GNU Linux-libre 5.4.257-gnu1
[releases.git] / net / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *                              if IPv6 only, and any IPv4 addresses
29  *                              if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *                              and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35                                  const struct in6_addr *sk2_rcv_saddr6,
36                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37                                  bool sk1_ipv6only, bool sk2_ipv6only,
38                                  bool match_sk1_wildcard,
39                                  bool match_sk2_wildcard)
40 {
41         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44         /* if both are mapped, treat as IPv4 */
45         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46                 if (!sk2_ipv6only) {
47                         if (sk1_rcv_saddr == sk2_rcv_saddr)
48                                 return true;
49                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50                                 (match_sk2_wildcard && !sk2_rcv_saddr);
51                 }
52                 return false;
53         }
54
55         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56                 return true;
57
58         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60                 return true;
61
62         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64                 return true;
65
66         if (sk2_rcv_saddr6 &&
67             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68                 return true;
69
70         return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *                              0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79                                  bool sk2_ipv6only, bool match_sk1_wildcard,
80                                  bool match_sk2_wildcard)
81 {
82         if (!sk2_ipv6only) {
83                 if (sk1_rcv_saddr == sk2_rcv_saddr)
84                         return true;
85                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86                         (match_sk2_wildcard && !sk2_rcv_saddr);
87         }
88         return false;
89 }
90
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92                           bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95         if (sk->sk_family == AF_INET6)
96                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97                                             inet6_rcv_saddr(sk2),
98                                             sk->sk_rcv_saddr,
99                                             sk2->sk_rcv_saddr,
100                                             ipv6_only_sock(sk),
101                                             ipv6_only_sock(sk2),
102                                             match_wildcard,
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard,
107                                     match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114         if (sk->sk_family == AF_INET6)
115                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117         return !sk->sk_rcv_saddr;
118 }
119
120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122         unsigned int seq;
123
124         do {
125                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127                 *low = net->ipv4.ip_local_ports.range[0];
128                 *high = net->ipv4.ip_local_ports.range[1];
129         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
133 static int inet_csk_bind_conflict(const struct sock *sk,
134                                   const struct inet_bind_bucket *tb,
135                                   bool relax, bool reuseport_ok)
136 {
137         struct sock *sk2;
138         bool reuse = sk->sk_reuse;
139         bool reuseport = !!sk->sk_reuseport && reuseport_ok;
140         kuid_t uid = sock_i_uid((struct sock *)sk);
141
142         /*
143          * Unlike other sk lookup places we do not check
144          * for sk_net here, since _all_ the socks listed
145          * in tb->owners list belong to the same net - the
146          * one this bucket belongs to.
147          */
148
149         sk_for_each_bound(sk2, &tb->owners) {
150                 if (sk != sk2 &&
151                     (!sk->sk_bound_dev_if ||
152                      !sk2->sk_bound_dev_if ||
153                      sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
154                         if ((!reuse || !sk2->sk_reuse ||
155                             sk2->sk_state == TCP_LISTEN) &&
156                             (!reuseport || !sk2->sk_reuseport ||
157                              rcu_access_pointer(sk->sk_reuseport_cb) ||
158                              (sk2->sk_state != TCP_TIME_WAIT &&
159                              !uid_eq(uid, sock_i_uid(sk2))))) {
160                                 if (inet_rcv_saddr_equal(sk, sk2, true))
161                                         break;
162                         }
163                         if (!relax && reuse && sk2->sk_reuse &&
164                             sk2->sk_state != TCP_LISTEN) {
165                                 if (inet_rcv_saddr_equal(sk, sk2, true))
166                                         break;
167                         }
168                 }
169         }
170         return sk2 != NULL;
171 }
172
173 /*
174  * Find an open port number for the socket.  Returns with the
175  * inet_bind_hashbucket lock held.
