);
6556 tcp_rsk(req)->tfo_listener = false;
6558 inet_csk_reqsk_queue_hash_add(sk, req,
6559 tcp_timeout_init((struct sock *)req));
6560 af_ops->send_synack(sk, dst, &fl, req, &foc,
6561 !want_cookie ? TCP_SYNACK_NORMAL :
6579 EXPORT_SYMBOL(tcp_conn_request);