GNU Linux-libre 6.1.90-gnu
[releases.git] / net / ipv4 / tcp_cubic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
4  * Home page:
5  *      http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
6  * This is from the implementation of CUBIC TCP in
7  * Sangtae Ha, Injong Rhee and Lisong Xu,
8  *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
9  *  in ACM SIGOPS Operating System Review, July 2008.
10  * Available from:
11  *  http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
12  *
13  * CUBIC integrates a new slow start algorithm, called HyStart.
14  * The details of HyStart are presented in
15  *  Sangtae Ha and Injong Rhee,
16  *  "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
17  * Available from:
18  *  http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
19  *
20  * All testing results are available from:
21  * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
22  *
23  * Unless CUBIC is enabled and congestion window is large
24  * this behaves the same as the original Reno.
25  */
26
27 #include <linux/mm.h>
28 #include <linux/btf.h>
29 #include <linux/btf_ids.h>
30 #include <linux/module.h>
31 #include <linux/math64.h>
32 #include <net/tcp.h>
33
34 #define BICTCP_BETA_SCALE    1024       /* Scale factor beta calculation
35                                          * max_cwnd = snd_cwnd * beta
36                                          */
37 #define BICTCP_HZ               10      /* BIC HZ 2^10 = 1024 */
38
39 /* Two methods of hybrid slow start */
40 #define HYSTART_ACK_TRAIN       0x1
41 #define HYSTART_DELAY           0x2
42
43 /* Number of delay samples for detecting the increase of delay */
44 #define HYSTART_MIN_SAMPLES     8
45 #define HYSTART_DELAY_MIN       (4000U) /* 4 ms */
46 #define HYSTART_DELAY_MAX       (16000U)        /* 16 ms */
47 #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
48
49 static int fast_convergence __read_mostly = 1;
50 static int beta __read_mostly = 717;    /* = 717/1024 (BICTCP_BETA_SCALE) */
51 static int initial_ssthresh __read_mostly;
52 static int bic_scale __read_mostly = 41;
53 static int tcp_friendliness __read_mostly = 1;
54
55 static int hystart __read_mostly = 1;
56 static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
57 static int hystart_low_window __read_mostly = 16;
58 static int hystart_ack_delta_us __read_mostly = 2000;
59
60 static u32 cube_rtt_scale __read_mostly;
61 static u32 beta_scale __read_mostly;
62 static u64 cube_factor __read_mostly;
63
64 /* Note parameters that are used for precomputing scale factors are read-only */
65 module_param(fast_convergence, int, 0644);
66 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
67 module_param(beta, int, 0644);
68 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
69 module_param(initial_ssthresh, int, 0644);
70 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
71 module_param(bic_scale, int, 0444);
72 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
73 module_param(tcp_friendliness, int, 0644);
74 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
75 module_param(hystart, int, 0644);
76 MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
77 module_param(hystart_detect, int, 0644);
78 MODULE_PARM_DESC(hystart_detect, "hybrid slow start detection mechanisms"
79                  " 1: packet-train 2: delay 3: both packet-train and delay");
80 module_param(hystart_low_window, int, 0644);
81 MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
82 module_param(hystart_ack_delta_us, int, 0644);
83 MODULE_PARM_DESC(hystart_ack_delta_us, "spacing between ack's indicating train (usecs)");
84
85 /* BIC TCP Parameters */
86 struct bictcp {
87         u32     cnt;            /* increase cwnd by 1 after ACKs */
88         u32     last_max_cwnd;  /* last maximum snd_cwnd */
89         u32     last_cwnd;      /* the last snd_cwnd */
90         u32     last_time;      /* time when updated last_cwnd */
91         u32     bic_origin_point;/* origin point of bic function */
92         u32     bic_K;          /* time to origin point
93                                    from the beginning of the current epoch */
94         u32     delay_min;      /* min delay (usec) */
95         u32     epoch_start;    /* beginning of an epoch */
96         u32     ack_cnt;        /* number of acks */
97         u32     tcp_cwnd;       /* estimated tcp cwnd */
98         u16     unused;
99         u8      sample_cnt;     /* number of samples to decide curr_rtt */
100         u8      found;          /* the exit point is found? */
