2 * Generic address resultion entity
6 * net_ratelimit Andi Kleen
7 * in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
9 * Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/module.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel.h>
20 #include <linux/ctype.h>
21 #include <linux/inet.h>
23 #include <linux/net.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/percpu.h>
27 #include <linux/init.h>
28 #include <linux/ratelimit.h>
29 #include <linux/socket.h>
32 #include <net/net_ratelimit.h>
35 #include <asm/byteorder.h>
36 #include <linux/uaccess.h>
38 DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
40 * All net warning printk()s should be guarded by this function.
42 int net_ratelimit(void)
44 return __ratelimit(&net_ratelimit_state);
46 EXPORT_SYMBOL(net_ratelimit);
49 * Convert an ASCII string to binary IP.
50 * This is outside of net/ipv4/ because various code that uses IP addresses
51 * is otherwise not dependent on the TCP/IP stack.
54 __be32 in_aton(const char *str)
61 for (i = 0; i < 4; i++) {
65 while (*str != '\0' && *str != '.' && *str != '\n') {
77 EXPORT_SYMBOL(in_aton);
79 #define IN6PTON_XDIGIT 0x00010000
80 #define IN6PTON_DIGIT 0x00020000
81 #define IN6PTON_COLON_MASK 0x00700000
82 #define IN6PTON_COLON_1 0x00100000 /* single : requested */
83 #define IN6PTON_COLON_2 0x00200000 /* second : requested */
84 #define IN6PTON_COLON_1_2 0x00400000 /* :: requested */
85 #define IN6PTON_DOT 0x00800000 /* . */
86 #define IN6PTON_DELIM 0x10000000
87 #define IN6PTON_NULL 0x20000000 /* first/tail */
88 #define IN6PTON_UNKNOWN 0x40000000
90 static inline int xdigit2bin(char c, int delim)
94 if (c == delim || c == '\0')
97 return IN6PTON_COLON_MASK;
103 return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
106 return IN6PTON_DELIM;
107 return IN6PTON_UNKNOWN;
111 * in4_pton - convert an IPv4 address from literal to binary representation
112 * @src: the start of the IPv4 address string
113 * @srclen: the length of the string, -1 means strlen(src)
114 * @dst: the binary (u8[4] array) representation of the IPv4 address
115 * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
116 * @end: A pointer to the end of the parsed string will be placed here
118 * Return one on success, return zero when any error occurs
119 * and @end will point to the end of the parsed string.
122 int in4_pton(const char *src, int srclen,
124 int delim, const char **end)
134 srclen = strlen(src);
140 c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
141 if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
144 if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
150 if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
158 if ((w & 0xffff) > 255) {
168 memcpy(dst, dbuf, sizeof(dbuf));
174 EXPORT_SYMBOL(in4_pton);
177 * in6_pton - convert an IPv6 address from literal to binary representation
178 * @src: the start of the IPv6 address string
179 * @srclen: the length of the string, -1 means strlen(src)
180 * @dst: the binary (u8[16] array) representation of the IPv6 address
181 * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
182 * @end: A pointer to the end of the parsed string will be placed here
184 * Return one on success, return zero when any error occurs
185 * and @end will point to the end of the parsed string.
188 int in6_pton(const char *src, int srclen,
190 int delim, const char **end)
192 const char *s, *tok = NULL;
197 int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
200 memset(dbuf, 0, sizeof(dbuf));
205 srclen = strlen(src);
210 c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
213 if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
214 /* process one 16-bit word */
215 if (!(state & IN6PTON_NULL)) {
216 *d++ = (w >> 8) & 0xff;
220 if (c & IN6PTON_DELIM) {
221 /* We've processed last word */
226 * COLON_2 => XDIGIT|DELIM
227 * COLON_1_2 => COLON_2
229 switch (state & IN6PTON_COLON_MASK) {
230 case IN6PTON_COLON_2:
232 state = IN6PTON_XDIGIT | IN6PTON_DELIM;
233 if (dc - dbuf >= sizeof(dbuf))
234 state |= IN6PTON_NULL;
236 case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
237 state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
239 case IN6PTON_COLON_1:
240 state = IN6PTON_XDIGIT;
242 case IN6PTON_COLON_1_2:
243 state = IN6PTON_COLON_2;
252 if (c & IN6PTON_DOT) {
253 ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
261 w = (w << 4) | (0xff & c);
262 state = IN6PTON_COLON_1 | IN6PTON_DELIM;
264 state |= IN6PTON_XDIGIT;
266 if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
267 state |= IN6PTON_COLON_1_2;
268 state &= ~IN6PTON_DELIM;
270 if (d + 2 >= dbuf + sizeof(dbuf)) {
271 state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
274 if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
275 d + 4 == dbuf + sizeof(dbuf)) {
276 state |= IN6PTON_DOT;
278 if (d >= dbuf + sizeof(dbuf)) {
279 state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
290 while (i >= dc - dbuf)
295 memcpy(dst, dbuf, sizeof(dbuf));
303 EXPORT_SYMBOL(in6_pton);
305 static int inet4_pton(const char *src, u16 port_num,
306 struct sockaddr_storage *addr)
308 struct sockaddr_in *addr4 = (struct sockaddr_in *)addr;
309 int srclen = strlen(src);
311 if (srclen > INET_ADDRSTRLEN)
314 if (in4_pton(src, srclen, (u8 *)&addr4->sin_addr.s_addr,
318 addr4->sin_family = AF_INET;
319 addr4->sin_port = htons(port_num);
324 static int inet6_pton(struct net *net, const char *src, u16 port_num,
325 struct sockaddr_storage *addr)
327 struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)addr;
328 const char *scope_delim;
329 int srclen = strlen(src);
331 if (srclen > INET6_ADDRSTRLEN)
334 if (in6_pton(src, srclen, (u8 *)&addr6->sin6_addr.s6_addr,
335 '%', &scope_delim) == 0)
338 if (ipv6_addr_type(&addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL &&
339 src + srclen != scope_delim && *scope_delim == '%') {
340 struct net_device *dev;
342 size_t scope_len = min_t(size_t, sizeof(scope_id) - 1,
343 src + srclen - scope_delim - 1);
345 memcpy(scope_id, scope_delim + 1, scope_len);
346 scope_id[scope_len] = '\0';
348 dev = dev_get_by_name(net, scope_id);
350 addr6->sin6_scope_id = dev->ifindex;
352 } else if (kstrtouint(scope_id, 0, &addr6->sin6_scope_id)) {
357 addr6->sin6_family = AF_INET6;
358 addr6->sin6_port = htons(port_num);
364 * inet_pton_with_scope - convert an IPv4/IPv6 and port to socket address
365 * @net: net namespace (used for scope handling)
366 * @af: address family, AF_INET, AF_INET6 or AF_UNSPEC for either
367 * @src: the start of the address string
368 * @port: the start of the port string (or NULL for none)
369 * @addr: output socket address
371 * Return zero on success, return errno when any error occurs.