176  */
177 static struct inet_bind_hashbucket *
178 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
179 {
180         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
181         int port = 0;
182         struct inet_bind_hashbucket *head;
183         struct net *net = sock_net(sk);
184         int i, low, high, attempt_half;
185         struct inet_bind_bucket *tb;
186         u32 remaining, offset;
187         int l3mdev;
188
189         l3mdev = inet_sk_bound_l3mdev(sk);
190         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
191 other_half_scan:
192         inet_get_local_port_range(net, &low, &high);
193         high++; /* [32768, 60999] -> [32768, 61000[ */
194         if (high - low < 4)
195                 attempt_half = 0;
196         if (attempt_half) {
197                 int half = low + (((high - low) >> 2) << 1);
198
199                 if (attempt_half == 1)
200                         high = half;
201                 else
202                         low = half;
203         }
204         remaining = high - low;
205         if (likely(remaining > 1))
206                 remaining &= ~1U;
207
208         offset = prandom_u32() % remaining;
209         /* __inet_hash_connect() favors ports having @low parity
210          * We do the opposite to not pollute connect() users.
211          */
212         offset |= 1U;
213
214 other_parity_scan:
215         port = low + offset;
216         for (i = 0; i < remaining; i += 2, port += 2) {
217                 if (unlikely(port >= high))
218                         port -= remaining;
219                 if (inet_is_local_reserved_port(net, port))
220                         continue;
221                 head = &hinfo->bhash[inet_bhashfn(net, port,
222                                                   hinfo->bhash_size)];
223                 spin_lock_bh(&head->lock);
224                 inet_bind_bucket_for_each(tb, &head->chain)
225                         if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
226                             tb->port == port) {
227                                 if (!inet_csk_bind_conflict(sk, tb, false, false))
228                                         goto success;
229                                 goto next_port;
230                         }
231                 tb = NULL;
232                 goto success;
233 next_port:
234                 spin_unlock_bh(&head->lock);
235                 cond_resched();
236         }
237
238         offset--;
239         if (!(offset & 1))
240                 goto other_parity_scan;
241
242         if (attempt_half == 1) {
243                 /* OK we now try the upper half of the range */
244                 attempt_half = 2;
245                 goto other_half_scan;
246         }
247         return NULL;
248 success:
249         *port_ret = port;
250         *tb_ret = tb;
251         return head;
252 }
253
254 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
255                                      struct sock *sk)
256 {
257         kuid_t uid = sock_i_uid(sk);
258
259         if (tb->fastreuseport <= 0)
260                 return 0;
261         if (!sk->sk_reuseport)
262                 return 0;
263         if (rcu_access_pointer(sk->sk_reuseport_cb))
264                 return 0;
265         if (!uid_eq(tb->fastuid, uid))
266                 return 0;
267         /* We only need to check the rcv_saddr if this tb was once marked
268          * without fastreuseport and then was reset, as we can only know that
269          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
270          * owners list.
271          */
272         if (tb->fastreuseport == FASTREUSEPORT_ANY)
273                 return 1;
274 #if IS_ENABLED(CONFIG_IPV6)
275         if (tb->fast_sk_family == AF_INET6)
276                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
277                                             inet6_rcv_saddr(sk),
278                                             tb->fast_rcv_saddr,
279                                             sk->sk_rcv_saddr,
280                                             tb->fast_ipv6_only,
281                                             ipv6_only_sock(sk), true, false);
282 #endif
283         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
284                                     ipv6_only_sock(sk), true, false);
285 }
286
287 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
288                                struct sock *sk)
289 {
290         kuid_t uid = sock_i_uid(sk);
291         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
292
293         if (hlist_empty(&tb->owners)) {
294                 tb->fastreuse = reuse;
295                 if (sk->sk_reuseport) {
296                         tb->fastreuseport = FASTREUSEPORT_ANY;
297                         tb->fastuid = uid;
298                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
299                         tb->fast_ipv6_only = ipv6_only_sock(sk);
300                         tb->fast_sk_family = sk->sk_family;
301 #if IS_ENABLED(CONFIG_IPV6)
302                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
303 #endif
304                 } else {
305                         tb->fastreuseport = 0;
306                 }
307         } else {
308                 if (!reuse)
309                         tb->fastreuse = 0;
310                 if (sk->sk_reuseport) {
311                         /* We didn't match or we don't have fastreuseport set on
312                          * the tb, but we have sk_reuseport set on this socket
313                          * and we know that there are no bind conflicts with
314                          * this socket in this tb, so reset our tb's reuseport
315                          * settings so that any subsequent sockets that match
316                          * our current socket will be put on the fast path.
317                          *
318                          * If we reset we need to set FASTREUSEPORT_STRICT so we
319                          * do extra checking for all subsequent sk_reuseport
320                          * socks.