101         u32     round_start;    /* beginning of each round */
102         u32     end_seq;        /* end_seq of the round */
103         u32     last_ack;       /* last time when the ACK spacing is close */
104         u32     curr_rtt;       /* the minimum rtt of current round */
105 };
106
107 static inline void bictcp_reset(struct bictcp *ca)
108 {
109         memset(ca, 0, offsetof(struct bictcp, unused));
110         ca->found = 0;
111 }
112
113 static inline u32 bictcp_clock_us(const struct sock *sk)
114 {
115         return tcp_sk(sk)->tcp_mstamp;
116 }
117
118 static inline void bictcp_hystart_reset(struct sock *sk)
119 {
120         struct tcp_sock *tp = tcp_sk(sk);
121         struct bictcp *ca = inet_csk_ca(sk);
122
123         ca->round_start = ca->last_ack = bictcp_clock_us(sk);
124         ca->end_seq = tp->snd_nxt;
125         ca->curr_rtt = ~0U;
126         ca->sample_cnt = 0;
127 }
128
129 static void cubictcp_init(struct sock *sk)
130 {
131         struct bictcp *ca = inet_csk_ca(sk);
132
133         bictcp_reset(ca);
134
135         if (hystart)
136                 bictcp_hystart_reset(sk);
137
138         if (!hystart && initial_ssthresh)
139                 tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
140 }
141
142 static void cubictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event)
143 {
144         if (event == CA_EVENT_TX_START) {
145                 struct bictcp *ca = inet_csk_ca(sk);
146                 u32 now = tcp_jiffies32;
147                 s32 delta;
148
149                 delta = now - tcp_sk(sk)->lsndtime;
150
151                 /* We were application limited (idle) for a while.
152                  * Shift epoch_start to keep cwnd growth to cubic curve.
153                  */
154                 if (ca->epoch_start && delta > 0) {
155                         ca->epoch_start += delta;
156                         if (after(ca->epoch_start, now))
157                                 ca->epoch_start = now;
158                 }
159                 return;
160         }
161 }
162
163 /* calculate the cubic root of x using a table lookup followed by one
164  * Newton-Raphson iteration.
165  * Avg err ~= 0.195%
166  */
167 static u32 cubic_root(u64 a)
168 {
169         u32 x, b, shift;
170         /*
171          * cbrt(x) MSB values for x MSB values in [0..63].
172          * Precomputed then refined by hand - Willy Tarreau
173          *
174          * For x in [0..63],
175          *   v = cbrt(x << 18) - 1
176          *   cbrt(x) = (v[x] + 10) >> 6
177          */
178         static const u8 v[] = {
179                 /* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
180                 /* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
181                 /* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
182                 /* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
183                 /* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
184                 /* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
185                 /* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
186                 /* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
187         };
188
189         b = fls64(a);
190         if (b < 7) {
191                 /* a in [0..63] */
192                 return ((u32)v[(u32)a] + 35) >> 6;
193         }
194
195         b = ((b * 84) >> 8) - 1;
196         shift = (a >> (b * 3));
197
198         x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
199
200         /*
201          * Newton-Raphson iteration
202          *                         2
203          * x    = ( 2 * x  +  a / x  ) / 3
204          *  k+1          k         k
205          */
206         x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
207         x = ((x * 341) >> 10);
208         return x;
209 }
210
211 /*
212  * Compute congestion window to use.
213  */
214 static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked)
215 {
216         u32 delta, bic_target, max_cnt;
217         u64 offs, t;
218
219         ca->ack_cnt += acked;   /* count the number of ACKed packets */
220
221         if (ca->last_cwnd == cwnd &&
222             (s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32)
223                 return;
224
225         /* The CUBIC function can update ca->cnt at most once per jiffy.
226          * On all cwnd reduction events, ca->epoch_start is set to 0,
227          * which will force a recalculation of ca->cnt.
