2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
278 #include <net/xfrm.h>
280 #include <net/sock.h>
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
301 * Current number of TCP sockets.
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
309 struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
324 void tcp_enter_memory_pressure(struct sock *sk)
328 if (READ_ONCE(tcp_memory_pressure))
334 if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
339 void tcp_leave_memory_pressure(struct sock *sk)
343 if (!READ_ONCE(tcp_memory_pressure))
345 val = xchg(&tcp_memory_pressure, 0);
347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 jiffies_to_msecs(jiffies - val));
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
358 int period = timeout;
361 while (seconds > period && res < 255) {
364 if (timeout > rto_max)
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
381 if (timeout > rto_max)
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
391 u32 rate = READ_ONCE(tp->rate_delivered);
392 u32 intv = READ_ONCE(tp->rate_interval_us);
396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 do_div(rate64, intv);
402 /* Address-family independent initialization for a tcp_sock.
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
407 void tcp_init_sock(struct sock *sk)
409 struct inet_connection_sock *icsk = inet_csk(sk);
410 struct tcp_sock *tp = tcp_sk(sk);
412 tp->out_of_order_queue = RB_ROOT;
413 sk->tcp_rtx_queue = RB_ROOT;
414 tcp_init_xmit_timers(sk);
415 INIT_LIST_HEAD(&tp->tsq_node);
416 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
418 icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
427 tp->snd_cwnd = TCP_INIT_CWND;
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp->app_limited = ~0U;
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 tp->snd_cwnd_clamp = ~0;
437 tp->mss_cache = TCP_MSS_DEFAULT;
439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 tcp_assign_congestion_control(sk);
443 tp->rack.reo_wnd_steps = 1;
445 sk->sk_state = TCP_CLOSE;
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
450 icsk->icsk_sync_mss = tcp_sync_mss;
452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
458 EXPORT_SYMBOL(tcp_init_sock);
460 void tcp_init_transfer(struct sock *sk, int bpf_op)
462 struct inet_connection_sock *icsk = inet_csk(sk);
465 icsk->icsk_af_ops->rebuild_header(sk);
466 tcp_init_metrics(sk);
467 tcp_call_bpf(sk, bpf_op, 0, NULL);
468 tcp_init_congestion_control(sk);
469 tcp_init_buffer_space(sk);
472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
474 struct sk_buff *skb = tcp_write_queue_tail(sk);
476 if (tsflags && skb) {
477 struct skb_shared_info *shinfo = skb_shinfo(skb);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 tcb->txstamp_ack = 1;
483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 int target, struct sock *sk)
491 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
496 if (tcp_rmem_pressure(sk))
498 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
501 if (sk->sk_prot->stream_memory_read)
502 return sk->sk_prot->stream_memory_read(sk);
507 * Wait for a TCP event.
509 * Note that we don't need to lock the socket, as the upper poll layers
510 * take care of normal races (between the test and the event) and we don't
511 * go look at any of the socket buffers directly.
513 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
516 struct sock *sk = sock->sk;
517 const struct tcp_sock *tp = tcp_sk(sk);
520 sock_poll_wait(file, sock, wait);
522 state = inet_sk_state_load(sk);
523 if (state == TCP_LISTEN)
524 return inet_csk_listen_poll(sk);
526 /* Socket is not locked. We are protected from async events
527 * by poll logic and correct handling of state changes
528 * made by other threads is impossible in any case.
534 * EPOLLHUP is certainly not done right. But poll() doesn't
535 * have a notion of HUP in just one direction, and for a
536 * socket the read side is more interesting.
538 * Some poll() documentation says that EPOLLHUP is incompatible
539 * with the EPOLLOUT/POLLWR flags, so somebody should check this
540 * all. But careful, it tends to be safer to return too many
541 * bits than too few, and you can easily break real applications
542 * if you don't tell them that something has hung up!
546 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
547 * our fs/select.c). It means that after we received EOF,
548 * poll always returns immediately, making impossible poll() on write()
549 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
550 * if and only if shutdown has been made in both directions.
551 * Actually, it is interesting to look how Solaris and DUX
552 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
553 * then we could set it on SND_SHUTDOWN. BTW examples given
554 * in Stevens' books assume exactly this behaviour, it explains
555 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
557 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
558 * blocking on fresh not-connected or disconnected socket. --ANK
560 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
562 if (sk->sk_shutdown & RCV_SHUTDOWN)
563 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
565 /* Connected or passive Fast Open socket? */
566 if (state != TCP_SYN_SENT &&
567 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
568 int target = sock_rcvlowat(sk, 0, INT_MAX);
570 if (tp->urg_seq == READ_ONCE(tp->copied_seq) &&
571 !sock_flag(sk, SOCK_URGINLINE) &&
575 if (tcp_stream_is_readable(tp, target, sk))
576 mask |= EPOLLIN | EPOLLRDNORM;
578 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
579 if (sk_stream_is_writeable(sk)) {
580 mask |= EPOLLOUT | EPOLLWRNORM;
581 } else { /* send SIGIO later */
582 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
583 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
585 /* Race breaker. If space is freed after
586 * wspace test but before the flags are set,
587 * IO signal will be lost. Memory barrier
588 * pairs with the input side.
590 smp_mb__after_atomic();
591 if (sk_stream_is_writeable(sk))
592 mask |= EPOLLOUT | EPOLLWRNORM;
595 mask |= EPOLLOUT | EPOLLWRNORM;
597 if (tp->urg_data & TCP_URG_VALID)
599 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
600 /* Active TCP fastopen socket with defer_connect
601 * Return EPOLLOUT so application can call write()
602 * in order for kernel to generate SYN+data
604 mask |= EPOLLOUT | EPOLLWRNORM;
606 /* This barrier is coupled with smp_wmb() in tcp_reset() */
608 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
613 EXPORT_SYMBOL(tcp_poll);
615 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
617 struct tcp_sock *tp = tcp_sk(sk);
623 if (sk->sk_state == TCP_LISTEN)
626 slow = lock_sock_fast(sk);
628 unlock_sock_fast(sk, slow);
631 answ = tp->urg_data && tp->urg_seq == READ_ONCE(tp->copied_seq);
634 if (sk->sk_state == TCP_LISTEN)
637 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
640 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
643 if (sk->sk_state == TCP_LISTEN)
646 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
649 answ = READ_ONCE(tp->write_seq) - tp->snd_nxt;
655 return put_user(answ, (int __user *)arg);
657 EXPORT_SYMBOL(tcp_ioctl);
659 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
661 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
662 tp->pushed_seq = tp->write_seq;
665 static inline bool forced_push(const struct tcp_sock *tp)
667 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
670 static void skb_entail(struct sock *sk, struct sk_buff *skb)
672 struct tcp_sock *tp = tcp_sk(sk);
673 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
676 tcb->seq = tcb->end_seq = tp->write_seq;
677 tcb->tcp_flags = TCPHDR_ACK;
679 __skb_header_release(skb);
680 tcp_add_write_queue_tail(sk, skb);
681 sk->sk_wmem_queued += skb->truesize;
682 sk_mem_charge(sk, skb->truesize);
683 if (tp->nonagle & TCP_NAGLE_PUSH)
684 tp->nonagle &= ~TCP_NAGLE_PUSH;
686 tcp_slow_start_after_idle_check(sk);
689 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
692 tp->snd_up = tp->write_seq;
695 /* If a not yet filled skb is pushed, do not send it if
696 * we have data packets in Qdisc or NIC queues :
697 * Because TX completion will happen shortly, it gives a chance
698 * to coalesce future sendmsg() payload into this skb, without
699 * need for a timer, and with no latency trade off.
700 * As packets containing data payload have a bigger truesize
701 * than pure acks (dataless) packets, the last checks prevent
702 * autocorking if we only have an ACK in Qdisc/NIC queues,
703 * or if TX completion was delayed after we processed ACK packet.
705 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
708 return skb->len < size_goal &&
709 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
710 !tcp_rtx_queue_empty(sk) &&
711 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
714 static void tcp_push(struct sock *sk, int flags, int mss_now,
715 int nonagle, int size_goal)
717 struct tcp_sock *tp = tcp_sk(sk);
720 skb = tcp_write_queue_tail(sk);
723 if (!(flags & MSG_MORE) || forced_push(tp))
724 tcp_mark_push(tp, skb);
726 tcp_mark_urg(tp, flags);
728 if (tcp_should_autocork(sk, skb, size_goal)) {
730 /* avoid atomic op if TSQ_THROTTLED bit is already set */
731 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
732 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
733 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
735 /* It is possible TX completion already happened
736 * before we set TSQ_THROTTLED.
738 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
742 if (flags & MSG_MORE)
743 nonagle = TCP_NAGLE_CORK;
745 __tcp_push_pending_frames(sk, mss_now, nonagle);
748 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
749 unsigned int offset, size_t len)
751 struct tcp_splice_state *tss = rd_desc->arg.data;
754 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
755 min(rd_desc->count, len), tss->flags);
757 rd_desc->count -= ret;
761 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
763 /* Store TCP splice context information in read_descriptor_t. */
764 read_descriptor_t rd_desc = {
769 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
773 * tcp_splice_read - splice data from TCP socket to a pipe
774 * @sock: socket to splice from
775 * @ppos: position (not valid)
776 * @pipe: pipe to splice to
777 * @len: number of bytes to splice
778 * @flags: splice modifier flags
781 * Will read pages from given socket and fill them into a pipe.