321                          */
322                         if (!sk_reuseport_match(tb, sk)) {
323                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
324                                 tb->fastuid = uid;
325                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
326                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
327                                 tb->fast_sk_family = sk->sk_family;
328 #if IS_ENABLED(CONFIG_IPV6)
329                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
330 #endif
331                         }
332                 } else {
333                         tb->fastreuseport = 0;
334                 }
335         }
336 }
337
338 /* Obtain a reference to a local port for the given sock,
339  * if snum is zero it means select any available local port.
340  * We try to allocate an odd port (and leave even ports for connect())
341  */
342 int inet_csk_get_port(struct sock *sk, unsigned short snum)
343 {
344         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
345         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
346         int ret = 1, port = snum;
347         struct inet_bind_hashbucket *head;
348         struct net *net = sock_net(sk);
349         struct inet_bind_bucket *tb = NULL;
350         int l3mdev;
351
352         l3mdev = inet_sk_bound_l3mdev(sk);
353
354         if (!port) {
355                 head = inet_csk_find_open_port(sk, &tb, &port);
356                 if (!head)
357                         return ret;
358                 if (!tb)
359                         goto tb_not_found;
360                 goto success;
361         }
362         head = &hinfo->bhash[inet_bhashfn(net, port,
363                                           hinfo->bhash_size)];
364         spin_lock_bh(&head->lock);
365         inet_bind_bucket_for_each(tb, &head->chain)
366                 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
367                     tb->port == port)
368                         goto tb_found;
369 tb_not_found:
370         tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
371                                      net, head, port, l3mdev);
372         if (!tb)
373                 goto fail_unlock;
374 tb_found:
375         if (!hlist_empty(&tb->owners)) {
376                 if (sk->sk_reuse == SK_FORCE_REUSE)
377                         goto success;
378
379                 if ((tb->fastreuse > 0 && reuse) ||
380                     sk_reuseport_match(tb, sk))
381                         goto success;
382                 if (inet_csk_bind_conflict(sk, tb, true, true))
383                         goto fail_unlock;
384         }
385 success:
386         inet_csk_update_fastreuse(tb, sk);
387
388         if (!inet_csk(sk)->icsk_bind_hash)
389                 inet_bind_hash(sk, tb, port);
390         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
391         ret = 0;
392
393 fail_unlock:
394         spin_unlock_bh(&head->lock);
395         return ret;
396 }
397 EXPORT_SYMBOL_GPL(inet_csk_get_port);
398
399 /*
400  * Wait for an incoming connection, avoid race conditions. This must be called
401  * with the socket locked.
402  */
403 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
404 {
405         struct inet_connection_sock *icsk = inet_csk(sk);
406         DEFINE_WAIT(wait);
407         int err;
408
409         /*
410          * True wake-one mechanism for incoming connections: only
411          * one process gets woken up, not the 'whole herd'.
412          * Since we do not 'race & poll' for established sockets
413          * anymore, the common case will execute the loop only once.
414          *
415          * Subtle issue: "add_wait_queue_exclusive()" will be added
416          * after any current non-exclusive waiters, and we know that
417          * it will always _stay_ after any new non-exclusive waiters
418          * because all non-exclusive waiters are added at the
419          * beginning of the wait-queue. As such, it's ok to "drop"
420          * our exclusiveness temporarily when we get woken up without
421          * having to remove and re-insert us on the wait queue.
422          */
423         for (;;) {
424                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
425                                           TASK_INTERRUPTIBLE);
426                 release_sock(sk);
427                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
428                         timeo = schedule_timeout(timeo);
429                 sched_annotate_sleep();
430                 lock_sock(sk);
431                 err = 0;
432                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
433                         break;
434                 err = -EINVAL;
435                 if (sk->sk_state != TCP_LISTEN)
436                         break;
437                 err = sock_intr_errno(timeo);
438                 if (signal_pending(current))
439                         break;
440                 err = -EAGAIN;
441                 if (!timeo)
442                         break;
443         }
444         finish_wait(sk_sleep(sk), &wait);
445         return err;
446 }
447
448 /*
449  * This will accept the next outstanding connection.
450  */
451 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
452 {
453         struct inet_connection_sock *icsk = inet_csk(sk);
454         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
455         struct request_sock *req;
456         struct sock *newsk;
457         int error;
458
459         lock_sock(sk);
460
461         /* We need to make sure that this socket is listening,
462          * and that it has something pending.