228          */
229         if (ca->epoch_start && tcp_jiffies32 == ca->last_time)
230                 goto tcp_friendliness;
231
232         ca->last_cwnd = cwnd;
233         ca->last_time = tcp_jiffies32;
234
235         if (ca->epoch_start == 0) {
236                 ca->epoch_start = tcp_jiffies32;        /* record beginning */
237                 ca->ack_cnt = acked;                    /* start counting */
238                 ca->tcp_cwnd = cwnd;                    /* syn with cubic */
239
240                 if (ca->last_max_cwnd <= cwnd) {
241                         ca->bic_K = 0;
242                         ca->bic_origin_point = cwnd;
243                 } else {
244                         /* Compute new K based on
245                          * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
246                          */
247                         ca->bic_K = cubic_root(cube_factor
248                                                * (ca->last_max_cwnd - cwnd));
249                         ca->bic_origin_point = ca->last_max_cwnd;
250                 }
251         }
252
253         /* cubic function - calc*/
254         /* calculate c * time^3 / rtt,
255          *  while considering overflow in calculation of time^3
256          * (so time^3 is done by using 64 bit)
257          * and without the support of division of 64bit numbers
258          * (so all divisions are done by using 32 bit)
259          *  also NOTE the unit of those veriables
260          *        time  = (t - K) / 2^bictcp_HZ
261          *        c = bic_scale >> 10
262          * rtt  = (srtt >> 3) / HZ
263          * !!! The following code does not have overflow problems,
264          * if the cwnd < 1 million packets !!!
265          */
266
267         t = (s32)(tcp_jiffies32 - ca->epoch_start);
268         t += usecs_to_jiffies(ca->delay_min);
269         /* change the unit from HZ to bictcp_HZ */
270         t <<= BICTCP_HZ;
271         do_div(t, HZ);
272
273         if (t < ca->bic_K)              /* t - K */
274                 offs = ca->bic_K - t;
275         else
276                 offs = t - ca->bic_K;
277
278         /* c/rtt * (t-K)^3 */
279         delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
280         if (t < ca->bic_K)                            /* below origin*/
281                 bic_target = ca->bic_origin_point - delta;
282         else                                          /* above origin*/
283                 bic_target = ca->bic_origin_point + delta;
284
285         /* cubic function - calc bictcp_cnt*/
286         if (bic_target > cwnd) {
287                 ca->cnt = cwnd / (bic_target - cwnd);
288         } else {
289                 ca->cnt = 100 * cwnd;              /* very small increment*/
290         }
291
292         /*
293          * The initial growth of cubic function may be too conservative
294          * when the available bandwidth is still unknown.
295          */
296         if (ca->last_max_cwnd == 0 && ca->cnt > 20)
297                 ca->cnt = 20;   /* increase cwnd 5% per RTT */
298
299 tcp_friendliness:
300         /* TCP Friendly */
301         if (tcp_friendliness) {
302                 u32 scale = beta_scale;
303
304                 delta = (cwnd * scale) >> 3;
305                 while (ca->ack_cnt > delta) {           /* update tcp cwnd */
306                         ca->ack_cnt -= delta;
307                         ca->tcp_cwnd++;
308                 }
309
310                 if (ca->tcp_cwnd > cwnd) {      /* if bic is slower than tcp */
311                         delta = ca->tcp_cwnd - cwnd;
312                         max_cnt = cwnd / delta;
313                         if (ca->cnt > max_cnt)
314                                 ca->cnt = max_cnt;
315                 }
316         }
317
318         /* The maximum rate of cwnd increase CUBIC allows is 1 packet per
319          * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT.
320          */
321         ca->cnt = max(ca->cnt, 2U);
322 }
323
324 static void cubictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
325 {
326         struct tcp_sock *tp = tcp_sk(sk);
327         struct bictcp *ca = inet_csk_ca(sk);
328
329         if (!tcp_is_cwnd_limited(sk))
330                 return;
331
332         if (tcp_in_slow_start(tp)) {
333                 acked = tcp_slow_start(tp, acked);
334                 if (!acked)
335                         return;
336         }
337         bictcp_update(ca, tcp_snd_cwnd(tp), acked);
338         tcp_cong_avoid_ai(tp, ca->cnt, acked);
339 }
340
341 static u32 cubictcp_recalc_ssthresh(struct sock *sk)
342 {
343         const struct tcp_sock *tp = tcp_sk(sk);
344         struct bictcp *ca = inet_csk_ca(sk);
345
346         ca->epoch_start = 0;    /* end of epoch */
347
348         /* Wmax and fast convergence */
349         if (tcp_snd_cwnd(tp) < ca->last_max_cwnd && fast_convergence)
350                 ca->last_max_cwnd = (tcp_snd_cwnd(tp) * (BICTCP_BETA_SCALE + beta))
351                         / (2 * BICTCP_BETA_SCALE);
352         else
353                 ca->last_max_cwnd = tcp_snd_cwnd(tp);
354
355         return max((tcp_snd_cwnd(tp) * beta) / BICTCP_BETA_SCALE, 2U);
356 }
357
358 static void cubictcp_state(struct sock *sk, u8 new_state)
359 {
360         if (new_state == TCP_CA_Loss) {
361                 bictcp_reset(inet_csk_ca(sk));
362                 bictcp_hystart_reset(sk);
363         }
364 }
365
366 /* Account for TSO/GRO delays.
