arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / net / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *                              if IPv6 only, and any IPv4 addresses
29  *                              if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *                              and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35                                  const struct in6_addr *sk2_rcv_saddr6,
36                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37                                  bool sk1_ipv6only, bool sk2_ipv6only,
38                                  bool match_sk1_wildcard,
39                                  bool match_sk2_wildcard)
40 {
41         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44         /* if both are mapped, treat as IPv4 */
45         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46                 if (!sk2_ipv6only) {
47                         if (sk1_rcv_saddr == sk2_rcv_saddr)
48                                 return true;
49                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50                                 (match_sk2_wildcard && !sk2_rcv_saddr);
51                 }
52                 return false;
53         }
54
55         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56                 return true;
57
58         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60                 return true;
61
62         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64                 return true;
65
66         if (sk2_rcv_saddr6 &&
67             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68                 return true;
69
70         return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *                              0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79                                  bool sk2_ipv6only, bool match_sk1_wildcard,
80                                  bool match_sk2_wildcard)
81 {
82         if (!sk2_ipv6only) {
83                 if (sk1_rcv_saddr == sk2_rcv_saddr)
84                         return true;
85                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86                         (match_sk2_wildcard && !sk2_rcv_saddr);
87         }
88         return false;
89 }
90
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92                           bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95         if (sk->sk_family == AF_INET6)
96                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97                                             inet6_rcv_saddr(sk2),
98                                             sk->sk_rcv_saddr,
99                                             sk2->sk_rcv_saddr,
100                                             ipv6_only_sock(sk),
101                                             ipv6_only_sock(sk2),
102                                             match_wildcard,
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard,
107                                     match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114         if (sk->sk_family == AF_INET6)
115                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117         return !sk->sk_rcv_saddr;
118 }
119
120 void inet_get_local_port_range(const struct net *net, int *low, int *high)
121 {
122         unsigned int seq;
123
124         do {
125                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127                 *low = net->ipv4.ip_local_ports.range[0];
128                 *high = net->ipv4.ip_local_ports.range[1];
129         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
133 void inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
134 {
135         const struct inet_sock *inet = inet_sk(sk);
136         const struct net *net = sock_net(sk);
137         int lo, hi, sk_lo, sk_hi;
138
139         inet_get_local_port_range(net, &lo, &hi);
140
141         sk_lo = inet->local_port_range.lo;
142         sk_hi = inet->local_port_range.hi;
143
144         if (unlikely(lo <= sk_lo && sk_lo <= hi))
145                 lo = sk_lo;
146         if (unlikely(lo <= sk_hi && sk_hi <= hi))
147                 hi = sk_hi;
148
149         *low = lo;
150         *high = hi;
151 }
152 EXPORT_SYMBOL(inet_sk_get_local_port_range);
153
154 static bool inet_use_bhash2_on_bind(const struct sock *sk)
155 {
156 #if IS_ENABLED(CONFIG_IPV6)
157         if (sk->sk_family == AF_INET6) {
158                 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
159
160                 return addr_type != IPV6_ADDR_ANY &&
161                         addr_type != IPV6_ADDR_MAPPED;
162         }
163 #endif
164         return sk->sk_rcv_saddr != htonl(INADDR_ANY);
165 }
166
167 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
168                                kuid_t sk_uid, bool relax,
169                                bool reuseport_cb_ok, bool reuseport_ok)
170 {
171         int bound_dev_if2;
172
173         if (sk == sk2)
174                 return false;
175
176         bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
177
178         if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
179             sk->sk_bound_dev_if == bound_dev_if2) {
180                 if (sk->sk_reuse && sk2->sk_reuse &&
181                     sk2->sk_state != TCP_LISTEN) {
182                         if (!relax || (!reuseport_ok && sk->sk_reuseport &&
183                                        sk2->sk_reuseport && reuseport_cb_ok &&
184                                        (sk2->sk_state == TCP_TIME_WAIT ||
185                                         uid_eq(sk_uid, sock_i_uid(sk2)))))
186                                 return true;
187                 } else if (!reuseport_ok || !sk->sk_reuseport ||
188                            !sk2->sk_reuseport || !reuseport_cb_ok ||
189                            (sk2->sk_state != TCP_TIME_WAIT &&
190                             !uid_eq(sk_uid, sock_i_uid(sk2)))) {
191                         return true;
192                 }
193         }
194         return false;
195 }
196
197 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
198                                    kuid_t sk_uid, bool relax,
199                                    bool reuseport_cb_ok, bool reuseport_ok)
200 {
201         if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
202                 return false;
203
204         return inet_bind_conflict(sk, sk2, sk_uid, relax,
205                                   reuseport_cb_ok, reuseport_ok);
206 }
207
208 static bool inet_bhash2_conflict(const struct sock *sk,
209                                  const struct inet_bind2_bucket *tb2,
210                                  kuid_t sk_uid,
211                                  bool relax, bool reuseport_cb_ok,
212                                  bool reuseport_ok)
213 {
214         struct inet_timewait_sock *tw2;
215         struct sock *sk2;
216
217         sk_for_each_bound_bhash2(sk2, &tb2->owners) {
218                 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
219                                            reuseport_cb_ok, reuseport_ok))
220                         return true;
221         }
222
223         twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) {
224                 sk2 = (struct sock *)tw2;
225
226                 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
227                                            reuseport_cb_ok, reuseport_ok))
228                         return true;
229         }
230
231         return false;
232 }
233
234 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
235 static int inet_csk_bind_conflict(const struct sock *sk,
236                                   const struct inet_bind_bucket *tb,
237                                   const struct inet_bind2_bucket *tb2, /* may be null */
238                                   bool relax, bool reuseport_ok)
239 {
240         bool reuseport_cb_ok;
241         struct sock_reuseport *reuseport_cb;
242         kuid_t uid = sock_i_uid((struct sock *)sk);
243
244         rcu_read_lock();
245         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
246         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
247         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
248         rcu_read_unlock();
249
250         /*
251          * Unlike other sk lookup places we do not check
252          * for sk_net here, since _all_ the socks listed
253          * in tb->owners and tb2->owners list belong
254          * to the same net - the one this bucket belongs to.