463          */
464         error = -EINVAL;
465         if (sk->sk_state != TCP_LISTEN)
466                 goto out_err;
467
468         /* Find already established connection */
469         if (reqsk_queue_empty(queue)) {
470                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
471
472                 /* If this is a non blocking socket don't sleep */
473                 error = -EAGAIN;
474                 if (!timeo)
475                         goto out_err;
476
477                 error = inet_csk_wait_for_connect(sk, timeo);
478                 if (error)
479                         goto out_err;
480         }
481         req = reqsk_queue_remove(queue, sk);
482         newsk = req->sk;
483
484         if (sk->sk_protocol == IPPROTO_TCP &&
485             tcp_rsk(req)->tfo_listener) {
486                 spin_lock_bh(&queue->fastopenq.lock);
487                 if (tcp_rsk(req)->tfo_listener) {
488                         /* We are still waiting for the final ACK from 3WHS
489                          * so can't free req now. Instead, we set req->sk to
490                          * NULL to signify that the child socket is taken
491                          * so reqsk_fastopen_remove() will free the req
492                          * when 3WHS finishes (or is aborted).
493                          */
494                         req->sk = NULL;
495                         req = NULL;
496                 }
497                 spin_unlock_bh(&queue->fastopenq.lock);
498         }
499
500 out:
501         release_sock(sk);
502         if (newsk && mem_cgroup_sockets_enabled) {
503                 int amt;
504
505                 /* atomically get the memory usage, set and charge the
506                  * newsk->sk_memcg.
507                  */
508                 lock_sock(newsk);
509
510                 /* The socket has not been accepted yet, no need to look at
511                  * newsk->sk_wmem_queued.
512                  */
513                 amt = sk_mem_pages(newsk->sk_forward_alloc +
514                                    atomic_read(&newsk->sk_rmem_alloc));
515                 mem_cgroup_sk_alloc(newsk);
516                 if (newsk->sk_memcg && amt)
517                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
518
519                 release_sock(newsk);
520         }
521         if (req)
522                 reqsk_put(req);
523         return newsk;
524 out_err:
525         newsk = NULL;
526         req = NULL;
527         *err = error;
528         goto out;
529 }
530 EXPORT_SYMBOL(inet_csk_accept);
531
532 /*
533  * Using different timers for retransmit, delayed acks and probes
534  * We may wish use just one timer maintaining a list of expire jiffies
535  * to optimize.
536  */
537 void inet_csk_init_xmit_timers(struct sock *sk,
538                                void (*retransmit_handler)(struct timer_list *t),
539                                void (*delack_handler)(struct timer_list *t),
540                                void (*keepalive_handler)(struct timer_list *t))
541 {
542         struct inet_connection_sock *icsk = inet_csk(sk);
543
544         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
545         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
546         timer_setup(&sk->sk_timer, keepalive_handler, 0);
547         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
548 }
549 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
550
551 void inet_csk_clear_xmit_timers(struct sock *sk)
552 {
553         struct inet_connection_sock *icsk = inet_csk(sk);
554
555         icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
556
557         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
558         sk_stop_timer(sk, &icsk->icsk_delack_timer);
559         sk_stop_timer(sk, &sk->sk_timer);
560 }
561 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
562
563 void inet_csk_delete_keepalive_timer(struct sock *sk)
564 {
565         sk_stop_timer(sk, &sk->sk_timer);
566 }
567 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
568
569 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
570 {
571         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
572 }
573 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
574
575 struct dst_entry *inet_csk_route_req(const struct sock *sk,
576                                      struct flowi4 *fl4,
577                                      const struct request_sock *req)
578 {
579         const struct inet_request_sock *ireq = inet_rsk(req);
580         struct net *net = read_pnet(&ireq->ireq_net);
581         struct ip_options_rcu *opt;
582         struct rtable *rt;
583
584         rcu_read_lock();
585         opt = rcu_dereference(ireq->ireq_opt);
586
587         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
588                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
589                            sk->sk_protocol, inet_sk_flowi_flags(sk),
590                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
591                            ireq->ir_loc_addr, ireq->ir_rmt_port,
592                            htons(ireq->ir_num), sk->sk_uid);
593         security_req_classify_flow(req, flowi4_to_flowi(fl4));
594         rt = ip_route_output_flow(net, fl4, sk);
595         if (IS_ERR(rt))
596                 goto no_route;
597         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
598                 goto route_err;
599         rcu_read_unlock();