784 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
785 struct pipe_inode_info *pipe, size_t len,
788 struct sock *sk = sock->sk;
789 struct tcp_splice_state tss = {
798 sock_rps_record_flow(sk);
800 * We can't seek on a socket input
809 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
811 ret = __tcp_splice_read(sk, &tss);
817 if (sock_flag(sk, SOCK_DONE))
820 ret = sock_error(sk);
823 if (sk->sk_shutdown & RCV_SHUTDOWN)
825 if (sk->sk_state == TCP_CLOSE) {
827 * This occurs when user tries to read
828 * from never connected socket.
837 /* if __tcp_splice_read() got nothing while we have
838 * an skb in receive queue, we do not want to loop.
839 * This might happen with URG data.
841 if (!skb_queue_empty(&sk->sk_receive_queue))
843 sk_wait_data(sk, &timeo, NULL);
844 if (signal_pending(current)) {
845 ret = sock_intr_errno(timeo);
858 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
859 (sk->sk_shutdown & RCV_SHUTDOWN) ||
860 signal_pending(current))
871 EXPORT_SYMBOL(tcp_splice_read);
873 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
878 /* The TCP header must be at least 32-bit aligned. */
879 size = ALIGN(size, 4);
881 if (unlikely(tcp_under_memory_pressure(sk)))
882 sk_mem_reclaim_partial(sk);
884 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
888 if (force_schedule) {
889 mem_scheduled = true;
890 sk_forced_mem_schedule(sk, skb->truesize);
892 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
894 if (likely(mem_scheduled)) {
895 skb_reserve(skb, sk->sk_prot->max_header);
897 * Make sure that we have exactly size bytes
898 * available to the caller, no more, no less.
900 skb->reserved_tailroom = skb->end - skb->tail - size;
901 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
906 sk->sk_prot->enter_memory_pressure(sk);
907 sk_stream_moderate_sndbuf(sk);
912 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
915 struct tcp_sock *tp = tcp_sk(sk);
916 u32 new_size_goal, size_goal;
921 /* Note : tcp_tso_autosize() will eventually split this later */
922 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
923 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
925 /* We try hard to avoid divides here */
926 size_goal = tp->gso_segs * mss_now;
927 if (unlikely(new_size_goal < size_goal ||
928 new_size_goal >= size_goal + mss_now)) {
929 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
930 sk->sk_gso_max_segs);
931 size_goal = tp->gso_segs * mss_now;
934 return max(size_goal, mss_now);
937 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
941 mss_now = tcp_current_mss(sk);
942 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
947 /* In some cases, both sendpage() and sendmsg() could have added
948 * an skb to the write queue, but failed adding payload on it.
949 * We need to remove it to consume less memory, but more
950 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
953 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
955 if (skb && !skb->len) {
956 tcp_unlink_write_queue(skb, sk);
957 if (tcp_write_queue_empty(sk))
958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 sk_wmem_free_skb(sk, skb);
963 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
964 size_t size, int flags)
966 struct tcp_sock *tp = tcp_sk(sk);
967 int mss_now, size_goal;
970 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
972 /* Wait for a connection to finish. One exception is TCP Fast Open
973 * (passive side) where data is allowed to be sent before a connection
974 * is fully established.
976 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
977 !tcp_passive_fastopen(sk)) {
978 err = sk_stream_wait_connect(sk, &timeo);
983 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
985 mss_now = tcp_send_mss(sk, &size_goal, flags);
989 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
993 struct sk_buff *skb = tcp_write_queue_tail(sk);
997 if (!skb || (copy = size_goal - skb->len) <= 0 ||
998 !tcp_skb_can_collapse_to(skb)) {
1000 if (!sk_stream_memory_free(sk))
1001 goto wait_for_sndbuf;
1003 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1004 tcp_rtx_and_write_queues_empty(sk));
1006 goto wait_for_memory;
1008 skb_entail(sk, skb);
1015 i = skb_shinfo(skb)->nr_frags;
1016 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1017 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1018 tcp_mark_push(tp, skb);
1021 if (!sk_wmem_schedule(sk, copy))
1022 goto wait_for_memory;
1025 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1028 skb_fill_page_desc(skb, i, page, offset, copy);
1031 if (!(flags & MSG_NO_SHARED_FRAGS))
1032 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1035 skb->data_len += copy;
1036 skb->truesize += copy;
1037 sk->sk_wmem_queued += copy;
1038 sk_mem_charge(sk, copy);
1039 skb->ip_summed = CHECKSUM_PARTIAL;
1040 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1041 TCP_SKB_CB(skb)->end_seq += copy;
1042 tcp_skb_pcount_set(skb, 0);
1045 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1053 if (skb->len < size_goal || (flags & MSG_OOB))
1056 if (forced_push(tp)) {
1057 tcp_mark_push(tp, skb);
1058 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1059 } else if (skb == tcp_send_head(sk))
1060 tcp_push_one(sk, mss_now);
1064 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1066 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1067 TCP_NAGLE_PUSH, size_goal);
1069 err = sk_stream_wait_memory(sk, &timeo);
1073 mss_now = tcp_send_mss(sk, &size_goal, flags);
1078 tcp_tx_timestamp(sk, sk->sk_tsflags);
1079 if (!(flags & MSG_SENDPAGE_NOTLAST))
1080 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1085 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1089 /* make sure we wake any epoll edge trigger waiter */
1090 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1091 sk->sk_write_space(sk);
1092 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1094 return sk_stream_error(sk, flags, err);
1096 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1098 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1099 size_t size, int flags)
1101 if (!(sk->sk_route_caps & NETIF_F_SG))
1102 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1104 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1106 return do_tcp_sendpages(sk, page, offset, size, flags);
1108 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1110 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1111 size_t size, int flags)
1116 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1121 EXPORT_SYMBOL(tcp_sendpage);
1123 /* Do not bother using a page frag for very small frames.
1124 * But use this heuristic only for the first skb in write queue.
1126 * Having no payload in skb->head allows better SACK shifting
1127 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1128 * write queue has less skbs.
1129 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1130 * This also speeds up tso_fragment(), since it wont fallback
1131 * to tcp_fragment().
1133 static int linear_payload_sz(bool first_skb)
1136 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1140 static int select_size(bool first_skb, bool zc)
1144 return linear_payload_sz(first_skb);
1147 void tcp_free_fastopen_req(struct tcp_sock *tp)
1149 if (tp->fastopen_req) {
1150 kfree(tp->fastopen_req);
1151 tp->fastopen_req = NULL;
1155 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1156 int *copied, size_t size)
1158 struct tcp_sock *tp = tcp_sk(sk);
1159 struct inet_sock *inet = inet_sk(sk);
1160 struct sockaddr *uaddr = msg->msg_name;
1163 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1164 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1165 uaddr->sa_family == AF_UNSPEC))
1167 if (tp->fastopen_req)
1168 return -EALREADY; /* Another Fast Open is in progress */
1170 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1172 if (unlikely(!tp->fastopen_req))
1174 tp->fastopen_req->data = msg;
1175 tp->fastopen_req->size = size;
1177 if (inet->defer_connect) {
1178 err = tcp_connect(sk);
1179 /* Same failure procedure as in tcp_v4/6_connect */
1181 tcp_set_state(sk, TCP_CLOSE);
1182 inet->inet_dport = 0;
1183 sk->sk_route_caps = 0;
1186 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1187 err = __inet_stream_connect(sk->sk_socket, uaddr,
1188 msg->msg_namelen, flags, 1);
1189 /* fastopen_req could already be freed in __inet_stream_connect
1190 * if the connection times out or gets rst
1192 if (tp->fastopen_req) {
1193 *copied = tp->fastopen_req->copied;
1194 tcp_free_fastopen_req(tp);
1195 inet->defer_connect = 0;
1200 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1202 struct tcp_sock *tp = tcp_sk(sk);
1203 struct ubuf_info *uarg = NULL;
1204 struct sk_buff *skb;
1205 struct sockcm_cookie sockc;
1206 int flags, err, copied = 0;
1207 int mss_now = 0, size_goal, copied_syn = 0;
1208 bool process_backlog = false;
1212 flags = msg->msg_flags;
1214 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1215 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1220 skb = tcp_write_queue_tail(sk);
1221 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1227 zc = sk->sk_route_caps & NETIF_F_SG;
1232 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1234 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1235 if (err == -EINPROGRESS && copied_syn > 0)
1241 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1243 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1245 /* Wait for a connection to finish. One exception is TCP Fast Open
1246 * (passive side) where data is allowed to be sent before a connection
1247 * is fully established.
1249 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1250 !tcp_passive_fastopen(sk)) {
1251 err = sk_stream_wait_connect(sk, &timeo);
1256 if (unlikely(tp->repair)) {
1257 if (tp->repair_queue == TCP_RECV_QUEUE) {
1258 copied = tcp_send_rcvq(sk, msg, size);
1263 if (tp->repair_queue == TCP_NO_QUEUE)
1266 /* 'common' sending to sendq */
1269 sockcm_init(&sockc, sk);
1270 if (msg->msg_controllen) {
1271 err = sock_cmsg_send(sk, msg, &sockc);
1272 if (unlikely(err)) {
1278 /* This should be in poll */
1279 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1281 /* Ok commence sending. */
1285 mss_now = tcp_send_mss(sk, &size_goal, flags);
1288 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1291 while (msg_data_left(msg)) {
1294 skb = tcp_write_queue_tail(sk);
1296 copy = size_goal - skb->len;
1298 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1303 if (!sk_stream_memory_free(sk))
1304 goto wait_for_sndbuf;
1306 if (process_backlog && sk_flush_backlog(sk)) {
1307 process_backlog = false;
1310 first_skb = tcp_rtx_and_write_queues_empty(sk);
1311 linear = select_size(first_skb, zc);
1312 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1315 goto wait_for_memory;
1317 process_backlog = true;
1318 skb->ip_summed = CHECKSUM_PARTIAL;
1320 skb_entail(sk, skb);
1323 /* All packets are restored as if they have
1324 * already been sent. skb_mstamp isn't set to
1325 * avoid wrong rtt estimation.