255          */
256
257         if (!inet_use_bhash2_on_bind(sk)) {
258                 struct sock *sk2;
259
260                 sk_for_each_bound(sk2, &tb->owners)
261                         if (inet_bind_conflict(sk, sk2, uid, relax,
262                                                reuseport_cb_ok, reuseport_ok) &&
263                             inet_rcv_saddr_equal(sk, sk2, true))
264                                 return true;
265
266                 return false;
267         }
268
269         /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
270          * ipv4) should have been checked already. We need to do these two
271          * checks separately because their spinlocks have to be acquired/released
272          * independently of each other, to prevent possible deadlocks
273          */
274         return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
275                                            reuseport_ok);
276 }
277
278 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
279  * INADDR_ANY (if ipv4) socket.
280  *
281  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
282  * against concurrent binds on the port for addr any
283  */
284 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
285                                           bool relax, bool reuseport_ok)
286 {
287         kuid_t uid = sock_i_uid((struct sock *)sk);
288         const struct net *net = sock_net(sk);
289         struct sock_reuseport *reuseport_cb;
290         struct inet_bind_hashbucket *head2;
291         struct inet_bind2_bucket *tb2;
292         bool reuseport_cb_ok;
293
294         rcu_read_lock();
295         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
296         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
297         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
298         rcu_read_unlock();
299
300         head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
301
302         spin_lock(&head2->lock);
303
304         inet_bind_bucket_for_each(tb2, &head2->chain)
305                 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
306                         break;
307
308         if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
309                                         reuseport_ok)) {
310                 spin_unlock(&head2->lock);
311                 return true;
312         }
313
314         spin_unlock(&head2->lock);
315         return false;
316 }
317
318 /*
319  * Find an open port number for the socket.  Returns with the
320  * inet_bind_hashbucket locks held if successful.
321  */
322 static struct inet_bind_hashbucket *
323 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
324                         struct inet_bind2_bucket **tb2_ret,
325                         struct inet_bind_hashbucket **head2_ret, int *port_ret)
326 {
327         struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
328         int i, low, high, attempt_half, port, l3mdev;
329         struct inet_bind_hashbucket *head, *head2;
330         struct net *net = sock_net(sk);
331         struct inet_bind2_bucket *tb2;
332         struct inet_bind_bucket *tb;
333         u32 remaining, offset;
334         bool relax = false;
335
336         l3mdev = inet_sk_bound_l3mdev(sk);
337 ports_exhausted:
338         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
339 other_half_scan:
340         inet_sk_get_local_port_range(sk, &low, &high);
341         high++; /* [32768, 60999] -> [32768, 61000[ */
342         if (high - low < 4)
343                 attempt_half = 0;
344         if (attempt_half) {
345                 int half = low + (((high - low) >> 2) << 1);
346
347                 if (attempt_half == 1)
348                         high = half;
349                 else
350                         low = half;
351         }
352         remaining = high - low;
353         if (likely(remaining > 1))
354                 remaining &= ~1U;
355
356         offset = get_random_u32_below(remaining);
357         /* __inet_hash_connect() favors ports having @low parity
358          * We do the opposite to not pollute connect() users.
359          */
360         offset |= 1U;
361
362 other_parity_scan:
363         port = low + offset;
364         for (i = 0; i < remaining; i += 2, port += 2) {
365                 if (unlikely(port >= high))
366                         port -= remaining;
367                 if (inet_is_local_reserved_port(net, port))
368                         continue;
369                 head = &hinfo->bhash[inet_bhashfn(net, port,
370                                                   hinfo->bhash_size)];
371                 spin_lock_bh(&head->lock);
372                 if (inet_use_bhash2_on_bind(sk)) {
373                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
374                                 goto next_port;
375                 }
376
377                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
378                 spin_lock(&head2->lock);
379                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
380                 inet_bind_bucket_for_each(tb, &head->chain)
381                         if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
382                                 if (!inet_csk_bind_conflict(sk, tb, tb2,
383                                                             relax, false))
384                                         goto success;
385                                 spin_unlock(&head2->lock);
386                                 goto next_port;
387                         }
388                 tb = NULL;
389                 goto success;
390 next_port:
391                 spin_unlock_bh(&head->lock);
392                 cond_resched();
393         }
394
395         offset--;
396         if (!(offset & 1))
397                 goto other_parity_scan;
398
399         if (attempt_half == 1) {
400                 /* OK we now try the upper half of the range */
401                 attempt_half = 2;
402                 goto other_half_scan;
403         }
404
405         if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
406                 /* We still have a chance to connect to different destinations */
407                 relax = true;
408                 goto ports_exhausted;
409         }
410         return NULL;
411 success:
412         *port_ret = port;
413         *tb_ret = tb;
414         *tb2_ret = tb2;
415         *head2_ret = head2;
416         return head;
417 }
418
419 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
420                                      struct sock *sk)
421 {
422         kuid_t uid = sock_i_uid(sk);
423
424         if (tb->fastreuseport <= 0)
425                 return 0;
426         if (!sk->sk_reuseport)
427                 return 0;
428         if (rcu_access_pointer(sk->sk_reuseport_cb))
429                 return 0;
430         if (!uid_eq(tb->fastuid, uid))
431                 return 0;
432         /* We only need to check the rcv_saddr if this tb was once marked
433          * without fastreuseport and then was reset, as we can only know that
434          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
435          * owners list.