600         return &rt->dst;
601
602 route_err:
603         ip_rt_put(rt);
604 no_route:
605         rcu_read_unlock();
606         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
607         return NULL;
608 }
609 EXPORT_SYMBOL_GPL(inet_csk_route_req);
610
611 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
612                                             struct sock *newsk,
613                                             const struct request_sock *req)
614 {
615         const struct inet_request_sock *ireq = inet_rsk(req);
616         struct net *net = read_pnet(&ireq->ireq_net);
617         struct inet_sock *newinet = inet_sk(newsk);
618         struct ip_options_rcu *opt;
619         struct flowi4 *fl4;
620         struct rtable *rt;
621
622         opt = rcu_dereference(ireq->ireq_opt);
623         fl4 = &newinet->cork.fl.u.ip4;
624
625         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
626                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
627                            sk->sk_protocol, inet_sk_flowi_flags(sk),
628                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
629                            ireq->ir_loc_addr, ireq->ir_rmt_port,
630                            htons(ireq->ir_num), sk->sk_uid);
631         security_req_classify_flow(req, flowi4_to_flowi(fl4));
632         rt = ip_route_output_flow(net, fl4, sk);
633         if (IS_ERR(rt))
634                 goto no_route;
635         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
636                 goto route_err;
637         return &rt->dst;
638
639 route_err:
640         ip_rt_put(rt);
641 no_route:
642         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
643         return NULL;
644 }
645 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
646
647 #if IS_ENABLED(CONFIG_IPV6)
648 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
649 #else
650 #define AF_INET_FAMILY(fam) true
651 #endif
652
653 /* Decide when to expire the request and when to resend SYN-ACK */
654 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
655                                   const int max_retries,
656                                   const u8 rskq_defer_accept,
657                                   int *expire, int *resend)
658 {
659         if (!rskq_defer_accept) {
660                 *expire = req->num_timeout >= thresh;
661                 *resend = 1;
662                 return;
663         }
664         *expire = req->num_timeout >= thresh &&
665                   (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
666         /*
667          * Do not resend while waiting for data after ACK,
668          * start to resend on end of deferring period to give
669          * last chance for data or ACK to create established socket.
670          */
671         *resend = !inet_rsk(req)->acked ||
672                   req->num_timeout >= rskq_defer_accept - 1;
673 }
674
675 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
676 {
677         int err = req->rsk_ops->rtx_syn_ack(parent, req);
678
679         if (!err)
680                 req->num_retrans++;
681         return err;
682 }
683 EXPORT_SYMBOL(inet_rtx_syn_ack);
684
685 /* return true if req was found in the ehash table */
686 static bool reqsk_queue_unlink(struct request_sock *req)
687 {
688         struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
689         bool found = false;
690
691         if (sk_hashed(req_to_sk(req))) {
692                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
693
694                 spin_lock(lock);
695                 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
696                 spin_unlock(lock);
697         }
698         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
699                 reqsk_put(req);
700         return found;
701 }
702
703 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
704 {
705         bool unlinked = reqsk_queue_unlink(req);
706
707         if (unlinked) {
708                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
709                 reqsk_put(req);
710         }
711         return unlinked;
712 }
713 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
714
715 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
716 {
717         inet_csk_reqsk_queue_drop(sk, req);
718         reqsk_put(req);
719 }
720 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
721
722 static void reqsk_timer_handler(struct timer_list *t)
723 {
724         struct request_sock *req = from_timer(req, t, rsk_timer);
725         struct sock *sk_listener = req->rsk_listener;
726         struct net *net = sock_net(sk_listener);
727         struct inet_connection_sock *icsk = inet_csk(sk_listener);
728         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
729         int qlen, expire = 0, resend = 0;
730         int max_retries, thresh;
731         u8 defer_accept;
732
733         if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
734                 goto drop;
735
736         max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
737         thresh = max_retries;
738         /* Normally all the openreqs are young and become mature
739          * (i.e. converted to established socket) for first timeout.
740          * If synack was not acknowledged for 1 second, it means
741          * one of the following things: synack was lost, ack was lost,
742          * rtt is high or nobody planned to ack (i.e. synflood).