1328 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1331 /* Try to append data to the end of skb. */
1332 if (copy > msg_data_left(msg))
1333 copy = msg_data_left(msg);
1335 /* Where to copy to? */
1336 if (skb_availroom(skb) > 0 && !zc) {
1337 /* We have some space in skb head. Superb! */
1338 copy = min_t(int, copy, skb_availroom(skb));
1339 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1344 int i = skb_shinfo(skb)->nr_frags;
1345 struct page_frag *pfrag = sk_page_frag(sk);
1347 if (!sk_page_frag_refill(sk, pfrag))
1348 goto wait_for_memory;
1350 if (!skb_can_coalesce(skb, i, pfrag->page,
1352 if (i >= sysctl_max_skb_frags) {
1353 tcp_mark_push(tp, skb);
1359 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1361 if (!sk_wmem_schedule(sk, copy))
1362 goto wait_for_memory;
1364 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1371 /* Update the skb. */
1373 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1375 skb_fill_page_desc(skb, i, pfrag->page,
1376 pfrag->offset, copy);
1377 page_ref_inc(pfrag->page);
1379 pfrag->offset += copy;
1381 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1382 if (err == -EMSGSIZE || err == -EEXIST) {
1383 tcp_mark_push(tp, skb);
1392 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1394 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1395 TCP_SKB_CB(skb)->end_seq += copy;
1396 tcp_skb_pcount_set(skb, 0);
1399 if (!msg_data_left(msg)) {
1400 if (unlikely(flags & MSG_EOR))
1401 TCP_SKB_CB(skb)->eor = 1;
1405 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1408 if (forced_push(tp)) {
1409 tcp_mark_push(tp, skb);
1410 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1411 } else if (skb == tcp_send_head(sk))
1412 tcp_push_one(sk, mss_now);
1416 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1419 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1420 TCP_NAGLE_PUSH, size_goal);
1422 err = sk_stream_wait_memory(sk, &timeo);
1426 mss_now = tcp_send_mss(sk, &size_goal, flags);
1431 tcp_tx_timestamp(sk, sockc.tsflags);
1432 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1435 sock_zerocopy_put(uarg);
1436 return copied + copied_syn;
1439 skb = tcp_write_queue_tail(sk);
1441 tcp_remove_empty_skb(sk, skb);
1443 if (copied + copied_syn)
1446 sock_zerocopy_put_abort(uarg);
1447 err = sk_stream_error(sk, flags, err);
1448 /* make sure we wake any epoll edge trigger waiter */
1449 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1450 sk->sk_write_space(sk);
1451 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1455 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1457 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1462 ret = tcp_sendmsg_locked(sk, msg, size);
1467 EXPORT_SYMBOL(tcp_sendmsg);
1470 * Handle reading urgent data. BSD has very simple semantics for
1471 * this, no blocking and very strange errors 8)
1474 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1476 struct tcp_sock *tp = tcp_sk(sk);
1478 /* No URG data to read. */
1479 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1480 tp->urg_data == TCP_URG_READ)
1481 return -EINVAL; /* Yes this is right ! */
1483 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1486 if (tp->urg_data & TCP_URG_VALID) {
1488 char c = tp->urg_data;
1490 if (!(flags & MSG_PEEK))
1491 tp->urg_data = TCP_URG_READ;
1493 /* Read urgent data. */
1494 msg->msg_flags |= MSG_OOB;
1497 if (!(flags & MSG_TRUNC))
1498 err = memcpy_to_msg(msg, &c, 1);
1501 msg->msg_flags |= MSG_TRUNC;
1503 return err ? -EFAULT : len;
1506 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1509 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1510 * the available implementations agree in this case:
1511 * this call should never block, independent of the
1512 * blocking state of the socket.
1513 * Mike <pall@rz.uni-karlsruhe.de>
1518 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1520 struct sk_buff *skb;
1521 int copied = 0, err = 0;
1523 /* XXX -- need to support SO_PEEK_OFF */
1525 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1526 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1532 skb_queue_walk(&sk->sk_write_queue, skb) {
1533 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1540 return err ?: copied;
1543 /* Clean up the receive buffer for full frames taken by the user,
1544 * then send an ACK if necessary. COPIED is the number of bytes
1545 * tcp_recvmsg has given to the user so far, it speeds up the
1546 * calculation of whether or not we must ACK for the sake of
1549 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1551 struct tcp_sock *tp = tcp_sk(sk);
1552 bool time_to_ack = false;
1554 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1556 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1557 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1558 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1560 if (inet_csk_ack_scheduled(sk)) {
1561 const struct inet_connection_sock *icsk = inet_csk(sk);
1562 /* Delayed ACKs frequently hit locked sockets during bulk
1564 if (icsk->icsk_ack.blocked ||
1565 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1566 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1568 * If this read emptied read buffer, we send ACK, if
1569 * connection is not bidirectional, user drained
1570 * receive buffer and there was a small segment
1574 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1575 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1576 !icsk->icsk_ack.pingpong)) &&
1577 !atomic_read(&sk->sk_rmem_alloc)))
1581 /* We send an ACK if we can now advertise a non-zero window
1582 * which has been raised "significantly".
1584 * Even if window raised up to infinity, do not send window open ACK
1585 * in states, where we will not receive more. It is useless.
1587 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1588 __u32 rcv_window_now = tcp_receive_window(tp);
1590 /* Optimize, __tcp_select_window() is not cheap. */
1591 if (2*rcv_window_now <= tp->window_clamp) {
1592 __u32 new_window = __tcp_select_window(sk);
1594 /* Send ACK now, if this read freed lots of space
1595 * in our buffer. Certainly, new_window is new window.
1596 * We can advertise it now, if it is not less than current one.
1597 * "Lots" means "at least twice" here.
1599 if (new_window && new_window >= 2 * rcv_window_now)
1607 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1609 struct sk_buff *skb;
1612 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1613 offset = seq - TCP_SKB_CB(skb)->seq;
1614 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1615 pr_err_once("%s: found a SYN, please report !\n", __func__);
1618 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1622 /* This looks weird, but this can happen if TCP collapsing
1623 * splitted a fat GRO packet, while we released socket lock
1624 * in skb_splice_bits()
1626 sk_eat_skb(sk, skb);
1632 * This routine provides an alternative to tcp_recvmsg() for routines
1633 * that would like to handle copying from skbuffs directly in 'sendfile'
1636 * - It is assumed that the socket was locked by the caller.
1637 * - The routine does not block.
1638 * - At present, there is no support for reading OOB data
1639 * or for 'peeking' the socket using this routine
1640 * (although both would be easy to implement).
1642 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1643 sk_read_actor_t recv_actor)
1645 struct sk_buff *skb;
1646 struct tcp_sock *tp = tcp_sk(sk);
1647 u32 seq = tp->copied_seq;
1651 if (sk->sk_state == TCP_LISTEN)
1653 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1654 if (offset < skb->len) {
1658 len = skb->len - offset;
1659 /* Stop reading if we hit a patch of urgent data */
1661 u32 urg_offset = tp->urg_seq - seq;
1662 if (urg_offset < len)
1667 used = recv_actor(desc, skb, offset, len);
1672 } else if (used <= len) {
1677 /* If recv_actor drops the lock (e.g. TCP splice
1678 * receive) the skb pointer might be invalid when
1679 * getting here: tcp_collapse might have deleted it
1680 * while aggregating skbs from the socket queue.
1682 skb = tcp_recv_skb(sk, seq - 1, &offset);
1685 /* TCP coalescing might have appended data to the skb.