436          */
437         if (tb->fastreuseport == FASTREUSEPORT_ANY)
438                 return 1;
439 #if IS_ENABLED(CONFIG_IPV6)
440         if (tb->fast_sk_family == AF_INET6)
441                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
442                                             inet6_rcv_saddr(sk),
443                                             tb->fast_rcv_saddr,
444                                             sk->sk_rcv_saddr,
445                                             tb->fast_ipv6_only,
446                                             ipv6_only_sock(sk), true, false);
447 #endif
448         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
449                                     ipv6_only_sock(sk), true, false);
450 }
451
452 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
453                                struct sock *sk)
454 {
455         kuid_t uid = sock_i_uid(sk);
456         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
457
458         if (hlist_empty(&tb->owners)) {
459                 tb->fastreuse = reuse;
460                 if (sk->sk_reuseport) {
461                         tb->fastreuseport = FASTREUSEPORT_ANY;
462                         tb->fastuid = uid;
463                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
464                         tb->fast_ipv6_only = ipv6_only_sock(sk);
465                         tb->fast_sk_family = sk->sk_family;
466 #if IS_ENABLED(CONFIG_IPV6)
467                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
468 #endif
469                 } else {
470                         tb->fastreuseport = 0;
471                 }
472         } else {
473                 if (!reuse)
474                         tb->fastreuse = 0;
475                 if (sk->sk_reuseport) {
476                         /* We didn't match or we don't have fastreuseport set on
477                          * the tb, but we have sk_reuseport set on this socket
478                          * and we know that there are no bind conflicts with
479                          * this socket in this tb, so reset our tb's reuseport
480                          * settings so that any subsequent sockets that match
481                          * our current socket will be put on the fast path.
482                          *
483                          * If we reset we need to set FASTREUSEPORT_STRICT so we
484                          * do extra checking for all subsequent sk_reuseport
485                          * socks.
486                          */
487                         if (!sk_reuseport_match(tb, sk)) {
488                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
489                                 tb->fastuid = uid;
490                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
491                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
492                                 tb->fast_sk_family = sk->sk_family;
493 #if IS_ENABLED(CONFIG_IPV6)
494                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
495 #endif
496                         }
497                 } else {
498                         tb->fastreuseport = 0;
499                 }
500         }
501 }
502
503 /* Obtain a reference to a local port for the given sock,
504  * if snum is zero it means select any available local port.
505  * We try to allocate an odd port (and leave even ports for connect())
506  */
507 int inet_csk_get_port(struct sock *sk, unsigned short snum)
508 {
509         struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
510         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
511         bool found_port = false, check_bind_conflict = true;
512         bool bhash_created = false, bhash2_created = false;
513         int ret = -EADDRINUSE, port = snum, l3mdev;
514         struct inet_bind_hashbucket *head, *head2;
515         struct inet_bind2_bucket *tb2 = NULL;
516         struct inet_bind_bucket *tb = NULL;
517         bool head2_lock_acquired = false;
518         struct net *net = sock_net(sk);
519
520         l3mdev = inet_sk_bound_l3mdev(sk);
521
522         if (!port) {
523                 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
524                 if (!head)
525                         return ret;
526
527                 head2_lock_acquired = true;
528
529                 if (tb && tb2)
530                         goto success;
531                 found_port = true;
532         } else {
533                 head = &hinfo->bhash[inet_bhashfn(net, port,
534                                                   hinfo->bhash_size)];
535                 spin_lock_bh(&head->lock);
536                 inet_bind_bucket_for_each(tb, &head->chain)
537                         if (inet_bind_bucket_match(tb, net, port, l3mdev))
538                                 break;
539         }
540
541         if (!tb) {
542                 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
543                                              head, port, l3mdev);
544                 if (!tb)
545                         goto fail_unlock;
546                 bhash_created = true;
547         }
548
549         if (!found_port) {
550                 if (!hlist_empty(&tb->owners)) {
551                         if (sk->sk_reuse == SK_FORCE_REUSE ||
552                             (tb->fastreuse > 0 && reuse) ||
553                             sk_reuseport_match(tb, sk))
554                                 check_bind_conflict = false;
555                 }
556
557                 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
558                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
559                                 goto fail_unlock;
560                 }
561
562                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
563                 spin_lock(&head2->lock);
564                 head2_lock_acquired = true;
565                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
566         }
567
568         if (!tb2) {
569                 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
570                                                net, head2, port, l3mdev, sk);
571                 if (!tb2)
572                         goto fail_unlock;
573                 bhash2_created = true;
574         }
575
576         if (!found_port && check_bind_conflict) {
577                 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
578                         goto fail_unlock;
579         }
580
581 success:
582         inet_csk_update_fastreuse(tb, sk);
583
584         if (!inet_csk(sk)->icsk_bind_hash)
585                 inet_bind_hash(sk, tb, tb2, port);
586         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
587         WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
588         ret = 0;
589
590 fail_unlock:
591         if (ret) {
592                 if (bhash_created)
593                         inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
594                 if (bhash2_created)
595                         inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
596                                                   tb2);
597         }
598         if (head2_lock_acquired)
599                 spin_unlock(&head2->lock);
600         spin_unlock_bh(&head->lock);
601         return ret;
602 }
603 EXPORT_SYMBOL_GPL(inet_csk_get_port);
604
605 /*
606  * Wait for an incoming connection, avoid race conditions. This must be called
607  * with the socket locked.