743          * When server is a bit loaded, queue is populated with old
744          * open requests, reducing effective size of queue.
745          * When server is well loaded, queue size reduces to zero
746          * after several minutes of work. It is not synflood,
747          * it is normal operation. The solution is pruning
748          * too old entries overriding normal timeout, when
749          * situation becomes dangerous.
750          *
751          * Essentially, we reserve half of room for young
752          * embrions; and abort old ones without pity, if old
753          * ones are about to clog our table.
754          */
755         qlen = reqsk_queue_len(queue);
756         if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
757                 int young = reqsk_queue_len_young(queue) << 1;
758
759                 while (thresh > 2) {
760                         if (qlen < young)
761                                 break;
762                         thresh--;
763                         young <<= 1;
764                 }
765         }
766         defer_accept = READ_ONCE(queue->rskq_defer_accept);
767         if (defer_accept)
768                 max_retries = defer_accept;
769         syn_ack_recalc(req, thresh, max_retries, defer_accept,
770                        &expire, &resend);
771         req->rsk_ops->syn_ack_timeout(req);
772         if (!expire &&
773             (!resend ||
774              !inet_rtx_syn_ack(sk_listener, req) ||
775              inet_rsk(req)->acked)) {
776                 unsigned long timeo;
777
778                 if (req->num_timeout++ == 0)
779                         atomic_dec(&queue->young);
780                 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
781                 mod_timer(&req->rsk_timer, jiffies + timeo);
782                 return;
783         }
784 drop:
785         inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
786 }
787
788 static void reqsk_queue_hash_req(struct request_sock *req,
789                                  unsigned long timeout)
790 {
791         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
792         mod_timer(&req->rsk_timer, jiffies + timeout);
793
794         inet_ehash_insert(req_to_sk(req), NULL, NULL);
795         /* before letting lookups find us, make sure all req fields
796          * are committed to memory and refcnt initialized.
797          */
798         smp_wmb();
799         refcount_set(&req->rsk_refcnt, 2 + 1);
800 }
801
802 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
803                                    unsigned long timeout)
804 {
805         reqsk_queue_hash_req(req, timeout);
806         inet_csk_reqsk_queue_added(sk);
807 }
808 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
809
810 /**
811  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
812  *      @sk: the socket to clone
813  *      @req: request_sock
814  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
815  *
816  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
817  */
818 struct sock *inet_csk_clone_lock(const struct sock *sk,
819                                  const struct request_sock *req,
820                                  const gfp_t priority)
821 {
822         struct sock *newsk = sk_clone_lock(sk, priority);
823
824         if (newsk) {
825                 struct inet_connection_sock *newicsk = inet_csk(newsk);
826
827                 newsk->sk_wait_pending = 0;
828                 inet_sk_set_state(newsk, TCP_SYN_RECV);
829                 newicsk->icsk_bind_hash = NULL;
830
831                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
832                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
833                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
834
835                 /* listeners have SOCK_RCU_FREE, not the children */
836                 sock_reset_flag(newsk, SOCK_RCU_FREE);
837
838                 inet_sk(newsk)->mc_list = NULL;
839
840                 newsk->sk_mark = inet_rsk(req)->ir_mark;
841                 atomic64_set(&newsk->sk_cookie,
842                              atomic64_read(&inet_rsk(req)->ir_cookie));
843
844                 newicsk->icsk_retransmits = 0;
845                 newicsk->icsk_backoff     = 0;
846                 newicsk->icsk_probes_out  = 0;
847                 newicsk->icsk_probes_tstamp = 0;
848
849                 /* Deinitialize accept_queue to trap illegal accesses. */
850                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
851
852                 security_inet_csk_clone(newsk, req);
853         }
854         return newsk;
855 }
856 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
857
858 /*
859  * At this point, there should be no process reference to this
860  * socket, and thus no user references at all.  Therefore we
861  * can assume the socket waitqueue is inactive and nobody will
862  * try to jump onto it.