1686 * Try to splice more frags
1688 if (offset + 1 != skb->len)
1691 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1692 sk_eat_skb(sk, skb);
1696 sk_eat_skb(sk, skb);
1699 WRITE_ONCE(tp->copied_seq, seq);
1701 WRITE_ONCE(tp->copied_seq, seq);
1703 tcp_rcv_space_adjust(sk);
1705 /* Clean up data we have read: This will do ACK frames. */
1707 tcp_recv_skb(sk, seq, &offset);
1708 tcp_cleanup_rbuf(sk, copied);
1712 EXPORT_SYMBOL(tcp_read_sock);
1714 int tcp_peek_len(struct socket *sock)
1716 return tcp_inq(sock->sk);
1718 EXPORT_SYMBOL(tcp_peek_len);
1720 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1721 int tcp_set_rcvlowat(struct sock *sk, int val)
1725 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1726 cap = sk->sk_rcvbuf >> 1;
1728 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1729 val = min(val, cap);
1730 sk->sk_rcvlowat = val ? : 1;
1732 /* Check if we need to signal EPOLLIN right now */
1735 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1739 if (val > sk->sk_rcvbuf) {
1740 sk->sk_rcvbuf = val;
1741 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1745 EXPORT_SYMBOL(tcp_set_rcvlowat);
1748 static const struct vm_operations_struct tcp_vm_ops = {
1751 int tcp_mmap(struct file *file, struct socket *sock,
1752 struct vm_area_struct *vma)
1754 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1756 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1758 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1759 vma->vm_flags |= VM_MIXEDMAP;
1761 vma->vm_ops = &tcp_vm_ops;
1764 EXPORT_SYMBOL(tcp_mmap);
1766 static int tcp_zerocopy_receive(struct sock *sk,
1767 struct tcp_zerocopy_receive *zc)
1769 unsigned long address = (unsigned long)zc->address;
1770 const skb_frag_t *frags = NULL;
1771 u32 length = 0, seq, offset;
1772 struct vm_area_struct *vma;
1773 struct sk_buff *skb = NULL;
1774 struct tcp_sock *tp;
1777 if (address & (PAGE_SIZE - 1) || address != zc->address)
1780 if (sk->sk_state == TCP_LISTEN)
1783 sock_rps_record_flow(sk);
1785 down_read(¤t->mm->mmap_sem);
1787 vma = find_vma(current->mm, address);
1788 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1789 up_read(¤t->mm->mmap_sem);
1792 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1795 seq = tp->copied_seq;
1796 zc->length = min_t(u32, zc->length, tcp_inq(sk));
1797 zc->length &= ~(PAGE_SIZE - 1);
1799 zap_page_range(vma, address, zc->length);
1801 zc->recv_skip_hint = 0;
1803 while (length + PAGE_SIZE <= zc->length) {
1804 if (zc->recv_skip_hint < PAGE_SIZE) {
1807 offset = seq - TCP_SKB_CB(skb)->seq;
1809 skb = tcp_recv_skb(sk, seq, &offset);
1812 zc->recv_skip_hint = skb->len - offset;
1813 offset -= skb_headlen(skb);
1814 if ((int)offset < 0 || skb_has_frag_list(skb))
1816 frags = skb_shinfo(skb)->frags;
1818 if (frags->size > offset)
1820 offset -= frags->size;
1824 if (frags->size != PAGE_SIZE || frags->page_offset)
1826 ret = vm_insert_page(vma, address + length,
1827 skb_frag_page(frags));
1830 length += PAGE_SIZE;
1832 zc->recv_skip_hint -= PAGE_SIZE;
1836 up_read(¤t->mm->mmap_sem);
1838 WRITE_ONCE(tp->copied_seq, seq);
1839 tcp_rcv_space_adjust(sk);
1841 /* Clean up data we have read: This will do ACK frames. */
1842 tcp_recv_skb(sk, seq, &offset);
1843 tcp_cleanup_rbuf(sk, length);
1845 if (length == zc->length)
1846 zc->recv_skip_hint = 0;
1848 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1851 zc->length = length;
1856 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1857 struct scm_timestamping *tss)
1860 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1862 tss->ts[0] = (struct timespec) {0};
1864 if (skb_hwtstamps(skb)->hwtstamp)
1865 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1867 tss->ts[2] = (struct timespec) {0};
1870 /* Similar to __sock_recv_timestamp, but does not require an skb */
1871 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1872 struct scm_timestamping *tss)
1875 bool has_timestamping = false;
1877 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1878 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1879 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1880 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1881 sizeof(tss->ts[0]), &tss->ts[0]);
1883 tv.tv_sec = tss->ts[0].tv_sec;
1884 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1886 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1891 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1892 has_timestamping = true;
1894 tss->ts[0] = (struct timespec) {0};
1897 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1898 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1899 has_timestamping = true;
1901 tss->ts[2] = (struct timespec) {0};
1904 if (has_timestamping) {
1905 tss->ts[1] = (struct timespec) {0};
1906 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1911 static int tcp_inq_hint(struct sock *sk)
1913 const struct tcp_sock *tp = tcp_sk(sk);
1914 u32 copied_seq = READ_ONCE(tp->copied_seq);
1915 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1918 inq = rcv_nxt - copied_seq;
1919 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1921 inq = tp->rcv_nxt - tp->copied_seq;
1924 /* After receiving a FIN, tell the user-space to continue reading
1925 * by returning a non-zero inq.
1927 if (inq == 0 && sock_flag(sk, SOCK_DONE))
1933 * This routine copies from a sock struct into the user buffer.
1935 * Technical note: in 2.3 we work on _locked_ socket, so that
1936 * tricks with *seq access order and skb->users are not required.
1937 * Probably, code can be easily improved even more.
1940 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1941 int flags, int *addr_len)
1943 struct tcp_sock *tp = tcp_sk(sk);
1949 int target; /* Read at least this many bytes */
1951 struct sk_buff *skb, *last;
1953 struct scm_timestamping tss;
1954 bool has_tss = false;
1957 if (unlikely(flags & MSG_ERRQUEUE))
1958 return inet_recv_error(sk, msg, len, addr_len);
1960 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1961 (sk->sk_state == TCP_ESTABLISHED))
1962 sk_busy_loop(sk, nonblock);
1967 if (sk->sk_state == TCP_LISTEN)
1970 has_cmsg = tp->recvmsg_inq;
1971 timeo = sock_rcvtimeo(sk, nonblock);
1973 /* Urgent data needs to be handled specially. */
1974 if (flags & MSG_OOB)
1977 if (unlikely(tp->repair)) {
1979 if (!(flags & MSG_PEEK))
1982 if (tp->repair_queue == TCP_SEND_QUEUE)
1986 if (tp->repair_queue == TCP_NO_QUEUE)
1989 /* 'common' recv queue MSG_PEEK-ing */
1992 seq = &tp->copied_seq;
1993 if (flags & MSG_PEEK) {
1994 peek_seq = tp->copied_seq;
1998 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2003 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2004 if (tp->urg_data && tp->urg_seq == *seq) {
2007 if (signal_pending(current)) {
2008 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2013 /* Next get a buffer. */
2015 last = skb_peek_tail(&sk->sk_receive_queue);
2016 skb_queue_walk(&sk->sk_receive_queue, skb) {
2018 /* Now that we have two receive queues this
2021 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2022 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2023 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2027 offset = *seq - TCP_SKB_CB(skb)->seq;
2028 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2029 pr_err_once("%s: found a SYN, please report !\n", __func__);
2032 if (offset < skb->len)
2034 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2036 WARN(!(flags & MSG_PEEK),
2037 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2038 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2041 /* Well, if we have backlog, try to process it now yet. */
2043 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2048 sk->sk_state == TCP_CLOSE ||
2049 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2051 signal_pending(current))
2054 if (sock_flag(sk, SOCK_DONE))
2058 copied = sock_error(sk);
2062 if (sk->sk_shutdown & RCV_SHUTDOWN)
2065 if (sk->sk_state == TCP_CLOSE) {
2066 /* This occurs when user tries to read
2067 * from never connected socket.
2078 if (signal_pending(current)) {
2079 copied = sock_intr_errno(timeo);
2084 tcp_cleanup_rbuf(sk, copied);
2086 if (copied >= target) {
2087 /* Do not sleep, just process backlog. */
2091 sk_wait_data(sk, &timeo, last);
2094 if ((flags & MSG_PEEK) &&
2095 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2096 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2098 task_pid_nr(current));
2099 peek_seq = tp->copied_seq;
2104 /* Ok so how much can we use? */
2105 used = skb->len - offset;
2109 /* Do we have urgent data here? */
2111 u32 urg_offset = tp->urg_seq - *seq;
2112 if (urg_offset < used) {
2114 if (!sock_flag(sk, SOCK_URGINLINE)) {
2115 WRITE_ONCE(*seq, *seq + 1);
2127 if (!(flags & MSG_TRUNC)) {
2128 err = skb_copy_datagram_msg(skb, offset, msg, used);
2130 /* Exception. Bailout! */
2137 WRITE_ONCE(*seq, *seq + used);
2141 tcp_rcv_space_adjust(sk);
2144 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2146 tcp_fast_path_check(sk);
2149 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2150 tcp_update_recv_tstamps(skb, &tss);
2155 if (used + offset < skb->len)
2158 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2160 if (!(flags & MSG_PEEK))
2161 sk_eat_skb(sk, skb);
2165 /* Process the FIN. */
2166 WRITE_ONCE(*seq, *seq + 1);
2167 if (!(flags & MSG_PEEK))
2168 sk_eat_skb(sk, skb);
2172 /* According to UNIX98, msg_name/msg_namelen are ignored
2173 * on connected socket. I was just happy when found this 8) --ANK
2176 /* Clean up data we have read: This will do ACK frames. */
2177 tcp_cleanup_rbuf(sk, copied);
2183 tcp_recv_timestamp(msg, sk, &tss);
2184 if (tp->recvmsg_inq) {
2185 inq = tcp_inq_hint(sk);
2186 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2197 err = tcp_recv_urg(sk, msg, len, flags);
2201 err = tcp_peek_sndq(sk, msg, len);
2204 EXPORT_SYMBOL(tcp_recvmsg);
2206 void tcp_set_state(struct sock *sk, int state)
2208 int oldstate = sk->sk_state;
2210 /* We defined a new enum for TCP states that are exported in BPF
2211 * so as not force the internal TCP states to be frozen. The
2212 * following checks will detect if an internal state value ever
2213 * differs from the BPF value. If this ever happens, then we will
2214 * need to remap the internal value to the BPF value before calling
2215 * tcp_call_bpf_2arg.
2217 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2218 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2219 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2220 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2221 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2222 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2223 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2224 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2225 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2226 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2227 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2228 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2229 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2231 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2232 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2235 case TCP_ESTABLISHED:
2236 if (oldstate != TCP_ESTABLISHED)
2237 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2241 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2242 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2244 sk->sk_prot->unhash(sk);
2245 if (inet_csk(sk)->icsk_bind_hash &&
2246 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2250 if (oldstate == TCP_ESTABLISHED)
2251 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2254 /* Change state AFTER socket is unhashed to avoid closed
2255 * socket sitting in hash tables.