608  */
609 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
610 {
611         struct inet_connection_sock *icsk = inet_csk(sk);
612         DEFINE_WAIT(wait);
613         int err;
614
615         /*
616          * True wake-one mechanism for incoming connections: only
617          * one process gets woken up, not the 'whole herd'.
618          * Since we do not 'race & poll' for established sockets
619          * anymore, the common case will execute the loop only once.
620          *
621          * Subtle issue: "add_wait_queue_exclusive()" will be added
622          * after any current non-exclusive waiters, and we know that
623          * it will always _stay_ after any new non-exclusive waiters
624          * because all non-exclusive waiters are added at the
625          * beginning of the wait-queue. As such, it's ok to "drop"
626          * our exclusiveness temporarily when we get woken up without
627          * having to remove and re-insert us on the wait queue.
628          */
629         for (;;) {
630                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
631                                           TASK_INTERRUPTIBLE);
632                 release_sock(sk);
633                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
634                         timeo = schedule_timeout(timeo);
635                 sched_annotate_sleep();
636                 lock_sock(sk);
637                 err = 0;
638                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
639                         break;
640                 err = -EINVAL;
641                 if (sk->sk_state != TCP_LISTEN)
642                         break;
643                 err = sock_intr_errno(timeo);
644                 if (signal_pending(current))
645                         break;
646                 err = -EAGAIN;
647                 if (!timeo)
648                         break;
649         }
650         finish_wait(sk_sleep(sk), &wait);
651         return err;
652 }
653
654 /*
655  * This will accept the next outstanding connection.
656  */
657 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
658 {
659         struct inet_connection_sock *icsk = inet_csk(sk);
660         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
661         struct request_sock *req;
662         struct sock *newsk;
663         int error;
664
665         lock_sock(sk);
666
667         /* We need to make sure that this socket is listening,
668          * and that it has something pending.
669          */
670         error = -EINVAL;
671         if (sk->sk_state != TCP_LISTEN)
672                 goto out_err;
673
674         /* Find already established connection */
675         if (reqsk_queue_empty(queue)) {
676                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
677
678                 /* If this is a non blocking socket don't sleep */
679                 error = -EAGAIN;
680                 if (!timeo)
681                         goto out_err;
682
683                 error = inet_csk_wait_for_connect(sk, timeo);
684                 if (error)
685                         goto out_err;
686         }
687         req = reqsk_queue_remove(queue, sk);
688         newsk = req->sk;
689
690         if (sk->sk_protocol == IPPROTO_TCP &&
691             tcp_rsk(req)->tfo_listener) {
692                 spin_lock_bh(&queue->fastopenq.lock);
693                 if (tcp_rsk(req)->tfo_listener) {
694                         /* We are still waiting for the final ACK from 3WHS
695                          * so can't free req now. Instead, we set req->sk to
696                          * NULL to signify that the child socket is taken
697                          * so reqsk_fastopen_remove() will free the req
698                          * when 3WHS finishes (or is aborted).
699                          */
700                         req->sk = NULL;
701                         req = NULL;
702                 }
703                 spin_unlock_bh(&queue->fastopenq.lock);
704         }
705
706 out:
707         release_sock(sk);
708         if (newsk && mem_cgroup_sockets_enabled) {
709                 int amt = 0;
710
711                 /* atomically get the memory usage, set and charge the
712                  * newsk->sk_memcg.
713                  */
714                 lock_sock(newsk);
715
716                 mem_cgroup_sk_alloc(newsk);
717                 if (newsk->sk_memcg) {
718                         /* The socket has not been accepted yet, no need
719                          * to look at newsk->sk_wmem_queued.
720                          */
721                         amt = sk_mem_pages(newsk->sk_forward_alloc +
722                                            atomic_read(&newsk->sk_rmem_alloc));
723                 }
724
725                 if (amt)
726                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
727                                                 GFP_KERNEL | __GFP_NOFAIL);
728
729                 release_sock(newsk);
730         }
731         if (req)
732                 reqsk_put(req);
733         return newsk;
734 out_err:
735         newsk = NULL;
736         req = NULL;
737         *err = error;
738         goto out;
739 }
740 EXPORT_SYMBOL(inet_csk_accept);
741
742 /*
743  * Using different timers for retransmit, delayed acks and probes
744  * We may wish use just one timer maintaining a list of expire jiffies
745  * to optimize.