367  * Otherwise short RTT flows could get too small ssthresh, since during
368  * slow start we begin with small TSO packets and ca->delay_min would
369  * not account for long aggregation delay when TSO packets get bigger.
370  * Ideally even with a very small RTT we would like to have at least one
371  * TSO packet being sent and received by GRO, and another one in qdisc layer.
372  * We apply another 100% factor because @rate is doubled at this point.
373  * We cap the cushion to 1ms.
374  */
375 static u32 hystart_ack_delay(const struct sock *sk)
376 {
377         unsigned long rate;
378
379         rate = READ_ONCE(sk->sk_pacing_rate);
380         if (!rate)
381                 return 0;
382         return min_t(u64, USEC_PER_MSEC,
383                      div64_ul((u64)sk->sk_gso_max_size * 4 * USEC_PER_SEC, rate));
384 }
385
386 static void hystart_update(struct sock *sk, u32 delay)
387 {
388         struct tcp_sock *tp = tcp_sk(sk);
389         struct bictcp *ca = inet_csk_ca(sk);
390         u32 threshold;
391
392         if (after(tp->snd_una, ca->end_seq))
393                 bictcp_hystart_reset(sk);
394
395         if (hystart_detect & HYSTART_ACK_TRAIN) {
396                 u32 now = bictcp_clock_us(sk);
397
398                 /* first detection parameter - ack-train detection */
399                 if ((s32)(now - ca->last_ack) <= hystart_ack_delta_us) {
400                         ca->last_ack = now;
401
402                         threshold = ca->delay_min + hystart_ack_delay(sk);
403
404                         /* Hystart ack train triggers if we get ack past
405                          * ca->delay_min/2.
406                          * Pacing might have delayed packets up to RTT/2
407                          * during slow start.
408                          */
409                         if (sk->sk_pacing_status == SK_PACING_NONE)
410                                 threshold >>= 1;
411
412                         if ((s32)(now - ca->round_start) > threshold) {
413                                 ca->found = 1;
414                                 pr_debug("hystart_ack_train (%u > %u) delay_min %u (+ ack_delay %u) cwnd %u\n",
415                                          now - ca->round_start, threshold,
416                                          ca->delay_min, hystart_ack_delay(sk), tcp_snd_cwnd(tp));
417                                 NET_INC_STATS(sock_net(sk),
418                                               LINUX_MIB_TCPHYSTARTTRAINDETECT);
419                                 NET_ADD_STATS(sock_net(sk),
420                                               LINUX_MIB_TCPHYSTARTTRAINCWND,
421                                               tcp_snd_cwnd(tp));
422                                 tp->snd_ssthresh = tcp_snd_cwnd(tp);
423                         }
424                 }
425         }
426
427         if (hystart_detect & HYSTART_DELAY) {
428                 /* obtain the minimum delay of more than sampling packets */
429                 if (ca->curr_rtt > delay)
430                         ca->curr_rtt = delay;
431                 if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
432                         ca->sample_cnt++;
433                 } else {
434                         if (ca->curr_rtt > ca->delay_min +
435                             HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
436                                 ca->found = 1;
437                                 NET_INC_STATS(sock_net(sk),
438                                               LINUX_MIB_TCPHYSTARTDELAYDETECT);
439                                 NET_ADD_STATS(sock_net(sk),
440                                               LINUX_MIB_TCPHYSTARTDELAYCWND,
441                                               tcp_snd_cwnd(tp));
442                                 tp->snd_ssthresh = tcp_snd_cwnd(tp);
443                         }
444                 }