2257 inet_sk_state_store(sk, state);
2260 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2263 EXPORT_SYMBOL_GPL(tcp_set_state);
2266 * State processing on a close. This implements the state shift for
2267 * sending our FIN frame. Note that we only send a FIN for some
2268 * states. A shutdown() may have already sent the FIN, or we may be
2272 static const unsigned char new_state[16] = {
2273 /* current state: new state: action: */
2274 [0 /* (Invalid) */] = TCP_CLOSE,
2275 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2276 [TCP_SYN_SENT] = TCP_CLOSE,
2277 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2278 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2279 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2280 [TCP_TIME_WAIT] = TCP_CLOSE,
2281 [TCP_CLOSE] = TCP_CLOSE,
2282 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2283 [TCP_LAST_ACK] = TCP_LAST_ACK,
2284 [TCP_LISTEN] = TCP_CLOSE,
2285 [TCP_CLOSING] = TCP_CLOSING,
2286 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2289 static int tcp_close_state(struct sock *sk)
2291 int next = (int)new_state[sk->sk_state];
2292 int ns = next & TCP_STATE_MASK;
2294 tcp_set_state(sk, ns);
2296 return next & TCP_ACTION_FIN;
2300 * Shutdown the sending side of a connection. Much like close except
2301 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2304 void tcp_shutdown(struct sock *sk, int how)
2306 /* We need to grab some memory, and put together a FIN,
2307 * and then put it into the queue to be sent.
2308 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2310 if (!(how & SEND_SHUTDOWN))
2313 /* If we've already sent a FIN, or it's a closed state, skip this. */
2314 if ((1 << sk->sk_state) &
2315 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2316 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2317 /* Clear out any half completed packets. FIN if needed. */
2318 if (tcp_close_state(sk))
2322 EXPORT_SYMBOL(tcp_shutdown);
2324 bool tcp_check_oom(struct sock *sk, int shift)
2326 bool too_many_orphans, out_of_socket_memory;
2328 too_many_orphans = tcp_too_many_orphans(sk, shift);
2329 out_of_socket_memory = tcp_out_of_memory(sk);
2331 if (too_many_orphans)
2332 net_info_ratelimited("too many orphaned sockets\n");
2333 if (out_of_socket_memory)
2334 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2335 return too_many_orphans || out_of_socket_memory;
2338 void tcp_close(struct sock *sk, long timeout)
2340 struct sk_buff *skb;
2341 int data_was_unread = 0;
2345 sk->sk_shutdown = SHUTDOWN_MASK;
2347 if (sk->sk_state == TCP_LISTEN) {
2348 tcp_set_state(sk, TCP_CLOSE);
2351 inet_csk_listen_stop(sk);
2353 goto adjudge_to_death;
2356 /* We need to flush the recv. buffs. We do this only on the
2357 * descriptor close, not protocol-sourced closes, because the
2358 * reader process may not have drained the data yet!
2360 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2361 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2363 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2365 data_was_unread += len;
2371 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2372 if (sk->sk_state == TCP_CLOSE)
2373 goto adjudge_to_death;
2375 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2376 * data was lost. To witness the awful effects of the old behavior of
2377 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2378 * GET in an FTP client, suspend the process, wait for the client to
2379 * advertise a zero window, then kill -9 the FTP client, wheee...
2380 * Note: timeout is always zero in such a case.
2382 if (unlikely(tcp_sk(sk)->repair)) {
2383 sk->sk_prot->disconnect(sk, 0);
2384 } else if (data_was_unread) {
2385 /* Unread data was tossed, zap the connection. */
2386 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2387 tcp_set_state(sk, TCP_CLOSE);
2388 tcp_send_active_reset(sk, sk->sk_allocation);
2389 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2390 /* Check zero linger _after_ checking for unread data. */
2391 sk->sk_prot->disconnect(sk, 0);
2392 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2393 } else if (tcp_close_state(sk)) {
2394 /* We FIN if the application ate all the data before
2395 * zapping the connection.
2398 /* RED-PEN. Formally speaking, we have broken TCP state
2399 * machine. State transitions:
2401 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2402 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2403 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2405 * are legal only when FIN has been sent (i.e. in window),
2406 * rather than queued out of window. Purists blame.
2408 * F.e. "RFC state" is ESTABLISHED,
2409 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2411 * The visible declinations are that sometimes
2412 * we enter time-wait state, when it is not required really
2413 * (harmless), do not send active resets, when they are
2414 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2415 * they look as CLOSING or LAST_ACK for Linux)
2416 * Probably, I missed some more holelets.
2418 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2419 * in a single packet! (May consider it later but will
2420 * probably need API support or TCP_CORK SYN-ACK until
2421 * data is written and socket is closed.)
2426 sk_stream_wait_close(sk, timeout);
2429 state = sk->sk_state;
2435 /* remove backlog if any, without releasing ownership. */
2438 percpu_counter_inc(sk->sk_prot->orphan_count);
2440 /* Have we already been destroyed by a softirq or backlog? */
2441 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2444 /* This is a (useful) BSD violating of the RFC. There is a
2445 * problem with TCP as specified in that the other end could
2446 * keep a socket open forever with no application left this end.
2447 * We use a 1 minute timeout (about the same as BSD) then kill
2448 * our end. If they send after that then tough - BUT: long enough
2449 * that we won't make the old 4*rto = almost no time - whoops
2452 * Nope, it was not mistake. It is really desired behaviour
2453 * f.e. on http servers, when such sockets are useless, but
2454 * consume significant resources. Let's do it with special
2455 * linger2 option. --ANK
2458 if (sk->sk_state == TCP_FIN_WAIT2) {
2459 struct tcp_sock *tp = tcp_sk(sk);
2460 if (tp->linger2 < 0) {
2461 tcp_set_state(sk, TCP_CLOSE);
2462 tcp_send_active_reset(sk, GFP_ATOMIC);
2463 __NET_INC_STATS(sock_net(sk),
2464 LINUX_MIB_TCPABORTONLINGER);
2466 const int tmo = tcp_fin_time(sk);
2468 if (tmo > TCP_TIMEWAIT_LEN) {
2469 inet_csk_reset_keepalive_timer(sk,
2470 tmo - TCP_TIMEWAIT_LEN);
2472 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2477 if (sk->sk_state != TCP_CLOSE) {
2479 if (tcp_check_oom(sk, 0)) {
2480 tcp_set_state(sk, TCP_CLOSE);
2481 tcp_send_active_reset(sk, GFP_ATOMIC);
2482 __NET_INC_STATS(sock_net(sk),
2483 LINUX_MIB_TCPABORTONMEMORY);
2484 } else if (!check_net(sock_net(sk))) {
2485 /* Not possible to send reset; just close */
2486 tcp_set_state(sk, TCP_CLOSE);
2490 if (sk->sk_state == TCP_CLOSE) {
2491 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2492 /* We could get here with a non-NULL req if the socket is
2493 * aborted (e.g., closed with unread data) before 3WHS
2497 reqsk_fastopen_remove(sk, req, false);
2498 inet_csk_destroy_sock(sk);
2500 /* Otherwise, socket is reprieved until protocol close. */
2508 EXPORT_SYMBOL(tcp_close);
2510 /* These states need RST on ABORT according to RFC793 */
2512 static inline bool tcp_need_reset(int state)
2514 return (1 << state) &
2515 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2516 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2519 static void tcp_rtx_queue_purge(struct sock *sk)
2521 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2523 tcp_sk(sk)->highest_sack = NULL;
2525 struct sk_buff *skb = rb_to_skb(p);
2528 /* Since we are deleting whole queue, no need to
2529 * list_del(&skb->tcp_tsorted_anchor)
2531 tcp_rtx_queue_unlink(skb, sk);
2532 sk_wmem_free_skb(sk, skb);
2536 void tcp_write_queue_purge(struct sock *sk)
2538 struct sk_buff *skb;
2540 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2541 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2542 tcp_skb_tsorted_anchor_cleanup(skb);
2543 sk_wmem_free_skb(sk, skb);
2545 tcp_rtx_queue_purge(sk);
2546 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2548 tcp_clear_all_retrans_hints(tcp_sk(sk));
2549 tcp_sk(sk)->packets_out = 0;
2550 inet_csk(sk)->icsk_backoff = 0;
2553 int tcp_disconnect(struct sock *sk, int flags)
2555 struct inet_sock *inet = inet_sk(sk);
2556 struct inet_connection_sock *icsk = inet_csk(sk);
2557 struct tcp_sock *tp = tcp_sk(sk);
2558 int old_state = sk->sk_state;
2561 if (old_state != TCP_CLOSE)
2562 tcp_set_state(sk, TCP_CLOSE);
2564 /* ABORT function of RFC793 */
2565 if (old_state == TCP_LISTEN) {
2566 inet_csk_listen_stop(sk);
2567 } else if (unlikely(tp->repair)) {