746  */
747 void inet_csk_init_xmit_timers(struct sock *sk,
748                                void (*retransmit_handler)(struct timer_list *t),
749                                void (*delack_handler)(struct timer_list *t),
750                                void (*keepalive_handler)(struct timer_list *t))
751 {
752         struct inet_connection_sock *icsk = inet_csk(sk);
753
754         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
755         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
756         timer_setup(&sk->sk_timer, keepalive_handler, 0);
757         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
758 }
759 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
760
761 void inet_csk_clear_xmit_timers(struct sock *sk)
762 {
763         struct inet_connection_sock *icsk = inet_csk(sk);
764
765         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
766
767         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
768         sk_stop_timer(sk, &icsk->icsk_delack_timer);
769         sk_stop_timer(sk, &sk->sk_timer);
770 }
771 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
772
773 void inet_csk_delete_keepalive_timer(struct sock *sk)
774 {
775         sk_stop_timer(sk, &sk->sk_timer);
776 }
777 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
778
779 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
780 {
781         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
782 }
783 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
784
785 struct dst_entry *inet_csk_route_req(const struct sock *sk,
786                                      struct flowi4 *fl4,
787                                      const struct request_sock *req)
788 {
789         const struct inet_request_sock *ireq = inet_rsk(req);
790         struct net *net = read_pnet(&ireq->ireq_net);
791         struct ip_options_rcu *opt;
792         struct rtable *rt;
793
794         rcu_read_lock();
795         opt = rcu_dereference(ireq->ireq_opt);
796
797         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
798                            ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
799                            sk->sk_protocol, inet_sk_flowi_flags(sk),
800                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
801                            ireq->ir_loc_addr, ireq->ir_rmt_port,
802                            htons(ireq->ir_num), sk->sk_uid);
803         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
804         rt = ip_route_output_flow(net, fl4, sk);
805         if (IS_ERR(rt))
806                 goto no_route;
807         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
808                 goto route_err;
809         rcu_read_unlock();
810         return &rt->dst;
811
812 route_err:
813         ip_rt_put(rt);
814 no_route:
815         rcu_read_unlock();
816         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
817         return NULL;
818 }
819 EXPORT_SYMBOL_GPL(inet_csk_route_req);
820
821 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
822                                             struct sock *newsk,
823                                             const struct request_sock *req)
824 {
825         const struct inet_request_sock *ireq = inet_rsk(req);
826         struct net *net = read_pnet(&ireq->ireq_net);
827         struct inet_sock *newinet = inet_sk(newsk);
828         struct ip_options_rcu *opt;
829         struct flowi4 *fl4;
830         struct rtable *rt;
831
832         opt = rcu_dereference(ireq->ireq_opt);
833         fl4 = &newinet->cork.fl.u.ip4;
834
835         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
836                            ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
837                            sk->sk_protocol, inet_sk_flowi_flags(sk),
838                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
839                            ireq->ir_loc_addr, ireq->ir_rmt_port,
840                            htons(ireq->ir_num), sk->sk_uid);
841         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
842         rt = ip_route_output_flow(net, fl4, sk);
843         if (IS_ERR(rt))
844                 goto no_route;
845         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
846                 goto route_err;
847         return &rt->dst;
848
849 route_err:
850         ip_rt_put(rt);
851 no_route:
852         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
853         return NULL;
854 }
855 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
856
857 /* Decide when to expire the request and when to resend SYN-ACK */
858 static void syn_ack_recalc(struct request_sock *req,
859                            const int max_syn_ack_retries,
860                            const u8 rskq_defer_accept,
861                            int *expire, int *resend)
862 {
863         if (!rskq_defer_accept) {
864                 *expire = req->num_timeout >= max_syn_ack_retries;
865                 *resend = 1;
866                 return;
867         }
868         *expire = req->num_timeout >= max_syn_ack_retries &&
869                   (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
870         /* Do not resend while waiting for data after ACK,
871          * start to resend on end of deferring period to give
872          * last chance for data or ACK to create established socket.
873          */
874         *resend = !inet_rsk(req)->acked ||
875                   req->num_timeout >= rskq_defer_accept - 1;
876 }
877
878 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
879 {
880         int err = req->rsk_ops->rtx_syn_ack(parent, req);
881
882         if (!err)
883                 req->num_retrans++;
884         return err;
885 }
886 EXPORT_SYMBOL(inet_rtx_syn_ack);
887
888 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
889                                              struct sock *sk)
890 {
891         struct sock *req_sk, *nreq_sk;
892         struct request_sock *nreq;
893
894         nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
895         if (!nreq) {
896                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
897
898                 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
899                 sock_put(sk);
900                 return NULL;
901         }
902
903         req_sk = req_to_sk(req);
904         nreq_sk = req_to_sk(nreq);
905
906         memcpy(nreq_sk, req_sk,
907                offsetof(struct sock, sk_dontcopy_begin));
908         memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
909                req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
910
911         sk_node_init(&nreq_sk->sk_node);
912         nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
913 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
914         nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
915 #endif
916         nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
917
918         nreq->rsk_listener = sk;
919
920         /* We need not acquire fastopenq->lock
921          * because the child socket is locked in inet_csk_listen_stop().
922          */
923         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
924                 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
925
926         return nreq;
927 }
928
929 static void reqsk_queue_migrated(struct request_sock_queue *queue,
930                                  const struct request_sock *req)
931 {
932         if (req->num_timeout == 0)
933                 atomic_inc(&queue->young);
934         atomic_inc(&queue->qlen);
935 }
936
937 static void reqsk_migrate_reset(struct request_sock *req)
938 {
939         req->saved_syn = NULL;
940 #if IS_ENABLED(CONFIG_IPV6)
941         inet_rsk(req)->ipv6_opt = NULL;
942         inet_rsk(req)->pktopts = NULL;
943 #else
944         inet_rsk(req)->ireq_opt = NULL;
945 #endif
946 }
947
948 /* return true if req was found in the ehash table */
949 static bool reqsk_queue_unlink(struct request_sock *req)
950 {
951         struct sock *sk = req_to_sk(req);
952         bool found = false;
953
954         if (sk_hashed(sk)) {
955                 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
956                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
957
958                 spin_lock(lock);
959                 found = __sk_nulls_del_node_init_rcu(sk);
960                 spin_unlock(lock);
961         }
962         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
963                 reqsk_put(req);
964         return found;
965 }
966
967 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
968 {
969         bool unlinked = reqsk_queue_unlink(req);
970
971         if (unlinked) {
972                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
973                 reqsk_put(req);
974         }
975         return unlinked;
976 }
977 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
978
979 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
980 {
981         inet_csk_reqsk_queue_drop(sk, req);
982         reqsk_put(req);
983 }
984 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
985
986 static void reqsk_timer_handler(struct timer_list *t)
987 {
988         struct request_sock *req = from_timer(req, t, rsk_timer);
989         struct request_sock *nreq = NULL, *oreq = req;
990         struct sock *sk_listener = req->rsk_listener;
991         struct inet_connection_sock *icsk;
992         struct request_sock_queue *queue;
993         struct net *net;
994         int max_syn_ack_retries, qlen, expire = 0, resend = 0;
995
996         if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
997                 struct sock *nsk;
998
999                 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1000                 if (!nsk)
1001                         goto drop;
1002
1003                 nreq = inet_reqsk_clone(req, nsk);
1004                 if (!nreq)
1005                         goto drop;
1006
1007                 /* The new timer for the cloned req can decrease the 2
1008                  * by calling inet_csk_reqsk_queue_drop_and_put(), so
1009                  * hold another count to prevent use-after-free and
1010                  * call reqsk_put() just before return.