863  */
864 void inet_csk_destroy_sock(struct sock *sk)
865 {
866         WARN_ON(sk->sk_state != TCP_CLOSE);
867         WARN_ON(!sock_flag(sk, SOCK_DEAD));
868
869         /* It cannot be in hash table! */
870         WARN_ON(!sk_unhashed(sk));
871
872         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
873         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
874
875         sk->sk_prot->destroy(sk);
876
877         sk_stream_kill_queues(sk);
878
879         xfrm_sk_free_policy(sk);
880
881         sk_refcnt_debug_release(sk);
882
883         percpu_counter_dec(sk->sk_prot->orphan_count);
884
885         sock_put(sk);
886 }
887 EXPORT_SYMBOL(inet_csk_destroy_sock);
888
889 /* This function allows to force a closure of a socket after the call to
890  * tcp/dccp_create_openreq_child().
891  */
892 void inet_csk_prepare_forced_close(struct sock *sk)
893         __releases(&sk->sk_lock.slock)
894 {
895         /* sk_clone_lock locked the socket and set refcnt to 2 */
896         bh_unlock_sock(sk);
897         sock_put(sk);
898
899         /* The below has to be done to allow calling inet_csk_destroy_sock */
900         sock_set_flag(sk, SOCK_DEAD);
901         percpu_counter_inc(sk->sk_prot->orphan_count);
902         inet_sk(sk)->inet_num = 0;
903 }
904 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
905
906 static int inet_ulp_can_listen(const struct sock *sk)
907 {
908         const struct inet_connection_sock *icsk = inet_csk(sk);
909
910         if (icsk->icsk_ulp_ops)
911                 return -EINVAL;
912
913         return 0;
914 }
915
916 int inet_csk_listen_start(struct sock *sk, int backlog)
917 {
918         struct inet_connection_sock *icsk = inet_csk(sk);
919         struct inet_sock *inet = inet_sk(sk);
920         int err;
921
922         err = inet_ulp_can_listen(sk);
923         if (unlikely(err))
924                 return err;
925
926         reqsk_queue_alloc(&icsk->icsk_accept_queue);
927
928         sk->sk_ack_backlog = 0;
929         inet_csk_delack_init(sk);
930
931         /* There is race window here: we announce ourselves listening,
932          * but this transition is still not validated by get_port().
933          * It is OK, because this socket enters to hash table only
934          * after validation is complete.
935          */
936         err = -EADDRINUSE;
937         inet_sk_state_store(sk, TCP_LISTEN);
938         if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
939                 inet->inet_sport = htons(inet->inet_num);
940
941                 sk_dst_reset(sk);
942                 err = sk->sk_prot->hash(sk);
943
944                 if (likely(!err))
945                         return 0;
946         }
947
948         inet_sk_set_state(sk, TCP_CLOSE);
949         return err;
950 }
951 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
952
953 static void inet_child_forget(struct sock *sk, struct request_sock *req,
954                               struct sock *child)
955 {
956         sk->sk_prot->disconnect(child, O_NONBLOCK);
957
958         sock_orphan(child);
959
960         percpu_counter_inc(sk->sk_prot->orphan_count);
961
962         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
963                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
964                 BUG_ON(sk != req->rsk_listener);
965
966                 /* Paranoid, to prevent race condition if
967                  * an inbound pkt destined for child is
968                  * blocked by sock lock in tcp_v4_rcv().
969                  * Also to satisfy an assertion in
970                  * tcp_v4_destroy_sock().
971                  */
972                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
973         }
974         inet_csk_destroy_sock(child);
975 }
976
977 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
978                                       struct request_sock *req,
979                                       struct sock *child)
980 {
981         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
982
983         spin_lock(&queue->rskq_lock);
984         if (unlikely(sk->sk_state != TCP_LISTEN)) {
985                 inet_child_forget(sk, req, child);
986                 child = NULL;
987         } else {
988                 req->sk = child;
989                 req->dl_next = NULL;
990                 if (queue->rskq_accept_head == NULL)
991                         WRITE_ONCE(queue->rskq_accept_head, req);
992                 else
993                         queue->rskq_accept_tail->dl_next = req;
994                 queue->rskq_accept_tail = req;
995                 sk_acceptq_added(sk);
996         }
997         spin_unlock(&queue->rskq_lock);
998         return child;
999 }
1000 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1001
1002 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1003                                          struct request_sock *req, bool own_req)
1004 {
1005         if (own_req) {
1006                 inet_csk_reqsk_queue_drop(sk, req);
1007                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1008                 if (inet_csk_reqsk_queue_add(sk, req, child))
1009                         return child;
1010         }
1011         /* Too bad, another child took ownership of the request, undo. */
1012         bh_unlock_sock(child);
1013         sock_put(child);
1014         return NULL;
1015 }
1016 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1017
1018 /*
1019  *      This routine closes sockets which have been at least partially
1020  *      opened, but not yet accepted.