2568 sk->sk_err = ECONNABORTED;
2569 } else if (tcp_need_reset(old_state) ||
2570 (tp->snd_nxt != tp->write_seq &&
2571 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2572 /* The last check adjusts for discrepancy of Linux wrt. RFC
2575 tcp_send_active_reset(sk, gfp_any());
2576 sk->sk_err = ECONNRESET;
2577 } else if (old_state == TCP_SYN_SENT)
2578 sk->sk_err = ECONNRESET;
2580 tcp_clear_xmit_timers(sk);
2581 __skb_queue_purge(&sk->sk_receive_queue);
2582 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2584 tcp_write_queue_purge(sk);
2585 tcp_fastopen_active_disable_ofo_check(sk);
2586 skb_rbtree_purge(&tp->out_of_order_queue);
2588 inet->inet_dport = 0;
2590 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2591 inet_reset_saddr(sk);
2593 sk->sk_shutdown = 0;
2594 sock_reset_flag(sk, SOCK_DONE);
2596 tp->rcv_rtt_last_tsecr = 0;
2598 seq = tp->write_seq + tp->max_window + 2;
2601 WRITE_ONCE(tp->write_seq, seq);
2604 icsk->icsk_probes_out = 0;
2605 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2606 tp->snd_cwnd_cnt = 0;
2607 tp->window_clamp = 0;
2609 tp->delivered_ce = 0;
2610 if (icsk->icsk_ca_ops->release)
2611 icsk->icsk_ca_ops->release(sk);
2612 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2613 tcp_set_ca_state(sk, TCP_CA_Open);
2614 tp->is_sack_reneg = 0;
2615 tcp_clear_retrans(tp);
2616 tp->total_retrans = 0;
2617 inet_csk_delack_init(sk);
2618 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2619 * issue in __tcp_select_window()
2621 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2622 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2624 dst_release(sk->sk_rx_dst);
2625 sk->sk_rx_dst = NULL;
2626 tcp_saved_syn_free(tp);
2627 tp->compressed_ack = 0;
2631 tp->bytes_acked = 0;
2632 tp->bytes_received = 0;
2633 tp->bytes_retrans = 0;
2634 tp->data_segs_in = 0;
2635 tp->data_segs_out = 0;
2639 /* Clean up fastopen related fields */
2640 tcp_free_fastopen_req(tp);
2641 inet->defer_connect = 0;
2643 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2645 if (sk->sk_frag.page) {
2646 put_page(sk->sk_frag.page);
2647 sk->sk_frag.page = NULL;
2648 sk->sk_frag.offset = 0;
2651 sk->sk_error_report(sk);
2654 EXPORT_SYMBOL(tcp_disconnect);
2656 static inline bool tcp_can_repair_sock(const struct sock *sk)
2658 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2659 (sk->sk_state != TCP_LISTEN);
2662 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2664 struct tcp_repair_window opt;
2669 if (len != sizeof(opt))
2672 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2675 if (opt.max_window < opt.snd_wnd)
2678 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2681 if (after(opt.rcv_wup, tp->rcv_nxt))
2684 tp->snd_wl1 = opt.snd_wl1;
2685 tp->snd_wnd = opt.snd_wnd;
2686 tp->max_window = opt.max_window;
2688 tp->rcv_wnd = opt.rcv_wnd;
2689 tp->rcv_wup = opt.rcv_wup;
2694 static int tcp_repair_options_est(struct sock *sk,
2695 struct tcp_repair_opt __user *optbuf, unsigned int len)
2697 struct tcp_sock *tp = tcp_sk(sk);
2698 struct tcp_repair_opt opt;
2700 while (len >= sizeof(opt)) {
2701 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2707 switch (opt.opt_code) {
2709 tp->rx_opt.mss_clamp = opt.opt_val;
2714 u16 snd_wscale = opt.opt_val & 0xFFFF;
2715 u16 rcv_wscale = opt.opt_val >> 16;
2717 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2720 tp->rx_opt.snd_wscale = snd_wscale;
2721 tp->rx_opt.rcv_wscale = rcv_wscale;
2722 tp->rx_opt.wscale_ok = 1;
2725 case TCPOPT_SACK_PERM:
2726 if (opt.opt_val != 0)
2729 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2731 case TCPOPT_TIMESTAMP:
2732 if (opt.opt_val != 0)
2735 tp->rx_opt.tstamp_ok = 1;
2744 * Socket option code for TCP.
2746 static int do_tcp_setsockopt(struct sock *sk, int level,
2747 int optname, char __user *optval, unsigned int optlen)
2749 struct tcp_sock *tp = tcp_sk(sk);
2750 struct inet_connection_sock *icsk = inet_csk(sk);
2751 struct net *net = sock_net(sk);
2755 /* These are data/string values, all the others are ints */
2757 case TCP_CONGESTION: {
2758 char name[TCP_CA_NAME_MAX];
2763 val = strncpy_from_user(name, optval,
2764 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2770 err = tcp_set_congestion_control(sk, name, true, true,
2771 ns_capable(sock_net(sk)->user_ns,
2777 char name[TCP_ULP_NAME_MAX];
2782 val = strncpy_from_user(name, optval,
2783 min_t(long, TCP_ULP_NAME_MAX - 1,
2790 err = tcp_set_ulp(sk, name);
2794 case TCP_FASTOPEN_KEY: {
2795 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2797 if (optlen != sizeof(key))
2800 if (copy_from_user(key, optval, optlen))
2803 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2810 if (optlen < sizeof(int))
2813 if (get_user(val, (int __user *)optval))
2820 /* Values greater than interface MTU won't take effect. However
2821 * at the point when this call is done we typically don't yet
2822 * know which interface is going to be used
2824 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2828 tp->rx_opt.user_mss = val;
2833 /* TCP_NODELAY is weaker than TCP_CORK, so that
2834 * this option on corked socket is remembered, but
2835 * it is not activated until cork is cleared.
2837 * However, when TCP_NODELAY is set we make
2838 * an explicit push, which overrides even TCP_CORK
2839 * for currently queued segments.
2841 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2842 tcp_push_pending_frames(sk);
2844 tp->nonagle &= ~TCP_NAGLE_OFF;
2848 case TCP_THIN_LINEAR_TIMEOUTS:
2849 if (val < 0 || val > 1)
2855 case TCP_THIN_DUPACK:
2856 if (val < 0 || val > 1)
2861 if (!tcp_can_repair_sock(sk))
2863 else if (val == TCP_REPAIR_ON) {
2865 sk->sk_reuse = SK_FORCE_REUSE;
2866 tp->repair_queue = TCP_NO_QUEUE;
2867 } else if (val == TCP_REPAIR_OFF) {
2869 sk->sk_reuse = SK_NO_REUSE;
2870 tcp_send_window_probe(sk);
2871 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2873 sk->sk_reuse = SK_NO_REUSE;
2879 case TCP_REPAIR_QUEUE:
2882 else if ((unsigned int)val < TCP_QUEUES_NR)
2883 tp->repair_queue = val;
2889 if (sk->sk_state != TCP_CLOSE) {
2891 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
2892 if (!tcp_rtx_queue_empty(sk))
2895 WRITE_ONCE(tp->write_seq, val);
2896 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
2897 if (tp->rcv_nxt != tp->copied_seq) {
2900 WRITE_ONCE(tp->rcv_nxt, val);
2901 WRITE_ONCE(tp->copied_seq, val);
2908 case TCP_REPAIR_OPTIONS:
2911 else if (sk->sk_state == TCP_ESTABLISHED)
2912 err = tcp_repair_options_est(sk,
2913 (struct tcp_repair_opt __user *)optval,
2920 /* When set indicates to always queue non-full frames.
2921 * Later the user clears this option and we transmit
2922 * any pending partial frames in the queue. This is
2923 * meant to be used alongside sendfile() to get properly
2924 * filled frames when the user (for example) must write
2925 * out headers with a write() call first and then use
2926 * sendfile to send out the data parts.
2928 * TCP_CORK can be set together with TCP_NODELAY and it is
2929 * stronger than TCP_NODELAY.
2932 tp->nonagle |= TCP_NAGLE_CORK;
2934 tp->nonagle &= ~TCP_NAGLE_CORK;
2935 if (tp->nonagle&TCP_NAGLE_OFF)
2936 tp->nonagle |= TCP_NAGLE_PUSH;
2937 tcp_push_pending_frames(sk);
2942 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2945 tp->keepalive_time = val * HZ;
2946 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2947 !((1 << sk->sk_state) &
2948 (TCPF_CLOSE | TCPF_LISTEN))) {
2949 u32 elapsed = keepalive_time_elapsed(tp);
2950 if (tp->keepalive_time > elapsed)
2951 elapsed = tp->keepalive_time - elapsed;
2954 inet_csk_reset_keepalive_timer(sk, elapsed);
2959 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2962 tp->keepalive_intvl = val * HZ;
2965 if (val < 1 || val > MAX_TCP_KEEPCNT)
2968 tp->keepalive_probes = val;
2971 if (val < 1 || val > MAX_TCP_SYNCNT)
2974 icsk->icsk_syn_retries = val;
2978 if (val < 0 || val > 1)
2987 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2990 tp->linger2 = val * HZ;
2993 case TCP_DEFER_ACCEPT:
2994 /* Translate value in seconds to number of retransmits */
2995 icsk->icsk_accept_queue.rskq_defer_accept =
2996 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3000 case TCP_WINDOW_CLAMP:
3002 if (sk->sk_state != TCP_CLOSE) {
3006 tp->window_clamp = 0;
3008 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3009 SOCK_MIN_RCVBUF / 2 : val;
3014 icsk->icsk_ack.pingpong = 1;
3016 icsk->icsk_ack.pingpong = 0;
3017 if ((1 << sk->sk_state) &
3018 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3019 inet_csk_ack_scheduled(sk)) {
3020 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3021 tcp_cleanup_rbuf(sk, 1);
3023 icsk->icsk_ack.pingpong = 1;
3028 #ifdef CONFIG_TCP_MD5SIG
3030 case TCP_MD5SIG_EXT:
3031 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3034 case TCP_USER_TIMEOUT:
3035 /* Cap the max time in ms TCP will retry or probe the window
3036 * before giving up and aborting (ETIMEDOUT) a connection.