1011                  */
1012                 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1013                 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1014                 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1015
1016                 req = nreq;
1017                 sk_listener = nsk;
1018         }
1019
1020         icsk = inet_csk(sk_listener);
1021         net = sock_net(sk_listener);
1022         max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1023                 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1024         /* Normally all the openreqs are young and become mature
1025          * (i.e. converted to established socket) for first timeout.
1026          * If synack was not acknowledged for 1 second, it means
1027          * one of the following things: synack was lost, ack was lost,
1028          * rtt is high or nobody planned to ack (i.e. synflood).
1029          * When server is a bit loaded, queue is populated with old
1030          * open requests, reducing effective size of queue.
1031          * When server is well loaded, queue size reduces to zero
1032          * after several minutes of work. It is not synflood,
1033          * it is normal operation. The solution is pruning
1034          * too old entries overriding normal timeout, when
1035          * situation becomes dangerous.
1036          *
1037          * Essentially, we reserve half of room for young
1038          * embrions; and abort old ones without pity, if old
1039          * ones are about to clog our table.
1040          */
1041         queue = &icsk->icsk_accept_queue;
1042         qlen = reqsk_queue_len(queue);
1043         if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1044                 int young = reqsk_queue_len_young(queue) << 1;
1045
1046                 while (max_syn_ack_retries > 2) {
1047                         if (qlen < young)
1048                                 break;
1049                         max_syn_ack_retries--;
1050                         young <<= 1;
1051                 }
1052         }
1053         syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1054                        &expire, &resend);
1055         req->rsk_ops->syn_ack_timeout(req);
1056         if (!expire &&
1057             (!resend ||
1058              !inet_rtx_syn_ack(sk_listener, req) ||
1059              inet_rsk(req)->acked)) {
1060                 if (req->num_timeout++ == 0)
1061                         atomic_dec(&queue->young);
1062                 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1063
1064                 if (!nreq)
1065                         return;
1066
1067                 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1068                         /* delete timer */
1069                         inet_csk_reqsk_queue_drop(sk_listener, nreq);
1070                         goto no_ownership;
1071                 }
1072
1073                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1074                 reqsk_migrate_reset(oreq);
1075                 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1076                 reqsk_put(oreq);
1077
1078                 reqsk_put(nreq);
1079                 return;
1080         }
1081
1082         /* Even if we can clone the req, we may need not retransmit any more
1083          * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1084          * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1085          */
1086         if (nreq) {
1087                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1088 no_ownership:
1089                 reqsk_migrate_reset(nreq);
1090                 reqsk_queue_removed(queue, nreq);
1091                 __reqsk_free(nreq);
1092         }
1093
1094 drop:
1095         inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1096 }
1097
1098 static void reqsk_queue_hash_req(struct request_sock *req,
1099                                  unsigned long timeout)
1100 {
1101         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1102         mod_timer(&req->rsk_timer, jiffies + timeout);
1103
1104         inet_ehash_insert(req_to_sk(req), NULL, NULL);
1105         /* before letting lookups find us, make sure all req fields
1106          * are committed to memory and refcnt initialized.
1107          */
1108         smp_wmb();
1109         refcount_set(&req->rsk_refcnt, 2 + 1);
1110 }
1111
1112 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1113                                    unsigned long timeout)
1114 {
1115         reqsk_queue_hash_req(req, timeout);
1116         inet_csk_reqsk_queue_added(sk);
1117 }
1118 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1119
1120 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1121                            const gfp_t priority)
1122 {
1123         struct inet_connection_sock *icsk = inet_csk(newsk);
1124
1125         if (!icsk->icsk_ulp_ops)
1126                 return;
1127
1128         icsk->icsk_ulp_ops->clone(req, newsk, priority);
1129 }
1130
1131 /**
1132  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
1133  *      @sk: the socket to clone
1134  *      @req: request_sock
1135  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1136  *
1137  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1138  */
1139 struct sock *inet_csk_clone_lock(const struct sock *sk,
1140                                  const struct request_sock *req,
1141                                  const gfp_t priority)
1142 {
1143         struct sock *newsk = sk_clone_lock(sk, priority);
1144
1145         if (newsk) {
1146                 struct inet_connection_sock *newicsk = inet_csk(newsk);
1147
1148                 inet_sk_set_state(newsk, TCP_SYN_RECV);
1149                 newicsk->icsk_bind_hash = NULL;
1150                 newicsk->icsk_bind2_hash = NULL;
1151
1152                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1153                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1154                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1155
1156                 /* listeners have SOCK_RCU_FREE, not the children */
1157                 sock_reset_flag(newsk, SOCK_RCU_FREE);
1158
1159                 inet_sk(newsk)->mc_list = NULL;
1160
1161                 newsk->sk_mark = inet_rsk(req)->ir_mark;
1162                 atomic64_set(&newsk->sk_cookie,
1163                              atomic64_read(&inet_rsk(req)->ir_cookie));
1164
1165                 newicsk->icsk_retransmits = 0;
1166                 newicsk->icsk_backoff     = 0;
1167                 newicsk->icsk_probes_out  = 0;
1168                 newicsk->icsk_probes_tstamp = 0;
1169
1170                 /* Deinitialize accept_queue to trap illegal accesses. */
1171                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1172
1173                 inet_clone_ulp(req, newsk, priority);
1174
1175                 security_inet_csk_clone(newsk, req);
1176         }
1177         return newsk;
1178 }
1179 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1180
1181 /*
1182  * At this point, there should be no process reference to this
1183  * socket, and thus no user references at all.  Therefore we
1184  * can assume the socket waitqueue is inactive and nobody will
1185  * try to jump onto it.