445         }
446 }
447
448 static void cubictcp_acked(struct sock *sk, const struct ack_sample *sample)
449 {
450         const struct tcp_sock *tp = tcp_sk(sk);
451         struct bictcp *ca = inet_csk_ca(sk);
452         u32 delay;
453
454         /* Some calls are for duplicates without timetamps */
455         if (sample->rtt_us < 0)
456                 return;
457
458         /* Discard delay samples right after fast recovery */
459         if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ)
460                 return;
461
462         delay = sample->rtt_us;
463         if (delay == 0)
464                 delay = 1;
465
466         /* first time call or link delay decreases */
467         if (ca->delay_min == 0 || ca->delay_min > delay)
468                 ca->delay_min = delay;
469
470         /* hystart triggers when cwnd is larger than some threshold */
471         if (!ca->found && tcp_in_slow_start(tp) && hystart &&
472             tcp_snd_cwnd(tp) >= hystart_low_window)
473                 hystart_update(sk, delay);
474 }
475
476 static struct tcp_congestion_ops cubictcp __read_mostly = {
477         .init           = cubictcp_init,
478         .ssthresh       = cubictcp_recalc_ssthresh,
479         .cong_avoid     = cubictcp_cong_avoid,
480         .set_state      = cubictcp_state,
481         .undo_cwnd      = tcp_reno_undo_cwnd,
482         .cwnd_event     = cubictcp_cwnd_event,
483         .pkts_acked     = cubictcp_acked,
484         .owner          = THIS_MODULE,
485         .name           = "cubic",
486 };
487
488 BTF_SET8_START(tcp_cubic_check_kfunc_ids)
489 #ifdef CONFIG_X86
490 #ifdef CONFIG_DYNAMIC_FTRACE
491 BTF_ID_FLAGS(func, cubictcp_init)
492 BTF_ID_FLAGS(func, cubictcp_recalc_ssthresh)
493 BTF_ID_FLAGS(func, cubictcp_cong_avoid)
494 BTF_ID_FLAGS(func, cubictcp_state)
495 BTF_ID_FLAGS(func, cubictcp_cwnd_event)
496 BTF_ID_FLAGS(func, cubictcp_acked)
497 #endif
498 #endif
499 BTF_SET8_END(tcp_cubic_check_kfunc_ids)
500
501 static const struct btf_kfunc_id_set tcp_cubic_kfunc_set = {
502         .owner = THIS_MODULE,
503         .set   = &tcp_cubic_check_kfunc_ids,
504 };
505
506 static int __init cubictcp_register(void)
507 {
508         int ret;
509
510         BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
511
512         /* Precompute a bunch of the scaling factors that are used per-packet
513          * based on SRTT of 100ms
514          */
515
516         beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
517                 / (BICTCP_BETA_SCALE - beta);
518
519         cube_rtt_scale = (bic_scale * 10);      /* 1024*c/rtt */
520
521         /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
522          *  so K = cubic_root( (wmax-cwnd)*rtt/c )
523          * the unit of K is bictcp_HZ=2^10, not HZ
524          *
525          *  c = bic_scale >> 10
526          *  rtt = 100ms
527          *
528          * the following code has been designed and tested for
529          * cwnd < 1 million packets
530          * RTT < 100 seconds
531          * HZ < 1,000,00  (corresponding to 10 nano-second)
532          */
533
534         /* 1/c * 2^2*bictcp_HZ * srtt */
535         cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
536
537         /* divide by bic_scale and by constant Srtt (100ms) */
538         do_div(cube_factor, bic_scale * 10);
539
540         ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &tcp_cubic_kfunc_set);
541         if (ret < 0)
542                 return ret;
543         return tcp_register_congestion_control(&cubictcp);
544 }
545
546 static void __exit cubictcp_unregister(void)
547 {
548         tcp_unregister_congestion_control(&cubictcp);
549 }
550
551 module_init(cubictcp_register);
552 module_exit(cubictcp_unregister);
553
554 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
555 MODULE_LICENSE("GPL");
556 MODULE_DESCRIPTION("CUBIC TCP");
557 MODULE_VERSION("2.3");