3041 icsk->icsk_user_timeout = val;
3045 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3047 tcp_fastopen_init_key_once(net);
3049 fastopen_queue_tune(sk, val);
3054 case TCP_FASTOPEN_CONNECT:
3055 if (val > 1 || val < 0) {
3057 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3058 if (sk->sk_state == TCP_CLOSE)
3059 tp->fastopen_connect = val;
3066 case TCP_FASTOPEN_NO_COOKIE:
3067 if (val > 1 || val < 0)
3069 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3072 tp->fastopen_no_cookie = val;
3078 tp->tsoffset = val - tcp_time_stamp_raw();
3080 case TCP_REPAIR_WINDOW:
3081 err = tcp_repair_set_window(tp, optval, optlen);
3083 case TCP_NOTSENT_LOWAT:
3084 tp->notsent_lowat = val;
3085 sk->sk_write_space(sk);
3088 if (val > 1 || val < 0)
3091 tp->recvmsg_inq = val;
3102 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3103 unsigned int optlen)
3105 const struct inet_connection_sock *icsk = inet_csk(sk);
3107 if (level != SOL_TCP)
3108 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3110 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3112 EXPORT_SYMBOL(tcp_setsockopt);
3114 #ifdef CONFIG_COMPAT
3115 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3116 char __user *optval, unsigned int optlen)
3118 if (level != SOL_TCP)
3119 return inet_csk_compat_setsockopt(sk, level, optname,
3121 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3123 EXPORT_SYMBOL(compat_tcp_setsockopt);
3126 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3127 struct tcp_info *info)
3129 u64 stats[__TCP_CHRONO_MAX], total = 0;
3132 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3133 stats[i] = tp->chrono_stat[i - 1];
3134 if (i == tp->chrono_type)
3135 stats[i] += tcp_jiffies32 - tp->chrono_start;
3136 stats[i] *= USEC_PER_SEC / HZ;
3140 info->tcpi_busy_time = total;
3141 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3142 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3145 /* Return information about state of tcp endpoint in API format. */
3146 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3148 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3149 const struct inet_connection_sock *icsk = inet_csk(sk);
3155 memset(info, 0, sizeof(*info));
3156 if (sk->sk_type != SOCK_STREAM)
3159 info->tcpi_state = inet_sk_state_load(sk);
3161 /* Report meaningful fields for all TCP states, including listeners */
3162 rate = READ_ONCE(sk->sk_pacing_rate);
3163 rate64 = rate != ~0U ? rate : ~0ULL;
3164 info->tcpi_pacing_rate = rate64;
3166 rate = READ_ONCE(sk->sk_max_pacing_rate);
3167 rate64 = rate != ~0U ? rate : ~0ULL;
3168 info->tcpi_max_pacing_rate = rate64;
3170 info->tcpi_reordering = tp->reordering;
3171 info->tcpi_snd_cwnd = tp->snd_cwnd;
3173 if (info->tcpi_state == TCP_LISTEN) {
3174 /* listeners aliased fields :
3175 * tcpi_unacked -> Number of children ready for accept()
3176 * tcpi_sacked -> max backlog
3178 info->tcpi_unacked = sk->sk_ack_backlog;
3179 info->tcpi_sacked = sk->sk_max_ack_backlog;
3183 slow = lock_sock_fast(sk);
3185 info->tcpi_ca_state = icsk->icsk_ca_state;
3186 info->tcpi_retransmits = icsk->icsk_retransmits;
3187 info->tcpi_probes = icsk->icsk_probes_out;
3188 info->tcpi_backoff = icsk->icsk_backoff;
3190 if (tp->rx_opt.tstamp_ok)
3191 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3192 if (tcp_is_sack(tp))
3193 info->tcpi_options |= TCPI_OPT_SACK;
3194 if (tp->rx_opt.wscale_ok) {
3195 info->tcpi_options |= TCPI_OPT_WSCALE;
3196 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3197 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3200 if (tp->ecn_flags & TCP_ECN_OK)
3201 info->tcpi_options |= TCPI_OPT_ECN;
3202 if (tp->ecn_flags & TCP_ECN_SEEN)
3203 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3204 if (tp->syn_data_acked)
3205 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3207 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3208 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3209 info->tcpi_snd_mss = tp->mss_cache;
3210 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3212 info->tcpi_unacked = tp->packets_out;
3213 info->tcpi_sacked = tp->sacked_out;
3215 info->tcpi_lost = tp->lost_out;
3216 info->tcpi_retrans = tp->retrans_out;
3218 now = tcp_jiffies32;
3219 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3220 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3221 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3223 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3224 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3225 info->tcpi_rtt = tp->srtt_us >> 3;
3226 info->tcpi_rttvar = tp->mdev_us >> 2;
3227 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3228 info->tcpi_advmss = tp->advmss;
3230 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3231 info->tcpi_rcv_space = tp->rcvq_space.space;
3233 info->tcpi_total_retrans = tp->total_retrans;
3235 info->tcpi_bytes_acked = tp->bytes_acked;
3236 info->tcpi_bytes_received = tp->bytes_received;
3237 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3238 tcp_get_info_chrono_stats(tp, info);
3240 info->tcpi_segs_out = tp->segs_out;
3241 info->tcpi_segs_in = tp->segs_in;
3243 info->tcpi_min_rtt = tcp_min_rtt(tp);
3244 info->tcpi_data_segs_in = tp->data_segs_in;
3245 info->tcpi_data_segs_out = tp->data_segs_out;
3247 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3248 rate64 = tcp_compute_delivery_rate(tp);
3250 info->tcpi_delivery_rate = rate64;
3251 info->tcpi_delivered = tp->delivered;
3252 info->tcpi_delivered_ce = tp->delivered_ce;
3253 info->tcpi_bytes_sent = tp->bytes_sent;
3254 info->tcpi_bytes_retrans = tp->bytes_retrans;
3255 info->tcpi_dsack_dups = tp->dsack_dups;
3256 info->tcpi_reord_seen = tp->reord_seen;
3257 unlock_sock_fast(sk, slow);
3259 EXPORT_SYMBOL_GPL(tcp_get_info);
3261 static size_t tcp_opt_stats_get_size(void)
3264 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3265 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3266 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3267 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3268 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3269 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3270 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3271 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3272 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3273 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3274 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3275 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3276 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3277 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3278 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3279 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3280 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3281 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3282 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3283 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3284 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3288 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3290 const struct tcp_sock *tp = tcp_sk(sk);
3291 struct sk_buff *stats;
3292 struct tcp_info info;
3296 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3300 tcp_get_info_chrono_stats(tp, &info);
3301 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3302 info.tcpi_busy_time, TCP_NLA_PAD);
3303 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3304 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3305 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3306 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3307 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3308 tp->data_segs_out, TCP_NLA_PAD);
3309 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3310 tp->total_retrans, TCP_NLA_PAD);
3312 rate = READ_ONCE(sk->sk_pacing_rate);
3313 rate64 = rate != ~0U ? rate : ~0ULL;
3314 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3316 rate64 = tcp_compute_delivery_rate(tp);
3317 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3319 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3320 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3321 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3323 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3324 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3325 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3326 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3327 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3329 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3330 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3332 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3334 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3336 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3337 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3342 static int do_tcp_getsockopt(struct sock *sk, int level,
3343 int optname, char __user *optval, int __user *optlen)
3345 struct inet_connection_sock *icsk = inet_csk(sk);
3346 struct tcp_sock *tp = tcp_sk(sk);
3347 struct net *net = sock_net(sk);
3350 if (get_user(len, optlen))
3353 len = min_t(unsigned int, len, sizeof(int));
3360 val = tp->mss_cache;
3361 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3362 val = tp->rx_opt.user_mss;
3364 val = tp->rx_opt.mss_clamp;
3367 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3370 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3373 val = keepalive_time_when(tp) / HZ;
3376 val = keepalive_intvl_when(tp) / HZ;
3379 val = keepalive_probes(tp);
3382 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3387 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3389 case TCP_DEFER_ACCEPT:
3390 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3391 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3393 case TCP_WINDOW_CLAMP:
3394 val = tp->window_clamp;
3397 struct tcp_info info;
3399 if (get_user(len, optlen))
3402 tcp_get_info(sk, &info);
3404 len = min_t(unsigned int, len, sizeof(info));
3405 if (put_user(len, optlen))
3407 if (copy_to_user(optval, &info, len))
3412 const struct tcp_congestion_ops *ca_ops;
3413 union tcp_cc_info info;
3417 if (get_user(len, optlen))
3420 ca_ops = icsk->icsk_ca_ops;
3421 if (ca_ops && ca_ops->get_info)
3422 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3424 len = min_t(unsigned int, len, sz);
3425 if (put_user(len, optlen))
3427 if (copy_to_user(optval, &info, len))
3432 val = !icsk->icsk_ack.pingpong;
3435 case TCP_CONGESTION:
3436 if (get_user(len, optlen))
3438 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3439 if (put_user(len, optlen))