373 int inet_pton_with_scope(struct net *net, __kernel_sa_family_t af,
374 const char *src, const char *port, struct sockaddr_storage *addr)
380 if (kstrtou16(port, 0, &port_num))
388 ret = inet4_pton(src, port_num, addr);
391 ret = inet6_pton(net, src, port_num, addr);
394 ret = inet4_pton(src, port_num, addr);
396 ret = inet6_pton(net, src, port_num, addr);
399 pr_err("unexpected address family %d\n", af);
404 EXPORT_SYMBOL(inet_pton_with_scope);
406 bool inet_addr_is_any(struct sockaddr *addr)
408 if (addr->sa_family == AF_INET6) {
409 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)addr;
410 const struct sockaddr_in6 in6_any =
411 { .sin6_addr = IN6ADDR_ANY_INIT };
413 if (!memcmp(in6->sin6_addr.s6_addr,
414 in6_any.sin6_addr.s6_addr, 16))
416 } else if (addr->sa_family == AF_INET) {
417 struct sockaddr_in *in = (struct sockaddr_in *)addr;
419 if (in->sin_addr.s_addr == htonl(INADDR_ANY))
422 pr_warn("unexpected address family %u\n", addr->sa_family);
427 EXPORT_SYMBOL(inet_addr_is_any);
429 void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
430 __be32 from, __be32 to, bool pseudohdr)
432 if (skb->ip_summed != CHECKSUM_PARTIAL) {
433 csum_replace4(sum, from, to);
434 if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
435 skb->csum = ~csum_add(csum_sub(~(skb->csum),
436 (__force __wsum)from),
438 } else if (pseudohdr)
439 *sum = ~csum_fold(csum_add(csum_sub(csum_unfold(*sum),
440 (__force __wsum)from),
441 (__force __wsum)to));
443 EXPORT_SYMBOL(inet_proto_csum_replace4);
446 * inet_proto_csum_replace16 - update layer 4 header checksum field
447 * @sum: Layer 4 header checksum field
448 * @skb: sk_buff for the packet
449 * @from: old IPv6 address
450 * @to: new IPv6 address
451 * @pseudohdr: True if layer 4 header checksum includes pseudoheader
453 * Update layer 4 header as per the update in IPv6 src/dst address.
455 * There is no need to update skb->csum in this function, because update in two
456 * fields a.) IPv6 src/dst address and b.) L4 header checksum cancels each other
457 * for skb->csum calculation. Whereas inet_proto_csum_replace4 function needs to
458 * update skb->csum, because update in 3 fields a.) IPv4 src/dst address,
459 * b.) IPv4 Header checksum and c.) L4 header checksum results in same diff as
460 * L4 Header checksum for skb->csum calculation.
462 void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
463 const __be32 *from, const __be32 *to,
467 ~from[0], ~from[1], ~from[2], ~from[3],
468 to[0], to[1], to[2], to[3],
470 if (skb->ip_summed != CHECKSUM_PARTIAL) {
471 *sum = csum_fold(csum_partial(diff, sizeof(diff),
472 ~csum_unfold(*sum)));
473 } else if (pseudohdr)
474 *sum = ~csum_fold(csum_partial(diff, sizeof(diff),
477 EXPORT_SYMBOL(inet_proto_csum_replace16);
479 void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb,
480 __wsum diff, bool pseudohdr)
482 if (skb->ip_summed != CHECKSUM_PARTIAL) {
483 *sum = csum_fold(csum_add(diff, ~csum_unfold(*sum)));
484 if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
485 skb->csum = ~csum_add(diff, ~skb->csum);
486 } else if (pseudohdr) {
487 *sum = ~csum_fold(csum_add(diff, csum_unfold(*sum)));
490 EXPORT_SYMBOL(inet_proto_csum_replace_by_diff);