1021  */
1022 void inet_csk_listen_stop(struct sock *sk)
1023 {
1024         struct inet_connection_sock *icsk = inet_csk(sk);
1025         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1026         struct request_sock *next, *req;
1027
1028         /* Following specs, it would be better either to send FIN
1029          * (and enter FIN-WAIT-1, it is normal close)
1030          * or to send active reset (abort).
1031          * Certainly, it is pretty dangerous while synflood, but it is
1032          * bad justification for our negligence 8)
1033          * To be honest, we are not able to make either
1034          * of the variants now.                 --ANK
1035          */
1036         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1037                 struct sock *child = req->sk;
1038
1039                 local_bh_disable();
1040                 bh_lock_sock(child);
1041                 WARN_ON(sock_owned_by_user(child));
1042                 sock_hold(child);
1043
1044                 inet_child_forget(sk, req, child);
1045                 reqsk_put(req);
1046                 bh_unlock_sock(child);
1047                 local_bh_enable();
1048                 sock_put(child);
1049
1050                 cond_resched();
1051         }
1052         if (queue->fastopenq.rskq_rst_head) {
1053                 /* Free all the reqs queued in rskq_rst_head. */
1054                 spin_lock_bh(&queue->fastopenq.lock);
1055                 req = queue->fastopenq.rskq_rst_head;
1056                 queue->fastopenq.rskq_rst_head = NULL;
1057                 spin_unlock_bh(&queue->fastopenq.lock);
1058                 while (req != NULL) {
1059                         next = req->dl_next;
1060                         reqsk_put(req);
1061                         req = next;
1062                 }
1063         }
1064         WARN_ON_ONCE(sk->sk_ack_backlog);
1065 }
1066 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1067
1068 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1069 {
1070         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1071         const struct inet_sock *inet = inet_sk(sk);
1072
1073         sin->sin_family         = AF_INET;
1074         sin->sin_addr.s_addr    = inet->inet_daddr;
1075         sin->sin_port           = inet->inet_dport;
1076 }
1077 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1078
1079 #ifdef CONFIG_COMPAT
1080 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1081                                char __user *optval, int __user *optlen)
1082 {
1083         const struct inet_connection_sock *icsk = inet_csk(sk);
1084
1085         if (icsk->icsk_af_ops->compat_getsockopt)
1086                 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1087                                                             optval, optlen);
1088         return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1089                                              optval, optlen);
1090 }
1091 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1092
1093 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1094                                char __user *optval, unsigned int optlen)
1095 {
1096         const struct inet_connection_sock *icsk = inet_csk(sk);
1097
1098         if (icsk->icsk_af_ops->compat_setsockopt)
1099                 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1100                                                             optval, optlen);
1101         return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1102                                              optval, optlen);
1103 }
1104 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1105 #endif
1106
1107 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1108 {
1109         const struct inet_sock *inet = inet_sk(sk);
1110         const struct ip_options_rcu *inet_opt;
1111         __be32 daddr = inet->inet_daddr;
1112         struct flowi4 *fl4;
1113         struct rtable *rt;
1114
1115         rcu_read_lock();
1116         inet_opt = rcu_dereference(inet->inet_opt);
1117         if (inet_opt && inet_opt->opt.srr)
1118                 daddr = inet_opt->opt.faddr;
1119         fl4 = &fl->u.ip4;
1120         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1121                                    inet->inet_saddr, inet->inet_dport,
1122                                    inet->inet_sport, sk->sk_protocol,
1123                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1124         if (IS_ERR(rt))
1125                 rt = NULL;
1126         if (rt)
1127                 sk_setup_caps(sk, &rt->dst);
1128         rcu_read_unlock();
1129
1130         return &rt->dst;
1131 }
1132
1133 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1134 {
1135         struct dst_entry *dst = __sk_dst_check(sk, 0);
1136         struct inet_sock *inet = inet_sk(sk);
1137
1138         if (!dst) {
1139                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1140                 if (!dst)
1141                         goto out;
1142         }
1143         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1144
1145         dst = __sk_dst_check(sk, 0);
1146         if (!dst)
1147                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1148 out:
1149         return dst;
1150 }
1151 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);