3441 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3446 if (get_user(len, optlen))
3448 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3449 if (!icsk->icsk_ulp_ops) {
3450 if (put_user(0, optlen))
3454 if (put_user(len, optlen))
3456 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3460 case TCP_FASTOPEN_KEY: {
3461 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3462 struct tcp_fastopen_context *ctx;
3464 if (get_user(len, optlen))
3468 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3470 memcpy(key, ctx->key, sizeof(key));
3475 len = min_t(unsigned int, len, sizeof(key));
3476 if (put_user(len, optlen))
3478 if (copy_to_user(optval, key, len))
3482 case TCP_THIN_LINEAR_TIMEOUTS:
3486 case TCP_THIN_DUPACK:
3494 case TCP_REPAIR_QUEUE:
3496 val = tp->repair_queue;
3501 case TCP_REPAIR_WINDOW: {
3502 struct tcp_repair_window opt;
3504 if (get_user(len, optlen))
3507 if (len != sizeof(opt))
3513 opt.snd_wl1 = tp->snd_wl1;
3514 opt.snd_wnd = tp->snd_wnd;
3515 opt.max_window = tp->max_window;
3516 opt.rcv_wnd = tp->rcv_wnd;
3517 opt.rcv_wup = tp->rcv_wup;
3519 if (copy_to_user(optval, &opt, len))
3524 if (tp->repair_queue == TCP_SEND_QUEUE)
3525 val = tp->write_seq;
3526 else if (tp->repair_queue == TCP_RECV_QUEUE)
3532 case TCP_USER_TIMEOUT:
3533 val = icsk->icsk_user_timeout;
3537 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3540 case TCP_FASTOPEN_CONNECT:
3541 val = tp->fastopen_connect;
3544 case TCP_FASTOPEN_NO_COOKIE:
3545 val = tp->fastopen_no_cookie;
3549 val = tcp_time_stamp_raw() + tp->tsoffset;
3551 case TCP_NOTSENT_LOWAT:
3552 val = tp->notsent_lowat;
3555 val = tp->recvmsg_inq;
3560 case TCP_SAVED_SYN: {
3561 if (get_user(len, optlen))
3565 if (tp->saved_syn) {
3566 if (len < tp->saved_syn[0]) {
3567 if (put_user(tp->saved_syn[0], optlen)) {
3574 len = tp->saved_syn[0];
3575 if (put_user(len, optlen)) {
3579 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3583 tcp_saved_syn_free(tp);
3588 if (put_user(len, optlen))
3594 case TCP_ZEROCOPY_RECEIVE: {
3595 struct tcp_zerocopy_receive zc;
3598 if (get_user(len, optlen))
3600 if (len != sizeof(zc))
3602 if (copy_from_user(&zc, optval, len))
3605 err = tcp_zerocopy_receive(sk, &zc);
3607 if (!err && copy_to_user(optval, &zc, len))
3613 return -ENOPROTOOPT;
3616 if (put_user(len, optlen))
3618 if (copy_to_user(optval, &val, len))
3623 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3626 struct inet_connection_sock *icsk = inet_csk(sk);
3628 if (level != SOL_TCP)
3629 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3631 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3633 EXPORT_SYMBOL(tcp_getsockopt);
3635 #ifdef CONFIG_COMPAT
3636 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3637 char __user *optval, int __user *optlen)
3639 if (level != SOL_TCP)
3640 return inet_csk_compat_getsockopt(sk, level, optname,
3642 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3644 EXPORT_SYMBOL(compat_tcp_getsockopt);
3647 #ifdef CONFIG_TCP_MD5SIG
3648 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3649 static DEFINE_MUTEX(tcp_md5sig_mutex);
3650 static bool tcp_md5sig_pool_populated = false;
3652 static void __tcp_alloc_md5sig_pool(void)
3654 struct crypto_ahash *hash;
3657 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3661 for_each_possible_cpu(cpu) {
3662 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3663 struct ahash_request *req;
3666 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3667 sizeof(struct tcphdr),
3672 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3674 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3677 req = ahash_request_alloc(hash, GFP_KERNEL);
3681 ahash_request_set_callback(req, 0, NULL, NULL);
3683 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3685 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3686 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3689 tcp_md5sig_pool_populated = true;
3692 bool tcp_alloc_md5sig_pool(void)
3694 if (unlikely(!tcp_md5sig_pool_populated)) {
3695 mutex_lock(&tcp_md5sig_mutex);
3697 if (!tcp_md5sig_pool_populated)
3698 __tcp_alloc_md5sig_pool();
3700 mutex_unlock(&tcp_md5sig_mutex);
3702 return tcp_md5sig_pool_populated;
3704 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3708 * tcp_get_md5sig_pool - get md5sig_pool for this user
3710 * We use percpu structure, so if we succeed, we exit with preemption
3711 * and BH disabled, to make sure another thread or softirq handling
3712 * wont try to get same context.
3714 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3718 if (tcp_md5sig_pool_populated) {
3719 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3721 return this_cpu_ptr(&tcp_md5sig_pool);
3726 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3728 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3729 const struct sk_buff *skb, unsigned int header_len)
3731 struct scatterlist sg;
3732 const struct tcphdr *tp = tcp_hdr(skb);
3733 struct ahash_request *req = hp->md5_req;
3735 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3736 skb_headlen(skb) - header_len : 0;
3737 const struct skb_shared_info *shi = skb_shinfo(skb);
3738 struct sk_buff *frag_iter;
3740 sg_init_table(&sg, 1);
3742 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3743 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3744 if (crypto_ahash_update(req))
3747 for (i = 0; i < shi->nr_frags; ++i) {
3748 const struct skb_frag_struct *f = &shi->frags[i];
3749 unsigned int offset = f->page_offset;
3750 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3752 sg_set_page(&sg, page, skb_frag_size(f),
3753 offset_in_page(offset));
3754 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3755 if (crypto_ahash_update(req))
3759 skb_walk_frags(skb, frag_iter)
3760 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3765 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3767 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3769 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
3770 struct scatterlist sg;
3772 sg_init_one(&sg, key->key, keylen);
3773 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
3775 /* tcp_md5_do_add() might change key->key under us */
3776 return crypto_ahash_update(hp->md5_req);
3778 EXPORT_SYMBOL(tcp_md5_hash_key);
3782 void tcp_done(struct sock *sk)
3784 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3786 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3787 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3789 tcp_set_state(sk, TCP_CLOSE);
3790 tcp_clear_xmit_timers(sk);
3792 reqsk_fastopen_remove(sk, req, false);
3794 sk->sk_shutdown = SHUTDOWN_MASK;
3796 if (!sock_flag(sk, SOCK_DEAD))
3797 sk->sk_state_change(sk);
3799 inet_csk_destroy_sock(sk);
3801 EXPORT_SYMBOL_GPL(tcp_done);
3803 int tcp_abort(struct sock *sk, int err)
3805 if (!sk_fullsock(sk)) {
3806 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3807 struct request_sock *req = inet_reqsk(sk);
3810 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3817 /* Don't race with userspace socket closes such as tcp_close. */
3820 if (sk->sk_state == TCP_LISTEN) {
3821 tcp_set_state(sk, TCP_CLOSE);
3822 inet_csk_listen_stop(sk);
3825 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3829 if (!sock_flag(sk, SOCK_DEAD)) {
3831 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3833 sk->sk_error_report(sk);
3834 if (tcp_need_reset(sk->sk_state))
3835 tcp_send_active_reset(sk, GFP_ATOMIC);
3841 tcp_write_queue_purge(sk);
3845 EXPORT_SYMBOL_GPL(tcp_abort);
3847 extern struct tcp_congestion_ops tcp_reno;
3849 static __initdata unsigned long thash_entries;
3850 static int __init set_thash_entries(char *str)
3857 ret = kstrtoul(str, 0, &thash_entries);
3863 __setup("thash_entries=", set_thash_entries);
3865 static void __init tcp_init_mem(void)
3867 unsigned long limit = nr_free_buffer_pages() / 16;
3869 limit = max(limit, 128UL);
3870 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3871 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3872 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3875 void __init tcp_init(void)
3877 int max_rshare, max_wshare, cnt;
3878 unsigned long limit;
3881 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3882 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3883 FIELD_SIZEOF(struct sk_buff, cb));
3885 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3886 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3887 inet_hashinfo_init(&tcp_hashinfo);
3888 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3889 thash_entries, 21, /* one slot per 2 MB*/
3891 tcp_hashinfo.bind_bucket_cachep =
3892 kmem_cache_create("tcp_bind_bucket",
3893 sizeof(struct inet_bind_bucket), 0,
3894 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3896 /* Size and allocate the main established and bind bucket
3899 * The methodology is similar to that of the buffer cache.
3901 tcp_hashinfo.ehash =
3902 alloc_large_system_hash("TCP established",
3903 sizeof(struct inet_ehash_bucket),
3905 17, /* one slot per 128 KB of memory */
3908 &tcp_hashinfo.ehash_mask,
3910 thash_entries ? 0 : 512 * 1024);
3911 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3912 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3914 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3915 panic("TCP: failed to alloc ehash_locks");
3916 tcp_hashinfo.bhash =
3917 alloc_large_system_hash("TCP bind",
3918 sizeof(struct inet_bind_hashbucket),
3919 tcp_hashinfo.ehash_mask + 1,
3920 17, /* one slot per 128 KB of memory */
3922 &tcp_hashinfo.bhash_size,
3926 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3927 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3928 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3929 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3933 cnt = tcp_hashinfo.ehash_mask + 1;
3934 sysctl_tcp_max_orphans = cnt / 2;
3937 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3938 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3939 max_wshare = min(4UL*1024*1024, limit);
3940 max_rshare = min(6UL*1024*1024, limit);
3942 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3943 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3944 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3946 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3947 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
3948 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
3950 pr_info("Hash tables configured (established %u bind %u)\n",
3951 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3955 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);