1186  */
1187 void inet_csk_destroy_sock(struct sock *sk)
1188 {
1189         WARN_ON(sk->sk_state != TCP_CLOSE);
1190         WARN_ON(!sock_flag(sk, SOCK_DEAD));
1191
1192         /* It cannot be in hash table! */
1193         WARN_ON(!sk_unhashed(sk));
1194
1195         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1196         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1197
1198         sk->sk_prot->destroy(sk);
1199
1200         sk_stream_kill_queues(sk);
1201
1202         xfrm_sk_free_policy(sk);
1203
1204         this_cpu_dec(*sk->sk_prot->orphan_count);
1205
1206         sock_put(sk);
1207 }
1208 EXPORT_SYMBOL(inet_csk_destroy_sock);
1209
1210 /* This function allows to force a closure of a socket after the call to
1211  * tcp/dccp_create_openreq_child().
1212  */
1213 void inet_csk_prepare_forced_close(struct sock *sk)
1214         __releases(&sk->sk_lock.slock)
1215 {
1216         /* sk_clone_lock locked the socket and set refcnt to 2 */
1217         bh_unlock_sock(sk);
1218         sock_put(sk);
1219         inet_csk_prepare_for_destroy_sock(sk);
1220         inet_sk(sk)->inet_num = 0;
1221 }
1222 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1223
1224 static int inet_ulp_can_listen(const struct sock *sk)
1225 {
1226         const struct inet_connection_sock *icsk = inet_csk(sk);
1227
1228         if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1229                 return -EINVAL;
1230
1231         return 0;
1232 }
1233
1234 int inet_csk_listen_start(struct sock *sk)
1235 {
1236         struct inet_connection_sock *icsk = inet_csk(sk);
1237         struct inet_sock *inet = inet_sk(sk);
1238         int err;
1239
1240         err = inet_ulp_can_listen(sk);
1241         if (unlikely(err))
1242                 return err;
1243
1244         reqsk_queue_alloc(&icsk->icsk_accept_queue);
1245
1246         sk->sk_ack_backlog = 0;
1247         inet_csk_delack_init(sk);
1248
1249         /* There is race window here: we announce ourselves listening,
1250          * but this transition is still not validated by get_port().
1251          * It is OK, because this socket enters to hash table only
1252          * after validation is complete.
1253          */
1254         inet_sk_state_store(sk, TCP_LISTEN);
1255         err = sk->sk_prot->get_port(sk, inet->inet_num);
1256         if (!err) {
1257                 inet->inet_sport = htons(inet->inet_num);
1258
1259                 sk_dst_reset(sk);
1260                 err = sk->sk_prot->hash(sk);
1261
1262                 if (likely(!err))
1263                         return 0;
1264         }
1265
1266         inet_sk_set_state(sk, TCP_CLOSE);
1267         return err;
1268 }
1269 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1270
1271 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1272                               struct sock *child)
1273 {
1274         sk->sk_prot->disconnect(child, O_NONBLOCK);
1275
1276         sock_orphan(child);
1277
1278         this_cpu_inc(*sk->sk_prot->orphan_count);
1279
1280         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1281                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1282                 BUG_ON(sk != req->rsk_listener);
1283
1284                 /* Paranoid, to prevent race condition if
1285                  * an inbound pkt destined for child is
1286                  * blocked by sock lock in tcp_v4_rcv().
1287                  * Also to satisfy an assertion in
1288                  * tcp_v4_destroy_sock().
1289                  */
1290                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1291         }
1292         inet_csk_destroy_sock(child);
1293 }
1294
1295 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1296                                       struct request_sock *req,
1297                                       struct sock *child)
1298 {
1299         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1300
1301         spin_lock(&queue->rskq_lock);
1302         if (unlikely(sk->sk_state != TCP_LISTEN)) {
1303                 inet_child_forget(sk, req, child);
1304                 child = NULL;
1305         } else {
1306                 req->sk = child;
1307                 req->dl_next = NULL;
1308                 if (queue->rskq_accept_head == NULL)
1309                         WRITE_ONCE(queue->rskq_accept_head, req);
1310                 else
1311                         queue->rskq_accept_tail->dl_next = req;
1312                 queue->rskq_accept_tail = req;
1313                 sk_acceptq_added(sk);
1314         }
1315         spin_unlock(&queue->rskq_lock);
1316         return child;
1317 }
1318 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1319
1320 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1321                                          struct request_sock *req, bool own_req)
1322 {
1323         if (own_req) {
1324                 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1325                 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1326
1327                 if (sk != req->rsk_listener) {
1328                         /* another listening sk has been selected,
1329                          * migrate the req to it.
1330                          */
1331                         struct request_sock *nreq;
1332
1333                         /* hold a refcnt for the nreq->rsk_listener
1334                          * which is assigned in inet_reqsk_clone()
1335                          */
1336                         sock_hold(sk);
1337                         nreq = inet_reqsk_clone(req, sk);
1338                         if (!nreq) {
1339                                 inet_child_forget(sk, req, child);
1340                                 goto child_put;
1341                         }
1342
1343                         refcount_set(&nreq->rsk_refcnt, 1);
1344                         if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1345                                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1346                                 reqsk_migrate_reset(req);
1347                                 reqsk_put(req);
1348                                 return child;
1349                         }
1350
1351                         __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1352                         reqsk_migrate_reset(nreq);
1353                         __reqsk_free(nreq);
1354                 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1355                         return child;
1356                 }
1357         }
1358         /* Too bad, another child took ownership of the request, undo. */
1359 child_put:
1360         bh_unlock_sock(child);
1361         sock_put(child);
1362         return NULL;
1363 }
1364 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1365
1366 /*
1367  *      This routine closes sockets which have been at least partially
1368  *      opened, but not yet accepted.
1369  */
1370 void inet_csk_listen_stop(struct sock *sk)
1371 {
1372         struct inet_connection_sock *icsk = inet_csk(sk);
1373         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1374         struct request_sock *next, *req;
1375
1376         /* Following specs, it would be better either to send FIN
1377          * (and enter FIN-WAIT-1, it is normal close)
1378          * or to send active reset (abort).
1379          * Certainly, it is pretty dangerous while synflood, but it is
1380          * bad justification for our negligence 8)
1381          * To be honest, we are not able to make either
1382          * of the variants now.                 --ANK
1383          */
1384         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1385                 struct sock *child = req->sk, *nsk;
1386                 struct request_sock *nreq;
1387
1388                 local_bh_disable();
1389                 bh_lock_sock(child);
1390                 WARN_ON(sock_owned_by_user(child));
1391                 sock_hold(child);
1392
1393                 nsk = reuseport_migrate_sock(sk, child, NULL);
1394                 if (nsk) {
1395                         nreq = inet_reqsk_clone(req, nsk);
1396                         if (nreq) {
1397                                 refcount_set(&nreq->rsk_refcnt, 1);
1398
1399                                 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1400                                         __NET_INC_STATS(sock_net(nsk),
1401                                                         LINUX_MIB_TCPMIGRATEREQSUCCESS);
1402                                         reqsk_migrate_reset(req);
1403                                 } else {
1404                                         __NET_INC_STATS(sock_net(nsk),
1405                                                         LINUX_MIB_TCPMIGRATEREQFAILURE);
1406                                         reqsk_migrate_reset(nreq);
1407                                         __reqsk_free(nreq);
1408                                 }
1409
1410                                 /* inet_csk_reqsk_queue_add() has already
1411                                  * called inet_child_forget() on failure case.
1412                                  */
1413                                 goto skip_child_forget;
1414                         }
1415                 }
1416
1417                 inet_child_forget(sk, req, child);
1418 skip_child_forget:
1419                 reqsk_put(req);
1420                 bh_unlock_sock(child);
1421                 local_bh_enable();
1422                 sock_put(child);
1423
1424                 cond_resched();
1425         }
1426         if (queue->fastopenq.rskq_rst_head) {
1427                 /* Free all the reqs queued in rskq_rst_head. */
1428                 spin_lock_bh(&queue->fastopenq.lock);
1429                 req = queue->fastopenq.rskq_rst_head;
1430                 queue->fastopenq.rskq_rst_head = NULL;
1431                 spin_unlock_bh(&queue->fastopenq.lock);
1432                 while (req != NULL) {
1433                         next = req->dl_next;
1434                         reqsk_put(req);
1435                         req = next;
1436                 }
1437         }
1438         WARN_ON_ONCE(sk->sk_ack_backlog);
1439 }
1440 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1441
1442 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1443 {
1444         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1445         const struct inet_sock *inet = inet_sk(sk);
1446
1447         sin->sin_family         = AF_INET;
1448         sin->sin_addr.s_addr    = inet->inet_daddr;
1449         sin->sin_port           = inet->inet_dport;
1450 }
1451 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1452
1453 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1454 {
1455         const struct inet_sock *inet = inet_sk(sk);
1456         const struct ip_options_rcu *inet_opt;
1457         __be32 daddr = inet->inet_daddr;
1458         struct flowi4 *fl4;
1459         struct rtable *rt;
1460
1461         rcu_read_lock();
1462         inet_opt = rcu_dereference(inet->inet_opt);
1463         if (inet_opt && inet_opt->opt.srr)
1464                 daddr = inet_opt->opt.faddr;
1465         fl4 = &fl->u.ip4;
1466         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1467                                    inet->inet_saddr, inet->inet_dport,
1468                                    inet->inet_sport, sk->sk_protocol,
1469                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1470         if (IS_ERR(rt))
1471                 rt = NULL;
1472         if (rt)
1473                 sk_setup_caps(sk, &rt->dst);
1474         rcu_read_unlock();
1475
1476         return &rt->dst;
1477 }
1478
1479 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1480 {
1481         struct dst_entry *dst = __sk_dst_check(sk, 0);
1482         struct inet_sock *inet = inet_sk(sk);
1483
1484         if (!dst) {
1485                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1486                 if (!dst)
1487                         goto out;
1488         }
1489         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1490
1491         dst = __sk_dst_check(sk, 0);
1492         if (!dst)
1493                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1494 out:
1495         return dst;
1496 }
1497 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);